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1 Introduction

Billions of dollars are spent every year on mortality reduction programs. Issues like the al-

location of funds to medical research or prevention, the design of safety rules or the wording

of environmental bills raise intense debate on the relevance of the choices made by govern-

ments and their agencies. For economists, the baseline is that alternative projects should

be evaluated with objective criteria to avoid pure waste or dramatic underinvestment in less

popular issues.

To back public decisions, some inquiry into individual valuation of life is indispensable.

In practice, if we leave apart contingent valuation, the analysis of the wage-risk tradeoff is

the major source of estimates of people’s behavior with respect to risk to life. These surveys

are primarily informative about industrial workers. Since public programs affect wider pop-

ulations whose characteristics may vary considerably and given that the mortality changes

considered are often beyond the range experienced by the reference sample, a theoretical

support for the interpretation of the data is indispensable.

The choice of the structural life-cycle model that minimizes bias at estimation and ex-

trapolation stages is capital. The standard approach uses additively separable life-cycle
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models. The intertemporal additivity assumption, which involves an implicit assumption

of risk neutrality with respect to length of life is extremely constraining (Bommier 2006).

Although this model has been severely criticized in other branches of literature,1 it remains

an almost universal assumption for applied theory papers on the value of life.2

In this paper, we develop an alternative model, based on recursive von Neumann-Morgen-

stern utility functions, which relaxes the additivity assumption and thereby introduces what

we shall call mortality risk aversion.3 Although this extension complicates intermediate

calculations, practical difficulties are kept at a reasonable level: formulas for the value of

statistical lives are almost as simple as those obtained with the standard additive model.

There are therefore no technical difficulties for applying this novel approach to concrete

issues. Above all, relaxing additivity warrants a significant gain in accuracy. As a proof

of concept, we use empirical results on the wage-risk tradeoff to calibrate both the addi-

tive and nonadditive models. While the additive model proves unable to fit the data, the

generalization proposed provides an excellent fit with reasonable estimated parameters.

To emphasize the importance of accounting for mortality risk aversion, we compare the

benefits of (fictitious) life saving policies using different methods. The magnitude of the bias

caused by the additive separability assumption appears to be uncomfortably big. The type

of cost-benefit analysis that is currently recommended for life-saving programs is likely to be

strongly biased in favor of the elderly if the decline of the VSL with age is underestimated.

The correction we suggest could exceed in magnitude that introduced by the switch from

the notion of number of lives saved to the notion of years of life saved.

Life insurance companies are primarily concerned with the costs of providing coverage.
1Even when mortality is not an issue, theoretical arguments underlined unpleasant consequences of the

additive separability assumption (e.g. Richard 1975, Deaton 1974 and 1992, Epstein and Zin 1991). More-
over, the additive model’s inability to fit intertemporal choice has been repeatedly underlined by empirical
studies (Hayashi 1985, Muellbauer 1988, Browning 1991, and Carrasco, Labeaga and López-Salido 2005).

2See for example the recent contributions of Murphy an Topel (2006) and Hall and Jones (2007).
3It should be clear that the nonadditive model we use introduces a variety of risk aversion towards life

length that is to be distinguished from financial risk aversion as in Eeckhoudt and Hammitt (2004) and
Kaplow (2005). These papers discuss the impact of the curvature of the instantaneous utility function on
the VSL. This issue matters particularly for understanding the income elasticity of the VSL Kaplow (2005).
The pure effect of age is not investigated.
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These costs are directly related to the probabilities of the events covered, hence the im-

portance of mortality tables. For policyholders however, the notion of complete or perfect

insurance is not as clear as for loss insurance (where a simple dollar-for-dollar rule works

pretty well). The structure of individual preferences matters to design contributions and

benefits plans. Life insurance products are, empirically, highly diversified. This reflects

the diversity of individual preferences and the diversity of insurer sophistication as to the

understanding of these preferences.

The empirical wage-risk tradeoff allows us to test alternative theories of the lifecycle

preferences. Potentially, this better understanding enables testing the efficiency of actual

insurance policies and could help improve design, and thereby, market performance.

The two main applications we mention in this paper (longevity related public policy, life

insurance design) are tightly connected. As longevity prospects evolve, and because this

evolution is partly stochastic (i.e. revealed progressively as people age and, say, medical

discoveries are made), insurers may want to introduce options in their products. These

options could be additional contributions at predefined dates, changes in the indexing rule,

cash surrender, etc. The value of these options and how they will be exercized would be better

assessed with a better behavioral model. These considerations of course are programmatic

and go beyond the contribution of this particular paper.

The structure of the paper is as follows: a theory is set up and analyzed, parameters

based on empirical results are given, a prediction of optimal public choice is proposed for

illustration. Section 2 positions our work in the recent related literature. Section 3 recalls

the additive model, introduces more general preferences and characterizes mortality risk

aversion. Section 4 shows the consequences of alternative models for the individual valuation

of statistical lives. Using an available hedonic regression of the value of statistical life,

Section 5 searches for the best fitting model and shows the performance of the nonadditive

version. Section 6 contrasts quantitatively several evaluation procedures on typical life saving

programs.
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2 Related literature

Most of the economic literature on the Value of Statistical Life (henceforth VSL) is based

on a particular model whose standard version (e.g. Arthur 1981, Shepard and Zeckhauser

1984 or Rosen 1988) relies on elements developed in Yaari (1965). Several extensions have

recently been suggested.

In Murphy and Topel (2006), health multiplies the instantaneous utility derived from the

flow of consumption. Since health is assumed to be exogenous in that part of their paper

assessing the gain from mortality risk reduction, their approach is equivalent to assuming

that agents have additively separable utility functions whose (exogenous) discount function

is not necessarily exponential. Hall and Jones (2007) also extend Yaari’s model by introduc-

ing a health component in the utility function. Still, health being unobserved, they end up

assuming in applications that it equals the inverse of the mortality rate. Though sensible,

this amounts to assuming that instantaneous utility depends on mortality through a partic-

ular functional form. Ehrlich and Yin (2005) model a technology through which protection

expenditures increase longevity; the authors also introduce a bequest motive.

