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Abstract

Missing data in dynamic panel models occur quite often since detailed recording of the dependent variable

is often not possible at all observation points in time and space. In this paper we develop classical and

Bayesian methods to complete missing data in panel models. The Chow-Lin (1971) method is a classical

method for completing dependent disaggregated data and is successfully applied in economics to disaggregate

aggregated time series. We will extend the space-time panel model in a new way to include cross-sectional

and spatially correlated data. The missing disaggregated data will be obtained either by point prediction or

by a numerical (posterior) predictive density. Furthermore, we point out that the approach can be extended

to more complex models, like flow data or systems of panel data. The panel Chow-Lin approach will be

demonstrated with examples involving regional growth for Spanish regions.

Keywords: Space-time interpolation, Spatial panel econometrics, MCMC, Spatial Chow-Lin, missing

regional data, Spanish provinces, MCMC, NUTS: nomenclature of territorial units for statistics.

JEL classification: C11, C15, C52, E17, R12 .

1. Introduction

Regional data restrictions are one of the most common and unwanted limitations for applied regional

scientists. In many fields linked to economics, geography and environmental science data scarcity arise when

analyzing phenomena at a fine spatial scale such as provinces, counties or districts. Similarly, it is difficult

to find rich databases covering simultaneously different spatial levels, which impede the right evaluation

of any phenomena affected by the spatial scale under consideration (population density, agglomeration of

economic activity, segregation and integration processes, etc).
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Data restrictions at a disaggregated or lower level spatial scale could cause problems for several reasons.

First, the larger the spatial scope of a survey the larger the number of observations required to reach a

reasonable level of accuracy at such levels. This reason leads to a trade-off between the chosen spatial

scale and the cost of collecting the data. Apart, data scarcity at disaggregated spatial scales is linked to

problems of statistical and legal data protection of the surveyed agents. Due to this issue, it is common

to encounter data restrictions in the smallest and less developed regions (provinces or equivalent areas) of

a country, where there is a limited number of observations and the sample could almost coincide with the

target population. Another potential source of a data-scale discontinuity is the variation of geographical

boundaries, as it has been observed in the case of some Eastern European countries, which have undergone

a profound transformation in their internal organization after gaining independence since 1989.

Consequently, past and present census data related to the most important economic and demographic

variables (as agreed by the UN) is not available at a disaggregated spatial scale. Additionally, it is common

that some of the best statistical sources for analyzing demographic and social issues -the census data- are

available according to UN recommendations every 10 years. Thus many census data find often limited

connections with other data sources that might be published on e.g. yearly basis on a different spatial scale

(i.e. educational outcome at the county level in the US). Moreover, it could also be the case that the right

’spatial scale’ for analyzing a specific economic phenomenon requires the use of data at a particular level of

aggregation.

In relation to these complementary causes of data scarcity at certain disaggregated spatial levels, there

is a prolific literature dealing with the sensibility analysis of the spatial scale on different types of analysis.

Moreover, several authors have dealt with this issues suggesting quantitative techniques able to solve the

problem. What it is of much interest for the approach presented in this paper is that although some of these

works were developed in alternative fields, they take into account the concept of spatial autocorrelation and

spatial heterogeneity.

According to Jelinski and Wu (1996) one of the most comprehensive treatment of the sensitivity of

analytical results to the definition of the spatial units is found under the geographical concept of ’the

Modifiable Areal Unit Problem’ (MAUP) (Openshaw and Taylor (1979) Openshaw and Taylor (1981);

Openshaw (1984); Fotheringham and Wong (1991); Amrhein and Wong (1996); Sui (2000)). According to

this literature, the MAUP arises from the fact that areal units are usually arbitrarily determined, in the sense

that they can be aggregated to form units of different sizes or spatial arrangements. As it is posed by Wong

(2003), the impact of the MAUP is significant partly because the correlation of variables will change when
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data gathered at different scale levels are used. As he explains, in general, data are spatially ’smoothed’

when they are aggregated to adjacent values, and thus less variation is preserved at the aggregated level (see

Fotheringham and Wong, 1991). But if data have a strong positive spatial autocorrelation, the aggregation

process will not remove much information as compared to negatively spatially autocorrelated data. Several

research efforts have tried to correct or adjust for correlation among variables (e.g. Holt et al., 1996) in

order to obtain relatively consistent statistical results across scale levels, but most of these procedures are

either too computationally intensive or impractical. To this regard, focusing on the regression framework,

Fotheringham et al. (2001) suggested that the spatially weighted regression could be a potential solution

to the scale effect, while King (1995) opted for an error-bound method. Moreover, Wong (2001) proposed

a spatial correlation approach for analyzing count variables, which can yield results relatively consistent

across scale levels.

Regarding this literature, it is important to note that the main discussion is about how to conciliate

the results obtained when regressing the same model (with the same variables) at different spatial scales

-when data is available-, due to the heterogeneity of space and the presence of different source of spatial

autocorrelation at each unit level. Linked to this topic, but with singular connotations, other authors focus

on developing methods for estimating unavailable data at a certain spatial scale taking into account observed

relations of the same variables in the past (but in the same spatial units) or at different levels of spatial

aggregation (but in the same period of time).

For example, among the first group, Baltagi and Li (2006) considered the problem of prediction in a

panel data regression model with spatial autocorrelation in the context of a simple demand equation for

liquor. Their model was based on a panel of 43 states over the period 1965-1994, and took into account the

spatial autocorrelation due to neighboring states and the individual heterogeneity across states. Then based

on the model, they compared the performance of several predictors of the states’ demand for liquor for 1 year

and 5 years ahead, using OLS, fixed effects ignoring spatial correlation, fixed effects with spatial correlation,

random-effects GLS estimator ignoring spatial correlation and random-effects estimator accounting for the

spatial correlation. In this article, they found that for forecasts 2-5 years ahead, estimators that take into

account the heterogeneity across the states yield the best forecasts.

In relation to the other group, Pav́ıa et al. (2008) use geo-statistical procedures to build a spatial model

of voting patterns, testing the model in three elections in Spain. They apply kriging (a spatial model) and

co-kriging (in a spatiotemporal model version) to improve the accuracy of election night forecasts. The

estimates use polling stations as basic locations in the context of election night forecasting. The idea is to
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forecast the unavailable polling stations (NAPS) from the current polling stations’ incoming results and then,

by aggregation, predict the final outcomes. Three alternative sets of predictions - spatial, spatiotemporal,

and temporal forecasts - are obtained in each election for eight different moments in the election night.

