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“Whoever wants to set a good example must add a grain of foolishness to his

virtue: then others can imitate and yet at the same time surpass the one they

imitate - which human beings love to do.” Friedrich Nietzsche

1 Introduction

Psychologists and behavioral economists stress the role of simple heuristics or rules for

human decision making under limited computational capabilities (see Gigerenzer and

Selten, 2002). While such heuristics lead to successful decisions in some particular tasks,

they may be suboptimal in others. It is plausible that decision makers may cease to

adopt heuristics that do worse than others in relevant situations. If various heuristics are

pitted against each other in a contest, then in the long run the heuristic with the highest

payoff should survive.

The competing heuristics could be anything from very simple to rational, omniscient,

and forward looking ones. Even if a specific rule is not currently among the contestants,

there can always be a “mutation”, i.e., an invention of a new rule, that enters the pool

of rules. A heuristic that does very badly against other rules will not be around for

long as it will not belong to the top performers. Being subject to exploitation by the

opponent in strategic situations would be an evolutionary liability. Consequently, we

would like to raise the following question: Is there a simple adaptive heuristic that can

not be beaten by any strategy including even those of a rational, omniscient and forward

looking maximizer in large classes of economically relevant situations?

The idea for this paper emerged from a prior observation in experimental data. In

Duersch, Kolb, Oechssler, and Schipper (2010), subjects played against computers that

were programmed according to various learning algorithms in a Cournot duopoly. On

average, human subjects easily won against all of their computer opponents with one

exception: the computer following the rule “imitate-if-better”, the rule that simply pre-

scribes to mimic the action of another player if and only if the other player received a

higher payoff in the previous period. This suggested to us that imitation may be hard

to beat by other strategies including strategies by forward–looking players.

In this paper, we prove that this holds more generally. The decision heuristic “imitate-

if-better” is very hard to beat by any strategy in large classes of symmetric two-player

games that are highly relevant for economics and include games such as all symmetric

2x2 games, Cournot duopoly, Bertrand duopoly, rent seeking, public goods games, com-

mon pool resource games, minimum effort coordination games, Diamond’s search, Nash
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demand bargaining, etc.

We shall consider two notions of being “unbeatable”. We call imitation “essentially

unbeatable” if in the infinitely repeated game there exists no strategy of the opponent

with which she can obtain, in total, over an infinite number of periods, a payoff difference

that is more than the maximal payoff difference for the one–period game. As a weaker

notion we consider the concept of being “not subject to a money pump”. We say imitation

is not subject to a money pump if there is a bound on the sum of payoff differences any

opponent can achieve in the infinitely repeated game. Or equivalently, if there is no cyclic

strategy of the opponent, in which the imitator earns less than the opponent.

Since our results hold for all possible strategies of the imitator’s opponent, they also

apply to strategies by truly sophisticated opponents. In particular, the opponent may be

infinitely patient, forward looking, and free of mistakes. More importantly, the opponent

can be aware of the fact that she is matched against an imitator. That is, she may know

exactly what her opponent, the imitator, would do at all times, including the imitator’s

starting value. Finally, the opponent may be able to commit to any strategy including

any closed-loop strategy.

Our results are as follows. We present necessary and sufficient conditions for imita-

tion to be subject to a money pump. The paradigmatic example for a money pump is

playing repeatedly the game rock–paper–scissors, in which, obviously, an imitator can be

exploited without bounds. The main result of this paper is that imitation is subject to

a money pump if and only if the relative payoff game in question contains a generalized

rock–paper-scissors submatrix.

Since the existence of a rock–paper–scissors submatrix may be cumbersome to check

in some instances, we also provide a number of sufficient conditions for imitation not

to be subject to a money pump that are based on more familiar concepts like quasicon-

cavity, generalized ordinal potentials, or quasisubmodularity/quasisupermodularity and

aggregation of actions.

We also provide a number of sufficient conditions for imitation to be essentially un-

beatable like exact potentials, increasing/decreasing differences, or additive separability.

One such condition is that the game is a symmetric 2x2 game. To gain some intuition

for this, consider the game of “chicken” presented in the following payoff matrix.

swerve straight
swerve
straight

(
3, 3 1, 4
4, 1 0, 0

)
Suppose that initially the imitator starts out with playing “swerve”. What should a
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forward looking opponent do? If she decides to play “straight”, she will earn more than

the imitator today but will be copied by the imitator tomorrow. From then on, the

imitator will stay with “straight” forever. If she decides to play “swerve” today, then

she will earn the same as the imitator and the imitator will stay with “swerve” as long

as the opponent stays with “swerve”. Suppose the opponent is a dynamic relative payoff

maximizer. In that case, the dynamic relative payoff maximizer can beat the imitator

at most by the maximal one-period payoff differential of 3. Now suppose the opponent

maximizes the sum of her absolute payoffs. The best an absolute payoff maximizer can

do is to play swerve forever. In this case the imitator cannot be beaten at all as he

receives the same payoff as his opponent. In either case, imitation comes very close

to the top–performing heuristics and there is no evolutionary pressure against such an

heuristic.

The behavior of learning heuristics has previously been studied mostly for the case

when all players use the same heuristic. For the case of imitate-the-best,1 Vega-Redondo

(1997) showed that in a symmetric Cournot oligopoly with imitators, the long run out-

come converges to the competitive output if small mistakes are allowed. This result has

been generalized to aggregative quasisubmodular games by Schipper (2003) and Alós-

Ferrer and Ania (2005). Huck, Normann, and Oechssler (1999), Offerman, Potters, and

Sonnemans (1997), and Apesteguia et al. (2007, 2010) provide some experimental evi-

dence in favor of imitative behavior. In contrast to the above cited literature, the current

paper deals with the interaction of an imitator and a forward looking, very rational

and patient player. Apart from experimental evidence in Duersch, Kolb, Oechssler, and

Schipper (2010) we are not aware of any work that deals with this issue. For a Cournot

oligopoly with imitators and myopic best reply players, Schipper (2009) showed that the

imitators’ long run average payoffs are strictly higher than the best reply players’ average

payoffs.

A recent paper by Feldman, Kalai, and Tennenholtz (2010) has a similar but com-

plementary objective to ours. They study whether a strategy which they call “copycat”

can be beaten in a symmetric two-player game by an arbitrary opponent who may have

full knowledge of the game and may play any history dependent strategy. The copycat

strategy, on the other hand, can only observe past actions of both players. Remarkably,

the copycat strategy can nearly match the average payoff of the opponent. The strategy

1For the two-player case, imitate-the-best and imitate-if-better are almost equivalent, the difference
being that the latter specifically prescribes a tie-breaking rule (for the case of both players having equal
payoffs in the previous round). Since we use imitate-if-better only in the two-player case, we do not need
to specify what happens if more than one other player is observed.
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used by copycat is to equalize the occurrences of action profiles (x, y) and (y, x) for any

x, y ∈ X. To achieve this, an auxiliary two-player zero-sum game is introduced whose

payoff at (x, y) is the difference of frequencies of (x, y) and (y, x) played so far. Thus,

similar to our approach, the authors use the idea of imitation and auxiliary zero-sum

games. Yet, their copycat rule is far more sophisticated than our imitation rule as it en-

tails finding a (possibly mixed) minmax strategy in the auxiliary zero–sum game in each

round. On the other hand, the possible opponents are less omniscient than the opponents

in our setting. In particular, the opponents in their setting cannot perfectly predict the

imitator’s action in the next round, which explains why Feldman et al.’s result apply

even to rock–paper–scissors.