The above contributions extended Yaari’s model in several directions, but have in common

that they all maintain the assumption of additive separability of preferences. It is precisely

that later assumption that we shall relax. Our contribution is thus of a different nature:

instead of incorporating additional variables to Yaari’s model (such as health or bequest),

we explore the potential of a less straightly structured specification. As we shall see, this

provides different insights, especially on the speed at which VSL may or may not decline

with age at old ages.

The effect of age on the VSL is controversial.4 Simple simulations of the original models

exhibit either a decline with age, or an inverse U-shape. When careful calibration is achieved

to match empirical consumption profiles, the inverse U-shape is generally found, with a rather

slow decline at old ages. The above mentioned theoretical extensions of Murphy and Topel

(2006) and Ehrlich and Yin (2005) tend to confirm this prediction. Empirical works, however,
4See the discussion in Aldy and Viscusi (2007) and the references to press articles therein.
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do not converge to a consensus on the relation between age and VSL. The hedonic regressions

on wages in Aldy and Viscusi (2003) and Kniesner et al. (2006) also show an inverse U-shape

relation between age and VSL, with a rather rapid decline of VSL at old ages. Other recent

works (Alberini et al. 2004, Smith et al. 2004, Aldy and Viscusi, 2008), based either on

contingent valuation or wage-risk tradeoffs, tend to minimize the significant decline that was

apparent in previous estimates. The debate seems far from being closed. The present paper

contributes to it by showing that when the assumption of additive separability of preferences

is relaxed in order to account for mortality risk aversion, then a rapid decline of VSL at old

ages becomes theoretically plausible.

3 Lifetime preferences

3.1 Basic concepts and notation

We define a life as the cross product of an infinite consumption profile c and a finite age at

death T . For an individual of age a, a life (c, T ) is an element of La with

La = C([a,+∞[,R)× [a,+∞[. (1)

where C([a,+∞[,R) denotes the set of continuous functions mapping [a,+∞[ into R. Con-

sumption at age t is denoted by ct. Note that consumption is not a priori constrained to

equal zero for t > T , but this will have no importance since it will be assumed that agents

do not care for consumption after death.

Lifetime being uncertain, modeling the tradeoff between mortality and consumption re-

quires a theory of choice under risk. We apply the VNM expected utility framework on

the space of lotteries (i.e. probability measures) over La. To do so, one can define a utility

function (or Bernoulli index) Ua(c, T ) such that for any two probability measures η, η0 on

La,

η º η0 ⇔ EηUa ≥ Eη0Ua, (2)
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where º denotes weak preference and Eη (resp. Eη0) is the expectation operator based on

probability η (resp. η0).

We assume that individuals do not care for consumption after death, which amounts to

posing Ua(c, T ) = Ua(c
0, T ) for any two c, c0 that are equal on [a, T ]. This enables us to

normalize Ua so as to have Ua(c, a) = 0,∀c.

A probability measure over La for which the consumption profile c is predetermined and

the uncertainty bears only on T can be written as δc ×m where δc is a Dirac and m is a

probability measure over [a,+∞) describing the distribution of the age of death. We have

Eδc×mUa =

Z +∞

a

Ua(c, T )m(T )dT. (3)

This expected utility will be simply denoted by EUa in the rest of the paper.

The probability of being alive at age T , conditional on being alive at age a, is denoted

sTa ≡ exp
µ
−
Z T

a

μtdt

¶
= 1−

Z T

a

m(t)dt, (4)

where the latter equality expresses survival in terms of mortality rates, μt being the hazard

rate of death at age t.

We make two purely technical assumptions.

Assumption 1 μt tends to infinity as t tends to infinity.

Assumption 2 c is bounded in the long run, i.e. there is an interval [cmin, cmax] with cmin >

0 and cmax < +∞ on which c is supported after some arbitrary date.

Integration by parts yields

EUa =
£
−sTaUa(c, T )

¤+∞
a

+

Z +∞

a

sTa
∂Ua(c, T )

∂T
dT, (5)

and eventually, using Assumptions 1 and 2 (sTa → 0 and Ua is bounded as T → +∞) to
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evaluate the first term, we find

EUa =

Z +∞

a

sTa
∂Ua(c, T )

∂T
dT. (6)

The potential of the theory now depends on the assumptions that are made on Ua(c, T )

or equivalently on ∂Ua(c,T )
∂T

. We first come back on the common additive specification and

highlight some of its properties. Then we suggest a more general form for Ua(c, T ) on which

our analysis will be based.

3.2 The additive model

The usual approach relies on elements developed in Yaari (1965). In this “additive model,”

preferences are time consistent, age and history independent and additively separable. An

individual of age a has preferences represented by the Bernoulli index

U adda (c, T ) =

Z T

a

u(ct)e
−λ(t−a)dt, (7)

where u is a well-behaved instantaneous utility function and λ is the subjective discount

factor. In this case
∂Uadda (c, T )

∂T
= u(cT )e

−λ(T−a), (8)

and the expected utility is

EUadda =

Z +∞

a

sTa u(cT )e
−λ(T−a)dT. (9)

We recognize the formulation in Yaari (1965).

A peculiar feature of this model is that ∂Uadda (c,T )
∂T

is independent of past consumption.

Said differently, the marginal utility of life is independent of how good (or bad) life has been

in the past.5 If we parallel this with wealth preferences, this is akin to assuming that marginal
5Note that introducing a relation between marginal utility of life and past consumption would not neces-

sarily require assuming that preferences are history dependent. See for example the case of recursive utilities
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utility of wealth is independent of wealth, i.e. that the decision maker is risk neutral. This

point was first stressed by Broome (1993) who criticized the additive specification for relying

on an implicit assumption of “risk neutrality over discounted QALY’s”, which he qualified as

“surely implausible” (Broome, 1993, p.166). In a parallel line of argument, Bommier (2006)

shows that assuming additive separability as in (7) is equivalent to assuming risk neutrality

over life duration when considering consumption paths whose variations compensate for time

preferences.