Spatial forecasts are based on kriging and provide estimates for each NAPS from the vote distribution

observed in the stations in its vicinity. Spatiotemporal forecasts use co-kriging to find NAPS estimates

based on both the spatial distribution of the vote and the relationship that exists at each station between

votes of consecutive elections. Finally, temporal forecasts are made to provide comparison with the spatial

strategies. Then they compare the results with actual outcomes and also to predictions made using models

that use only historical data from polling stations in previous elections. According to their results, the use

of spatial information strongly improves the accuracy of the prediction.

Finally, we find an additional example trying to overcome the data scarcity problem in lower spatial units

for demographic variables. Wu and Murray (2005) discussed how population information is typically avail-

able for analysis in aggregate socioeconomic reporting zones, such as census blocks in the United States and

enumeration districts in the United Kingdom. However, such data masks underlying individual population

distributions and may be incompatible with other information sources (e.g. school districts, transportation

analysis zones, metropolitan statistical areas, etc.). Moreover, as we do, they link this data scarcity issue

with the modifiable areal unit problem (MAUP) described above. Then, they use impervious surface fraction

derived from Thematic Mapper (TM) imagery to derive the underlying population of an urban region. A

co-kriging method was developed to interpolate population density by modeling the spatial correlation and

cross-correlation of population and impervious surface fraction.

From an alternative perspective, Polasek et al. (2009) have recently developed new methods for estimating

unavailable data using spatial interpolation methods based on the Chow-Lin method (see Chow and Lin,

1971), the workhorse of the interpolation techniques successfully applied to complete data in time series

problems. In that paper, the authors developed a procedure able to estimate omitted data at a low spatial

level using available data at the aggregated one. The method was developed for cross section type of data.

Based on this first attempt, this paper extend the spatial interpolation method to the case of panel data. We

think of a regional data set that is completely observed at an aggregate level (like NUTS-2) and has to be

broken down into smaller regional units (e.g. NUTS-3) conditional on observed disaggregated indicators. By

means of this new approach, we will be able to tackle with some of the problems described above regarding

the presence of ‘holes’ in spatial and temporal dimensions. In addition, we will be able to show that the

results obtained with the panel data approach show better results compared to the ones obtained with the
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method designed for cross sections (see Polasek et al., 2009). Our new method is developed using spatial

econometrics techniques, both for classic and Bayesian models, where the later has to be estimated by

MCMC. To evaluate the new method, we estimate the panel model using the GDP of the Spanish regions

at two different spatial scales for the period 2000-2004. With that model we forecast the GDP for the 52

Spanish provinces (at NUTS-3 level), based only on the information for the 18 Spanish regions (i.e. NUTS-2

GDP as dependent variable), and the high frequency socio-economic indicators at the NUTS-3 level. Then,

to compare the results obtained with the actual series available at the NUTS-3 level, we computed forecast

criteria. We point out that a significant spatial lag parameter leads to an improvement (through the so called

gain term) in the spatial Chow-Lin prediction of the disaggregated data. The Bayesian MCMC method yield

the best result among the models in the forecast experiment.

1.1. The Chow-Lin method: outline and assumptions

The Chow-Lin method can be considered as a prediction method for subunits that are unobserved at this

disaggregated spatial or time scale. The process can be viewed as inter-diction, because it forecast on a scale

’between’ the observed scale or fine-casting, because it makes forecasts at a finer scale. While interpolation

refers to mathematical (deterministic) models for data completion at a disaggregate level, we use the word

inter-prediction for a statistical (stochastic) model to predict missing disaggregate observation based on the

observed aggregated data.

The general framework for all Chow-Lin ’inter-prediction’ methods (whether in space or time or both)

can be summarized as follows:

1. Establish a disaggregate model that will be used for the inter-diction.

2. Derive the aggregate model and the reduced form.

3. Estimate the disaggregated parameters with the observed aggregated data.

4. Complete the data by forecasting with the disaggregated model (inter-prediction).

For a successful application of the method we need the following assumptions:

Assumption 1. Structural similarity: The aggregated model for yc and the disaggregated model for y are
structurally similar. This implies that variable relationships that are observed on an aggregated level are
following the same empirical law as on a disaggregated level: the regression parameters in both models are
the same.

Assumption 2. Error similarity: The spatially correlated errors have a similar error structure on an ag-
gregated level and on a disaggregated level: The spatial correlations are not significantly different.

Assumption 3. Reliable indicators: The indicators to make the formats on a disaggregated level have
sufficiently large predictive power: The R2 (or the F test) is significantly different from zero.
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The paper is organized as follows. Section 2 outlines the Bayesian model of the spatial Chow-Lin

(CL) method for cross-sectional data and reviews the results of Polasek et al. (2009), along with the error

covariance matrix needed for the improved prediction of the missing values, which leads to the so-called

spatial gain terms for predictions. In section 3 we extend the approach to a spatial panel model assuming a

seemingly unrelated type of covariance structure and Chow-Lin method for panel data. The procedures are

given in sections 4 and 5. The Bayesian Chow-Lin model for completing panel data is outlined in section

6. In the next section (section 7), we then apply the spatial panel Chow-Lin method to Spanish NUTS-2

and NUTS-3 data. As we observe all data on the disaggregated level, we will evaluate the quality of the

spatial Chow-Lin method by comparing the predicted values for the NUTS-3 GDP to their observed values

and calculate the usual forecast accuracy criteria. A final section concludes.

2. Review: Bayesian Chow-Lin method for completing spatial cross-sectional data

First, we review the cross-sectional spatial autoregressive (SAR) model with missing y observations as in

Polasek et al. (2009). In the spatial Chow-Lin model we are interested in a cross-sectional vector yd : n× 1

that should have been observed at a certain point in time t, but could actually not be observed and is

completely or partially missing. Instead we can observe the shorter, aggregated vector ya = Cyd : N × 1

where C is a N×n aggregation matrix consisting of 0’s and 1’s, indicating which cells have to be aggregated

together. First, we consider a disaggregated spatial regression model (indicated by the subscript d), because

it is the model where we can make the Chow-Lin forecasts for the missing yd observations on the left hand

side of the SAR model:

yd = ρdWyd +Xdβd + εd, εd ∼ N [0, σ2In]. (1)

The reduced form (RF) is obtained by defining the spread matrix R = In−ρdW for an appropriately chosen

weight matrix W and the spatial correlation coefficient ρd:

yd = R−1Xdβd +R−1εd, R−1εd. ∼ N [0, σ2(R′R)−1]. (2)

The prior distribution for the parameters of the disaggregated model θd = (βd, σ
−2, ρd) is proportional

to
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p(βd, σ
−2, ρd) ∝ p(βd) · p(σ−2)

= N [βd | β∗, H∗] · Γ[σ−2 | s2∗, n∗],

since we assume an uniform prior for the spatial correlation ρd ∼ U [−1, 1].

The C-aggregation of the reduced form model is obtained by multiplying with the N × n matrix C

Cyd = CR−1Xdβd + CR−1εd, CR−1εd ∼ N [0, σ2C(R′R)−1C ′]. (3)

We will write shorter for the covariance matrix:

σ2Ω(ρd) = σ2C(R′R)−1C ′.

The prior distribution for θd = [βd, ρd, σ
2] of this reduced form model is given by

p(θd) = N [β | β∗, H∗] · Γ[σ−2 | s2∗, n∗]

since the prior for ρd is assumed to flat: p(ρd) ∝ 1. Γ[a, b] = Γ[ab/2, b/2] stands briefly for the gamma

distribution of the residual precision σ−2.

The joint distribution of the disaggregated model is with D = {ya, Xd}

p(θd,D) = N [ya | CR−1Xdβd, σ
2Ω(ρd)]p(θd). (4)

2.1. MCMC for the Chow-Lin SAR model

For the MCMC procedure we need from the joint distribution in (4) three full conditional distributions

(fcd’s) which are briefly denoted by p(ρd | θc), p(βd | θc), and p(σ2 | θc), where the disaggregated parameters

are collected by the vector θd = (ρd, βd, σ
2). Furthermore, θ denotes all the parameter of the model and θc

the complementary parameter set that we need for the fcd’s.

The MCMC procedure for the SAR model consists of 3 blocks of sampling, as is shown in the next theorem:
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Theorem 1 (MCMC in the SAR model ).
We consider the SAR model in (1) with joint distribution in (4). Then the MCMC estimation

procedure is given by

1. Draw β from N [β | b∗∗, H∗∗]
2. Draw ρi by a Metropolis step: ρnew = ρold +N [0, τ2]

3. Draw σ−2 from Γ[σ−2 | s2∗∗, n∗∗]
4. Repeat until convergence.

Proof 1. The proof can be found in Polasek et al. (2009) or in the appendix.

2.2. Completing data by inter-prediction

We obtain the posterior predictive distribution in the following way, by integrating over the conditional

predictive distribution for an unknown observation yp with the posterior distribution p(β, ρ, σ−2 | ya) with

the data D = (ya, Xd):

p(yp | D) =

∫ ∫ ∫
p(yp | β, σ−2)p(β, ρ, σ−2 | ya)dβ dρ dσ−2,

where the posterior normal-gamma density p(βd, ρd, σ
−2 | ya) is computed by a numerical procedure

yielding the MCMC sample ΘMCMC of size J of the θd parameters:

ΘMCMC =
{

(βj , ρj , σ
2
j ), j = 1, ..., J

}
.

From this output we find a predictive sample of the unknown disaggregated vector yd by drawing from the

reduced form (which depends on the matrix W and on the known regressors Xd). This is the Chow-Lin

formula for MCMC samples:

y
(j)
d ∼ N [R−1j Xdβ

j
d + gj , σ

2
j [(R′jRj)

−1 −Gj ]], j = 1, ..., J, (5)

using the spread matrix Rj = In − ρjW for each j. g is the gain vector and G is the gain matrix for the

mean and variance matrix, respectively, which are defined by

Gj = (R′jRj)
−1C ′[C(R′jRj)

−1C ′]−1C(R′jRj)
−1], (6)

gj = (R′jRj)
−1C ′[C(R′jRj)

−1C ′]−1(ya − ŷa,j)], (7)
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where we use the aggregated residuals êa = ya − ŷa and the current predictions ŷa,j = R−1a,jXaβj .

3. Completing data in spatial space-time panel (STP) models

We adopt the following notation: Let Ya : T ×N be the aggregate panel matrix for T aggregated time

points and N aggregate cross-sectional units and Yd : m × n be the disaggregate panel matrix. We assume

that the aggregation has to be done in both dimensions, time and space:

Ya = C1YdC
′
2.

The time aggregation matrix is C1 : T × m and the space aggregation matrix is C2 : N × n. Because

aggregation in time always needs equal time periods of a basic period S called ’season’, we have the integer

equality for the dimensions

ST = m

since m is a T-multiple of the basic season S. Then the C1 matrix can be written as a Kronecker product:

C1 = IT ⊗ 1′m = Im ⊗ 1S ,

where 1m = (1, ..., 1)′ : 1 ×m is a vector of m ones and 1S is a S vector of ones . The spatial aggregation

matrix faces irregularities and can be written as block diagonal matrix:

C2 = diag(1n1 , ...., 1nN
) : N × n with

N∑
i=1

ni = n,

where the n′is are the lengths of the aggregates and 1ni
: ni × 1 is a column vector of ones and indexes

the areas where ni units are aggregated. For the space-time Chow-Lin procedure we have to vectorize the

aggregation equation:

ya = (C2 ⊗ C1)vecYd = Cyd

with the joint aggregation matrix C = C2⊗C1 and the vectorized data matrices vecYa = ya and vecYd = yd.

For a model with K regressors the indicator model we need K disaggregated panel matrices

Xd
k : n× n, for k = 1, ...,K
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as a ’panel indicators’1 . A single vectorized panel indicator is just a mn×1 vector vecXd = xd of regressors.

Note that indicator matrices {Xd
k , k = 1, ...,K} has to have the same dimension as Yd. The disaggregated

model for the missing yd variable is a linear regression model involving all vectorized panel matrices. This

leads to the following Chow-Lin model:

Definition 1 (The non-spatial Chow-Lin panel model). For the K vectorized indicator matrices {Xd
k , k =

1, ...,K} and the dependent panel variable Yd we define the non-spatial Chow-Lin panel regression model:

yd = Xdβd + εd, εd ∼ N [0,Ω⊗ σ2V ] (8)

(mn× 1) = (mn×K)(K × 1) + (mn× 1)

where Ω is a n× n and V is a m×m correlation matrix for the time dimension. A simpler assumption is
the homoskedastic case εd ∼ N [0, σ2Inm].

Note: The V matrix could be a time series covariance matrix assuming autoregressive errors for the error

terms εit for all N cross sections in the panel i = 1, ..., N :

εit = φiεi,t−1 + uit, ui ∼ N [0, σ2
i IT ], i = 1, ..., N. (9)

with the error vector ui = (ui1, ..., uiT )′ in each cross section i. Clearly a simplifying assumption is the

homoskedastic case σ2
i = σ2 and the ’homo-dynamic’ case φi = φ.

The correlation matrix of the error term is then

V =
σ2
i

1− φ2



1 φ φ2 ... ... φT−1

φ 1 φ φ2 ... φT−2

... 1 φ

· · ·

φT−1 φT−2 ... φ 1


(10)

and the inverse of this covariance matrix V is tri-diagonal

V −1 =
1

1− φ2



1 −φ 0 ... ... 0

−φ 1 + φ2 −φ 0 ... 0

0 ... −φ 1 + φ2 −φ 0

· · ·

0 0 ... 0 −φ 1


. (11)

1The indices d and a are used as a sub- or a superscript, respectively, for convenience of notation.
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3.1. Spatial space-time panel (STP) models

After having defined the ordinary space-time panel (STP) model in (1) we can turn now to the spatial

autoregressive (SAR) extension if this model.

Definition 2 (The SAR space-time panel (STP) model). The spatial extension of the space-time panel
model (8) has the following disaggregated form

yd = ρd(W ⊗ In)yd +Xdβd + εd, εd ∼ N [0,Ω⊗ σ2V ] (12)

(13)

(mn× 1) = (mn×mn)(mn× 1) + (mn×K)(K × 1) + (mn× 1).

We can write this model also as

yd = ρdỹd +Xdβd + εd,

since the spatial lag vector ỹd has the special form

ỹd = vec(YdW
′) = (W ⊗ Im)yd.

The spatial filter form of the SAR-STP model is given by

R̃yd = Xdβd + εd, εd ∼ N [0,Ω⊗ σ2V ]. (14)

with

R̃ = (Inm −W ⊗ Im)ρd = (In − ρdW )⊗ Im = R⊗ Im

and the spread matrix R = In − ρdW as before.

The reduced form of the spatial filter model (14) is

yd = R̃−1Xdβd + R̃−1εd, R̃−1εd ∼ N [0,Ωρ ⊗ σ2V ]. (15)

which has a similar covariance structure since Ωρ is given by

Ωρ = (R′Ω−1R)−1 : (n× n). (16)

For the estimation we need the aggregated reduced form of the spatial panel model

Cyd = CR̃−1Xdβd + CR̃−1εd, CR̃−1εd ∼ N [0, C(Ωρd ⊗ σ2V )C ′]. (17)
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Since only the aggregated data are completely observed we have to derive the aggregated model from

the disaggregated model. In compact notation the ARF of the spatial panel STP model (17) is:

ya = Xaρβd + εaρ, εaρ ∼ N [0, C2ΩρC
′
2 ⊗ σ2C2V C

′
1]. (18)

with ya = Cyd, Xaρ = CR̃−1Xd, and εaρ = CR̃−1εd. The covariance matrix of the ARF panel model is

Vaρ = C2ΩρC
′
2 ⊗ C1V C

′
1 = Ωa ⊗ Va (19)

with Ωa = C2ΩρC
′
2 and Va = C1V C

′
1 with Ωρ in (16) and V given in (10).

4. Least squares estimation for spatial space-time panel (STP) models

This augmented reduced form of the STP model (18) is the starting point for classical and Bayesian

estimation procedures. The first method we discuss is simple least squares: Assume that there are K

panel indicators Xd
1 , . . . , X

d
K available at the disaggregated level, where the first one is a matrix of ones

Xd
1 = 1m ⊗ 1′n, then we define the aggregated regressor matrix Xa consisting of vectorized panel data

matrices:

Xa = (vecX1, . . . , vecXK) : (TN ×K) and CXd = Xa. (20)

Again, the aggregated model is obtained by multiplying with the aggregation matrix C as in (18) but now

the aggregation matrix is given by:

Xa = (vecC11m1′nC
′
2, vec(C1X2C

′
2), ..., vec(C1XKC

′
2)) =

= (vecXa1 , vecXa2 , ..., vecXaK ) : mn×K.

The relationship between the disaggregated and the aggregated indicator matrix is: Xk : (m × n) → Xa
k :

(T ×N). The transposed matrix X ′a is given by

X ′a =


vec′Xa1

..

vec′XaK

 : K × TN. (21)

This leads to the following estimation procedure 1 (EP1): A 2-step estimate is given like in the simple
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spatial Chow-Lin model (see Polasek et al., 2009). First, we consider the usual GLS estimate βGLSd : (K×1):

βGLSd = (X ′aV
−1
aρ Xa)−1(X ′aV

−1
aρ ya),

and then we get the ”weighted” GLS estimate using the spatial lag ỹa = vecYaW
′ as dependent variable:

βWLS = (X ′aV
−1
aρ Xa)−1(X ′aV

−1
aρ )(R⊗ Im)ya.

Theorem 2 (GLS estimation in the space-time panel (STP)model).
The GLS and WLS estimates in the spatial STP model (12) can be found by the K × 1 vector

estimates

βGLS = M−1
X̃X̃

MX̃Ỹ (22)

βWLS = M−1
X̃X̃

MX̃ ˜YW ′ (23)

where MX̃X̃ and MX̃Ỹ are cross-moments matrices of the aggregated and transformed observations

X̃ = (Ωa ⊗ Va)−1Xa, and ˜YW ′ = (Ωa ⊗ Va)−1/2YaW
′.

Proof 2. The moment matrices can be simplified for computations:

MX̃X̃ =

 vec′Xa1

...
vec′XaK

 (Ωa ⊗ Va)−1Xa

 =

 trX ′a1Ω−1a Xa1V
−1
a ... trX ′aKΩ−1a Xa1V

−1
a

... ...
trX ′aKΩ−1a Xa1V

−1
a ... trX ′aKΩ−1a XaKV

−1
a


using the formula tr ABCD = vec′D′(C ′ ⊗A)vecB and vec′D = (vecD)′ denotes the row vectorization.
In the same way we find for the (K ×K) cross-moment matrix

MX̃Ỹ =
(
X ′a(Ωa ⊗ Va)−1Ya

)
=

 trX ′a1Ω−1a YaV
−1
a

...
trX ′aKΩ−1a YaV

−1
a


and

MX̃Ỹ W ′ =
(
X ′a(Ωa ⊗ Va)−1YaW

′) =

 trX ′a1Ω−1a YaW
′V −1a

...
trX ′aKΩ−1a YaW

′V −1a


13



with the covariance matrices Ωa and Va given in (19). The minimum of the spatial ρ is found by minimizing
the error sum of squares (ESS) over a grid of ρd values.

Based on these estimates we can propose the second stepwise estimation procedure (EP2): The 3-step

estimator : In the first step we calculate the simplified GLS and WLS estimates of theorem 2 by using

identity matrices for Ωa and Va by setting the spatial and the time correlation to zero: ρd = 0 and φ = 0,

in the covariance matrices (19). Then, in a second step, we get from the T ×N residual matrix Êa (of the

simplified GLS estimation with êa = ya − XaβGLS) an estimate for Ω̂ = Ê′aÊa/N and also an average φ

autocorrelation coefficients from the N time series in the panel data set (φ̂ =
∑N
i=1 φ̂i/N), and as a third

step we can estimate the spatial ρd again using the new φ estimate.

4.1. Chow-Lin GLS point prediction

The forecasting of the disaggregated observations has to be done by the general Goldberger (1962)

formula (the subscript d is suppressed)

ŷ = XβGLS +Gê,

where the Gê is an improvement of the estimated error term ê = (y −XβGLS) using the ’Goldberger gain’

matrix

G = V −1aρ C̃
′(C̃V −1aρ C̃

′)−1. (24)

Next, the gain matrix can be partitioned using (19)

CV −1aρ C
′ = (C2 ⊗ C1)Ω−1a ⊗ V −1a (C ′2 ⊗ C ′1) =

= C2Ω−1a C ′2 ⊗ C1V
−1
a C ′1. (25)

Therefore the Goldberger gain matrix G in (24) can be simplified to G = (G2 ⊗G1) with

G2 = Ω−1a C ′1(C1Ω−1a C ′1)−1 and G1 = V −1a C ′2(C2V
−1
a C ′2)−1. (26)

The gain-in-mean of the Chow-Lin prediction is

g = Gê = (G2 ⊗G1)vecÊ = vecG1ÊG
′
2 (27)
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The Chow-Lin forecasts can be calculated as

ŷ = XβGLS + vec G1ÊG
′
2 (28)

or with vecBGLS = βGLS and vecY0 = XβGLS

Ŷ = Y0 +G1ÊG
′
1, (29)

where we have used the vectorisation relation ê = vecÊ.

The gain-in-variance or the improvement term for the variance (stemming from the conditional normal

density formula) is

VG = (G2C1Ω−1a ⊗G1C2V
−1
a )

5. MCMC in spatial space-time panel (STP) models

The Bayesian panel STP model estimation follows the same line as in the cross-section model and can

be summarized by the MCMC procedure similar as in theorem (1). We consider the STP model with the

prior distribution

p(θ) =

n∏
i=1

N [βdi | b∗i , H∗]W[Ω | Ω∗, ν∗]U−1,1(ρ)U−1,1(φ) (30)

where U[−1,1](ρd) and U−1,1(φ) stands for a uniform distribution for the two correlation coefficients. Note

that simpler formulas can be obtained if we assume a ’large’ or ’0-diffuse’ prior for the betas:

p(βd) = N [βd | 0, H∗ = gIK ] (31)

centered at mean 0 and with the scalar g being large (e.g. g = 103 or 106). Then the posterior distribution

of the parameter θ can be simulated using MCMC.
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Theorem 3 (MCMC in the space-time panel (STP) model).
The MCMC procedure for the spatial STP model in (12) and the prior (30)

1. Draw β from N [β | b∗∗, H∗∗]
2. Draw ρ by a Metropolis step: ρnew = ρold +N [0, τ21 ]

3. Draw φ by a Metropolis step: φnew = φold +N [0, τ22 ]

4. Draw σ−2 from Γ[σ−2 | s2∗∗, n∗∗]
5. Repeat until convergence.

Proof 3. a) The fcd for the β regression coefficients is

p(β | D, θc) = N [β | b∗, H∗] · N [Cy | CR−1Xβ, σ2Vaρ]

= N [β | b∗∗, H∗∗]

with D = (ya, Xd) being the data base2 for the STP model and the parameters

H−1∗∗ = H−1∗ + σ−2X>dR
′−1C ′V −1aρ CR

−1Xd,

b∗∗ = H∗∗[H
−1
∗ b∗ + σ−2X ′dR

′−1C ′V −1aρ Cyd]

using the covariance matrices in (19). These formulas can be written as

H−1∗∗ = H−1∗ + σ−2MX̃dRX̃d
,

b∗∗ = H∗∗[H
−1
∗ b∗ + σ−2MX̃dRỸd

]

where the moment matrices are given as before, but now the contain an additional spatial transformations
by the inverse spread matrix R:

C(R−1 ⊗ Im)vecXd
k = (C2 ⊗ C1)vecXd

kR
′−1 = vec C1X

d
kR
′−1C ′2 for k = 1, ...,K.

The regressor matrix now looks like

Xaρ = (vecXaρ,1, vecXaρ,2, ..., vecXaρ,K)

and the K ×K moment matrices are

MX̃RX̃ =

 vec′Xaρ,1

...
vec′Xaρ,K

 (Ωa ⊗ Va)−1Xaρ

 =

 tr X ′aρ,1Ω−1a Xaρ,1V
−1
a ... tr X ′aρ,KΩ−1a Xaρ,1V

−1
a

... ...
tr X ′aρ,KΩ−1a Xa1V

−1
a ... tr X ′aKΩ−1a Xaρ,KV

−1
a


and for the cross-product moments

MX̃RỸ =
(
X ′aρ(Ωa ⊗ Va)−1Ya

)
=

 trX ′aρ,1Ω−1a YaV
−1
a

...
trX ′aρ,KΩ−1a YaV

−1
a

 .

2Note that W and C are strictly speaking also part of the data base
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These matrices have usually small dimensions (K ×K), since the number of indicators is limited and can
be easily built up by a loop in a computer program.