The article is organized as follows. In the next section, we present the model and

provide formal definitions for being unbeatable. Our main result, which provides a nec-

essary and sufficient condition for a money pump, is contained in Section 3. Sufficient

conditions for imitation to be essentially unbeatable are given in Section 4. Section 5

provides sufficient conditions for imitation not being subject to a money pump. We finish

with Section 6, where we summarize and discuss the results.

2 Model

We consider a symmetric two–player game (X, π), in which both players are endowed

with the same (finite or infinite) set of pure actions X. For each player, the bounded

payoff function is denoted by π : X ×X −→ R, where π(x, y) denotes the payoff to the

player choosing the first argument when his opponent chooses the second argument. We

will frequently make use of the following definition.

Definition 1 (Relative payoff game) Given a symmetric two-player game (X, π), the

relative payoff game is (X,∆), where the relative payoff function ∆ : X × X −→ R is

defined by

∆(x, y) = π(x, y)− π(y, x).

Note that, by construction, every relative payoff game is a symmetric zero-sum game

since ∆(x, y) = −∆(y, x).

The imitator follows the simple rule “imitate-if-better”. To be precise, the imitator

adopts the opponent’s action if and only if in the previous round the opponent’s payoff

was strictly higher than that of the imitator. Formally, the action of the imitator yt in
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period t given the action of the other player from the previous period xt−1 is

yt =

{
xt−1 if ∆(xt−1, yt−1) > 0
yt−1 else

(1)

for some initial action y0 ∈ X.

Our aim is to determine whether there exists a strategy of the imitator’s opponent

that obtains substantially higher payoffs than the imitator. We allow for any strategy

of the opponent, including very sophisticated ones. In particular, the opponent may be

infinitely patient and forward looking, and may never make mistakes. More importantly,

she may know exactly what her opponent, the imitator, will do at all times, including

the imitator’s starting value. She may also commit to any closed loop strategy.

We now present two definitions of what we mean by “unbeatable”. Consider first a

situation in which an imitator starts out with a very unfavorable initial action. A clever

opponent who knows this initial action can take advantage off it. Yet, from then on the

opponent has no strategy that makes her better off than the imitator. Arguably, the

disadvantage in the initial period should not play a role in the long run. This motivates

the first definition.

Definition 2 (Essentially unbeatable) We say that imitation is essentially unbeat-

able if for any initial action of the imitator and any strategy of the opponent, the imitator

can be beaten in total by at most the maximal one-period payoff differential, i.e., if for

any y0 and any sequence {xt},
T∑
t=0

∆(xt, yt) ≤ max
x,y

∆(x, y), for all T ≥ 0, (2)

where yt is given by equation (1).

In the chicken game discussed in the Introduction, imitation was essentially unbeat-

able since the maximal payoff difference was 3.

Essentially unbeatable is a demanding property. The following is a weaker notion of

being “unbeatable”.

Definition 3 (No money pump) We say that imitation is not subject to a money

pump if there exists a finite bound M such that for any initial action of the imitator y0

and any sequence {xt} of actions of the opponent

T∑
t=0

∆(xt, yt) ≤M, for all T ≥ 0, (3)
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where yt is given by equation (1).

Clearly, no money pump reduces to essentially unbeatable if M = maxx,y ∆(x, y).

Again, one can argue that the finite disadvantage should not play a role in the long

run as time goes to infinity.

The name of the latter condition is motivated by the observation that in a finite game,

imitation is not subject to a money pump if the opponent cannot create a cycle of actions

that strictly improve her relative payoff at every step. This is reminiscent of “no money

pumps” in economics. The following definitions make this precise.

Given a symmetric two-player game (X, π), a path in the action space X × X is a

sequence of action profiles (x0, y0), (x1, y1), .... A path is constant if (xt, yt) = (xt+1, yt+1)

for all t = 0, 1, .... Otherwise, the path is called non–constant. A non–constant finite

path (x0, y0), ..., (xn, yn) is a cycle if (x0, y0) = (xn, yn) for some n > 1. Let us call a cycle

an imitation cycle if for all (xt, yt) and (xt+1, yt+1) on the path of the cycle ∆(xt, yt) > 0

and yt+1 = xt. An imitation cycle is thus a particular cycle along which one player always

obtains a strictly positive relative payoff and the other player mimics the action of the

first player in the previous round. Thus, an imitation cycle never contains an action

profile on the diagonal of the payoff matrix.

Lemma 1 For any finite symmetric game (X, π), imitation is subject to a money pump

if and only if there exists an imitation cycle.

Proof. Consider a finite symmetric game (X, π) and its relative payoff game (X,∆).

We show that if imitation is subject to a money pump, then there is a imitation cycle.

The converse is trivial.

Since the game is finite, there can not be infinitely many strictly positive relative

payoff improvements unless there is a cycle. To show that such a cycle implies an imita-

tion cycle, suppose by contradiction that there exists a period t such that ∆(xt, yt) ≤ 0.

W.l.o.g. assume that ∆(xt+1, yt+1) > 0. This is w.l.o.g. because we assumed a money

pump. By equation (1) the imitator will not imitate in t + 1 the previous period’s ac-

tion of the opponent, i.e., yt+1 = yt. But then, there must be a cycle with xt = xt+1,

xt+1 = xt+2, ... By applying this argument to any period t for which ∆(xt, yt) ≤ 0,

we can construct a cycle with ∆(xt, yt) > 0 for all t. The decision rule of the imitator

then requires that yt+1 = xt for all t, which proves that such a cycle is an imitation cycle.�
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As in previous studies of imitation (see e.g. Alós-Ferrer and Ania, 2005; Schipper,

2003; Vega-Redondo, 1997), the concept of a finite population evolutionary stable strat-

egy (Schaffer, 1988, 1989) plays a prominent role in our analysis.

Definition 4 (fESS) An action x∗ ∈ X is a finite population evolutionary stable strat-

egy (fESS) of the game (X, π) if

π(x∗, x) ≥ π(x, x∗) for all x ∈ X. (4)

In terms of the relative payoff game, inequality (4) is equivalent to

∆(x∗, x) ≥ 0 for all x ∈ X.

Already Schaffer (1988, 1989) observed that the fESS of the game (X, π) and the

symmetric pure Nash equilibria of the relative payoff game (X,∆) coincide.

3 A Necessary and Sufficient Condition for a Money

Pump

The game rock–paper-scissors is the paradigmatic example for how an imitator can be

exploited without bounds by a clever opponent. In our terminology, imitation is subject

to a money pump.

Example 1 (Rock-Paper-Scissors) Consider the well known rock-paper-scissors game.2

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0


If the imitator starts for instance with R, then the opponent can play the cycle P-S-

R... In this way, the opponent could win in every period and the imitator would lose in

every period. Over time, the payoff difference would grow without bound in favor of the

opponent.

2In the following, we will often represent symmetric payoff matrices by the matrix of the row player’s
payoffs only.
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We can generalize Example 1 by noting that the crucial feature of the example is

that a money pump is created by the fact that for each action of the imitator there is

an action of the opponent which yields her a strictly positive relative payoff and which

yields the imitator a strictly negative relative payoff.

Definition 5 (gRPS Matrix) A symmetric zero-sum game (X, π) is called a general-

ized rock-paper-scissors (gRPS) matrix if for each column there exists a row with a strictly

positive payoff to the row player, i.e. if for all y ∈ X there exists a x ∈ X such that

π(x, y) > 0.

It should be fairly obvious that if a zero–sum game contains somewhere a submatrix

that is a generalized rock-paper-scissors matrix, then this is sufficient for a money pump

as the opponent can make sure that the process cycles forever in this submatrix. What

is probably less obvious is that the existence of such a submatrix is also necessary for a

money pump.

