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Abstract

We analyze around 200 different financial time series, i.e. components of Dow Jones,
Nasdaq, FTSE and Nikkei with seven different VaR approaches. We differentiate our
analysis according to characteristics that can be observed. Our analysis shows that in
high risk situations in which the time series show high volatility risk and high fat tail
risk the current Basle II guidelines fail in the attempt to cushion against large losses by
higher capital requirements. One of the factors causing this problem is that the built-
in positive incentive of the penalty factor resulting from the Basle II backtesting is set
too weak. Therefore, we propose adjustments regarding the Basle II penalty factor
that take different risk situations into account and lead to higher capital buffers for
forecast models with a systematic risk underestimation.
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2 VAR APPROACHES AND BASLE II GUIDELINES

1 Motivation

Value-at-risk (VaR) approaches are the most common concepts to evaluate the mar-
ket risk of financial instruments. In many cases very simple approaches based on
the quantile of historical observations or normal distribution assumptions are used.
However, a lot of papers come to the result that more sophisticated methods are
needed to cope with the risks in real world problems. Performance analysis is of-
ten limited to specific financial time series, a broader differentiation of risk situations
based on different characteristics of financial time series has rarely been done.

In our view, it is exactly this gap that matters the most, especially when analyzing
high risk financial time series. We expect that the poor performance of common VaR
approaches will be most obvious in high risk situations. The VaR-based market-risk
charge in the Basle II regulation seems not to be prepared for such high risk situa-
tions. Therefore, a deeper analysis including the reliability of VaR forecasts as well
as the desired built-in positive incentive of the penalty factor resulting from Basle II
backtesting procedures is necessary. As the underestimation risk of VaR forecasts can
be considerably high and as the intended built-in incentive to use better models in
the current Basle II regulation turns out to be too weak potential adjustments have to
be proposed and evaluated. In the future, this will lead to a higher protection against
possible risk underestimation and potential real losses.

The paper is structured as follows: Together with the current Basle II guidelines for
market risk analysis, the different VaR approaches will be briefly discussed in section
2. In section 3, we present our empirical analysis using the Basle II capital require-
ment. In section 4, we propose adjustments to the current Basle II capital requirement
(market risk charge) while section 5 enhances our empirical analysis by incorporating
the proposed adjustments. Finally, section 6 summarizes our results.

2 VaR approaches and Basle II guidelines

Various approaches to calculate VaR forecasts are extensively discussed, see Alexan-
der (2001). We will give a brief introduction on the main concept and the most rele-
vant differences between the approaches we will use in our empirical analysis.

In univariate approaches, a series of 1-day relative losses yt (negative log returns) on
a given financial asset or portfolio in period t is typically modelled as follows:

(2.1) yt = µt +
√

htεt, t = 1, ..., T,

where µt is the conditional mean of yt and ht is its conditional variance (conditional on
It−1, the information about the loss process available up to time t− 1). The sequence
{εt} is an independently and identically distributed (i.i.d.) process with mean zero,
variance one, and distribution function F.

The seven approaches we will investigate in the empirical analysis show differences
in two major assumptions, the volatility process and the distribution of ε.

The volatility
√

ht could be assumed as constant over a period of time. In contrary
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2 VAR APPROACHES AND BASLE II GUIDELINES

the volatility dynamics could be modeled by a stationary GARCH(1,1) model for ht:

(2.2) ht = α0 + α1u2
t−1 + δht−1, 0 < α1 + δ < 1.

Given this model the volatility is changing from day to day. With the parameters
α0 = 0, α1 = 0.06 and δ = 0.94 we get the EWMA approach from Risk Metrics which
determines the parameters without estimation.

For the distribution function F of the sequence of ε the assumption of a gaussian dis-
tribution is common. But real financial time series often show fat tails, i.e. a higher
probability of extreme observations compared to the gaussian distribution. There-
fore a lot of different distributions have been proposed. We focus on the generalized
pareto distribution (GPD) and the Hill approach based on extreme value theory (EVT)
and the bootstrapping from standardized losses in a certain historical time period, re-
ferred to as filtered historical simulation (FHS).

In the next paragraphs we outline the VaR-based market risk charge within the Basle
II regulation and discuss the different modeling approaches in more detail.

Current Basle II guidelines for the market risk charge

The capital requirement CR is based on the (1− p)-VaR of 1-day relative losses yt and
on 10-day relative losses yt,10, the (1− p)-quantile of the distribution of yt and yt,10.
The relative h-day loss yt,h is the sum of the 1-day losses:

(2.3) yt,h =
h−1

∑
j=0

yt−j.

The relative h-day VaR1−p
t,h - for $ 1 invested - is the (1− p)-quantile of the distribution

of losses yt+h, conditional on information It−h∗ available up to time t− h∗:

(2.4) P(yt,h > VaR1−p
t,h |It−h∗) = p,

where h∗ indicates the forecast horizon and h the number of cumulative losses.

The Basle II regulation sets p equal to 0.01, h = h∗ and information is assumed to
be available up to period T. For practical reasons we use for 1-day VaR forecasts
VaR0.99(1|T) instead of VaR0.99

T+1,1 given It and for 10-day VaR forecasts VaR0.99(10|T)
instead of VaR0.99

T+10,10 given It. Furthermore, we set yt,10 equal to yt and notice that
yt,1 = yt.

The 10-day forecasts VaR0.99(10|T) basically determine the CR which additionally
depends on 1-day VaR forecasts via a penalty factor, compare Jorion (2007, I.3 VaR-
based Regulatory Capital). This penalty factor which should ensure the built-in pos-
itive incentive to improve the predictive quality results from the backtesting proce-
dure with 1-day forecasts VaR0.99(1|T − i), i = 1, ..., 250, see Basle Committee on
Banking Supervision (2006, D. Market Risk - The Internal Models Approach, 4 Quan-
titative Standards) as well as Danielsson et al. (1998, 5 Incentives and the Basle mul-
tiplication factor).