3.3 The recursive model

One could think of several tractable options with marginal utility of life depending on past

consumption. The approach we follow preserves stationarity, one of the key properties of

Yaari’s specification.6 Basically, stationarity means that preferences are time consistent,

independent of age and of history (see Epstein 1983, who extended Koopmans’ 1965 definition

of stationarity to the case of choice under uncertainty). In other words, people of different

ages differ only with respect to their earning and mortality profiles. Bommier (2005) shows

in particular that for agents that are sure to die (but who may not know when they will die),

preferences are stationary if and only if they can be represented as

Ua(c, T ) =

Z T

a

u(ct) exp

µ
−
Z t

a

v(cτ)dτ

¶
dt. (10)

This specification first appeared in the economic literature (in the case of immortal agents)

in Uzawa (1969). As soon as we depart from the additive case, the meanings of u and v

are not straightforward. Uzawa interpreted the integral
R t
a
v(cτ )dτ as an “accumulated rate

of time preference”. This extrapolation from the additive model is misleading: it suggests

considered in the following section.
6Another possibility is to allow changes in risk aversion à la Kihlstrom and Mirman (1974). This is

pursued in Bommier (2006). Instead of taking the expected value of U adda (c, T ), one uses Φ(Uadda (c, T ))
where Φ is an increasing transformation. The drawback is that these preferences are not stationary, except
in two cases: Φ is linear (the additive case) or Φ is exponential and λ = 0 (the multiplicative model discussed
later on in the present paper).
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that the rate of time discounting depends on past consumption whereas, due to their re-

cursive form, preferences are indeed characterized by independence with respect to it.7 A

rigorous approach involves starting from well defined local properties of individual prefer-

ences (marginal rates of substitution) and deriving proper concepts of time discounting and

intertemporal elasticity of substitution, as will be done in Subsection 3.4.

Two special cases of the recursive model (10) must be highlighted at this stage. They

are equally simple and the empirical part of this paper will show a clear difference (in favor

of the second) in their abilities to fit data. The first one is simply the additive one (take

v(·) = λ, a constant). The second one is the multiplicative model in which v(c) = ku(c),∀c,

for some constant k; equation (10) can be integrated to give

Umultia (c, T ) =
1− exp

³
−k
R T
a
u(ct)dt

´
k

. (11)

The term multiplicative refers to the fact that the exponentials of the instantaneous utilities

multiply each other. Being a concave transformation of an additive utility function, this

latter specification maintains the assumption of weak separability of preferences. Increasing

k amounts to increasing risk aversion in the sense of Kihlstrom and Mirman (1974). This

specification is therefore particularly appropriate to illustrate the impact of risk aversion on

the value of risk to life.

Under uncertain lifetime, the expected utility based on (10) is

EUa =

Z +∞

a

stau(ct) exp

µ
−
Z t

a

v(cτ)dτ

¶
dt. (12)

This paper will not discuss the consequences, for given mortality, of recursive preferences

on the intertemporal allocation of wealth.8 We focus instead on issues related to endogenous
7To see recursivity, remark that for all a, b, T such that a ≤ b ≤ T

Ua(c, T ) =

Z b

a

u(ct) exp

µ
−
Z t

a

v(cτ )dτ

¶
dt+ exp

Ã
−
Z b

a

v(cτ )dτ

!
· Ub(c, T ).

8Consumption smoothing with this kind of preferences is discussed at length in Bommier (2005) for
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mortality choices, a typical example of which being the wage-risk tradeoff. For this purpose,

we need a few general concepts.

3.4 Local properties

The first concept expresses how individuals trade off present and future consumptions:9

Definition 1 (RD) The mortality adjusted rate of time discounting at age t is

RD(c, t) ≡ − d
dt
log

µ
1

sta
· ∂EUa

∂ct

¶¯̄̄̄
•
ct=0

. (13)

In absence of mortality at age t (i.e. if sta were constant around t), RD(c, t) would be the

rate of time discounting in continuous time defined in Epstein (1987). The correction 1/sta

simply neutralizes the uncertainty effect that mortality risk has on consumption (consump-

tion is contingent on survival). With the recursive model, calculations yield

RD(c, t) =
v(ct)u

0(ct)− v0(ct)(u(ct)− μtEUt)

u0(ct)− v0(ct)EUt
, (14)

where EUt is defined in (12). Although the definition of RD(c, t) is conditional on a, the

current age of the individual, RD(c, t) only depends on consumption and mortality at ages

greater than or equal to t. This is a consequence of history independence and time consis-

tency: a 20 year old individual and a 50 year old individual anticipate the same value for

the rate of discount of consumption at age 60. The indexes defined below exhibit similar

properties of independence from the past.

The second concept, intertemporal elasticity of substitution, is defined with continuous

time as the limit of the direct elasticity of substitution (as defined in McFadden, 1963)

nonconstant v. A causal link between mortality (as a risk) and apparent impatience is put forward. In
particular, with the multiplicative model which rules out pure time preference, sizable impatience can be
calculated even with small mortality rates.

9Because of our continuous time modeling, we use Volterra derivatives. They measure utility changes
when consumption (or mortality) varies by an infinitesimal value during an infinitesimally short lapse of
time. For example ∂Ua

∂μt
dμdt gives the change in Ua when mortality rates increase by dμ during dt around t.

A first application of Volterra derivatives to economics is Ryder and Heal (1973).
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between consumptions at two different dates whose time distance tends to zero.

Definition 2 (IES) The intertemporal elasticity of substitution at age t, which we denote

σt, is defined by:

1

σt
δt ≡ lim

τ→t
τ 6=t

−
∂2EUa
(∂ct)

2³
∂EUa
∂ct

´2 + 2 ∂2EUa
∂ct∂cτ

∂EUa
∂ct

∂EUa
∂cτ

−
∂2EUa
(∂cτ )2

(∂EUa∂cτ
)
2

1

ct
∂EUa
∂ct

+ 1

cτ
∂EUa
∂cτ

(15)

where δt is the Dirac delta function.10

The intertemporal elasticity of substitution, together with the mortality adjusted rate of

time discounting are the key determinants of the marginal trade-offs involved in consumption

smoothing. For example, in a perfect market environment (with actuarially fair annuities

and a rate of interest r), the growth rate of the optimal path would be (r−RD(c, t))σt.