Definition 6 (gRPS Game) A symmetric zero-sum game (X, π) is called a generalized

rock-paper-scissors (gRPS) game if it contains a submatrix (X̄, π̄) with X̄ ⊆ X and

π̄(x, y) = π(x, y) for all x, y ∈ X̄, and (X̄, π̄) is a gRPS matrix.

This leads us to our main result.

Theorem 1 Imitation is subject to a money pump in the finite symmetric game (X, π)

if and only if its relative payoff game (X,∆) is a gRPS game.

The proof follows from Lemma 1 and the following lemma.

Lemma 2 Consider a finite symmetric game (X, π) with its relative payoff game (X,∆).

(X,∆) is a gRPS game if and only if there exists an imitation cycle.

Proof. “⇐”: If there exists an imitation cycle in (X,∆), let X̄ be the orbit of the

cycle, i.e., all actions of X that are played along the imitation cycle. For each action (i.e.,

column) y ∈ X̄, there exists an action (i.e., row) x ∈ X̄ such that ∆(x, y) > 0. Hence,

(X̄, ∆̄), where ∆̄ is defined by ∆̄(x, y) = ∆(x, y) for all x, y ∈ X̄, is a gRPS submatrix.

Thus, (X,∆) is a gRPS game.

“⇒”: If the relative payoff game (X,∆) is a gRPS game, then it contains a gRPS

submatrix (X̄, ∆̄). That is, for each column of the matrix game (X̄, ∆̄) there exists a row
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with a strictly positive relative payoff to player 1. Let the initial action of the imitator

y be contained in X̄. If the opponent selects such a row x ∈ X̄ for which she earns a

strict positive relative payoff, i.e., ∆(x, y) > 0, then she will be imitated by the imitator

in the next period. Yet, at the next period, when the imitator plays x, the opponent has

another action x′ ∈ X̄ with a strictly positive relative payoff, i.e., ∆(x′, x) > 0. Thus the

imitator will imitate her in the following period. More generally, for each action y ∈ X̄ of

the imitator, there is another action x ∈ X̄, x 6= y of the opponent that earns the latter a

strictly positive relative payoff. Since X̄ is finite, such a sequence of actions must contain

a cycle. Moreover, we just argued that ∆(xt, yt) > 0 and yt+1 = xt for all t. Thus, it is

an imitation cycle. �

Theorem 1 is used to obtain an interesting necessary condition for imitation being

not subject to a money pump.

Proposition 1 Let (X, π) be a finite symmetric game with its relative payoff game

(X,∆). If (X,∆) has no pure equilibrium, then imitation is subject to a money pump.

Proof. By Theorem 1 in Duersch, Oechssler, and Schipper (2011), (X,∆) has no

symmetric pure equilibrium if and only if it is a gRPS matrix. Thus, if (X,∆) has no

symmetric pure equilibrium, then it is a gRPS game. Hence, by Theorem 1 imitation is

subject to a money pump. �

Corollary 1 If the finite symmetric game (X, π) has no fESS, then imitation is subject

to a money pump.

In other words, the existence of a fESS is a necessary condition for imitation not being

subject to a money pump. The reason for the existence of a fESS not being sufficient

is that there could be a gRPS submatrix of the game (“disjoint” from the fESS profile)

that gives rise to an imitation cycle.

Since the relative payoff game of a symmetric zero-sum game is a gRPS game if

and only if the underlying symmetric zero-sum game is a gRPS game, we obtain from

Theorem 1 the following corollary.

Corollary 2 Imitation is subject to a money pump in the finite symmetric zero-sum

game (X, π) if and only if (X, π) is a gRPS game.
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4 Sufficient Conditions for Essentially Unbeatable

In this section we present two classes of games for which imitation is essentially unbeat-

able. The first class is the class of 2x2 games. The second class is the class of games with

an exact potential.

4.1 Symmetric 2x2 games

In this section, we extend the “chicken” example of the introduction to all symmetric

2x2 games. Note that the relative payoff game of any symmetric 2x2 game cannot be a

generalized rock–paper–scissors matrix since the latter must be a symmetric zero–sum

game. If one of the row player’s off-diagonal relative payoffs is a > 0, then the other

must be −a violating the definition of a gRPS matrix. Thus Theorem 1 implies that for

any symmetric 2x2 game imitation is not subject to a money pump. We can strengthen

the result to imitation being essentially unbeatable.

Proposition 2 In any symmetric 2x2 game, imitation is essentially unbeatable.

Proof. Let X = {x, x′}. Consider a period t in which the opponent achieves a strictly

positive relative payoff, ∆(x, x′) > 0. (If no such period t in which the opponent achieves

a strictly positive relative payoff exists, then trivially imitation is essentially unbeatable.)

Obviously, ∆(x, x′) ≤ maxx,y ∆(x, y). Since ∆(x, x′) > 0, the imitator imitates x in pe-

riod t + 1. For there to be another period in which the opponent achieves a strictly

positive relative payoff, it must hold that ∆(x′, x) > 0. This yields a contradiction since

the relative payoff game is symmetric zero-sum and hence ∆(x′, x) = −∆(x, x′). Thus

there can be at most one period in which the opponent achieves a strictly positive relative

payoff. �

Note that “Matching pennies” is not a counter-example since it is not symmetric.

4.2 Exact Potential Games

Next, we consider games that possess an exact potential function. The following notion

is due to Monderer and Shapley (1996).
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Definition 7 (Exact potential games) The symmetric game (X, π) is an exact po-

tential game if there exists an exact potential function P : X ×X −→ R such that for all

y ∈ X and all x, x′ ∈ X,3

π(x, y)− π(x′, y) = P (x, y)− P (x′, y),

π(x, y)− π(x′, y) = P (y, x)− P (y, x′).

The following definition may appear to be restrictive. However, we will show below

that there is a fairly large number of important examples that fall into this class.

Definition 8 (Additively Separable) A relative payoff function ∆ is additively sep-

arable if ∆(x, y) = f(x) + g(y) for some functions f, g : X −→ R.

Properties such as increasing or decreasing differences are often useful for proving the

existence of pure equilibria and convergence of learning processes.

Definition 9 Let X be a totally ordered set. A (relative) payoff function ∆ has decreas-

ing (resp. increasing) differences on X ×X if for all x′′, x′, y′′, y′ ∈ X with x′′ > x′ and

y′′ > y′,

∆(x′′, y′′)−∆(x′, y′′) ≤ (≥)∆(x′′, y′)−∆(x′, y′). (5)

∆ is a valuation if it has both decreasing and increasing differences.

Our original intent was to study the consequences of ∆(x, y) having either increasing

or decreasing differences. However, it turns out that all of the above properties are

equivalent in our context.

Proposition 3 Let (X, π) be a symmetric two-player game. Suppose that X is a compact

and totally ordered set and π is continuous. Then imitation is essentially unbeatable if

any of the following conditions holds:

(i) (X, π) is an exact potential game

(ii) (X,∆) is an exact potential game

(iii) ∆ has increasing differences

3Given the symmetry of (X,π), the second equation plays the role usually played by the quantifier
“for all players“ in the definition of potential games.
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(iv) ∆ has decreasing differences

(v) ∆ is additively separable.