For the penalty factor the number of exceptions is considered. In a correct model the
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2 VAR APPROACHES AND BASLE II GUIDELINES

probability that the loss yT−i+1 exceeds the corresponding forecast VaR0.99(1|T − i)
is p = 0.01. A loss yT−i+1 greater than the VaR0.99(1|T − i) can be regarded as an
exception. Given (2.1) we can express the VaR1−p(1|T) using the quantile q1−p of the
distribution of the i.i.d. error εt:

(2.5) VaR1−p(1|T) = µT+1 +
√

hT+1q1−p,

where q1−p is defined in P(ε ≤ q1−p) = 1− p. According to (2.1) and (2.5) we can
determine the number of exceptions H1 by examining how often standardized losses
ỹT−i+1 exceed q1−p, i.e. whether

(2.6) ỹT−i+1 =
yT−i+1 − µT−i+1√

hT−i+1
= εT−i+1 > q1−p, i = 1, ..., 250.

With i.i.d. errors ε, the number of exceptions H1 for the 1-day VaR forecasts has a
Binomial Distribution, H1 ∼ B(n, p) with n = 250 and p = 0.01.

The relative number of exceptions p̂1 = H1/250, the failure rate p̂1 (compare Jorion
(2007), 6.2.1. Model Verification Based on Failure Rates), should be an unbiased es-
timate of p in a correct model. When this failure rate p̂1 is significantly higher than
the target rate p = 0.01 in an applied model, we can presume that the estimate p̂1
has a bias which results in a systematic underestimation of the VaR0.99(1|T). As the
use of models with underestimation risk should be avoided, the Basle test procedure
regulates how to decide whether a model is suitable for risk analysis or not.

Taking into account the distribution of np̂1 = H1, the Basle test accepts the model as
correct with a failure rate p̂1 < 0.02, i.e. with H1 < 5. The model is rejected when the
failure rate p̂1 ≥ 0.04, when H1 ≥ 10. For 0.02 ≤ p̂1 < 0.04 (5 ≤ H1 < 10), the model
is put under surveillance and the resulting capital charge is increased by a penalty
factor.

The penalty factor k is based on the Gaussian assumption, that ε has a standard nor-
mal distribution, i.e. ε = ỹ ∼ N(0, 1). The factor k takes into account the underesti-
mation p̂1 > 0.02 in form of

(2.7) k =


z0.99

z1− p̂1

, 0.02 ≤ p̂1 < 0.04

z0.99

z0.96
, p̂1 ≥ 0.04

 ,

where the 0.99-quantile z0.99 is referred to the (1 − p̂)-quantile z1− p̂ of the N(0, 1),
compare Stahl (1997). The higher the underestimation the higher is the penalty factor,
see Table 2.1. A purpose of our paper is to analyze whether the penalty factor k is
sufficient enough to ensure the desired built-in incentive.

The penalty factor k in (2.7) can be criticized:
(1) Its construction is based on the normal distribution which insufficiently captures
the fat-tail risk inherent in financial time series.
(2) The increase in k will only compensate the underestimation.
(3) Analyses with real data show that models with a high underestimation risk may
have relative low CR compared to reliable models, as will be seen later.
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2 VAR APPROACHES AND BASLE II GUIDELINES

In the capital requirement formula

CR(T + 1) = max

(
(M + k∗)

1
60

60

∑
j=1

VaR0.99(10|T − j + 1), VaR0.99(10|T)

)
,

the factor k is transformed in an add-on component k∗ within the Basle II framework,
which is added to the multiplication factor M = 3.

Table 2.1: Backtesting and penalty

Zone H1 p̂1 k M× k ∼= M + k∗

Green < 5 < 0.02 1.000 3.00
Yellow 5 0.020 1.133 3.40

6 0.024 1.176 3.50
7 0.028 1.217 3.65
8 0.032 1.256 3.75
9 0.036 1.293 3.85

Red ≥ 10 ≥ 0.04 1.329 4.00

We complete the evaluation of the forecast performance of selected models by the
number of 10-day exceptions. Here, H10 is the number of losses yT−i+1 greater than
the VaR0.99(10|T − i− 9), i = 1, ..., 250. Although the CR essentially depends on 10-
day forecasts of VaR the test procedure is not based on H10 as the nice property of
the binomial distribution no longer holds for H10 since the overlapping effects in the
cumulative losses yT−i+1 yield dependent variables. Nevertheless, also the failure
rate p̂10 = H10/250 can be regarded as an estimate of the target value p = 0.01 and
this rate can be considered as an additional characteristic value for risk evaluation.

The multiplication factor M = 3 can be justified by the Chebyshev Inequality, see
Stahl (1997). In Danielsson et al. (1998) the fixed component M = 3 has been criti-
cized as too high. They recommend an extension of the range of the variable add-on
factor k in order to increase the built-in incentive for financial institutions to use reli-
able models. We propose in section 4 ”Proposals for a new multiplication factor” an
extension by a further additional factor which is based on the expected shortfall ES.
It takes into account the expected loss y in the 1% worst cases, i.e., when the loss y
exceeds the VaR0.99(1|T),

ES0.99(1|T) = E(yT+1|yT+1 > VaR0.99(1|T))(2.8)

= µT+1 +
√

hT+1ES0.99,

where ES0.99 = E(ε|ε > q0.99).
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2 VAR APPROACHES AND BASLE II GUIDELINES

One-step forecasting

Historical Simulation (HS) and Historical Volatility (HV)

The HS calculates the VaR1−p(1|T) and the ES1−p(1|T) using the empirical distribu-
tion of past losses. The HS forecast is

(2.9) V̂aR
HS
1−p(1|T) = q̂HS

1−p({yT}),

where q̂1−p({yT}) denotes the (1− p)-th empirical quantile of the losses data {yt}T
t=1.

The HS forecast of ES1−p(1|T) is given by

(2.10) ÊS
HS
1−p(1|T) =

1

|{yt > V̂aR
HS
1−p(1|T)}|

∑
yt>V̂aR

HS
1−p(1|T)

yt,

where |{yt > V̂aR
HS
1−p(1|T)}| denotes the number of losses {yt}T

t=1 that are above the

forecasted V̂aR
HS
1−p(1|T). We also assume that the forecast is based on T observations

for the other forecast models.