With the recursive model,

σt = −
1

ct

u0(ct)− v0(ct)EUt
u00(ct)− v00(ct)EUt

. (16)

When preferences are additive or multiplicative, this formula simplifies to σt =
−u0(ct)
ctu00(ct)

.

The third concept of time discounting simply expresses how people trade off survival

probabilities at different ages.

Definition 3 (RDLY) The rate of time discounting for life years is defined by

RDLY(c, t) ≡ − d
dt
log

µ
∂EUa
∂sta

¶¯̄̄̄
•
ct=0

. (17)

With the recursive model,

RDLY(c, t) = v(ct). (18)

The fourth concept, which is at the center of our analysis, requires more comments and

clarifications.
10The presence of the Dirac delta function is a purely technical point related to continuous time modeling.

This function appears when second order derivatives are involved. See also footnote 9.
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Definition 4 (MRA) Mortality risk aversion is defined by

MRA(c, t) ≡ lim
T→t
T>t

∙
− d

dT
log

µ
∂Ua(c, T )

∂ct

¶¸
. (19)

This coefficient is unaffected by an affine transformation of Ua, meaning that it rep-

resents a fundamental characteristic of individual preferences, independent of the specific

representation that was chosen. If the marginal utility of life extension is decreasing in past

consumption (that is if ∂2Ua(c,T )
∂ct∂T

< 0 for all T > t) then MRA(c, t) ≥ 0.

The terminology “mortality risk aversion” emphasizes that MRA(c, t) corresponds to a

coefficient of risk aversion with respect to length duration along particular (and generally

not constant) consumption paths. Indeed, writing

∂Ua(c, T )

∂ct
=

∂Ua(c, T )

∂T
·
µ
∂Ua(c, T )

∂ct

Á
∂Ua(c, T )

∂T

¶
, (20)

one obtains

MRA(c, t) ≡ −
∂2Ua(c,t)

∂t2

∂Ua(c,t)
∂t

+ lim
T→t
T>t

d

dT
log

Ã
∂Ua(c,T )

∂T
∂Ua(c,T )

∂ct

!
. (21)

The first term in the RHS is recognizable as a coefficient of risk aversion with respect to life

duration. When consumption profiles such that

lim
T→t
T>t

d

dT

Ã
∂Ua(c,T )

∂T
∂Ua(c,T )

∂ct

!
= 0 (22)

are considered, MRA(c, t) and the Arrow-Pratt coefficient are equal.

Consumption profiles that comply with (22) are characterized by the fact that the mar-

ginal rate of substitution between additional life years and consumption just before death is

independent of the age at death. In particular, (22) amounts to having u(ct)e−λt constant

in the additive model, and ct is constant with the multiplicative model. In both cases, this

can be interpreted as having a constant flow of felicity (Bommier, 2006).
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The decomposition into two terms is important for understanding the origin of MRA(c, t),

but quite remarkably, with the recursive model any consumption profile leads to the following

simple expression

MRA(c, t) =
v0(ct)u(ct)

u0(ct)
, (23)

which depends only on local properties. Remark that MRA(c, t) > (<)0 if v(·) is increasing

(decreasing) and is null with the additive model.

4 The value of statistical lives

Subsection 4.1 defines the value of statistical lives (VSL) and relates this index with the

structural parameters of the recursive model. Subsection 4.2 shows the information one can

draw from empirical data to estimate preference parameters.

4.1 VSL

A natural concept to deal with choices involving mortality changes is the marginal rate of

substitution between mortality and consumption:

Definition 5 (VSL) The value of a statistical life at age t > a is defined by

VSL(c, t) ≡ −
µ
∂EUa
∂μt

¶Áµ
∂EUa
∂ct

¶
. (24)

An agent of age t is ready to give up VSL(c, t) · dμ · dt in consumption to save dμ · dt

statistical lives. This is how we construe the term “Value of Statistical Life”, although it may

differ from other definitions that can be found in the economic literature.11 By derivation

from (12), one obtains

VSL(c, t) =
EUt

u0(ct)− v0(ct)EUt
. (25)

11As discussed in Johansson (2002), various definitions of VSL have been suggested. Another popular
approach is to define VSL as being the MRS between mortality rate and wealth. Then VSL not only depends
on individuals’ preferences but also on intertemporal constraints. This latter approach coincides with ours
whenever intertemporal constraints are as those considered in Section 4.2.
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The following expression relates VSL to survival probabilities and discount rates.

Proposition 1 For any consumption profile

VSL(c, t) =
Z +∞

t

sτt
u(cτ)

u0(cτ)
exp

µ
−
Z τ

t

ρ(c, τ 0)dτ 0
¶
dτ . (26)

with

ρ(c, τ 0) = RD(c, τ 0)−MRA(c, τ 0) + 1

στ 0

•
c
τ0

cτ 0
. (27)

Proof. See appendix.

In the additive case, with ct = c (a constant), this expression simplifies to

VSL(c, t) =
u(c)

u0(c)

Z +∞

t

sτt e
−λ(τ−t)dτ . (28)

This formula has been known for years and its simplicity explains its success. It is considered

very convenient since, if we abstract from consumption variations, VSL is proportional to a

discounted sum of life years. The relation between age and VSL is then computable from

a standard life table and a discount rate. This way of accounting for age was initially

introduced by Moore and Viscusi (1988) and is now used and recommended by agencies

like the USA Environmental Protection Agency (EPA) and the Office of Management and

Budget (OMB) for cost-benefit analyses.

Proposition 1 is associated with a minor increase in complexity. Although the general-

ization makes intermediate calculations more fastidious, we eventually find that the benefit

of saving one statistical life among individuals of a given age is also proportional to the dis-

counted sum of years at risk. Casually, we find that accounting for consumption variations

is relatively simple, whether preferences are additive or not.

There are two notable differences between the additive and the recursive models. First, in

the recursive model the mortality adjusted rate of discount RD is not constant. Instead of us-

ing a discount function e−λ(τ−t), as in the additive case, we have to use exp
¡
−
R τ

t
RD(c, τ 0)dτ 0

¢
.

Actually, when we calibrate the model (Section 5), we find that the variations of RD remain
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limited until advanced ages, so this first difference can be considered as minor. The second

difference is much more significant: years of life have to be discounted with the mortality

adjusted rate of discount (RD) minus mortality risk aversion (MRA).

Consequently, the greater mortality risk aversion, the faster VSL declines as a function of

age. This is fairly intuitive: a risk averse agent is willing to pay more to avoid the chance of a

major loss. In terms of mortality, a loss would be an early death. The additive model, which

disregards mortality risk aversion, may underestimate the speed at which VSL declines with

age. The bias is estimated and confirmed in Section 5.

4.2 Wage-risk tradeoff

The revealed preferences argument can be invoked to show how occupational choices provide

information about utility functions. Assume that, at all ages, an individual has to choose

between jobs that differ with respect to wage and instantaneous fatality risk. Let μ0t be the

exogenous baseline mortality rate at age t. For an extra instantaneous mortality μt (total

mortality being μ0t + μt), the wage is denoted by w(t,μt). Labor income can be used for

consumption or savings. We denote by k = (kt)t≥0 the age-specific saving profile defined by

kt ≡ w(t,μt)− ct. (29)

For our purpose, we do not need to fully specify the lifetime budget constraints that are

related to the intertemporal markets and their possible imperfections. We will simply assume

that these constraints (possibly infinitely many) only bear on the function k and that each

of them is Volterra differentiable. We denote the set of constraints by K.

We may think of different kinds of constraints. With non storable commodities and no

intertemporal markets, kt = 0 for all t. Another possibility would be a single constraint of

the form
R∞
0
kthte

−rtdt = 0 with r being the rate of interest and h = (ht)t≥0 an exogenous

function. This includes the important case of intertemporal markets, in particular life annu-
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ities.12 We could also imagine that the constraints K have the form
R t
0
kτe

−rτdτ ≥ 0 for all

t. That would be the case in a world where there is no annuity market, no borrowing and

a rate of return on savings equal to r. More complex market imperfections can be thought

of. Undoubtedly, allowing any kind of constraints on k leaves us with a fairly high degree of

generality, although certain cases are not covered (e.g. nonlinear consumption taxes).

Using (4) and (12), we rewrite the lifetime utility function of an agent of age a as

EUa(c,μ) =

Z +∞

a

u(ct) exp

µ
−
Z t

a

(μτ + μ0τ + v(cτ))dτ

¶
dt. (30)

A rational agent solves the maximization program

max
μ,c

EUa(c,μ) s.t. K. (31)

The derivative wμ(t,μ) =
∂w(t,μ)

∂μ
is the “wage-risk tradeoff.” Even without an explicit

formulation of the constraints K, we can show that at the optimal choice the wage risk

tradeoff and the VSL are equal. Indeed, differentiating (29), for all t, τ , we have

µ
∂

∂μt
+ wμ(t,μt)

∂

∂ct

¶
kτ = 0. (32)

Let c∗ and μ∗ denote the optimal consumption and mortality paths. As we assumed that all

constraints can be written as functions of k, the first order conditions ensure that for all t,

utility cannot be improved without violating the constraints. Thus, because of (32), it must

be the case that at the optimum

µ
∂

∂μt
+ wμ(t,μt)

∂

∂ct

¶
EUa = 0. (33)

12To be more specific, exogenously priced life annuities are considered. Endogenous prices would mean
that prices change as the consumer changes his mortality e.g. via activity choice. This case is not included
here; if h were equal to the (endogenous) survival function, as with perfect intertemporal markets, the VSL
at age a would be reduced by the wealth held at age a. Quantitatively speaking, the correction is minor
(average wealth is typically much lower than the VSL).
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Therefore:

wμ(t,μ
∗
t ) = −

µ
∂EUa(c

∗,μ∗)

∂μt

¶Áµ
∂EUa(c

∗,μ∗)

∂ct

¶
= VSL(c∗, t). (34)

The observation of the wage-risk tradeoff reveals VSL and makes the calibration of the utility

function possible. Compared to similar results, the strength of the latter equation is that it

is established without assuming complete markets.

5 Data fitting

5.1 Method

A hedonic regression fits the envelope of the choices made by the workers in the sample

(Viscusi and Aldy 2008). Since the envelope is tangent to individual indifference curves,

the prediction based on the hedonic regression for a vector of individual characteristics can

be interpreted as the VSL for the corresponding worker. We base the calculations on this

fundamental observation.

Several recent contributions estimated the relation between age and VSL from hedonic

regressions and provided contrasting results (see discussion in Section 2). As an illustration,

we use the result of one of them (Aldy and Viscusi, 2003, henceforth A&V)) to calibrate our

model. By doing so, we do not claim to provide undisputable estimates of the true preference

parameters since they are conditional on the particular empirical age—VSL relationship we

employ. Nevertheless, we comply with the objective of the paper: showing that relaxing

additivity parsimoniously can significantly improve the ability of the structural model to fit

the data.13 The consequences for policy recommendations are far from trivial.
13Using one of the regressions in Viscusi and Aldy (2008) is an alternative. The qualitative results they

show are similar (inverted-U-shaped relationship between age and VSL with similar rates of growth), but
they suggest an overall higher level of the VSL. A consensus on the ideal database and estimates is premature,
and different readers may have different views, as we experienced.
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We use the parameters given by A&V in their Table 4:

wAVμ (t) = −1.92× 107 + 1.88× 106 t− 4.54× 104 t2 + 335.24 t3 (35)

where t ∈ [18, 62], expresses the individual’s age in years, and wμ the yearly wage in 1996

Dollars. The calibration strategy we pursue involves searching the parameters of the recursive

model that best fit equation (35).14

In order to calibrate the model, we also need the age-specific consumption profile c∗,

which is not available in the dataset used by A&V. The optimal consumption profile cannot

be deduced from the theoretical model without specification of the constraints K, on which

we have limited knowledge. Rather than posing specific constraints, we approximated c∗

with a smoothed version of the age specific individual consumption profile reported in Lee

and Tuljapurkar (1997) (see Figure 1 for the original estimates and the smoothed profile that

we use).15

5.2 Goodness of fit

The first question that we may address is whether we can reproduce (35) with the standard

additive model (namely, v = λ = Constant and u(c) = c1−γ

1−γ −u0 for some constants u0 and γ).