Proof. We first note that all five conditions are equivalent in our context. Duersch,

Oechssler, and Schipper (2011, Theorem 3) show that (i) and (ii) are equivalent. There,

we also show that (iii) and (iv) are equivalent for all symmetric two-player zero-sum

games Duersch, Oechssler, and Schipper (2011, Proposition 1). Hence, (iii) or (iv) imply

that ∆ is a valuation. Brânzei, Mallozzi, and Tijs (2003, Theorem 1) show that (ii) is

equivalent to ∆ being a valuation for zero-sum games. Finally, Topkis (1998, Theorem

2.6.4.) shows equivalence of (v) and ∆ being a valuation for zero-sum games. Thus, it

suffices to prove the claim for condition (v).

Let ∆ be additively separable, i.e. ∆(x, y) = f(x) + g(y) for some functions f, g :

X −→ R. Thus we have for all x′′, x′, x ∈ X,

∆(x′′, x)−∆(x′, x) = ∆(x′′, x′)−∆(x′, x′),

which is equivalent to

∆(x′′, x) = ∆(x′′, x′) + ∆(x′, x) (6)

because ∆(x′, x′) = 0 since the relative payoff game is a symmetric zero–sum game.

Let (x0, x1, ...) be a sequence of opponent’s actions generated by an opponent’s strat-

egy, and let {∆(xt, yt)}t=0,1,... be her associated sequence of relative payoffs when the

imitator follows his imitation rule in equation (1) with an initial action y0. Now con-

sider the subsequence of strictly positive relative payoffs of the opponent, {∆(xt, yt)|t =

0, 1, ...; ∆(xt, yt) > 0}. Assume the case that {∆(xt, yt)|t = 0, 1, ...; ∆(xt, yt) > 0} is

not a singleton. (Otherwise the Proposition follows trivially.) Observe that for any ad-

jacent elements of the subsequence, say ∆(xk, yk) and ∆(xk+`, yk+`) (for some ` > 0),

we must have ∆(xk+`, yk+`) = ∆(xk+`, xk). This is because an imitator mimics the op-

ponent if the opponent obtained a strictly positive relative payoff and stays with his

own action if the opponent’s relative payoff was less than or equal to zero. Note that∑k+`
t=k ∆(xt, yt) ≤ ∆(xk+`, xk)+∆(xk, yk) = ∆(xk+`, yk), where the inequality follows from

the fact that all elements of the sequence strictly between k and k + ` are non-positive

and the equality follows from equation (6) above. Applying this argument inductively

yields that for any y0 and T > 0 for which ∆(xT , y0) > 0, we have that

T∑
t=0

∆(xt, yt) ≤ ∆(xT , y0) ≤ max
x,y

∆(x, y),
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where maxx,y ∆(x, y) exists because π is continuous and X is compact. �

As sufficient condition for the additive separability of relative payoffs is provided in

the next result.

Corollary 3 Consider a game (X, π) with a compact action set X and a payoff function

that can be written as π(x, y) = f(x) + g(y) + a(x, y) for some continuous functions

f, g : X −→ R and a symmetric function a : X ×X −→ R (i.e., a(x, y) = a(y, x) for all

x, y ∈ X). Then imitation is essentially unbeatable.

The following examples demonstrate that the assumption of additively separable rel-

ative payoffs is not as restrictive as may be thought at first glance. All of those games

are also exact potential games. However, often the conditions on the relative payoffs are

easier to verify than finding an exact potential function.

Example 2 (Cournot Duopoly with Linear Demand) Consider a (quasi) Cournot

duopoly given by the symmetric payoff function π(x, y) = x(b−x− y)− c(x) with b > 0.

Since π(x, y) can be written as π(x, y) = bx − x2 − c(x) − xy, Corollary 3 applies, and

imitation is essentially unbeatable.

Example 3 (Bertrand Duopoly with Product Differentiation) Consider a differ-

entiated duopoly with constant marginal costs, in which firms 1 and 2 set prices x and y,

respectively. Firm 1’s profit function is given by π(x, y) = (x− c)(a+ by− 1
2
x), for a > 0,

b ∈ [0, 1/2). Since π(x, y) can be written as π(x, y) = ax− ac + 1
2
cx− 1

2
x2 − bcy + bxy,

Corollary 3 applies, and imitation is essentially unbeatable. This example with strategic

complementarities also shows that the result is not restricted to strategic substitutes.

Example 4 (Public Goods) Consider the class of symmetric public good games de-

fined by π(x, y) = g(x, y) − c(x) where g(x, y) is some symmetric monotone increasing

benefit function and c(x) is an increasing cost function. Usually, it is assumed that g is an

increasing function of the sum of provisions, x+ y. Various assumptions on g have been

studied in the literature such as increasing or decreasing returns. In any case, Corollary 3

applies, and imitation is essentially unbeatable.

Example 5 (Common Pool Resources) Consider a common pool resource game

with two appropriators. Each appropriator has an endowment e > 0 that can be in-

vested in an outside activity with marginal payoff c > 0 or into the common pool re-

source. Let x ∈ X ⊆ [0, e] denote the opponent’s investment into the common pool

13



resource (likewise y denotes the imitator’s investment). The return from investment into

the common pool resource is x
x+y

(a(x + y) − b(x + y)2), with a, b > 0. So the sym-

metric payoff function is given by π(x, y) = c(e − x) + x
x+y

(a(x + y) − b(x + y)2) if

x, y > 0 and ce otherwise (see Walker, Gardner, and Ostrom, 1990). Since ∆(x, y) =

(c(e − x) + ax − bx2) − (c(e − y) + ay − by2), Proposition 3 implies that imitation is

essentially unbeatable.

Example 6 (Minimum Effort Coordination) Consider the class of minimum effort

games given by the symmetric payoff function π(x, y) = min{x, y} − c(x) for some cost

function c(·) (see Bryant, 1983, and Van Huyck, Battalio, and Beil, 1990). Corollary 3

implies that imitation is essentially unbeatable.

Example 7 (Synergistic Relationship) Consider a synergistic relationship among two

individuals. If both devote more effort to the relationship, then they are both better off,

but for any given effort of the opponent, the return of the player’s effort first increases

and then decreases. The symmetric payoff function is given by π(x, y) = x(c + y − x)

with c > 0 and x, y ∈ X ⊂ R+ with X compact (see Osborne, 2004, p.39). Corollary 3

implies that imitation is essentially unbeatable.

Example 8 (Diamond’s Search) Consider two players who exert effort searching for

a trading partner. Any trader’s probability of finding another particular trader is pro-

portional to his own effort and the effort by the other. The payoff function is given

by π(x, y) = αxy − c(x) for α > 0 and c increasing (see Milgrom and Roberts, 1990,

p. 1270). The relative payoff game of this two-player game is additively separable. By

Proposition 3 imitation is essentially unbeatable.

Finally, a natural question is whether additive separability of relative payoffs (or

equivalently the existence of an exact potential function for the underlying game) are also

necessary conditions for imitation to be essentially unbeatable. The following counter-

example shows that this is not the case.

Example 9 (Coordination game with outside option) Consider the following co-

ordination game with an outside option (C) for both players of not participating (left

matrix).

π =

A B C
A
B
C

 4 −1 0
2 3 0
0 0 0

 ∆ =

A B C
A
B
C

 0 −3 0
3 0 0
0 0 0


14



Note that the relative payoff game ∆ (right matrix) does not have constant differences.

E.g., ∆(A,B) − ∆(B,B) = −3 6= ∆(A,C) − ∆(B,C) = 0. Thus, by Topkis (1998,

Theorem 2.6.4.) it is not additively separable, and by Duersch, Oechssler, and Schipper

(2011, Theorem 3) (X, π) is not an exact potential game. Yet, imitation is essentially

unbeatable. If the imitator’s initial action is A, the opponent can earn at most a relative

payoff differential of 3 after which the imitator adjusts and both earn zero from there on.