Assuming constant mean, µt = µ, and volatility, ht = h = σ2, and errors εt with a
standard normal distribution, the sequence of losses {yt}T

t=1 is an i.i.d. process with

mean µ and variance σ2, yt
i.i.d.∼ N(µ, σ2).

Thus, with û = ȳ =
1
T

T
∑

t=1
yt and σ̂2 = s2

y =
1
T

T
∑

t=1
(yt − ȳ)2 the VaR1−p(1|T) is

(2.11) V̂aR
HV
1−p(1|T) = µ̂ + σ̂z1−p,

where z1−p is the (1− p)-th quantile of the standard normal distribution, and

(2.12) ÊS
HV
1−p(1|T) = µ̂ + σ̂

φ(z1−p)
p

,

where φ is the density function of the standard normal distribution.

Exponentially weighted moving average: EWMA-N and EWMA-FHS

Following a widely used method proposed by Risk Metrics, which sets an industry-
wide standard, the variances ht are considered as changing over time and modelled
using an exponentially weighted moving average (EWMA) approach. Formally, the
forecast for time T + 1 is a weighted average of the previous forecast and the latest
loss in form of

hT+1 = (1− λ)(yT − µ)2 + λhT 0 < λ < 1
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2 VAR APPROACHES AND BASLE II GUIDELINES

with starting value h1 = σ2. In substituting hT by observable losses, the λ parameter
places geometrically declining weights on past observations. Therefore, λ is called
the decay factor. In Risk Metrics, the decay factor λ has been chosen to be equal to
0.94. With innovation εt ∼ N(0, 1), the forecast of VaR is

(2.13) V̂aR
E−N
1−p (1|T) = µ̂ +

√
ĥT+1z1−p

and of ES is

(2.14) ÊS
E−N
1−p (1|T) = µ̂ +

√
ĥT+1

φ(z1−p)
p

,

where ĥT+1 = 0.06(yT − ȳ)2 + 0.94ĥT with ĥ1 = s2
y.

Dropping the assumption of the normal distribution, the distribution-free FHS fore-
cast of VaR is

(2.15) V̂aR
E−FHS
1−p (1|T) = µ̂ +

√
ĥT+1q̂HS

1−p({ỹE
T}).

Here q̂HS
1−p({ỹE

T}) is the (1− p)-th empirical quantile of EWMA standardized losses
{ỹE

t }T
t=1, where

ỹE
t =

yt − µ̂√
ĥt

, t = 1, ..., T,

with ĥt = 0.06(yt−1 − ȳ)2 + 0.94ĥt−1 and ĥ1 = s2
y. The distribution-free forecast of ES

is

(2.16) ÊS
E−FHS
1−p (1|T) = µ̂ +

√
ĥT+1ÊS

HS
1−p({ỹE

T}),

where
ÊS

HS
1−p({ỹE

T}) =
1

|{ỹE
t > q̂HS

1−p({ỹE
T})}|

∑
ỹE

t >q̂HS
1−p({ỹE

T})
ỹE

t

with |{ỹE
T > q̂HS

1−p({ỹE
T})}| the number of exceedances of q̂HS

1−p({ỹE
T}).

GARCH based forecasts: GARCH-N and -FHS as well as GARCH-GPD and -Hill

According to (2.2), the volatility hT+1 is forecasted by

h̃T+1 = α̃0 + α̃1(yT − ȳ)2 + δ̃h̃T

with the QML estimates α̃0, α̃1, δ̃ and the starting value h̃1 = s2
y.

Compared to the EWMA-N approach, the GARCH-N forecasts V̂aR
G−N
1−p (1|T) and

ÊS
G−N
1−p (1|T) only differ by the estimation of the volatility ht, t = 2, . . . , T + 1.
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2 VAR APPROACHES AND BASLE II GUIDELINES

For the distribution-free approach, we build GARCH standardized losses

ỹG
t =

yt − ȳ√
h̃t

, t = 1, . . . , T.

With these losses we compute the (1− p)-th quantile q̂HS
1−p({ỹG

T}) and the Expected

Shortfall ÊS
HS
1−p({ỹG

T}) to calculate the forecasts

(2.17) V̂aR
G−FHS
1−p (1|T) = µ̂ +

√
h̃T+1q̂HS

1−p({ỹG
T})

and

(2.18) ÊS
G−FHS
1−p (1|T) = µ̂ +

√
h̃T+1ÊS

HS
1−p({ỹG

T}).

In Extreme Value Theory (EVT), the focus of interest is not the entire distribution
but the relevant tail of the distribution. The tail (or peak-over-threshold) approach
considers the exceedances over a high threshold. Following McNeil and Frey (2000),
we consider two different EVT estimators of q1−p and of ES1−p, respectively. The first
one is based on the Generalized Pareto distribution (GPD), the so-called GPD-based
estimation. The second one has been proposed by Hill and is related to the Fréchet
extreme value distribution, the so-called Hill-based estimation. As we look for an
estimation of q1−p and of ES1−p, the GPD-based and the Hill-based estimators are
based on i.i.d. variables, i.e. on the standardized losses ỹt = (yt − µ)/

√
ht = εt with

distribution function F. In the GARCH-GPD approach, we fix a high threshold u and
assume that the excess residuals ωt = εt − u over the threshold u have a GPD with
distribution function

(2.19) Fξ,β(ω) =

{
1− (1 + ξω/β)−1/ξ , ξ 6= 0,

1− exp(−ω/β), ξ = 0,

where β > 0, and the support is ω 6= 0 and 0 ≤ ω ≤ −β/ξ when ξ < 0.