Note: If we assume a ”0-diffuse” prior as in (31), then the posterior moments have simpler expressons

H−1∗∗ = g−1IK + σ−2MX̃RX̃ ,

b∗∗ = σ−2H∗∗MX̃RỸ .

b) The fcd for the residual inverse variance is

p(σ−2 | D, θc) = Γ[σ−2 | s2∗∗, n∗∗] (32)

with n∗∗ = n∗ + n and
s2∗∗n∗∗ = s2∗n∗ + ESSρ

where the error sum of squares ESSρ is - using (19) - given by

ESSρ = (ya − CR−1Xdβd)
′V−1aρ (ya − CR−1Xdβd). (33)

Using matrix notation we find

ESSρ = vec′ Ea(Ωa ⊗ Va)−1vecEa = tr V −1a EaΩ−1a E′a (34)

with the residual matrix Ea = (e1, ..., eN ) : T × N defined by vecEa = ya − CR−1Xdβd or ei = ya,i −
Xaρ,iβd,i, i = 1, ..., N with Xaρ = CR−1Xd.

c) The fcd for the spatial rho
For the ρd we use a Metropolis step

ρnew = ρold +N [0, τ2]

with the acceptance ratio

α = min

[
1,
p(ρnew)

p(ρold)

]
,

where p(ρd) is the (kernel of) the full conditional for ρd, in our case the kernel is just stemming from the
likelihood function:

p(ρd) = |Ωρ|−
T
2 exp

(
− 1

2σ2
ESSρ

)
= |RΩ−1R|− 1

2 exp

{
− 1

2σ2
ESSρ

}
.

From (19) we find |Ωa ⊗ Va|−
1
2 ∝ |Ωa|−

T
2 ∝ |Ωρ|−

T
2 and the error sum of squares ESSρ given in (33)

contains ρ.
d) The fcd for the correlation parameter φ

For the φ we use a Metropolis step:
φnew = φold +N [0, τ22 ]

with the acceptance ratio

α = min

[
1,
p(φnew)

p(φold)

]
;

where p(φ) consists of the (kernel of) the full conditional distribution for φ, in our case the kernel is just
stemming from the likelihood function:

p(φ) = |V|−N
2 exp

(
− 1

2σ2
ESSφ

)
.
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From (19) we find

|Ωa ⊗ Va|−
1
2 ∝ |Va|−

N
2 ∝ |V|−N

2

and ESSφ = ESSρ given in (33) contains φ.
e) The fcd for the inverse SUR covariance matrix Ω−1

The SUR precision matrix

p(Ω−1 | D, θc) = Wm[Ω−1 | Ω∗∗, ν∗∗] (35)

follows a (m-dim.) Wishart distribution with ν∗∗ = ν∗ + 2 and

Ω∗∗ = Ω∗ + CUρU
′
ρC
′ (36)

where Uρ is the residual matrix, constructed from the vectorized residuals vecUρ = ya − R−1Xaβa. There
is no closed form expression possible, since the inverse spread matrix R−1 destroys the Kronecker product
structure of the multivariate equation.

5.1. Completing data by prediction: inter-prediction

We obtain the posterior predictive distribution in the following way, by integrating over the conditional

predictive distribution with the posterior distribution:

p(yp | D) =

∫ ∫ ∫
p(yp | β, σ−2)p(β, ρ, σ−2 | D)dβ dρ dσ−2

where the posterior normal-gamma density p(βd, ρd, σ
−2 | D) is given numerically by a MCMC sample,

i.e. a posterior sample of the θ parameters of the STP model:

ΘMCMC = {(βj , ρj , φj , σ2
j ,Ωj), j = 1, ..., J}.

From this output we find a predictive sample of the unknown vector yd by drawing from the reduced form

in (15), which depends on the matrix W and on the known regressors Xd:

{y(j) ∼ N [R−1j Xβj + gj , (R
′
jΩ
−1
j Rj)

−1 ⊗ σ2
jVj −Gj ]} (37)

where gj is given by (27), Gj is given as in (6) and the spread Rj = In − ρjW computed for all MCMC

draws j = 1, ..., J in Θ.

6. The Bayesian Chow-Lin model for completing panel data

We consider a panel spatial autoregressive model as in (12)
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yd = ρdWyd +Xdβd + εd, εd ∼ N [0,Ω⊗ σ2In]

with the residuals εd = vec Ed from the stacked residual matrix Ed : m× n. The prior information for the

parameters θ = (ρ, β, σ2,Ω) is blockwise independent

p(θ) = p(ρ)p(β)p(σ2)p(Ω) with (38)

p(ρ) = U(−1, 1); p(β) = N [β∗, H∗];

p(σ−2) = Γ[s2∗, n∗], p(Ω−1) = W[Ω∗, ν∗], (39)

where U is a uniform, W a Wishart and Γ a Gamma-2 distribution.

Consider the SAR panel Chow-Lin model (in short SAR-PCL) and let us denote the 3 conditional

distributions by p(ρ | θc), p(β | θc), and p(σ−2 | θc) where θc denotes the complementary parameters for the

f.c.d.’s, respectively.

The MCMC procedure for the panel Chow-Lin model (SAR-PCL) consists of 4 blocks of sampling, as given

in the next theorem:

Theorem 4 (MCMC in the SAR-PCL model).
The MCMC estimation for the SAR-PCL model (12) with prior (38) involves the following iter-
ations:

Step 1. Draw β from N [β | b∗∗,H∗∗]
Step 2. Draw ρ by a Metropolis step: ρnew = ρold +N [0, τ2]

Step 3. Draw σ−2 from Γ[σ−2 | s2∗∗, n∗∗]
Step 4. Draw Ω−1 from W[Ω−1 | Ω∗∗, ν∗∗]
Step 5. Repeat until convergence.

Proof 4 (Proof of Theorem 4). The first three fcd’s are the same as in Theorem (1). We now show that
the fcd for the Ω−1 is derived in the following way. Recall that the reduced form of the panel SAR model is
given by

y ∼ N [R−1Xβ,Ω⊗ σ2(R′R)−1]. (40)

This leads to the likelihood function

p(Ω−1 | y) = |Ω⊗ σ2(R′R)−1|−1/2exp
{
− 1

2σ2
e′d(Ω⊗ σ2(R′R)−1)−1ed

}
, (41)
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with ea = ya−R−1Xaβd = vec(Ea) the vectorization of the residual matrix Ea : T ×N . This can be written
in compact form

p(Ω−1 | y) = |Ω|−n/2σ−nT |R| exp
{
− 1

2σ2
tr EaΩE′a(R′R)−1

}
. (42)

Now this expression has to be combined with the kernel of the prior distribution

p(Ω−1 | y) ∝ |Ω|−ν∗/2 exp
{
− 1

2σ2
tr Ω∗Ω

}
= W[Ω∗∗, ν∗∗]. (43)

and yields a Wishart distribution with ν∗∗ = ν∗ + n and Ω∗∗ = Ω∗ + E′(R′R)−1E.