For other initial actions of the imitator, the maximal payoff difference is at most 0.

5 Sufficient Conditions for No Money Pump

The existence of a gRPS submatrix may be cumbersome to check in some instances.

Therefore, we provide below a number of sufficient conditions for imitation not to be

subject to a money pump that are based on more familiar concepts like quasiconcavity,

generalized ordinal potentials, or quasisubmodularity/quasisupermodularity and aggre-

gation of actions. Yet, quite differently to what is usually done in the literature we impose

these properties on the relative payoff games rather than on the underlying games.

5.1 Relative Payoff Games with Generalized Ordinal Potentials

Potential functions are often useful for obtaining results on convergence of learning algo-

rithms to equilibrium, existence of pure equilibrium, and equilibrium selection.4 In the

previous section, we have shown in Proposition 3 that if the relative payoff game is an

exact potential game, then imitation is essentially unbeatable. It is natural to explore

the implications of more general notions of potentials. Besides exact potential games (see

Definition 7), the following notion was introduced by Monderer and Shapley (1996).

Definition 10 (Generalized ordinal potential games) The symmetric game (X, π)

is a generalized ordinal potential game if there exists a generalized ordinal potential func-

tion P : X ×X −→ R such that for all y ∈ X and all x, x′ ∈ X,

π(x, y)− π(x′, y) > 0 implies P (x, y)− P (x′, y) > 0,

π(x, y)− π(x′, y) > 0 implies P (y, x)− P (y, x′) > 0.

4For some of the classes of games considered here there exist convergence results for various learning
processes although convergence results for imitation are rare (see Alós-Ferrer and Ania, 2005, Schipper,
2003, and Vega-Redondo, 1997). Note, however, that our results do not follow from any results in
the literature since we do not consider a pair of imitators but rather one imitator against an arbitrary
decision rule of the opponent.
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Note that every exact potential game is a weighted potential game, every weighted

potential game is an ordinal potential game, and every ordinal potential game is a gen-

eralized ordinal potential game. Monderer and Shapley (1996, Lemma 2.5 and the first

paragraph on p. 129) show that any finite strategic game admitting a generalized ordinal

potential possesses a pure Nash equilibrium. Thus, if (X, π) is a finite symmetric game

with relative payoff game (X,∆) and the latter is a generalized ordinal potential game,

then (X, π) possesses a fESS.

A sequential path in the action space X×X is a sequence (x0, y0), (x1, y1), ... of profiles

(xt, yt) ∈ X ×X such that for all t = 0, 1, ..., the action profiles (xt, yt) and (xt+1, yt+1)

differ in exactly one player’s action. A sequential path is a strict improvement path if

for each t = 0, 1, ..., the player who switches her action at t strictly improves her payoff.

A finite sequential path (x0, y0), ..., (xm, ym) is a strict improvement cycle if it is a strict

improvement path and (x0, y0) = (xm, ym).

Lemma 3 If (X,∆) does not contain a strict improvement cycle, then it does not contain

an imitation cycle.5

Proof. We prove the contrapositive. I.e., if (X,∆) contains an imitation cycle,

then it contains a strict improvement cycle. Let (x0, y0), ..., (xm, ym) be an imitation

cycle. From this imitation cycle, we construct a strict improvement cycle as follows: For

t = 0, ...,m − 1, we add the element (xt, yt+1) as successor to (xt, yt) and predecessor

to (xt+1, yt+1). That is, instead of simultaneous adjustments of actions at each period

as in an imitation cycle, we let players adjust actions sequentially by taking turns. The

imitator adjusts from (xt, yt) to (xt, yt+1) and the opponent from (xt, yt+1) to (xt+1, yt+1)

for t = 0, ...,m− 1. This construction yields a sequential path.

We now show that it is a strict improvement cycle. First, for the imitator, whenever

he adjusts in t = 0, ...,m − 1, we claim ∆(yt, xt) < ∆(yt+1, xt) = 0. Note that by

symmetric zero-sum, ∆(yt, xt) = −∆(xt, yt) < 0 because (xt, yt) is an element of an

imitation cycle, i.e., ∆(xt, yt) > 0. ∆(yt+1, xt) = 0 because the imitator mimics the

action of the opponent, yt+1 = xt. Thus ∆(yt+1, xt) = ∆(xt, xt) = 0 by symmetric

zero-sum.

5Ania (2008, Proposition 3) presents a similar result according to which if all players are imitators
and imitation is payoff improving, then the fESS is a Nash equilibrium action. This is different from
Lemma 3 as we consider an imitator against an opponent who herself may not imitate and focus on
the relationship between relative payoff games that possess a generalized ordinal potential and imitation
cycles.
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Second, for the opponent, whenever she adjusts in t = 1, ...,m, ∆(xt, yt) > ∆(xt−1, yt) =

0 because (xt, yt) is an element of an imitation cycle, so ∆(xt, yt) > 0. Moreover, the

imitator mimics the action of the opponent, i.e., yt = xt−1, and thus ∆(xt−1, yt) =

∆(xt−1, xt−1) = 0. Hence (x0, y0), (x0, y1), (x1, y1), ..., (xm−1, ym), (xm, ym) is indeed a

strict improvement cycle. �

The converse is not true as the following counter-example shows.

Example 10 Consider the following relative payoff game.6

∆ =

a b c
a
b
c

 0 0 −1
0 0 1
1 −1 0


Clearly, this game is not a gRPS game. Thus, by Lemma 1 it does not possess an imitation

cycle. However, we can construct a strict improvement cycle (b, a), (c, a), (c, c), (b, c) and

(b, a).

Proposition 4 Let (X, π) be a finite symmetric game with its relative payoff game

(X,∆). If (X,∆) is a generalized ordinal potential game, then imitation is not subject

to a money pump.

Proof. Monderer and Shapley (1996, Lemma 2.5) show that a finite strategic game

has no strict improvement cycle (what they call the finite improvement property) if and

only if it is a generalized ordinal potential game. Since this result holds for any finite

strategic game, it holds also for any finite symmetric zero-sum game (X,∆).

Lemma 3 shows that if (X,∆) does not contain a strict improvement cycle, then it

does not contain an imitation cycle. Thus Lemma 1 implies that imitation is not subject

to a money pump. �

If the converse were true, then the class of generalized ordinal potential relative payoff

games and relative payoff games that are not gRPS games would coincide. Yet, the

converse is not true. This follows again from Example 10. It is not a gRPS game but due

6This example appears also in Ania (2008, Example 2), where it is used to demonstrate that the
class of games where imitation is payoff improving (when all players are imitators) is not a subclass of
generalized ordinal potential games.
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to the existence of a strict improvement cycle by Monderer and Shapley (1996, Lemma

2.5) it does not possess a generalized ordinal potential.

For an example of a game whose relative payoff game is a generalized ordinal potential

game see again the coordination game with an outside option presented in Example 9.

A generalized ordinal potential function is given by

P =

A B C
A
B
C

 −2 −1 −2
−1 0 0
−2 0 0


.

5.2 Quasiconcave Relative Payoff Games

Here we show that imitation is essentially unbeatable if the relative payoff game is qua-

siconcave.

Definition 11 (Quasiconcave) A symmetric two-player game (X, π) is quasiconcave

(or single-peaked) if there exists a total order < on X such that for each x, x′, x′′, y ∈ X
and x′ < x < x′′, we have that π(x, y) ≥ min {π(x′, y), π(x′′, y)} .

For a matrix game this definition implies that the row player’s payoff has in each

column a single peak. In our companion paper, Duersch, Oechssler, and Schipper (2011,

Theorem 2), we show that if X is finite and ∆ is quasiconcave, then an equilibrium of

(X,∆) and therefore a fESS of (X, π) exists.