The answer is positive, but with very implausible parameters. Indeed the distance minimizing

discount rate is −8.1%, which explains 94% of the age-related variance in equation (35). Had

we constrained the rate of discount to be greater than or equal to 3% (to approach values

that are considered as reasonable), we would have at best explained 58% of the age-related

variance.

At this point it is legitimate to wonder whether this poor fit is due to the fact that

we only considered isoelastic instantaneous utility functions, or more fundamentally to the

additive separability. We relax each of these assumptions in turn.
14As we use consumption data from a different source, we search the best fit for ages ranging from 20 to

60.
15Lee and Tuljapurkar (1997) is one the few recent studies that provide individual (not household) age-

specific consumption profiles.
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If we simply require u to be increasing and concave rather than isoelastic, we can obviously

improve the fit. By considering rates of discount greater than or equal to 3%, we can

now explain 79% of the age-related variance. The gain in explanatory power might seem

significant but, in fact, it is quite disappointing when we recall that we added an infinity of

degrees of freedom to the model (u is now nonparametric). This control stage adds weight

to our view that structure (additive/nonadditive) matters much more that specification

(isoelastic/nonparametric), which we now illustrate.

In fact, keeping u isoelastic but in the recursive form appears to be a much more efficient

way to improve the predictive power of the model. We explored the case where u(c) =
c1−γ

1−γ − u0 and v = λ+ βu; compared to the standard additive model (β = 0), this structure

requires only one additional degree of freedom. Moreover it encompasses the multiplicative

model (obtained when λ = 0) described in Subsection 3.3, which has the same number of

degrees of freedom as the standard additive model. In Figure 2, we report the minimum

distance (the sum of squares) between the theoretical predictions and the empirical estimates,

the survival weighted average RD being constrained to take particular values given on the

horizontal axis. The results obtained with the additive and the multiplicative models are

also reported. The distance on the vertical axis has been normalized so that the distance

between the empirical VSL and its mean equals 1.

Opting for the recursive model dramatically increases the capacity of the theory to re-

produce empirical VSL. Even if we constrain the mortality adjusted rate of discount to take

reasonable positive values we still obtain an excellent fit. We can constrain the survival-

weighted average RD to take any value between 3 and 7%, and still explain more than 95%

of age-related variability of the wage-risk tradeoff. This is much better than the additive

model which only explains from 42 to 58% thereof. Table 1 reports the model’s performance

(variance explained and parameters) for a range of discount factors. Figure 3 illustrates the

fits obtained when the average mortality adjusted rate of discount is constrained to equal

3% in both models. Interestingly enough, one can see from Table 1 or Figure 2 that when

RD is constrained to plausible positive values, the multiplicative model does a much better
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job than the additive one, with the same number of degrees of freedom. Therefore even if

one is reluctant to increase the complexity of the model, a significant gain is obtained.

Model Additive (β = 0) Recursive Multiplicative (λ = 0)

RD Average RD Average RD

3% 5% 7% 3% 5% 7% 3% 5% 7%

Var. explained 58% 49% 46% 96% 96% 95% 95% 96% 89%bγ 0.22 0.0∗ 0.0∗ 4.15 3.25 2.65 3.70 3.77 3.56bλ 3% 5% 7% −0.04% 0.07% 0.15% 0 0 0

u0/(
c1−γ

1−γ )
16 −7.51 −13.7 −17.8 5.46 4.51 3.65 5.52 4.47 3.58

Average MRA 0 0 0 8.9% 9.6% 10.7% 8.3% 10.4% 12.0%

Average RDLY 3% 5% 7% 8.3% 9.3% 10.5% 7.9% 9.7% 11.1%

*The elasticity of substitution is constrained to be non-negative.

Table 1: Calibration and performance.

5.3 Evaluated parameters

For the recursive model, as apparent in Figure 2, the curve representing the distance between

predicted and actual values exhibits a flat shape around the minimum; in practice this

means that the combination of parameters that optimally fit the data is difficult to state.

The observation of the relation between age and VSL may not suffice to calibrate all the

parameters of the model with precision.

This is not surprising given the theoretical results provided in Section 4. From equation

(26) we know that what matters for determining the variations of wμ along the life cycle

is mainly the combination of two elements: the mortality adjusted rate of discount (RD)

minus mortality risk aversion (MRA). If consumption were constant along the life cycle, we

would expect empirical observation of VSL to be informative about the difference between

RD and MRA, and not about each of them separately. Though in our case consumption is
16The symbol c denotes the (survival weighted) average consumption.

20



not constant, which in principle should solve the identification problem, our estimates suffer

from the same kind of indeterminacy. For each value of RD we find the best value of MRA,

but it is hard to tell what is the best pair of RD and MRA.

Ultimately, to discriminate more sharply between the several likely possibilities, we should

integrate data on behavior patterns that go beyond the wage-risk tradeoff. One possibility

would be to look at consumption smoothing behavior (in order to estimate RD from an-

other source), but we leave that aside for lack of adequate data. Results thereafter are

systematically reported for RD taking values 3, 5 and 7%.

5.4 Practical consequences

From the last two rows of Table 1, it is possible to get a first idea about the bias generated by

the additive assumption. While the additive model constrains mortality risk aversion to be

absent, the recursive model gives estimates that range from 8.9% to 10.7%. In other words,

when people discount consumption with rates of 3, 5 and 7%, life years in VSL should be

discounted with rates of −5.9%, −4.6% or −3.7% respectively. The additive model, which

imposes the same rate of discount for consumption as for life years, is likely to cause a huge

bias.

Should that lead to a major shift in policy recommendations? The next section shows

that RDLY gives the rate of discount to be used for estimating the welfare equivalent of a

statistical life. While the additive model constrains RDLY to equal the rate of discount, the

more general model shows values of RDLY that exceed those of RD by several percentage

points. This means that the additive model puts too much relative weight on the elderly.