The choice of the GPD is motivated by a limit result in EVT. According to it, the
function Fξ,β(ω) is approximately equal to the corresponding function Fu(ω) of the
excesses ωt, i.e. Fξ,β(ω) ≈ Fu(ω), where Fu(ω) is given by

Fu(ω) = P(ε− u < ω|ε > u)(2.20)

=
F(u + ω)− F(u)

1− F(u)
, ω = ε− u > 0.

From the approximation Fξ,β ≈ Fu and a transformation of (2.20), we get

(2.21) 1− F(u−ω) = [1− F(u)][1− Fu(ω)] ≈ [1− F(u)][1− Fξ,β(ω)].

Using this result, we compute the GPD-based estimators q̂G
1−p and ÊS

G
1−p.

Let ỹ(t) = ε(t) denote the t-th order statistics of εt(i.e. ε(t) ≥ ε(t−1) for t = 2, . . . , T) and
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2 VAR APPROACHES AND BASLE II GUIDELINES

let Tu denote the number of standardized losses ỹ that exceed u. A natural estimate
of F(u) is given by

F̂(u) =
T − Tu

T
,

where Tu is the number of exceedances above the threshold u. We specify the thresh-
old u indirectly by fixing a probability value p∗ near p, say p∗ = 0.02 or 0.05. With p∗

we calculate the (1− p∗)-th empirical quantile û1−p∗({ỹG
T}) of the standardized losses

{ỹG
T}T

t=1. Here, 1− F(û1−p∗) = p∗. With the estimated threshold û, we get estima-

tions q̂G
1−p for the GPD quantile and ÊS

G
1−p for the GPD Expected Shortfall, for further

details see McNeil and Frey (2000), see also McNeil, Frey and Embrechts (2005).

In the GARCH-Hill approach, we suppose that the tail of the distribution of ε is well
approximated by the distribution function

(2.22) F(ε) = 1− L(ε)ε−1/ξ ≈ 1− cε−1/ξ , ε > u, ξ > 0,

where L(ε) is a slowly varying function. As in the GPD approach we also indirectly

fix the threshold. With the estimated threshold, we get estimations q̂H
1−p and ÊS

H
1−p

for the Hill method, for details compare Hill (1975) as well as Christoffersen and
Gonçalves (2005).

Ten-step forecasting with bootstrap techniques

Historical Simulation (HS) and Historical Volatility (HV)

The sequence εt in yt = µt +
√

htεt is an independently and identically distributed
(i.i.d.) process with mean zero and variance one. The HS procedure is based on the
assumption that µ and h are constant, i.e.,

(2.23) µt = µ, ht = h = σ2.

Thus, the sequence yt is an i.i.d. process and the set {yt}T
t=1 can be regarded as a sam-

ple space for the bootstrap technique.
For each period T + τ, τ = 1, ..., 10, we generate a bootstrap pseudo series of losses
{yHS

T+τ(j)}T
j=1 by resampling from the finite sample space {yt}T

t=1, compare Davison
and Hinkley (1997). Thus we build a random sample of 10T variables and with them
the 10-day loss distribution {yHS

T+10(j)}T
j=1 with i.i.d. variables yHS

T+10(j) = ∑10
τ=1 yHS

T+τ(j).
The HS forecast of the (relative) value at risk is

(2.24) VaRHS
1−p(10|T) = q1−p({yHS

T+10(T)}),

where q1−p{yHS
T+10(T)} denotes the (1− p)-th empirical quantile of the bootstrap data

{yHS
T+10(j)}T

j=1.

Assuming errors εt with a standard normal distribution, the relative 10-day loss y has
a normal distribution, y ∼ N(10µ, 10σ2), and the HV-forecast of the 10-day VaR is

(2.25) VaRHV
1−p(10|T) = 10µ +

√
10σz1−p.
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2 VAR APPROACHES AND BASLE II GUIDELINES

Exponentially weighted moving average (EWMA)

According to the EWMA approach, the loss is

(2.26) yE
t = µ +

√
hE

t εE
t

with

(2.27) hE
t = λ(yt−1 − µ)2 + (1− λ)hE

t−1.

Assuming that εE
t is an i.i.d. process, the standardized losses, ỹE

t = (yE
t − µ)/

√
hE

t =
εE

t , t = 1, ..., T, can serve as sample space. Similar to the HS approach, we generate

a bootstrap pseudo series of i.i.d. losses yE
T+τ(j) = µ +

√
hE

TεE
T+τ(j), j = 1, ..., T, by

resampling with replacement from the sample space {εE
t }T

t=1. With the i.i.d. 10-day
losses yE

T+10(j) = ∑10
τ=1 yE

T+τ(j), the EWMA-FHS forecast of the VaR is

(2.28) VaRE−FHS
1−p (10|T) = q1−p{yE

T+10(T)},

where q1−p{yE
T+10(T)} denotes the (1− p)-th empirical quantile of the bootstrap data

{yE
T+10(j)}10

j=1. In the empirical analysis we set λ = 0.06, u2
0 = (y0 − µ)2 = h0 = s2

y
and we estimate µ by µ̂ = y in the EWMA-FHS as well as in the EWMA-N approach.
There, the assumption of standard normal distributed errors εE

t yields the EWMA-N
forecast of VaR in form of

(2.29) VaRE−N
1−p (10|T) = 10µ + 10

√
hE

Tz1−p.

GARCH based forecasts

Following the GARCH approach, the loss is specified as

(2.30) yG
t = µ +

√
hG

t εG
t ,

where

(2.31) hG
t = α0 + α1(yt−1 − µ)2 + hG

t−1

With i.i.d. errors εG
t the standardized losses ỹG

t = (yG
t − µ)/

√
hG

t = εG
t , t = 1, ..., T,

are the sample space for generating bootstrap GARCH losses

(2.32) yG
T+τ(j) = µ +

√
hG

T+τ(j)εG
T+τ(j), τ = 1, ..., 10, j = 1, ..., T,

where

(2.33) hG
T+τ(j) = α0 + α1(α1εG

T+τ−1(j) + δ)hG
T+τ−1(j), τ = 2, ..., 10
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3 EMPIRICAL ANALYSIS WITH BASLE II CAPITAL REQUIREMENTS

and

(2.34) hG
T+1(j) = α0 + α1u2

T + δhG
T .

With the i.i.d. 10-day losses yG
T+10(j) = ∑10

τ=1 yG
T+τ(j) the GARCH-FHS forecast of the

10-day VaR is

(2.35) VaRG−FHS
1−p (10|T) = q1−p{yG

T+10(T)},

where q1−p{yG
T+10(T)} denotes the (1− p)-th empirical quantil of the bootstrap data

{yG
T+10(j)}T

j=1. Similar to the 1-day forecast of VaR, the data is used to build the

GARCH-GPD forecast VaRG−GPD
1−p (10|T) and the GARCH-Hill forecast VaRG−Hill

1−p (10|T),
too. In the empirical analysis we estimate µ by µ̂ = y, hG

o and u2
0 by hG

0 = u2
0 = s2

y.
The coefficients α0, α1 and δ are replaced by ML-estimates.

3 Empirical analysis with Basle II capital requirements

As data basis we collected around 200 financial time series. These are stocks that are
listed within the four major indices Dow Jones, Nasdaq, FTSE and Nikkei. We adapt
the procedures of Basle II. Therefore we analyze the time series within an rolling sam-
ple (the number of exceptions H and the failure rate p̂ = H/250 calculated quarterly
for the last twelve months) and conduct around 2000 1- and 10-day VaR forecasts for
each time series with the discussed seven approaches.

For each time series we compute:
- the average VaR0.99(1|T) and VaR0.99(10|T) forecasts,
- the average failure rates p̂1 and p̂10,
- the number of exceptions in the yellow zone (YZ) and red zone (RZ),
- the average penalty term MB = M× k, i.e. the Basle II multiplication factor,
- the average capital requirement CR.

As a first introductory example we would like to show the results for the EWMA-N
and the GARCH-FHS model applied to the Dow Jones index in the following table:

Table 3.1: Results Dow Jones

Model VaR(1|T) VaR(10|T) p̂1 p̂10 YZ RZ MB CR
EWMA-N 0.022 0.066 0.019 0.027 7 1 3.142 0.205
GARCH-FHS 0.023 0.075 0.013 0.014 2 0 3.024 0.227

In both models, the failure rates p̂1 and p̂10 are higher than the target rate p = 0.01.
With p̂1 = 0.019 and p̂10 = 0.027 the overestimation in the EWMA-N model is con-
siderably higher compared to the distribution-free GARCH-FHS model. There, the
failure rates p̂1 = 0.013 and p̂10 = 0.014 are clearly closer to the nominal rate p = 0.01.
Thus, the GARCH-FHS model leads to a better result which is confirmed by its rel-
ative low number of exceptions in the YZ. The high degree of overestimation in the
EWMA-N model, i.e. the underestimation of VaR, should be punished by the penalty
factor k which attains according to MB = 3k and k = 1.047 indeed a higher value than

12 / 22



3 EMPIRICAL ANALYSIS WITH BASLE II CAPITAL REQUIREMENTS

the penalty factor k = 1.008 of the GARCH-FHS model. However, the increase in the
penalty factor is insufficient. Despite the high failure rates p̂1 = 0.019 and p̂10 = 0.027
the capital requirement CR = 0.205 of the EWMA-N model is clearly lower than the
corresponding value CR = 0.227 of the GARCH-FHS model. That means the bad
performance of the approach does not lead to a strong enough punishment in terms
of the capital requirement CR. Looking only on the low CR a financial institution will
use the unreliable EWMA-N model.

We did the same analysis for all 200 financial time series (Dow Jones, Nasdaq, FTSE,
Nikkei). To summarize the results we cluster the time series based on their character-
istics in terms of volatility excess and quantile surplus which allows us to select time
series with high risk.

Following the EWMA-approach of Risk Metrics, we estimate the volatility ht of each
considered real financial time series {yt}T

t=1 by ĥt = 0.06(yt−1 − ȳ)2 + 0.94ĥt−1 with
ĥ1 = s2

y. Thereby, we compute standardized losses ỹE
t = (yt − ȳ)/

√
ĥt and the quan-

tile estimation q̂HS
1−p({ỹE

t }). As a high volatility can lead to a high risk, we measure

the degree of volatility by the relative mean excess (VE) over
√

ĥ as follows:

VE =
1

|{
√

ĥt >
√

ĥ}|
∑√
ĥt>
√

ĥ

√
ĥt −
√

ĥ
√

ĥ
× 100,

with |{
√

ĥt >
√

ĥ}| the number of exceedances of
√

ĥ.

The size of heavy tails is measured by the relative surplus of the quantile estimation
q̂HS

1−p({ỹE
t }) over the corresponding normal distribution quantile z1−p (QS) as follows

QS =
q̂HS

1−p({ỹE
t })− z1−p

z1−p
× 100.

As Basle II fixes p at 0.01, the corresponding normal quantile is z0.99 = 2.326.

Applying the Risk Metrics EWMA-approach to all 200 financial time series of Dow
Jones, Nasdaq, FTSE and Nikkei, we can describe each of them by their characteristics
(QS, VE). The scatter diagram in Figure 3.1 informs about the volatility risk VE and
the tail risk QS of all time series.

The scatter diagram in figure 3.2 represents selected time series in more detail with
values higher than the 70% quantile of QS and VE. This selection contains 24 time
series that are highly risky, 10 FTSE, 8 Nasdaq, 4 Nikkei and 2 Dow Jones series. These
time series should receive a high attention from the perspective of a risk manager.

For all considered time series the average volatility risk VE is 36.0% and the average
tail risk QS is 12.5%. In the selected high risk cluster these averages increase to VE =
49.5% and to QS = 19.5%. Here, the underestimation risk augments. Measured with
HV the average failure rate p̂1 raises from p̂1 = 0.019 for all time series to p̂1 = 0.021
in the cluster with high risky time series. Whereas the historical volatility remains
at the same level s = 0.023 in both cases. With regard to the underestimation the
historical volatility is an inappropriate indicator of risk.
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Figure 3.1

In the high risk cases, it is of special interest whether the Basle II CR construction has
the desired built-in positive incentive, or not, i.e. whether the stimulus of the penalty
is strong enough to prevent financial institutions from applying unreliable forecast
models or not.