6.1. Completing data by Chow-Lin prediction: Inter-prediction

We obtain the posterior predictive distribution in the same way as before: Using the above MCMC

procedure we obtain a posterior sample of the θ parameters: ΘMCMC = {(βj , ρj , σ2
j ,Ωj), j = 1, ..., J}.

Again, from this MCMC output we find a predictive sample y(j) by drawing from the reduced form (which

depends on the matrix W and on the known disaggregated indicators (regressors) Xd):

{y(j) ∼ N [R−1j Xβj + gj ,Ωj ⊗ σ2
j [(R′jRj)

−1 −Gj ]], j = 1, ..., J}

computed as Rj = (In − ρjW ) for each j. gj is the ’gain-in-mean vector’ for the mean and Gj is the

’gain-in-variance’ matrix, respectively, which are defined by

Gj = (R′jRj)
−1C ′[C(R′jRj)

−1C ′]−1C(R′jRj)
−1], (44)

gj = (R′jRj)
−1C ′[C(R′jRj)

−1C ′]−1(ya − ŷa,j)], (45)

where we use the aggregated residuals êa = ya − ŷa and the current predictions ŷa,j = R−1a,jXaβj for each j.

7. Application of the spatial Chow-Lin to Spanish regions

In this section, the performance of the classical and Bayesian Chow-Lin method is evaluated using

actual data for the Spanish GDP at NUTS-2 and NUTS-3 level for the period 2000-20043. Spain has 18

regions (NUTS-2) and 52 provinces (NUTS-3). The associated C matrix is constructed from the hierarchical

structure of the NUTS-3 regions embedded in NUTS-2 regions. Note that, in contrast to the temporal Chow-

Lin method where each aggregated period (year) has the same number of disaggregated seasons (4 quarters,

3All data and the aggregation matrix C for Spanish provinces are available from the authors upon request.
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12 months etc.), in the spatial framework the number of provinces (NUTS-3) varies for each region (NUTS-

2). In Spain, the number of provinces by regions range between one and nine, and seven regions are single

unit regions, having just one province. In such provinces no aggregation is possible (and this fact has to be

taken into account in the evaluation procedure of Chow-Lin methods). This heterogeneity in terms of size

and administrative structure makes Spanish regions a real challenge and a good testing ground for spatial

Chow-Lin methods.

7.1. The Spanish sub-national data

The regressors used for the aggregate model are described in Table 1. Note that the indicators should

be available at the NUTS-2 and NUTS-3 level. Usually, due to the data limitation problems described

above, the number and quality of indicators available at this spatial level is lower than for the NUTS-2 level.

However, in the Spanish case it is possible to obtain some reliable indicator variables that are able to proxy

the GDP by the demand and supply side. All regressors enter in log levels to explain GDP (for NUTS-2)

for the year 2004 (or the years 2000-2004 in the panel case). The NUTS-2 GDP series were calculated by

aggregating NUTS-3 GDP. Therefore, it is possible to compare the Chow-Lin predicted values with the

actual data available. As a spatial weight matrix W we use the row normalized matrix for the inverse

distances between the NUTS-3 provinces.

The first aim is to find an appropriate aggregated SAR model, using different indicator variables, which

should be correlated with the ‘GDP’, both at the regional and provincial level. Table 2 shows the results

obtained for the two best models4 , using the SAR program of LeSage (1997). In these two models the

spatial term ρ is positive and significant. Based on the best cross-sectional models in Polasek et al. (2009),

our first model consists of three the variables ‘Employment’, international ‘Exports’ and ‘Imports’ that are

able to explain by a R2 = 99.96% of the spatial distribution of the ‘GDP’ in the cross-sectional models.

The second model estimated for the spatial panel data set includes an agglomeration dummy variable

that takes the value 1 for Madrid and Barcelona (Mad Bar), and 0 otherwise. Although the R2 is slightly

lower than for the cross-section models (see Polasek et al., 2009), the level of significance for all the variables

increases as well as the importance of the spatial effect, whose positive coefficients vary from 0.12 to 0.14. The

‘Mad Bar’ variable shows negative coefficients with acceptable significance levels, pointing out to higher levels

of concentration in employment and international trade in Madrid and Barcelona than in terms of ‘GDP’.

Probably this result is connected with differences in productivity (GDP/employment ratios by regions) and

4Due to space limitations, we omit the results for variables like ‘capital-stock’, ‘number of trucks’ and ’number of banks’,
which did not improve the results.

21



the higher concentration of traders and headquarters in these two regions, which tends to overvalue their

amount of imports and exports.

7.2. Evaluation of the spatial Chow-Lin method

The evaluation of the spatial Chow-Lin (CL) follows the evaluation methods for predictions in statistical

models. This follows from the fact that unknown y’s have to be predicted while the predictors are fully

observed. In the Spanish case we are in the fortunate position of knowing the disaggregated y values, so we

can compute the prediction accuracy. This is done for the classical and Bayesian prediction as well as for the

method with and without the Gain (see equation 24) term. After that we compute some forecast criteria

to evaluate the four different predictions. To evaluate the accuracy of the ML and Bayesian prediction we

chose three criteria from the forecasting literature (see e.g. Chatfield, 2001): the Root Mean Squared Error

(RMSE), the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE)5.

The results are shown in Table 3. According to the three criteria (RMSE, MAE and MAPE), the

rankings of the models are the same. Moreover, the forecasts including the ‘gain term’, which is a function

of the spatial autocorrelation, always outperform the equivalent methods ‘without the gain’. According to

these rankings, the best method is the Bayesian model ‘with gain’. This shows that a spatial model will

considerable improve the Chow-Lin forecasts for disaggregate data, while ignoring the spatial correlation

- i.e. applying a conventional regression model instead - will lead to a considerable accuracy loss for the

predicted data. Finally, to visualize the comparisons, Figures 2 and 3 show overlay plots of the classical and

Bayesian Chow-Lin predictions for Model 1, with and without gain, together with the observed data, using

the panel data specification. Figure 3 shows clearly that the Bayesian spatial Chow-Lin forecasts lie closer

to the observed values than classical predictions or non-spatial methods (denoted as ’no gain’) in Figure 2.