We see now how large the bias can be in practice.
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6 Welfare evaluation

6.1 Objective

In order to evaluate the social benefits of mortality risk reductions, a well defined social

objective is required. The utilitarian approach axiomatized by Blackorby et al (1997) involves

assuming that the social planner maximizes a stationary weighted sum of individuals’ utilities

at birth. The social welfare function is then given by

X
i

e−λSbiU i0, (36)

where the sum is taken over all individuals, λS is the social discount rate, bi is the birth year

of individual i and U i0 is his expected utility at birth.

We use Arthur’s (1981) terminology. The welfare equivalent of a statistical life for indi-

vidual i is defined by

WE(c, t) ≡ −∂U i0
∂μt

, (37)

where c and μ are individual i’s consumption and mortality. WE has a fairly simple expres-

sion in the general case:17

WE(c, t) =
Z +∞

t

sτ0u(cτ) exp

µ
−
Z τ

0

RDLY(c, τ 0)dτ 0
¶
dτ . (38)

Like the VSL, the welfare equivalent is a discounted sum of life years. With the additive

model RDLY=RD, thus it is correct to use the discount rate inferred from empirical studies

on consumption smoothing to estimate the welfare equivalent of a statistical life. With the

recursive model, RDLY is typically greater than the rate of time preferences estimated in

studies on consumption smoothing. Thus, omission of mortality risk aversion generates a
17From (4), it follows that

∂sτa
∂μt

= 0 if τ < t, and
∂sτa
∂μt

= −sτa if τ ≥ t.

Differentiating (12) then gives (38).
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pro-old age bias in the welfare evaluation of mortality risk reduction.

6.2 Methods

We describe now the five evaluation methods for a program that we will apply in the following

subsection.

Method 1: The number of lives saved. Though there is no economic support for this

method, it has been frequently used in the past. EPA and OMB still recommend reporting

the number of lives saved.

Method 2: Utilitarianism with the additive utility function. The benefit of a pro-

gram is measured by the social welfare function (36). Individuals are assumed to have the

same additive utility function, with a rate of time preference of 3, 5 and 7%, the other

parameters being drawn from Section 5. The social rate of discount is taken equal to the

individual rate of time preference.

Method 2’: Aggregate WTP with additive utility function. Assumptions on indi-

viduals are the same as for method 2. The benefit of a program is now evaluated by the sum

of the individuals’ willingness to pay for such a program.

Method 3: Utilitarianism with the recursive utility function. Similar to method

2, with the recursive model as estimated in Section 5. The average survival weighted RD

and the social rate of discount are constrained to 3, 5 and 7%.

Method 3’: Aggregate WTP with the recursive utility function. Similar to method

2’, with the recursive model as estimated in Section 5. The average survival weighted RD

and the social rate of discount are constrained to 3, 5 and 7%.

In principle, method 2’ (respectively 3’) amounts to method 2 (respectively 3) only if one

presumes that the marginal social value of consumption is equal across people of different
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ages; in other words, if redistribution is perfect. In practice, since the distribution of wealth is

far from ideal with respect to the social welfare function, it has been argued that aggregate

willingness to pay cannot be considered as a relevant policy indicator. The issue is not

specific to life saving programs but general to any cost benefit analysis (see for example

the discussion in Blackorby and Donaldson 1990). In the case of mortality reduction, Pratt

and Zeckhauser (1996) stressed that because of the strong heterogeneity in mortality rates,

aggregating individual willingness to pay may actually be a particularly misleading indicator.

Despite these shortcomings, method 2’ remains the most commonly employed in the applied

literature.

6.3 Application

To show the magnitude of distortion in the evaluation of safety programs, we consider two

fictitious programs that are assumed to have the same cost. One that decreases mortality

rates proportionally and another that decreases mortality rates uniformly. For example, we

could think of air quality alerts18 on the one hand and of earthquake surveillance on the

other.

We denote these hypothetical interventions as A and B. Policy A is characterized by a

proportional reduction of mortality rates

μt → (1− εA)μt, (39)

and policy B by a uniform reduction of mortality rates

μt → μt − εB. (40)

where εA and εB are positive constants. We take the age structure of the population and the

baseline mortality rates observed in the USA in 1999. We also assume that A saves twice
18Assuming a marginal impact of air pollution proportional to baseline mortality seems reasonable to

epidemiologists (Pope et al. 1995).
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as many (statistical) lives as B. Policy A is mostly effective for older people (and babies)

while policy B saves lives uniformly. Figure 4 shows the age distribution of lives saved (it

has been scaled so that A saves 2000 statistical lives while B saves only 1000). We assume

that the consumption profile is c∗ (see Subsection 5.1), for ages above 20. For ages below

20, and especially for babies and children, the assumption that preferences are independent

of age becomes problematic. The low levels of consumption that are typically observed

in the very first years of life would then imply very high marginal utility of consumption,

and therefore very low values of statistical lives. This is hard to buy. To circumvent this

difficulty, we maintain the assumption that preferences are independent of age and assume

that consumption is the same between birth and 20. Of course this option is arbitrary, one

of its merits being that most of the difference between A and B is based on effects on the

adults, for which estimates are more reliable.

Intuitively, it is not very clear whether A or B should be preferred. On the one hand A

saves more lives. On the other hand B saves younger people, who still have many years of

life before them. We use the above five types of benefit evaluation.

The results are summarized in Table 2. By assumption, A is twice as efficient as B from

the viewpoint of method 1. The additive model in methods 2 and 2’ provides an age-adjusted

value of a statistical life, so the conclusion is different. Methods 2 and 2’ predict that the

benefits of A and B are of about the same size. The fact that B saves less lives than A is

approximately compensated by the fact that it saves younger people. The question now is

whether this age adjustment and this conclusion are correct. Methods 3 and 3’ suggest that

they are not. With the recursive model, the benefits of B appear to be much greater than

those of A. The correction related to the introduction of mortality risk aversion is anything

but negligible. Passing from the additive model to the nonadditive one is a bigger step than

passing from the traditional method (number of lives saved) to the additive model.19

19We could also define two additional methods that parallel methods 2 and 2’ but make use of the mul-
tiplicative model. However, as it happens that the recursive model estimated in Section 5 is practically
multiplicative, the results are very close to those obtained with methods 3 and 3’.
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Discount rate

Method for benefit evaluation 3% 5% 7%

1. Number of lives saved 0.5 0.5 0.5

2. Utilitarianism with additive utility 1.11 0.97 0.88

3. Utilitarianism with recursive utility 3.23 2.64 2.18

2’. Aggregate WTP with additive utility 0.94 0.82 0.75

3’. Aggregate WTP with recursive utility 1.95 1.75 1.72

Table 2: Benefits of B/Benefits of A.