Proposition 5 Let (X, π) be a finite symmetric game with relative payoff game (X,∆).

If (X,∆) is quasiconcave, then imitation is not subject to a money pump.

Proof. Suppose (X,∆) is a finite quasiconcave game. Consider a symmetric sub-

matrix (X ′,∆′) where X ′ ⊂ X and ∆′ is the restriction of ∆ to X ′. It follows directly

from Definition 11 that (X ′,∆′) is also a finite quasiconcave game. Lemma 1 in Duersch,

Oechssler, and Schipper (2011),7 then implies that (X ′,∆′) is not a gRPS matrix. Since

we picked an arbitrary X ′ ⊂ X, (X,∆) is not a gRPS game. Thus, by Theorem 1,

imitation is not subject to a money pump. �

7The lemma is reproduced in the Appendix for the reader’s convenience.
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The following corollary may be useful for applications. Let X ⊂ Rm be a finite

subset of a finite dimensional Euclidean space. A function f : X −→ R is convex (resp.

concave) if for any x, x′ ∈ X and for any λ ∈ [0, 1] such that λx + (1 − λ)x′ ∈ X,

f(λx+ (1− λ)x′) ≤ (≥)λf(x) + (1− λ)f(x′).

Corollary 4 Let (Rm, π) be a symmetric two-player game for which π(·, ·) is concave in

its first argument and convex in its second argument. If the players’ actions are restricted

to a finite subset X of the finite dimensional Euclidian space Rm, then imitation is not

subject to a money pump.

Bargaining is an economically relevant situation involving two players. Our results

imply that imitation is not subject to a money pump in bargaining as modeled in the

Nash Demand game.

Example 11 (Nash Demand Game) Consider the following version of the Nash De-

mand game (see Nash, 1953). Two players simultaneously demand an amount in R+.

If the sum is within a feasible set, i.e., x + y ≤ s for s > 0, then player 1 receives the

payoff π(x, y) = x. Otherwise π(x, y) = 0 (analogously for player 2). The relative pay-

off function is quasiconcave. If the players’ demands are restricted to a finite set, then

Proposition 5 implies that imitation is not subject to a money pump.

Example 12 Consider a symmetric two-player game with the payoff function given

by π(x, y) = x
y

with x, y ∈ X ⊂ [1, 2] with X being finite. This game’s relative payoff

function is quasiconcave. Thus our result implies that imitation is not subject to a money

pump. Moreover, the example demonstrates that not every quasiconcave relative payoff

function is additively separable.

Finally, we would like to remark that Example 10 is an instance of a quasiconcave rel-

ative payoff game but due to the strict improvement cycle it does not posses a generalized

ordinal potential. Moreover, in Duersch, Oechssler, and Schipper (2011, Example 1) we

show that there are relative payoff games that are neither gRPS games nor quasiconcave.

5.3 Aggregative Games

Many games relevant to economics possess a natural aggregate of all players’ actions.

For instance, in Cournot games the total market quantity or the price is an aggregate.
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But also other games like rent-seeking games, common pool resource games, public good

games etc. can be viewed as games with an aggregate. The aggregation property has

been useful for the study of imitation and fESS in the literature (see Schipper, 2003, and

Alós-Ferrer and Ania, 2005). In this section, we will derive results for aggregative games

whose absolute payoff functions satisfy some second-order properties.8

We say that (X,Π) is an aggregative game if it satisfies the following properties.

(i) X is a totally ordered set of actions and Z is a totally ordered set.

(ii) There exists an aggregator a : X ×X −→ Z that is

– monotone increasing in its arguments, i.e. if (x′′, y′′) > (x′, y′), then a(x′′, y′′) >

a(x′, y′),9 and

– symmetric, i.e., a(x, y) = a(y, x) for all x, y ∈ X.

(iii) π is extendable to Π : X × Z −→ R with Π(x, a(x, y)) = π(x, y) for all x, y ∈ X.

We say that an aggregative game (X,Π) is quasisubmodular (resp. quasisupermodular)

if Π is quasisubmodular (resp. quasisupermodular) in (x, y) on X×Z, i.e., for all z′′ > z′,

x′′ > x′,

Π(x′′, z′′)− Π(x′, z′′) ≥ 0 ⇒ (⇐) Π(x′′, z′)− Π(x′, z′) ≥ 0, (7)

Π(x′′, z′′)− Π(x′, z′′) > 0 ⇒ (⇐) Π(x′′, z′)− Π(x′, z′) > 0. (8)

Quasisupermodularity (resp. quasisubmodularity) is sometimes also called the (dual)

single crossing property (e.g. Milgrom and Shannon, 1994).10

8At a first glance, the aggregation property may be less compelling in the context of two-player games.
However, the results we obtain in this section allow us to cover important examples that are not covered
by any of our other results.

9The partial order > on X ×X is defined as (x′′, y′′) > (x′, y′) if and only if x′′ ≥ x′and y′′ ≥ y′ with
one of these inequalities being strict.

10It is important to realize that quasisubmodularity in (x, z) where z is the aggregate of all players’
actions is different from quasisubmodularity in (x, y) where y is the aggregate of all opponents’ actions.
For instance, Schipper (2009, Lemma 1) shows that quasisubmodularity in (x, z) where z is the aggregate
of all players’ actions is satisfied in a Cournot oligopoly if the inverse demand function is decreasing. No
assumptions on costs are required. It is known from Amir (1996, Theorem 2.1) that further assumptions
on costs are required if the Cournot oligopoly should be quasisubmodular in (x, y) where y is the aggregate
of all opponents’ actions.
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A finite aggregative game is quasiconcave (or single-peaked) if for any x, x′, x′′ ∈ X
with x < x′ < x′′ and z ∈ Z,

Π(x′, z) ≥ min{Π(x, z),Π(x′′, z)}.

A finite aggregative game is quasiconvex if for any x, x′, x′′ ∈ X with x < x′ < x′′ and

z ∈ Z,

Π(x′, z) ≤ max{Π(x, z),Π(x′′, z)}.

It is strictly quasiconvex if the inequality holds strictly. An action x∗ ∈ X is a fESS of

the aggregative game (X,Π) if

Π(x∗, a(x∗, x)) ≥ Π(x, a(x∗, x)) for all x ∈ X.

The following lemma is the key insight for our result on quasiconcave quasisubmodular

aggregative games.

Lemma 4 Suppose (X,Π) is a quasiconcave quasisubmodular aggregative game. If x is

between some x′ and a fESS x∗, then

Π(x, a(x, x′)) ≥ Π(x′, a(x, x′)).

Proof. Suppose that x′ ≤ x ≤ x∗. The case x′ ≥ x ≥ x∗ can be dealt with analogously.

For x = x′ or x = x∗ the proposition is trivial or follows from the definition of fESS,

respectively. Thus, assume that x′ < x < x∗.

By the definition of a fESS

Π(x∗, a(x∗, x′))− Π(x′, a(x∗, x′)) ≥ 0.

By quasiconcavity,

Π(x, a(x∗, x′))− Π(x′, a(x∗, x′)) ≥ 0.