8. Conclusions

Regional econometric work in Europe has become increasingly important, especially since the integration

process of the European Union puts a lot of weight on policies for regional coherence. For such evaluations

NUTS data are the main source of information. They are collected by Eurostat and the individual member

states using common rules and methods. But not all member states have developed the same level of skills,

especially since 1995 after the harmonized European national accounting system has started. This leads to

5The formulas are RMSE = 1
N

√∑N
i=1(y − ŷ)2, MAE = 1

N

∑N
i=1 |y − ŷ| and MAPE = 1

N

∑N
i=1 |

y−ŷ
y
| respectively.
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inhomogeneous data quality and sometimes to holes in the database if smaller regional units are needed. In

order to apply many modern panel methods one has to complete such data sets. While the simplest method

is interpolation, this gives not always satisfactory results.

Based on the well known Chow-Lin method of temporal interpolation, and a recent spatial extension (see

Polasek et al., 2009), we develop a new spatial interpolation procedure for panel data in this paper. The

procedure uses the indicators at the disaggregated regional level to predict the disaggregated unobserved

dependent variable, conditional on the complete aggregated observed model. We propose a spatial estimation

procedure in a classical or Bayesian framework, where the latter is done by MCMC.

To evaluate the new method, we forecasted the GDP for the 52 Spanish provinces (at NUTS-3 level), but

based only on the information for the 18 Spanish regions (i.e. NUTS-2 GDP as dependent variable), while

the forecasts are based on high frequency socio-economic indicators at the NUTS-3 level. Then, to compare

the results obtained with the actual series available at the NUTS-3 level, we computed forecast criteria. We

point out that a significant spatial lag parameter leads to an improvement (through the so called gain term)

in the spatial Chow-Lin prediction of the disaggregated data. The Bayesian MCMC method yield the best

result among the models in the forecast experiment. Our new method has shown that it pays to get a good

spatial model if one is interested in good predictions of missing data in a cross-sectional or panel model. A

non-trivial condition for finding a good model is the existence of good indicators, the removal of outliers

and the skill to find the appropriate weight matrix to estimate the spatial effects. In future research we will

explore these modeling possibilities in more detail, and we extend the spatial Chow-Lin method to complete

large blocks of data at the national and European level, including flow data such as inter-regional trade or

migration flows.
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Annex 1: Tables and Figures

Table 1: Description and source of the variables in the database

Variable Description Source
Area Area of provinces in square km INEa

Pop Population by provinces in 1,000 INE
Emp Employment by provinces in 1,000 INE
Kstock Capital stock by provinces FBBVA-IVIEb

Export International exports of goods by provinces AEATc

Import International imports of goods by provinces AEAT
Vat Value Added Tax revenue by provinces AEAT
IncTax Income tax revenue by provinces AEAT
Income IncTax by provinces per capita Own calc.- INE
Trucks Number of heavy trucks by provinces La Caixad

Banks Number of banks in each province La Caixa
Mad Bar Dummy for Madrid and Barcelona Own calc.
Capi Dummy for Madrid only Own calc.
Caprov Dummy: 1 for all capital provinces Own calc.
Rforal Dummy: 1 for provinces with special tax system Own calc.

awww.ine.es
bwww.fbbva.es,www.ivie.es
cwww.aeat.es
dwww.lacaixa.es
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Table 2: Panel data SAR models: GLS and Bayesian estimates for GDP, 2000-2004

Models Model 1 Model 2
Estimation Classic Bayesian Classic Bayesian
R-squared 0.9995 0.9995 0.9996 0.9995
Rbar-squared 0.9995 0.9995 0.9995 0.9995
σ2 0.2073 0.1782
sige, ESS/(n-k) 0.2230 0.2003
ndraws,nomit 500,50 500,50
Nobs, Nvars 90, 4 90, 4 90, 5 90, 5
log-likelihood -25.7614 -18.9705
coefficientsa

constant -3.7695 -3.4991 -4.1362 -4.0264
(0.0000) (0.0000) (0.0000) (0.0000)

log(Emp) 0.4193 0.4066 0.4516 0.4873
(0.0000) (0.0000) (0.0000) (0.0000)

log(Exports) 0.2392 0.2414 0.2321 0.2208
(0.0000) (0.0000) (0.0000) (0.0000)

log(Imports) 0.2653 0.2662 0.2611 0.2576
(0.0000) (0.0000) (0.0000) (0.0000)

Mad Bar -0.5765 -0.6526
(0.0001) (0.0000)

ρ 0.1299 0.1223 0.1449 0.1443
(0.0000) (0.0000) (0.0000) (0.0000)

az-probabilities in parentheses

Table 3: Chow-Lin Prediction Accuracy: Classical vs. Bayesian estimates

RMSEa MAEb MAPEc

Panel-data Classical gain 3.166 0.348 3.146
no gain 3.209 0.352 3.187

Bayesian gain 0.822 0.067 d 0.621
no gain 3.100 0.340 3.078

aRoot Mean Squared Error
bMean Absolute Error
cMean Absolute Percentage Error
dMinimum

26



Figure 1: Geographical distribution of GDP 2004 for the Spanish provinces (NUTS-3)

Figure 2: Overlay Comparison: Classical panel-data predictions with and without gain across NUTS-3 regions
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Figure 3: Overlay Comparison: Bayesian panel-data predictions with and without gain across NUTS-3 regions
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Annex 2: Proofs

Proof of theorem (1):

a) The fcd for the beta regression coefficients yd is

p(βd | yd, θc) = N [β | b∗, H∗] · N [Cy | CR−1Xβ, σ2C(R′R)−1C ′] (46)

= N [β | b∗∗, H∗∗] (47)

with the parameters

H−1∗∗ = H−1∗ b∗ + σ−2X>R′−1C ′Ω(ρ)−1CR−1X,

b∗∗ = H∗∗[H
−1
∗ b∗ + σ−2X ′R′−1C ′Ω(ρ)−1Cy]

b) The fcd for the residual inverse variance we find

p(σ−2 | y, θc) = Γ[σ−2 | s2∗∗, n∗∗] (48)

with n∗∗ = n∗ + n and

s2∗∗n∗∗ = s2∗n∗ + ESSρ

where the error sum of squares ESSρ is given by

ESSρ = (Cyd − CR−1Xdβd)
′Ω(ρ)−1(Cyd − CR−1Xdβd). (49)

c) The fcd for the spatial correlation rho

For the ρ we use a Metropolis step:

ρnew = ρold +N (0, τ2)

with the acceptance ratio

α = min

[
1,
p(ρnew)

p(ρold)

]
,

where p(ρ) is the (kernel of) the full conditional for ρ, in our case the kernel is just stemming from the

likelihood function:

p(ρ) = |Ω(ρ)|− 1
2 exp(− 1

σ2
ESSρ)
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with ESSρ given in (49).
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