EPA guidelines advise performing sensitivity analysis by calculating the results of both

methods 1 and 2’. As the results of method 2’ are known to depend on the rate of discount,

about which there is no general agreement, they advise reporting the results for different

rates lying in the 3—7 % interval, in order to provide a reasonable confidence interval. Unfor-

tunately, the additive model is so restrictive that the truth may be way outside this interval.

The methods currently used by EPA and OMB (and indirectly by policymakers) are likely

to be significantly distorted in favor of the old.

7 Conclusion

Most economists would agree that predicting saving behavior under the assumption of risk

neutrality would make little sense. They would also vehemently criticize a fund manager

who decides to “optimize” investment under the assumption that members are risk neutral.

However, the economic literature on the value of a statistical life has endorsed a similar

choice. It focused on a specification that paid little attention to the fact that mortality

makes our life akin to an extraordinary lottery. Is it reasonable to assume that individuals

are risk neutral with respect to length of life? And to evaluate life saving programs under

this assumption?

These questions have been addressed in this paper. On the theoretical side, the story is

clear. Mortality risk aversion makes individual willingness to pay for mortality risk reduction
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decline more rapidly with age. Although intermediate calculations are sometimes fastidious,

we eventually found that accounting for mortality risk aversion is fairly simple. Just like with

the standard additive model, estimating VSL and welfare benefits associated to mortality risk

reduction simply involves computing weighted sums of life-years saved. The rates of discount

to be used must however account for both time preferences and mortality risk aversion.

The key issue is therefore to estimate mortality risk aversion. The difficulty of the task

should not be underestimated. Since Arrow’s (1971) and Pratt’s (1964) seminal contribu-

tions, about 40 years have passed and a number of empirical studies tried to measure risk

aversion with respect to lotteries on wealth. No consensus has emerged. There is no reason

to believe that preferences with respect to lotteries on the length of life will be easier to as-

sess. It would be excessively optimistic to expect that a single study could provide a robust

estimate of mortality risk aversion. This should be rather seen as a long term objective that

will probably require the collection of specific data.

However, in order to clarify the ideas at stake, we used results from a recent empirical

study on the relation between VSL and age to estimate plausible values of mortality risk

aversion. The theoretical extension neatly improved the quality of fit. We found that this

index of risk aversion is likely to be positive and greater than the rate of time discounting.

In other words, accounting for mortality risk aversion may even be more important than

accounting for time preferences.

The contrast between our findings and the dominant economic approach is striking. While

the notion of time preferences has been pointed out as being a critical element to estimate

the value of a statistical life, the standard method simply rules out mortality risk aversion.

It seems that “the paradigm of optimizing a simple functional form” (to take Rubinstein’s

2003 words) has led economists to ignore a key ingredient of individual preferences. The

consequence is that cost-benefit analysis produced for the allocation of public money across

life saving programs is likely to be strongly distorted.
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A Proof of Proposition 1

In the proof, VSL stands for VSL(c, t) and RD for RD(c, t). We start from (25) and we use

the fact that
dEUt
dt

= (μt + v(ct))EUt − u(ct) (41)

to compute

d

dt
logVSL = (42)

μt + v(ct)−
u(ct)

EUt
− u

00(ct)− v00(ct)EUt
u0(ct)− v0(ct)EUt

•
ct + v

0(ct)
(μt + v(ct))EUt − u(ct)
u0(ct)− v0(ct)EUt

.

Using (14) and (16), we get

d

dt
logVSL = μt +

1

σt

•
ct
ct
+RD− u(ct)

EUt
. (43)

From (25), we obtain

EUt =
u0(ct)VSL

1 + v0(ct)VSL
, (44)

thus
u(ct)

EUt
=
u(ct)(1 + v

0(ct)VSL)
u0(ct)VSL

=
u(ct)v

0(ct)

u0(ct)
+
u(ct)

u0(ct)

1

VSL
. (45)

Combining (45) with (43) yields

d

dt
logVSL = μt +

1

σt

•
ct
ct
+RD− u(ct)v

0(ct)

u0(ct)
− u(ct)

u0(ct)

1

VSL
, (46)

i.e.
dVSL
dt

=

Ã
μt +RD−

u(ct)v
0(ct)

u0(ct)
+
1

σt

•
ct
ct

!
VSL− u(ct)

u0(ct)
. (47)

We show now in three steps that

VSL(c, t) =
Z +∞

t

sτt
u(cτ)

u0(cτ)
exp

µ
−
Z τ

t

ρ(c, τ 0)dτ 0
¶
dτ (48)
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with

ρ(c, τ 0) = RD(c, τ 0)− u(cτ )v
0(cτ )

u0(cτ)
+
1

στ

•
cτ
cτ
. (49)

Step 1. It is easy to see that the RHS of (48), if it converges, is a solution to the ODE

(47).

Step 2. Remark that EUt > 0. Indeed, a natural assumption is that the marginal value of

life years, which is proportional to u, is positive, and u > 0 implies EUt > 0.

Given Assumptions 1 and 2, EUt tends to zero as t tends to infinity. This and (25) imply

that VSL→ 0 as t → +∞. We can also conclude from this, (14) and EUt > 0, that RD is

bounded below in the long run. Consequently, ρ(c, t)→ +∞ as t→ +∞. This implies that

the RHS of (48)→ 0 as t → +∞. VSL and the RHS of (48) have therefore the same limit

when t→ +∞.

Step 3. The ODE (47) being linear, if we denote by y the difference between the VSL and

the RHS of (48), we have

y0 = ρ(c, t)y. (50)

Given that ρ(c, t)→ +∞ as t→ +∞, y goes to infinity when t→ +∞ if it’s not null. This

fact, combined with the result on limits (step 2), proves that (48) is true.
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