The result follows then by quasisubmodularity,

Π(x, a(x, x′))− Π(x′, a(x, x′)) ≥ 0,

since (x∗, x′) > (x, x′) and hence a(x∗, x′) > a(x, x′). �

Proposition 6 If (X,Π) is a finite quasiconcave quasisubmodular aggregative game for

which a fESS exists, then imitation is not subject to a money pump.
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Proof. We will show that from any initial action of the imitator different from a fESS,

any opponent’s strategy which yields a sequence of actions with strictly positive relative

payoffs at each step reaches a fESS in a finite number of steps. Once reached, there are

no further strictly relative payoff gains feasible for the opponent by the definition of a

fESS. Hence, there does not exist an imitation cycle. It follows then from Lemma 1 that

imitation is not subject to a money pump.

Note that since the game is quasiconcave, if x∗ and x∗∗ are fESS, then so is any x ∈ X
with x∗ < x < x∗∗ or x∗∗ < x < x∗. We write E for the set of fESS.

Step 1 : Let y0 ∈ X be the starting action of the imitator. Assume that y0 < x∗ =

minE (the proof for y0 > x∗∗ = maxE works analogously). We claim that when the

imitator switches to a different action y1 6= y0, we must have that y1 > y0. Suppose by

contradiction that y1 < y0. By equation (1), the imitator would only choose y1 if in the

previous period the opponent chose x = y1 and received a strictly higher payoff than the

imitator,

∆(y1, y0) = Π (y1, a(y1, y0))− Π (y0, a(y1, y0)) > 0. (9)

But this contradicts Lemma 4 as y1 < y0 < x∗. Thus, y1 > y0.

• If y1 ∈ E, we are done.

• If y0 < y1 < x∗, then take y1 as the new starting action and repeat Step 1.

• Else, go to Step 2.

Step 2 : We have that y1 > x∗∗. We claim that when the imitators switches to a new

action y2 6= y1, we must have that y2 < y1. Suppose by contradiction that y2 > y1. By

equation (1), the imitator would only choose y2 if in the previous period the opponent

chose x = y2 and received a higher payoff, ∆(y2, y1) > 0. But this contradicts Lemma 4

as y2 > y1 > x∗∗. Thus y2 < y1.

• If y2 ∈ E, we are done.

• If y0 < y2 < x∗, then take y2 as the new starting action and repeat Step 1.

• If x∗∗ < y2 < y1, then take y2 as the new starting action and repeat Step 2.

We claim that y2 ≤ y0 can be ruled out. Since X is finite, the algorithm then stops

after finite periods. To verify this claim, suppose to the contrary that y2 ≤ y0. By
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equation (1), the imitator would only choose y2 if in the previous period the opponent

chose x = y2 and received a strictly higher payoff than the imitator,

∆(y2, y1) = Π (y2, a(y2, y1))− Π (y1, a(y2, y1)) > 0.

By quasiconcavity, we have

Π (y0, a(y2, y1))− Π (y1, a(y2, y1)) ≥ 0.

Since a(y0, y1) > a(y2, y1) for y0 > y2 and a(y0, y1) = a(y2, y1) for y0 = y2, we have by

quasisubmodularity

Π (y0, a(y0, y1))− Π (y1, a(y0, y1)) ≥ 0.

But this contradicts inequality (9) and proves the claim. �

The following examples present applications of the previous result. The first exam-

ple extends the linear Cournot oligopoly of Example 2 to general symmetric Cournot

oligopoly.

Example 13 (Cournot Duopoly) Let the symmetric payoff function be π(x, y) =

xp(x+y)− c(x) and assume that π(x, y) is quasiconcave in x. Schipper (2009, Lemma 1)

shows that a symmetric Cournot duopoly with an arbitrary decreasing inverse demand

function p and arbitrary increasing cost function c is an aggregative quasisubmodular

game. Thus, Proposition 6 implies that imitation is not subject to a money pump in

Cournot duopoly.

Example 14 (Rent Seeking) Two contestants compete for a rent v > 0 by bidding

x, y ∈ X ⊆ R+. A player’s probability of winning is proportional to her bid, x
x+y

and

zero if both players bid zero. The cost of bidding equals the bid. The symmetric payoff

function is given by π(x, y) = x
x+y

v−x (see Tullock, 1980, and Hehenkamp, Leininger, and

Possajennikov, 2004). This game is an aggregative quasisubmodular game (see Schipper,

2003, Example 6, and Alós-Ferrer and Ania, 2005, Example 2) and π(x, y) is concave in

x. Thus Proposition 6 implies that imitation is not subject to a money pump.

For quasiconvex quasisupermodular aggregative games we can prove an analogous

result. We first observe that in a strictly quasiconvex quasisubmodular game a fESS

must be a “corner” solution if it exists. It follows that there can be at most two fESS.
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Lemma 5 Let (X,Π) be a finite strictly quasiconvex quasisupermodular aggregative game.

If x∗ is a fESS, then x∗ = maxX or x∗ = minX.

Proof. Let x∗ be a fESS and suppose to the contrary that there exist x′, x′′ ∈ X such

that x′∗ < x′′. We distinguish four cases:

Case 1: If

Π(x′′, a(x∗, x′′)) ≥ Π(x′, a(x∗, x′′)),

then by strict quasiconvexity

Π(x∗, a(x∗, x′′)) < Π(x′′, a(x∗, x′′)),

a contradiction to x∗ being a fESS.

Case 2: The case Π(x′, a(x∗, x′)) ≥ Π(x′′, a(x∗, x′)) is analogous to Case 1.

Case 3: If

Π(x′, a(x∗, x′′)) ≥ Π(x′′, a(x∗, x′′)),

then by strict quasiconvexity

Π(x∗, a(x∗, x′′)) < Π(x′, a(x∗, x′′)).

By quasisupermodularity,

Π(x∗, a(x∗, x′)) < Π(x′, a(x∗, x′)).

a contradiction to x∗ being a fESS.

Case 4: The case Π(x′′∗, x′)) ≥ Π(x′∗, x′)) is analogous to Case 3.

Thus, if x∗ is a fESS, then x∗ = maxX or x∗ = minX. �

Proposition 7 If (X,Π) is a finite strictly quasiconvex quasisupermodular aggregative

game for which a fESS exists, then imitation is not subject to a money pump.

Proof. Again, we will show that from any initial action by the imitator different from

a fESS, any opponent’s strategy which yields a sequence of actions with strictly positive

relative payoffs at each step reaches a fESS in a finite number of steps. Once reached,

there are no further strict relative payoff gains possible for the opponent by the definition

of a fESS. Hence, there does not exist an imitation cycle. It follows then from Lemma 1

that imitation is not subject to a money pump.
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Consider a sequence of nontrivial actions x1, x2, x3 the opponent may take. Suppose

that x2 < x1 (the case x2 > x1 is dealt with analogously). By equation (1), the imitator

will mimic the opponent only if her relative payoffs are strictly positive, i.e.

Π(x2, a(x2, x1)) > Π(x1, a(x2, x1)). (10)

To show that the sequence of actions moves to one of the corners, we need to show that

either x3 > x1 or x3 < x2. Suppose to the contrary that x2 < x3 ≤ x1.
11 By equation (1),

the imitator will mimic the opponent only if her relative payoffs are strictly positive, i.e.

Π(x3, a(x3, x2)) > Π(x2, a(x3, x2)).

Thus, by quasisupermodularity

Π(x3, a(x1, x2)) > Π(x2, a(x1, x2)). (11)

If x2 < x3 < x1, then from inequality (10) and strict quasiconvexity follows

Π(x2, a(x2, x1)) > Π(x3, a(x2, x1)). (12)

If x3 = x1, then inequality (10) is equivalent to inequality (12). But inequality (12)

contradicts inequality (11). Thus we have shown that with every nontrivial step, the

opponent gets closer to a corner. Since there are only finitely many actions, a corner

must be reached in finitely many steps. If the corner is a fESS, then no further changes

of actions occur. Otherwise, the other corner may be reached in one additional step.