In Table 3.2 we summarize the results of seven models applied to the 24 high risky
time series. As we have computed aggregate characteristics over time for the Dow
Jones index, compare Table 3.1, we calculate now average values over all of the 24
time series based on aggregate data of each of the 24 time series. Here, we take into
account that the averages of VaR(1|T), VaR(10|T) and the CR of each of the 24 time
series vary with their volatility. Therefore we divide these values by their correspond-
ing standard deviation SD.

Table 3.2: Results with all high risky time series

Model VaR1/SD VaR10/SD p̂1 p̂10 YZ RZ MB CR/SD
HV 1.633 4.769 0.021 0.024 5.083 0.792 3.178 15.290
HS 1.698 4.937 0.020 0.025 5.708 0.250 3.174 15.717
E-N 1.584 4.618 0.023 0.032 9.750 0.042 3.245 14.844
E-FHS 1.818 5.283 0.017 0.027 4.208 0.000 3.092 16.035
G-FHS 1.834 5.581 0.014 0.018 2.167 0.042 3.048 17.006
G-GPD 1.856 5.580 0.014 0.017 2.292 0.000 3.046 17.002
G-Hill 1.853 5.562 0.014 0.017 2.292 0.000 3.048 16.966
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Figure 3.2

The more extensive analysis of the high risky assets confirms the results of the Dow
Jones index in the introductory example and shows a clear difference between the
GARCH and Non-GARCH models.

All models have failure rates p̂1 and p̂10 that exceed the target rate p = 0.01 and
underestimate the risk. The underestimation risk with the Non-GARCH models is
considerably higher compared to the GARCH models. Here although, the increase of
the penalty is not sufficient enough to counterbalance or punish the underestimation
of the VaR in the CR formula. Here, the desired built-in positive incentive does not
exist.

The results with real data in table 3.2 confirm the underestimation risk in the simula-
tion study in Pauly and Fricke (2009) with nearly the same forecast models. Especially
non-GARCH models yield unreliable forecasts for 1-day as well as for 10-day VaR.

4 Proposals for a new multiplication factor

As mentioned in section 2 ”Current Basle guidelines for market risk charge” the Basle
II factor k can at best compensate the underestimation. The empirical analysis shows
that the compensation will not be sufficient to cover the risks of equity portfolios.
The aspired built-in positive incentive of the penalty factor to maintain the predictive
quality can not be reached. Therefore, an adjustment of the Basle II guidelines is
needed.

Two adjustments are proposed. The first one is based on the normal distribution
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Table 4.1: MMN and its components for case a)

H1 p̂1 k f k× f M× k MMN = M× k× f
4 0.016 1.00 1.00 1.00 3.0 3.0
5 0.020 1.13 1.12 1.27 3.4 3.8
6 0.024 1.18 1.11 1.31 3.5 3.9
7 0.028 1.22 1.10 1.34 3.7 4.0
8 0.032 1.26 1.10 1.38 3.8 4.1
9 0.036 1.29 1.09 1.41 3.9 4.2
10 0.040 1.33 1.09 1.45 4.0 4.3
11 0.044 1.36 1.09 1.48 4.1 4.4
12 0.048 1.40 1.08 1.51 4.2 4.5

and supplies an additional term to the Basle II factor k. This new factor takes the
expected loss y in the 1% worst cases into account (expected shortfall ES), i.e., when
the loss y exceeds the value at risk VaR0.99, see (2.8). The additional factor enforces
the compensation of the underestimation and increases the penalty strength.

In the second adjustment we suggest a distribution free approach which should be
able to capture the ex-post underestimation due to fat-tail risk inherent in financial
time series and should thereby ensure the built-in positive incentive in the market
risk charge.

According to (2.6) we evaluate the forecasting quality by comparing standardized
losses ỹT−i+1 with their corresponding quantile q0.99. Given the gaussian assump-
tion, ỹT−i+1 ∼ N(0, 1), the quantile q0.99 equals z0.99 = 2.3263 and the number
of exceptions H1 results by counting how often ỹT−i+1 exceeds the value z0.99 for
i = 1, 2, ..., 250. Or equivalently, we count how often the loss yT−i+1 exceeds the
VaR0.99(1|T − i) = µT−i+1 +

√
hT−i+1q0.99. As we use the value z0.99 in the period

T − i for the forecast in period T − i + 1 we can consider z0.99 as an ex-ante value
for q0.99 in T − i + 1, qa

0.99 = z0.99. In the backtesting procedure we use information
up to period T − i + 1 to calculate z1− p̂ and k = z0.99/z1− p̂. Therefore we can in-
terpret kz0.99 as an ex-post value for q0.99, qp

0.99 = kz0.99. Thus, the factor k in Table
2.1 can be written as k = qp

0.99/qa
0.99 ≥ 1 and can be interpreted as a compensa-

tion term for the ex-ante risk underestimation of qa
0.99, qa

0.99 < qp
0.99. To this under-

estimation factor k we add a penalty term. It is build with the expected shortfall
ES(qp

0.99) = E[ỹ|ỹ ≥ qp
0.99] = φ(qp

0.99)/(1− Φ(qp
0.99)), which is related to qp

0.99. The
combination of the compensation terms k = qp

0.99/qa
0.99 for p̂1 ≥ 0.02 with the penalty

factor f = ES(qp
0.99)/qp

0.99 leads to the modified multiplication factor MMN,

(4.1) MMN = M× k× f

with f for

a) p̂1 ≥ 0.020
b) p̂1 ≥ 0.024
c) p̂1 ≥ 0.028.

Table 4.1 informs about the multiplication factor MMN. Compared to the relatively
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low CR for the EWMA-N model in Table 3.2 the charge due to the penalty component
f is rather small. The factor f decreases from 1.12 to 1.08 and its average value f is 1.1.
Presumably, the new multiplication factor MMN based on the normal distribution is
still too weak to ensure the aimed built-in positive incentive.

In the distribution-free approach we increase the penalty strength of the factor f by
relating the expected shortfall ES to the ex-ante quantile qa

0.99, qa
0.99 ≤ qp

0.99. Otherwise
the construction of the distribution-free multiplication factor MMF is similar to the
structure of MMN.

Here, we will outline how MMF is build for the GARCH-FHS model. Contrary to the
gaussian approach where the backtesting is performed by comparing ỹT−i+1 with the
fixed value z0.99 = 2.3263, the comparison in the distribution-free approach is based
on estimations of the unknown quantile q1−p. The estimates are empirical quantiles
with changing data sets, compare (2.6) and (2.17) and notice that q1−p in (2.6) is es-
timated by q̂HS

1−p({ỹG
T}) in (2.17) with the data set {ỹG

t }T
t=1. Let us build the chang-

ing 0.99-th empirical quantiles qHS
0.99({ỹG

T−i}) with standardized losses {ỹG
t }T−i

t=−i+1,
i = 1, 2, ..., 250. Notice that in the distribution-free approach the number of excep-
tions H1 results from the comparison of standardized losses ỹG

T−i+1 with these chang-
ing empirical quantiles qHS

0.99({ỹG
T−i}). With information up to period T − 1 we can

build the ex-ante quantile qa
0.99(T) = 1

250 ∑250
i=1 qHS

0.99({ỹT−i}) for the period T which
corresponds to the fixed ex-ante quantile z0.99 in the normal distribution based ap-
proach. For the sake of simplicity we suppress the index G in the ex-ante quantile
qa

0.99(T). The corresponding ex-post quantile qp
0.99(T) is qHS

0.99({ỹT}). Given the ex-
post expected shortfall

(4.2) ESp(qp
0.99(T)) =

1
|ỹT−i+1 > qp

0.99(T)| ∑
ỹT−i+1>qp

0.99

ỹT−i+1,

we can build the compensation factor

(4.3) k = qp
0.99(T)/qa

0.99(T) for p̂1 ≥ 0.02

and with the penalty factor

(4.4) f = ESp(qp
0.99(T))/qa

0.99(T)

the modified distribution-free multiplication factor MMF,

(4.5) MMF = M× k× f

with f for

a) p̂1 ≥ 0.020
b) p̂1 ≥ 0.024
c) p̂1 ≥ 0.028.
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5 Empirical analysis with modified capital requirements

With the described modifications of the multiplication factor we recalculate the cap-
ital requirement for the Dow Jones index. We used the modification where f is used
in all cases with 5 or more exceedances, i.e. with f for p̂1 ≥ 0.02. We added the values
MMN and CRN of the gaussian approach as well as the values MMF and CRF of the
distribution-free approach to the table from section 3, see Table 5.1.

Table 5.1: Results Dow Jones extended

Model p̂1 p̂10 YZ RZ MB CR MMN CRN MMF CRF
E-N 0.019 0.027 7 1 3.142 0.205 3.245 0.211 3.618 0.232
G-FHS 0.013 0.014 2 0 3.024 0.227 3.048 0.228 3.080 0.231

It is obvious that the distribution-free multiplication factor MMF leads to a substan-
tial improvement. The capital requirement of the GARCH-FHS approach is nearly
unchanged but the CR of the EWMA-N approach has significantly increased. The
new factor punishes the bad performance and leads to a higher cushion against huge
losses. As expected, the effect of the gaussian multiplication factor MMN is rather
weak and insufficient.

In the next table we summarize the results for all high risky time series with f for
p̂1 ≥ 0.020. The penalty component f turns out to be insufficient for p̂1 ≥ 0.024 and
for p̂1 ≥ 0.028, compare tables in the Appendix.

Table 5.2: Results with all high risky time series extended, with p̂1 ≥ 0.020

HV HS E-N E-FHS G-FHS G-GPD G-Hill
VaR(1|T)/SD 1.633 1.698 1.584 1.818 1.834 1.856 1.853
VaR(10|T)/SD 4.769 4.937 4.618 5.283 5.581 5.580 5.562
p̂1 0.021 0.020 0.023 0.017 0.014 0.014 0.014
p̂10 0.024 0.025 0.032 0.027 0.018 0.017 0.017
YZ 5.083 5.708 9.750 4.208 2.167 2.292 2.292
RZ 0.792 0.250 0.042 0.000 0.042 0.000 0.000
MB 3.18 3.17 3.25 3.09 3.05 3.05 3.05
CR/SD 15.29 15.72 14.84 16.04 17.01 17.00 16.97
MMN 3.30 3.30 3.44 3.17 3.09 3.08 3.09
CRN/SD 15.92 16.38 15.78 16.46 17.25 17.25 17.22
MMF 3.66 3.63 3.99 3.35 3.19 3.18 3.18
CRF/SD 18.37 19.05 18.77 17.57 18.17 18.09 18.05

Here also the more extensive analysis of all high risky assets confirms the results of
the Dow Jones example in 5.1. The gaussian multiplication factor MMN is insuffi-
cient and the distribution-free multiplication factor MMF works quite well. In the
HV, HS and EWMA-N model the distribution-free approach with MMF clearly out-
weighs the underestimation of the 1-day forecast VaR. The bad forecasting perfor-
mance is punished. Compared to the more reliable GARCH models the factor MMF
leads to a higher market risk charge CRF. The stimulus of the new multiplication
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factor MMF is strong enough to prevent financial institutions from applying these
unreliable models. Thus, for the HV, HS and EWMA-N model the new risk charge
CRF has the desired built-in positive incentive.

In the EWMA-FHS model the risk charge CRF nearly reaches the level of the charge
CRF of the GARCH models, but it remains under the corresponding GARCH level.
This is due to the fact that compared to the GARCH models the underestimation risk
of the 1-day forecast VaR is only slightly higher. However, the underestimation of
the 10-day forecast VaR is clearly bigger. As this underestimation risk is not grasped
by the market risk charge a great discrepancy between p̂1 and p̂10 may indicate an
insufficient punishment of risk underestimation.

In Table 5.3 we summarize the results for the FTSE-cluster with the most high risky
time series. Here, the built-in positive incentive works for all four Non-GARCH mod-
els.

Table 5.3: Results with high risky FTSE time series with p̂1 ≥ 0.020

HV HS E-N E-FHS G-FHS G-GPD G-Hill
VaR(1|T)/SD 1.426 1.525 1.530 1.776 1.692 1.729 1.722
VaR(10|T)/SD 4.209 4.345 4.490 5.062 5.103 5.144 5.123
p̂1 0.027 0.024 0.026 0.020 0.018 0.017 0.017
p̂10 0.031 0.032 0.038 0.033 0.021 0.021 0.020
YZ 3.9 5.2 7.3 2.6 1.2 1.1 1.1
RZ 0.9 0.2 0.1 0.0 0.1 0.0 0.0
MB 3.24 3.24 3.30 3.10 3.05 3.04 3.04
CR/SD 13.55 13.87 14.20 14.84 15.34 15.38 15.34
MMN 3.39 3.41 3.55 3.19 3.08 3.06 3.07
CRN/SD 14.28 14.68 15.32 15.28 15.53 15.53 15.50
MMF 3.79 3.73 4.13 3.41 3.18 3.13 3.14
CRF/SD 16.97 17.23 18.57 16.56 16.23 16.06 16.07
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6 CONCLUSION

6 Conclusion

As the recent financial crisis has made clear, better risk management models are
needed. We have detected a critical loophole in the Basel II regulation that we think
can be closed by using the suggested adjustments. As a result, a financial institution
has an incentive to choose a reliable model for their market risk evaluation. We be-
lieve that this step leads to a more reliable risk management and a more adequate
capital buffer.

We have shown that the most common VaR approaches like historical volatility (HV),
historical simulation (HS), EWMA or other methods with the assumption of a gaus-
sian distribution are not reliable because they lead to a sytematic underestimation of
risk, especially in high risk situations.

GARCH models with bootstrapped quantile distribution (FHS) or with extreme value
distributions like GPD or Hill lead to a substantially better performance regarding the
reliability of the forecasts. At the same time, they also tend to slightly underestimate
risks. The capital requirements, however, are substantially higher compared to non-
GARCH models.

Current Basle II guidelines are not sufficient to deal with high risk situations; the cur-
rent Basle II penalty factor for the capital requirement is not powerful enough. The
built-in multiplication factor does not compensate for the underestimation of risks.
The intended built-in positive incentive to develop and use better models in the Basle
II capital requirement is not strong enough. We have observed a great discrepancy
between the 1-day failure rate p̂1 and the 10-day failure rate p̂10. Since this may indi-
cate an insufficient punishment of risk underestimation we propose to include both
values in a broader risk evaluation.

Given the missing built-in incentive, an adjustment of the Basle II capital require-
ment is needed. Our proposed adjustments of the penalty factor close that gap. As a
result, this leads to higher capital requirements and consequently to a adequate cush-
ion against large losses. Given our modified distribution-free multiplication factor
the bad performance of non-GARCH models is compensated and the resulting cap-
ital requirements are higher than the corresponding values from the better perform-
ing GARCH models. As the distribution-free GARCH approach is reliable for VaR
forecasts so is the distribution-free multiplication factor MMF efficient as a built-in
incentive in the Basle II regulation of market risk.
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8 Appendix

Table 8.1: Results with all high risky time series extended, with p̂1 ≥ 0.024

HV HS E-N E-FHS G-FHS G-GPD G-Hill
VaR(1|T)/SD 1.633 1.698 1.584 1.818 1.834 1.856 1.853
VaR(10|T)/SD 4.769 4.937 4.618 5.283 5.581 5.580 5.562
p̂1 0.021 0.020 0.023 0.017 0.014 0.014 0.014
p̂10 0.024 0.025 0.032 0.027 0.018 0.017 0.017
YZ 5.083 5.708 9.750 4.208 2.167 2.292 2.292
RZ 0.792 0.250 0.042 0.000 0.042 0.000 0.000
MB 3.18 3.17 3.25 3.09 3.05 3.05 3.05
CR/SD 15.29 15.72 14.84 16.04 17.01 17.00 16.97
MMN 3.26 3.25 3.35 3.13 3.07 3.06 3.07
CRN/SD 15.75 16.18 15.37 16.21 17.13 17.13 17.10
MMF 3.53 3.51 3.70 3.20 3.12 3.12 3.12
CRF/SD 17.70 18.29 17.31 16.69 17.59 17.61 17.59

Table 8.2: Results with all high risky time series extended, with p̂1 ≥ 0.028

HV HS E-N E-FHS G-FHS G-GPD G-Hill
VaR(1|T)/SD 1.633 1.698 1.584 1.818 1.834 1.856 1.853
VaR(10|T)/SD 4.769 4.937 4.618 5.283 5.581 5.580 5.562
p̂1 0.021 0.020 0.023 0.017 0.014 0.014 0.014
p̂10 0.024 0.025 0.032 0.027 0.018 0.017 0.017
YZ 5.083 5.708 9.750 4.208 2.167 2.292 2.292
RZ 0.792 0.250 0.042 0.000 0.042 0.000 0.000
MB 3.18 3.17 3.25 3.09 3.05 3.05 3.05
CR/SD 15.29 15.72 14.84 16.04 17.01 17.00 16.97
MMN 3.24 3.23 3.29 3.10 3.06 3.06 3.06
CRN/SD 15.64 16.03 15.08 16.10 17.08 17.07 17.04
MMF 3.48 3.40 3.52 3.13 3.11 3.10 3.10
CRF/SD 17.43 17.62 16.48 16.34 17.49 17.44 17.41
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