This must be a fESS by Lemma 5 since a fESS is assumed to exist. Once it is reached,

no further changes of actions occur. �

6 Discussion

We have shown in this paper that imitation is a behavioral rule that is surprisingly

robust to exploitation by any strategy. This includes strategies by truly sophisticated

opponents. In Table 1 we summarize our results.12 The only class of symmetric games in

which imitation can really be beaten is the class of games whose relative payoff function

is a generalized rock–paper–scissors game. According to Lemma 2 this is also the class

11The case of x2 6= x3 is already excluded by the requirement of non-trivial steps.
12More results on the classes of games and their relationships are contained in our companion paper,

Duersch, Oechssler, and Schipper (2011).
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of games in which there is an imitation cycle, i.e. a cycle in which the opponent always

jumps to a new action which in turn is imitated by the imitator in the next round. Given

the large number of examples and sufficient conditions we specified, it seems fair to say

that imitation is very hard to beat in large and generic classes of economically relevant

games.

Table 1: Summary of results

Class Result Reference Examples

Symmetric 2x2 games essentially unbeatable Prop. 2 Chicken, Prisoners’ Dilemma,
Stag Hunt

Additively separable relative essentially unbeatable Linear Cournot duopoly
payoff function Heterogeneous Bertrand duopoly
or Public goods
Relative payoff functions essentially unbeatable Prop. 3 Common pool resources
with increasing or decreasing Minimum effort coordination
differences Synergistic relationship
or Diamond’s search
(Relative payoff) games with essentially unbeatable
exact potential

Relative payoff games with no money pump Prop. 4 Example 9
generalized ordinal potential

Quasiconcave relative no money pump Prop. 5 Nash demand game
payoff games Example 10

Example 12

Quasiconcave quasisub- no money pump Prop. 6 Cournot games
modular aggregative games Rent seeking

Quasiconvex quasisuper- no money pump Prop. 7
modular aggregative games

No generalized no money pump Thm. 1 all of the above
Rock-Paper-Scissors games

The property that imitate-if-better is unbeatable in such a large class of games seems

to be unique among commonly used learning rules. We are not aware of any rule that
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shares this property with imitate-if-better.13 For example, there are important differ-

ences between imitate-if-better and unconditional imitation, when behavior is imitated

regardless of its success. A well known example of the latter is tit–for–tat. To see the

difference, consider the following game.

π =

A B C
A
B
C

 0, 0 0,−1 −1, 0
−1, 0 0, 0 0, 10
0,−1 10, 0 0, 0

 ∆ =

A B C
A
B
C

 0 1 −1
−1 0 −10
1 10 0


Obviously, ∆ is not a generalized gRPS game. In fact, it is easy to see that imitate-if-

better is essentially unbeatable for this game. However, tit–for–tat would be subject to a

money pump by following a cycle (A→ B → C → A . . . ). The reason for this difference

is that an imitate-if-better player would never leave action C whereas a tit–for–tat player

can be induced to follow the opponent from C to A.

There are other modifications that may cause the imitate-if-better rule to lose the

property of being unbeatable. For instance, we assumed that an imitator sticks to his

action in case of a tie in payoffs. To see what goes wrong with an alternative tie-braking

rule consider a homogenous Bertrand duopoly with constant marginal costs. Suppose

the imitator starts with a price equal to marginal cost. If the opponent chooses a price

strictly above marginal cost, her profit is also zero. If nevertheless, the opponent were

imitated, she could start the money pump by undercutting the imitator until they reach

again price equal to marginal cost and then start the cycle again.

Similarly, many commonly used belief learning rules, for example, best response learn-

ing or fictitious play, can easily be exploited in all games in which a Stackelberg leader

achieves a higher payoff than the follower (as e.g. in Cournot games). Against such

rules, the opponent can simply stubbornly choose the Stackelberg leader action know-

ing that the belief learning player will eventually converge to the Stackelberg follower

action. Thus, belief learning rules can be beaten without bounds in such games. Yet,

it remains an open question for future research whether there are other behavioral rules

that perform equally well as imitate-if-better.

The restriction of our analysis to two–player games is certainly a limitation. While a

full treatment of the n–player case is beyond the scope of the current paper, we provide

here an example that shows how imitation can be beaten in a standard Cournot game

when there are three players. Let the inverse demand function be p(Q) = 100 − Q and

13Apart from close variants of imitate-if-better like rules that imitate only with a certain probability,
see e.g. Schlag’s (1998) proportional imitation rule.
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the cost function be c(qi) = 10qi. Now consider the case of two relative payoff maximiz-

ers and one imitator. Writing a vector of quantities as (qI , qM , qM), it is easy to check

that the following sequence of action profiles (0, 22.5, 22.5), (22.5, 0, 68), (0, 22.5, 22.5),

(22.5, 68, 0), (0, 22.5, 22.5) ... is an imitation cycle. The two maximizers take turns in

inducing the imitator to reduce his quantity to zero by increasing quantity so much that

price is below marginal cost. Since the other maximizer has zero losses, she is imitated in

the next period, which yields half of the monopoly profit for both maximizers. Clearly,

this requires coordination among the two maximizers but this can be achieved in an

infinitely repeated game by the use of a trigger strategy. Thus, imitation is subject to

a money pump. Recall, however, that we pitted imitation against truly sophisticated

opponents in a particular game. Whether imitation can be beaten also by less sophis-

ticated (e.g. human) opponents in a wider class of games remains to be seen in future

experiments and in theoretical work on n-player games.
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Appendix (not for publication)

The following result appears in Duersch, Oechssler and Schipper (2011, Lemma 8). The

entire paper can be found at http://www.econ.ucdavis.edu/faculty/schipper/zerosum.pdf

Lemma 6 A finite quasiconcave symmetric two-player zero-sum game is not a gRPS

matrix.

Proof. Suppose by contradiction that the finite quasiconcave symmetric zero-sum

game (X, π) is a gRPS matrix. Note first that if π(·, y) is quasiconcave in the first

argument, i.e., if x′ < x < x′′ implies that π(x, y) ≥ min {π(x′, y), π(x′′, y)}, then by

symmetry, π(y, x) ≤ max {π(y, x′), π(y, x′′)}, i.e. π(x, ·) is quasiconvex in the second

argument.

Let (xk, x`) be the left-most cell with a strictly positive entry that is above the main

diagonal, i.e. π(xk, x`) > 0, where x` := arg minx′′ {π(x′, x′′) > 0 and x′′ > x′} and xk :=

arg minx′ {π(x′, x`)}. If there are several such entries in column x`, we choose without

loss of generality the lowest one. Such an entry exists since (X, π) is a gRPS and finite

(i.e., the last column must have a strictly positive entry above the main diagonal).

By symmetry, (x`, xk) is below the main diagonal and π(x`, xk) < 0. By quasiconcav-

ity, all entries in the column xk below x` are also negative, π(x, xk) < 0, for all x > x`.

Since rows are quasiconvex, it follows that π(x`, x) ≤ 0 for all x such that xk < x < x`.

The same holds for all lower rows, π(x′, x) ≤ 0, for all x′ > x`, xk < x < x′. This defines

a trapezoid Πneg of payoff entries below the diagonal that does not contain any strictly

positive entries.

Now, look specifically at column x`−1. Πneg contains all entries in this column that

are below the diagonal. However, this column must have a positive entry since the game

is a gRPS matrix. Therefore, the column has to have a positive entry above the diagonal.

But this is a contradiction to the fact that (xk, x`) is the left-most cell with a positive

entry above the main diagonal. �


