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Abstract

GARCH Models have become a workhouse in volatility forecasting of financial and
monetary market time series. In this article, we assess the small sample properties in
estimation and the performance in volatility forecasting of four competing distribu-
tion free methods, including quasi-maximum likelihood and three regression based
methods. The study is carried out by means of Monte Carlo simulations. To guaran-
tee an utmost realistic framework, simulated time series are generated from a mixture
of two symmetric generalized error distributions. This data generating process allow
to reproduce the stylized facts of financial time series, in particular, peakedness and
skewness. The results of the study suggest that regression based methods can be an
asset in volatility forecasting, since model parameters are subject to structural change
over time and the efficiency of the quasi- maximum likelihood method is confined
to large sample sizes. Furthermore, the good performance of forecasts based on the
historical volatility supports to use the variance targeting method for volatility fore-
casting.
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Small-sample properties of estimators in an ARCH(1)
and GARCH(1,1) model with a generalized error
distribution: a robustness study

Ralf Pauly and Peter Kosater

1 Introduction

Empirical densities of financial time series such as log-returns of stock prices fre-
quently deviate significantly from the density of the normal distribution. They exhibit
a greater peakedness and heavy tails. Consequently, their kurtosis can considerably
exceed the value 3 of the normal distribution. In addition of being leptokurtic, they
are often skew.

The original (G)ARCH model conceived by Engle (1982) and Bollerslev (1986),which
is based on normally distributed disturbances, is able to generate leptokurtic distri-
butions. ML- estimators are consistent and asymptotically efficient. However, em-
pirical results show that residuals from ML estimation are still leptokurtic and even
skew.Thus, the distribution of the disturbances cannot be presumed to be normal.

Since we do not really know the true distribution of the disturbance, distribution free
methods for estimation are crucial interest. The advantage of these methods is their
robustness with respect to misspecification.

In their robustness study Fiorentini et al.(1996) have shown that the standard errors
of ML estimators in an ARCH(1) and a GARCH(1,1) model can be strongly under-
estimated by covariance estimators such as the Hessian or the outer product matrix
when the normal distribution is changed to a ¢(5)-distribution. Whereas the asymp-
totic robust quasi-maximum likelihood covariance estimator QML is quite reliable
even in small sample sizes.

Here, we design a robustness study in order to systematically investigate the effect
of peakedness and skewness on estimation. Therefore, we replace the normal dis-
tribution in Monte Carlo simulations. We use a mixture of two generalized error
estimations instead. The performance of the QML estimation is compared to that
of the LS and the QGLS estimator. Moreover, we go beyond the mere comparison
of single parameter estimates in the ARCH(1) and the GARCH(1,1) model, respec-
tively. Additionally, we particularly focus on the combination of these estimates in
the volatility forecast. Volatility forecasts are of crucial interest and financial and
monetary analysis. Therefore, reliable estimators for volatility are of crucial interest,
too. Furthermore, forecasting based on the historical volatility can be regarded as a
competing method (alternative to the (G)ARCH forecasts). Hence, we also include
the historical volatility in the comparison study.

The historical volatility is of crucial interest because it allows to use simple and reli-
able two step procedures, such as the variance-targeting method proposed by Engle
and Mezrich (1996), wich may be advantageous in forecasting conditional volatility
and Value-at-Risk.

In section 2, we start with the GARCH model and the mixture of two generalized
error distributions, the generalized error model. Then in section 3 we present the



QML estimation and a two step procedure which consists of the LS and the QGLS
estimators. In section 4, the results of the Monte Carlo simulation for estimates of the
parameters and the volatility are presented. Section 5 concludes the study and gives
hints for further research.

2 The GARCH model and the generalized error model

The representation of the GARCH(p,q) model follows Fiorentini et al. (1996) and
Greene (2003):

(2.1) i = X B+e
(2.2) & = \/Eﬂ)t
q ) P
(23) ht = 0(0—{—2061'815_1-—}—2(51'1/&,]'
i=1 j=1
(2.4) v ~ GEM(0,1;v,1;8)

where y; denotes the endogenous variable, x; is a k x 1 vector of explanatory variables
and B is a k x 1 vector of unknown coefficients. The ¢}s are innovations and depend
on the disturbance v; and the conditional variance Var[e; | ¢;—1] = h;, conditioned
on all information through time t — 1, denoted by ;1. The distribution of the v}s
is determined by a generalized error model which is a mixture of two symmetric
generalized error distributions. Biining (1991) proposed a mixture of two normal
densities to study the robustness of tests, see also Hamilton (1994) pp.685-689. Here
the density of the disturbance v} is

(2.5) for(x) = (1= g)fy(x) +8fz(x) , xR

where f, and f; are densities of the symmetric general error distribution with mean
p and unit variance,

26)  fylx) = wexp [~al(x — py)/A["| and £o(x) = aexp |~ (x — pe) /A]"

with ¢ = v /[A20FD/7T(1/4)] and A = TV2(1/7)/[2V/7TV2(3/9)]

With u, = p, = 0 we have Nelson’s generalized error distribution, normalized to
have zero mean and unit variance, compare Nelson (1991). A more general version is
discussed in Johnson et al. (1980) for applications to Monte Carlo studies. In order to
normalize v} we set u, = p and p, = —[g/(1 — ¢)]u and we divide v} by its standard
deviation,
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with E[vy] = 0 and E[v?] = 1. With E[v;] = 0 equation (2.2) yields E[e;] = 0. The
assumption that v; has unit variance is not a restriction. The scaling implied by any
other variance would change the parameters in (2.3).

With p; = 0 and vy = 2 the disturbances v; have a normal distribution and the ¢}s
have a conditional distribution, &;|¢;_1 ~ N(0, k). If v < 2, the density has thicker
tails and greater peakedness than the normal. The choice of y, # 0 and g,0 < g <
1, determines the degree of asymmetry and also of peakedness. In particular, the
coefficient of skewness 73(v) is

3
2.8) S (h (jgi)jz)
[1 * (fljg)}

and the coefficient to kurtosis #4(v;) is

L(/y)T6/) (6gu2 1 (g—3¢*+3¢%)u?

T2(3/ 1- 1—¢)3
2.9) na(vp) = B/7) g)2 - (1-¢)
|1+ 5]
(1-g)
To ensure positive values for the conditional variance Varle; | ¢;_1] = h; in (2.3)

certain parameter restrictions have to be required. In particular, we assume for the
GARCH(1,1) process that the parameters fulfill the conditions ag > 0, a7 > 0, 61 >
0 and 0 < 1—waq + 61 < 1. Under these conditions it follows from (2.2) and (2.3) that

Ele?] = Ta. ;- 1f the further condition 0 < na(v)at 4+ 67 + 20101 < 1is fulfilled, we
find that

14+a1+61)(1—a1 -9
(2.10) Nalet] = 174(vt)( 143 1=4)

1-— 774(0[')0(% — 5% — 20(151 .

Especially from (2.8), (2.9) and (2.10), we will choose values for parameters in the
Monte Carlo study in such a way that the deviation from normality will be increased
with regard to the peakedness and the skewness.

3 QML estimation and a two step estimation procedure

Let us further follow Engle [1982], Bollerslev [1986] and Fiorentini et al. [1996]. We
define
Z ] = (1,5%_1,...,5%_q,ht_1,...,ht,p)’,w — (oco,ocl,...,ocq,él,...,ép)’ the vector of



unknown variance parameters and 8 = (B, w’) the vector of all unknown param-
eters. Apart from some constants, the prediction error decomposition form of the
log-likelihood function is

(3.1) Zl ) with 6)——110 h _lg
. t t ~— " H g 1t 20

The first derivatives of the log-likelihood terms /; are
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with a further differentiation we obtain terms to build the Hessian matrix
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The outer product matrix

(3.4) OP = [A“ A }

A, Ay

can be built from the first derivatives in (3.2):

T T T
A=Y 8% Ap=1y 29 and A=y 420

/= 9B op = 0w dw L 9B w
Using the properties E[e; | ;1] = 0 and E[¢? | y;_;] = ht, we can construct from the

expectation of the negative Hessian matrix, an estimated information matrix, which
we call score matrix

(3.5) Sy = { S S }

with the terms

Xe,X; 11 dhy dh
Su= Y |5+ E_%_ﬁt_t/] , S =
t=1

In the case of a symmetric distribution of ¢; we can replace the matrix S by a matrix
of zeros and obtain the matrix S.

Sy 0
(3.6) s:[ 51 Szz]

With the negativ Hessian matrix —H, we can compute the maximum likelihood es-
timator 0 by means of a gradient algorithm. The estimation 6; obtained in the k-th
iteration of the gradient method with H computed at 0;_ is

(3.7) 0, = 01 — AH’laLT—(e)
a0

where A is a scalar and the dL1(0) /96 is computed at 0;_;. Here, we carry out es-

timation with the Scoring-Newton procedure proposed by Fiorentini et al. (1996) in

Mathematica 5.0. The convergence criterion is the same as in Fiorentini et al. (1996).

The parameter A is determined by the method of squeezing, see Greene 2003, p.942.

For the evaluation of the ML estimator 8 we start with the assumption of normality.
Thus, we assume that y = 2 and ¢ = 0in the generalized error model GEM ~(0, Ly, g n).

In this case holds vy ~ N(0,1),&; | $;_1 ~ N(0,h;) and the ML estimator 6 is consis-
tent and asymptotically efficient. The matrices —H ™1, OP !, Sg_1 as well as S~1 com-

puted at 0 are appropriate covariance estimators. The behavior of these covariance



estimators will be compared to the robust quasi-maximum likelihood covariance es-
timators QML = H'OPH!, BW; = S;'OPS,! and BW = S~'OPS™! which
from the asymptotic point view are still appropriate covariance estimators even if
v¢ is not normal but symmetric. However for a skew distribution, we can expect a
better performance for QML and BW, than for BW. By means of the generalized er-
ror distribution G(0, 1; y, g, ), we can systematically analyze how the deviation from
normality effects the behavior of the ML estimates 8 by increasing the peakedness
and the skewness.

The behavior of the QML estimator is compared to the performance of the LS and the
QGLS estimator discussed in Gouriéroux (1997) within a two step procedure, where
normality is assumed, compare also Greene (2003).

Before we present the two step procedure, we will relate the QGLS estimator to the
ML estimator. Under the assumption of normality the method of scoring yields the
block diagonal matrix S in (3.6). If we replace in (3.7) the Hessian matrix H by the
score matrix S we obtain the estimation of the full parameter vector 0 in two parts.
For w we find from (3.2) and (3.7)

T 110h [
(3.8) @ = @+ Sy f{g—f—q

L0 9w | I

-1
N L 11 oh; ol L110hm(,
= @1t Lz_lih_%%a_w tz_lih?% [Ef _hf}’

compare Greene (2003), p.242. Gouriéroux (1997) considers an ARCH(p)-model where
Wy = &. In this case, we can express h; in (2.3) as

p
(3.9) he=wag+ Y wer =1z

i=1
where z; 1 = (1,6%_1,...,8%_[7)’ and & = («g,a1,...,04)". As hy in (3.11) is calculated
at &,_1 we can replace h; by z; ;&1 and we find with oh;/da = z;_; the score
estimator & in form of

T 1 1 ,1
(3.10) & = Z 2t 1Zy 15 Z Z; 1€ 75
t=1 hi t=1 hi

with the score matrix as estimated covariance matrix of &
. ) T 117!
~ — /
(3.11) Varlas) = S,, =2 21 zt,lzt_lh—%
=

The reformulation of the ARCH(p)-model in (2.2) and (2.3) as an AR(p)model for the
squared innovations
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(3.12) s% =hi+wy = ag + Z oc,'s%_i + w; = z;_llx + wy
i=1

with uncorrelated disturbances w; = hi(v? — 1) having E[w¢] = 0 and conditional
variance E[w? | ;1] = h?(174(v) — 1) shows that in the case of (3.12) the QGLS esti-
mator & is identical with the scoring estimator &; in (3.10). The covariance estimation
of the QGLS estimator & is

T -1
(3.13) Var[a] = (74(0) — 1) [szlzi_l . ]

12
t=1 hi

with an appropriate estimation of the kurtosis #74(v) of v. In the case of normality
174(v) = 3, and the QGLS estimator & is asymptotically efficient, too. In small sam-
ple sizes, it is of interest whether & is more efficient than the QML estimator & and
whether the covariance estimator of & in (3.13) is more reliable than the robust covari-
ance estimators of &.

The QGLS estimator & appears in the second step of the two step estimation pro-
cedure. In the first step, the consistent LS estimator f results form the regression
of y; on x; in (2.1) and the unobservable variable ¢; in (3.12) can be replaced by the
LS-residuals & = y; — x}B. The regression of & on 1, & ,,.. .,é%fq yields ’Ehe LS-
estimator & for the coefficient a in (3.12). In the second step, the LS estimates  and &
can be improved by applying the quasi-generalized least squares to the regression y;
on x; using the estimated conditional variance E[e? | ¢; 1] = /iy = 2;,_1&. The QGLS
estimator is

3 T 1 o 1
(314) ﬁ = Z XtX;A— Z XtYr =
hy hy

t=1 t=1

and an estimator of its covariance matrix is

. T 1
(3.15) Var[B] = [Z xtx;i]
s

The QGLS estimator i% is asymptotically less efficient than the ML estimator B.

As pointed out above, the QGLS estimator & is identical with the score estimator
&; in (3.10). There as well as in the covariance estimator (3.11), we replace z;_; by
Ziq = (1,5%_1)’, et by & = yy — x;B and h; by hy = Z;_,&. In the covariance estimator
in (3.13) we replace z; 1 by 2; 1 = (1,3%_1)’,& by & =y — xii},ht by hy = 2;_1& and

A

we estimate of 774(v) with standardized residuals by = ?:% /A/ hy in form of
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In the case of a GARCH model the two step procedure has to be modified. Here, the
GARCH(1,1) model

(3.16) s% =g+ ocleil + d1hi—1 + wy

is of interest. In the first step, LS estimates for ag, a1 and J; result by minimizing

t

Q1(wo,a1,61) = Y @7 (82 — g — 182 | — 51hy—1(ag, 1, 07) )2

t

T
1=

where &; = ﬁ We compute the estimated conditional variance ht = Qo+ &187 | +
81k, with the LS estimates &g, &1 and d;. Minimizing

Q Lo L (8 1 & By 1 (ao,1,01) 2
At ~ A7 — A/ 4
2(“0/ “1/51) g % Z 3 “Oht L5 i 51 i,

yields the QGLS estimates &, &, and (§1. In both steps, a Marquardt algorithm based
on Box and Jenkins (1976) is applied to find the minimum. A covariance estimation

of the QGLS estimates &g, &1 and 47 is

&g 4
Var A A 1Aa
01 hi
where §; = W dohnd, Trom by = z{ w = &g+ a1e] 4 + 81l follows ) =
Z, | +01§ [ withz, 1 = (1, %,1,f1t—1)/,flt_1 =2 (wand g = *151 2 = 5 (1,8,8)
T
and 2 = 1 y° 2. For 6; = 0 (3.17) contains (3.13) as a special case.
"=

Even under normality the LS estimates &g, &1 and 5, are inefficient. However, as
the LS estimates of iy = ag + a1e7_; + 0hy—q in Q1 (&g, 41,61) = Y (82 — hy)? are de-
termined by minimizing the quadratic differences between ¢? and the conditional
variance hy,_; = Ele? | ¥;_1] = hi, we may expect that the LS forecast i:ll|t—1 =
hy = &y = &165_1 + 8104 performs better than the LS estimates for each parameter
ng,x1 and &, separately. Maybe, it even outperforms the ML forecast f11|t,1 = hy =
&o + &155_1 + 6h;_q in relevant sample sizes.

The three parameters ag, a1,y combined determine the future conditional volatility
E[e?, J | ] = hj; starting from given information at time ¢ in form of



(3.18) hijy = 05 + (a1 4 61) " (hyy1 — 07)

where O'yz =02 = ay/(1 — a1 — &;) is the unconditional variance and

(3.19) hi1 = ag + w17 + Sy

is the conditional variance, compare Baillie and Bollerslev(1992). In the long run, the
future conditional volatility /;; converges to the unconditional variance 0'5, lim /), =
]HOO

Uj.The conditional variance &, exhibits mean reversion with reversion level (75. If the

jl
conditional variance exceeds the long term variance h; 1 — (75 > 0, hjj; has a decreas-
ing tendency, otherwise an increasing. Thus, a correct estimation of the difference
hiy1 — (7]3' is of importance. An unreliable estimation of 0’5 may lead to a wrong direc-
tion in the forecast of the future conditional volatility /;;, a wrong mean reversion,

and therefore to a qualitative error.

If the historical volatility s2 turns out to be a relatively efficient estimator than we can
y sy y

replace «g according to g = 0y (1 — a1 — 1) in two step procedures. For estimation,

2

we have to incorporate the estimator s;

to

instead of (7]3. Furthermore, (3.19) transform

(3.20) hy — ayz =ay(e? 4 — U'yz) +6(hi_q — (75)

and we use (3.20) in the QML estimation and the two step LS and QGLS procedure,
compare Engle and Merzrich (1996), where they propose this approach for the QML
estimation as it reduces the number of parameters.

4 Results of the Monte Carlo studies for estimates
of the parameters and the volatility

The Monte Carlo studies are designed to examine the effect of peakedness and skew-
ness in the distribution of the disturbances v; on QML, LS and QGLS in an ARCH(1)
and in a GARCH(1,1) model with y; = Bo + &;.

As aforementioned, we do not merely assess the performance of single parameter
estimators for the three methods LS, QGLS and QML. We particularly focus on the
combination of these parameters in the j-step-ahead forecast of the volatility 4;r.
Here, we confine the analysis to the long run forecast ]lirglo hjr = ao/ (1—a1—01) =

ayz. The long run ML forecast (73 =&/ (1 —& — 6;) is compared to the LS forecast
&/(1—&—6y), tothe QGLS forecast 57y2 =&/ (1—&— ¢&;) as well as to the sample

<) ol
I

T
variance (historical volatility) sﬁ = 1 Y (y: — 9)? which is often used in a model-free
t=1

10



approach for the calculation of volatilities in financial applications. There, the rate of
return of a financial asset is calculated as the sample mean § which is equal to the LS
estimator of B.

2
y

shorter sample size T, T = 250, as a change of (Tyz over time can not be excluded.
Forecasts with complex GARCH models are considered as a possibility to improve
the estimates of the volatility, compare Hull (2000), p.242-243 and p.368-381. Here
from the asymptotic point of view, a larger sample size may be of interest. The struc-
tural change of parameters, however, raises doubts whether complex methods based
on asymptotic properties should outperform the simple sample mean and sample
variance.

Fiorentini et al. have confined the sample size T for the ARCH(1) model to T < 400
and for the GARCH(1,1) model to T =< 800. We augment the sample size to T <
1600. At that, we take into account that the conditional variance E[e? — h; | ;1] =
E[w? | ;1] = H?(n4(v) — 1) becomes greater by an increase of the kurtosis 774(v). A
high conditional variance reduces the reliability of the estimates which we compen-
sate by an increase of the sample size.

In applied financial analysis the simple estimators s; and 7 are often restricted to a

With regard to the deviation of normality represented by peakedness and skewness
the following questions are raised:

i) How much differ the LS estimator 3 which is equal to the model-free sample
mean 7, the QGLS estimator 3 and the QML estimator f from each other?

ii) Is the QGLS estimator for the parameters «p, a1 and J; as robust as the QML
estimator?

iii) Are the robust covariance estimator QML and BW, closer to the Monte Carlo
MSE than the estimator BW?

iv) To which extent does the approximation of robust covariance estimators to the
Monte Carlo MSE depend on the sample size ?

v) To which extent does the approximation of the distribution of QML parameter
estimations to the normal distribution depend on the sample size?

vi) Are the MSE of the LS estimation (;3 and of the model-free sample variance

(historical volatility HV) s2 smaller than the MSE of the QML estimation 02?2
y Yy y

With regard to the last question, we can expect that for a greater sample size T the

T N T _

historical volatility sﬁ =1 Y (1 — B)? = + ¥ € = £2 will not greatly differ from the
t=1 t=1

LS estimation 0}3 = &g/ (1 — &1 — &;) as the LS estimation of (3.19) yields a sample

mean £2wich is approximately &/ (1 — & — 6, ). This approximation holds for each of
the 5000 replications. Thus, also the difference of the MSE of the historical volatility

2 and of the LS estimation ¢ will not be large.

Sy y
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Peakedness and skewness are generated by the disturbance v. The density of

v,v GEM(0,1;7,g, 1), is a mixture of two generalized error distributions. Johnson
et al.(1980) have developed a random-variate generation algorithm that allows to
use the generalized error distribution in Monte Carlo simulation studies.We gener-
ate Random variates with densities f,(x) and f;(x) in (2.6) as follows:

1. Generate W having a gamma distribution with shape parameter 1 + 1/ and
scale parameter 1

2. LetV = W/7

3. Generate U having a uniform distribution on (—1,1)
4. LetY = [[(1/7)/T(3/7)]2VU+ pyand Z = [[(1/7)/T(3/7)]2VU + ps

The random variable Y has density f,(x) and Z has density f.(x). A random variate
v with the mixture of both densities can be generated by a Bernoulli process.

We start the experiment with the ARCH(1) model. For the coefficients in the vector
(B, wp, x1) we assume: a)(—0.29,0.5.0.5) and b) (0.01,0.009, 0.22)

For the simulation with the GARCH(1,1) model the assumptions for the coefficient
vector (B, g, aq,01) are: a) —0.29,0.20,0.35,0.45) b) 0.01,0.00015,0.15,0.72) and c)
(0.0005,0.000005, 0.085,0.89)

The values in the first parameter vector are used in the Monte Carlo study in Fioren-
tini et al (1996). The values in the second one results from an EViews estimation
using monthly data of return on S & P 500 stock index including dividend yield
from Pindyck and Rubinfeld (1998). The third one contains values resulting from
an EViews estimation using 2873 daily data of return on the Dax index including
dividend yield from 1st January 1991 to 3rd June 2002.
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Figure 4.1
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For the generalized error distribution G(0,1;7, g, 1), we first exclude skewness by
setting ¢ = 0. Starting with the normal distribution, we increase peakedness by
reducing 7y from 2 to 0.5, we set v = 2,1,0.75,0.6 and 0.5. Figure 4.1 shows selected
densities for y =2and y =1

and Figure 4.2 presents the kurtosis n74(v) =T/1/7)/T(5/7) /I’2(3/"y) depending on
Y.

o |
®
0 _|
Y
o _|
Y
S v
< T
<
‘o_ -
m —
o —
| | | | |
0.0 0.5 1.0 1.5 2.0
Y

Figure 4.2: Kurtosis #4(v) depending on vy
Table 4.1 informs about the moment of v and ¢ for selected values .

Table 4.1: Moments of v and ¢

(rgn) | m@ mEY 7ie)? na(e)® na(e)® na(e)®

(2,0,0) 3 9 3 9 4 4
(1,0,0) 6 —3) 8 — 11 22
(0.75,0,0) | 10 — 17 — 48 —
(0.6,0,0) | 16 — 60 — — —

(0.5,0,0) | 25 — — — — —

(1.8 1) | 13(v) 1a(0) na()V ma(e)? na(e)? na(e)®  na(e)®
(1,0.025,6) 2 12 — 27 — — —
(1,0.025,8) 3 17 — 90 — — —

1) computed with (-0.29,0.5,0.5) 4) computed with (-0.29, 0.20, 0.35, 0.45)
2) computed with (0.01, 0.009, 0.22) 5) computed with (0.01, 0.00015, 0.15, 0.72)
3) indicates: does not exist 6) computed with (0.0005, 0.00001, 0.085, 0.89)
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To obtain skewness we build with v = 2 and 1,¢ = 0.025 and 0.0125 and 4 = 2,4,6
and 8 six combinations for the vector (v, g, u).

Table 4.1 shows that with decreasing values of 7y the kurtosis 774(v) considerably in-
creases. High values of #4(v) yield a lower reliability of the estimation, compare
(3.16), which can be compensated by a higher sample size.

Table A-1 in the appendix shows that the simulation with 5000 replications generates
results which are nearly identical with those presented in Fiorentini et al.(1996) for the
ARCH model with (B, o, 1) = (—0.29,0.5,0.5) and with normal disturbances v, i.e
v = 2. Moreover, Table A-2 in the appendix shows the simulation results produced
by a generalized error distribution with v = 1,i.e. with a kurtosis #74(v) = 6. They are
similar to those in Fiorentini et al.(1996) with a ¢(5)-distribution which has a kurtosis
n4(v) = 9. Here, their main simulation result is confirmed. Even in the smaller
sample size of T = 200, the robust covariance estimators QML and BW perform very
well. They only slightly deviate from the MSE whereas the non robust covariance
estimators considerably underestimate the variances.

As mentioned in Fiorentini et.al.(1996), in very few cases and only for the shorter time
series convergence was not achieved in the QML algorithm, and replications without
convergence were then discarded. Even in the case of high peakedness 774(v) = 15.6,
the percentage does not exceed 1% for T > 800.

Table A-3, A-6, A-10 and A-13 present results for the ARCH model with

(B, wp, 1) = (0.01,0.0009,0.22), i.e. for the S&P data. They show that the approxi-
mation of the robust covariance estimator QML to the MSE considerably depends on
the degree of peakedness and skewness. A higher peakedness needs a greater sample
size to ensure a good approximation. Table A-10 indicates that for a; a good approx-
imation is not achieved before the greater sample size of 800, i.e. only for T > 800.
Here, v = 0.6 and 74(v) = 15.58. This result points out that asymptotic properties
only hold at higher sample sizes. Table A-3, A-6, A-10 and A-13 indicate that even for
higher sample sizes the BW covariance estimator systematically underestimates the
MSE. The generalized version BW; which considers the skewness does not improve
the approximation. Thus, the QML estimator is to be preferable for empirical studies.

T T
Table A-12 shows that the estimator 174(3) = 7 Y. [(3; — 5)/ss)* and 174(1) = iy
t=1 t=1
[(; — 1) /s4)"* considerably underestimate the kurtosis 74(v) = 16 and the kurtosis
na(u) = 60, respectively. Thus, with 74(9) = 14 and 74(i1) = 21 for T = 1600 the case

of v = 0.6 may not be regarded as an unrealistic example. Table A-9 and A-15 are
further examples for the underestimation.

As expected, in the case of normality, i.e. v = 2, the ML estimator for B performs
better than the QGLS estimator, compare Table A-3 and A-4. Both tables illustrate that
for ag and a; the advantage of the ML estimator over the QGLS estimator is only very
small. With increasing peakedness and skewness, however, the QML estimator loses
his dominance over the QGLS and even over the LS estimator. Already for v = 0.75,
i.e. for the theoretical kurtosis #4(v) = 10 and kurtosis 774(1) = 17, respectively, —
their estimated values are 9 and 13 for the sample size T = 1600 — the QGLS estimator
for B is more reliable than the QML estimator, compare Table A-6 and A-7. According
to Table A-10 and A-13, the GLS and even the LS estimator perform better than the
QML estimator. The simulation results show that with increasing peakedness and
skewness, the relative efficiency of the QGLS estimator for f3 rises.
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ARCH model with S&P
coefficients and v = 0.6

For high peakedness, v = 0.6, Figure 4.3 compares the distribution of the QML es-

timates B with that of the distribution of the QGLS estimates A.The distributions are
characterized by Quantile-Boxplots where the upper and lower quantiles are esti-
mated, see Trenkler (2002). Figure 4.4 shows the Quantile-Boxplots of the QML esti-
mates 3 together with those of the LS estimates 3. Both Figures depict that the QML

estimation f has no advantage neither over the QGLS estimation § nor over the LS
estimates p = 7. Thus, two step procedures look reasonable for empirical finance
market analysis.

With regard to xp and & there is a tendency that whith increasing peakedness and
skewness the reliability of QGLS gains in relation to that of the QML estimator. A
relative gain can be stated for the LS estimator, too. However, for the greater sample
size T = 1600 the QML estimator for ag and «; is still the most reliable.

As the loss in reliability of the LS estimator for ag and a1 decreases with rising peaked-
ness and skewness, we may expect that his relative performance in forecasting the
conditional volatility /;; in (3.18) will increase. The simulation results for lim h;;, =

]—)OO
crf are presented in Table A-5, A-8, A-11 and A-14. There, negative estimates of the

variance (75 have been discarded — the column ”%g;” lists the percentage of positive

estimated variances. In addition, the estimation results are corrected for outliers, i.e.

1% of replications due to outliers in the QML estimation ¢ are eliminated, in the

comparison with the other estimates the QML estimates is favored. As expected,
2

the L51 estimation 0;; = &/ (1 — &) only slightly deviates from the sample variance

sﬁ = #Y.(y: — 7)?, i.e. the historical volatility HV. In the case of higher peakedness

the LS estimation of cryz performs in most cases better than the QML estimation espe-
cially in smaller sample sizes but, as we can see in Table A-11, also in higher sample
sizes, see also Table 4.2.
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Table 4.2: The relative efficiency of the LS estimate ?75 with respect to the QML
estimate 65 in percent in the ARCH model with S&P coefficients

Peakedness #4(v)

10 16
o? T 800 1600 800 1600

LS/QML‘ 83.9 100.0 61.1 821

For a comparison of the QML estimates (75 = &g/ (1 — &) with LS estimates &yz =

&g/ (1 — &1), see Figure 4.5 and for a comparison of the QML estimates 5’5 with the

historical volatility 55, see Figure 4.6. Figure 4.5 shows that the QML estimation (~7§
has no advantage over the LS estimation CTyZ and Figure 4.6 that the historical volatility
sﬁ performs as well as the LS estimation &5. The historical volatility sﬁ should be
preferred as it yields no negative estimates for (7]3.
The simulation results raise doubts whether ARCH models can improve the estima-

tion of (7]3. Parameters in a ARCH model may change over time. Therefor we should

rather rely on the historical volatility si than on the QML estimation 0/’;2 =a&o/(1—ay)
for empirical analyses. Quite on the contrary, the empirical results suggest to incor-
porate the historical volatility 5}3 into the QML estimation proposed by Engle and
Mezrich (1996) as variance targeting approach. In addition, the results suggest to
consider the LS estimates in ARCH models as an alternative for forecasting the con-

ditional volatility /;);.
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Here, the simulation results favor two step procedures for empirical analysis , too.
There, we can not trust in assumed distribution for the disturbance v. In a first step,
B should be estimated by B =  and ¢ by the historical volatility sﬁ, i.e., by the

sample mean and the sample variance. A good estimate of ¢? is important for a
reliable estimation of the mean reversion effect in forecasting the conditional volatility
according to (3.18).

For the GARCH model with (B, a9, a1,61) = (—0.29,0.20,0.35,0.45) and with normal
disturbances v, i.e. y = 2, the simulation results with 5000 replications in Table T-16
in the appendix are in most cases nearly identical with those in Fiorentini et al.(1996),
too. Table A-17 in the appendix shows simulation results generated by a generalized
error distribution with v = 1, i.e. with a kurtosis #4(v) = 6. They are similar to
those in Fiorentini et al.(1996) with a ¢(5)-distribution. Here, their main simulation
results are confirmed, too. Even in the smaller sample size T = 400 the robust covari-
ance estimator QML and BW perform very well. They only slightly deviate from the
MSE whereas the non robust covariance estimators considerably underestimate the
variances. As in the ARCH study, an underestimation can be noticed for the robust
covariance estimator BW.

Table A-18, A-19, A-20 and A-21 show simulation results with 10000 replications for
the GARCH model with (B, ag,a1,01) = (0.01,0.00015,0.15,0.72), i.e. for the S&P
data. They confirm the findings in the ARCH study that approximation of the ro-
bust covariance estimator QML to the MSE considerably depends on the degree of
peakedness and skewness. A higher peakedness requires a greater sample size for
a good approximation. Both tables indicates that this may not be achieved before
the large sample size of 2000. The asymptotic properties of the QML estimator only
holds at a higher sample size. Here, the number of replications in the QML algorithm
without convergence is considerably high even at a higher sample size, i.e. 5% und
3% for T = 800 and T = 1200, respectively, in the case of v = 0.75. This technical
result also indicates that longer time series are needed.

S - ’ = = = = = =
. 1= ﬁ%%%%%
o B : ] . -
g ‘T‘ 7 —L
i 1" o T
N(O‘ 1) 200 400 8(;0 12‘00 16‘00 20‘00 N(l;,l) N(O‘.l) 22}0 41;0 8(;0 12‘00 16‘00 2(;00 N((;,l)
Figure 4.7: Quantile-Boxplots of Figure 4.8: Quantile-Boxplots of
(@ — a)/0z in the (6 — &1)/05 in  the
GARCH model with GARCH model with
S&P coefficients and ¢ = 2 S&P coefficients and v = 2

The sequence of the Quantile Boxplots in Figure 4.7 and 4.8 show that for v = 2, i.e.
with normal distributed errors v, the distribution of &; and of 91, respectively, ap-
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proach the normal distribution, but only at the greater sample size of T = 2000. An
increase of peakedness considerably worsens the approximation, especially with re-
gard to the tails. Figure 4.9 and 4.10 clearly show that the estimated upper and lower
quantile estimations substantially deviate from the corresponding quantiles of the
normal distribution which for high sample sizes should be close to each other. Here,
even for T = 2000 the approximation is very poor. Thus, for higher peakedness the
validity of tests with regard to a; and 4 is poor. For skewness, we can observe a
similar effect on testing..

10

Figure 4.9: Quantile-Boxplots
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According to the estimation of the parameters 8, ap, a; and 61, the GARCH study
can not confirm the ARCH results that QML estimator loses his dominance over the
QGLS and the LS estimator with increasing peakedness and skewness. Figure 4.11
compares the QML estimation  with the LS estimation . The sequence of the Box-
plots shows that for higher sample sizes the LS estimation 3 does not substantially
deviate from the QML estimation B. Thus, also in the GARCH model a two step pro-
cedure looks reasonable for empirical analysis. This holds especially with regard to
the estimation of (75.

Figure 4.12 and 4.13 as well as Table A-22 in the appendix point out that for v = 0.6
the LS estimation ¢ and the historical volatility 55 are relatively good estimates for
the volatility (75. Here, the historical volatility HV is clearly the best one.

Table 4.3: The relative efficiency of the LS estimate &5 with respect to the QML
estimate 6]3 in percent depending on peakedness and skewness in the
GARCH model with S&P coefficients for T = 800

Peakedness #4(v)

o2 3 6 10 12V 16 172 25

LS/QML | 994 833 432 274 195 115 140

1) with skewness #3(v) = 2
2) with skewness 773(v) = 3

Table A-22 shows next to the MSE the MSE(cor) corrected for outliers in the QML
estimation (Nrf. This correction allows us to elaborate more clearly the dependence of
the MSE on the peakedness and skewness as well as on the sample size. Table 4.3

as well as Figure 4.14 show for T = 800 the relative efficiency of the LS estimate &5
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with regard to the QML estimate 5’5 measured by the ratio of the MSE(cor) of 675 in

relation to the MSE(cor) of 575. They expose a clear gain in efficiency of the LS (75, and
the efficiency augments with an increase of peakedness and skewness.

60 80 100
1 | ]

relative efficiency
40
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N4 (Z)) peakedness 74(v)

1: with skewness #3(v) = 2
2: with skewness #73(v) = 3

Figure 4.14: The relative efficiency of 65 with respect to peakedness in the GARCH
model with S&P coefficients for T = 800

The dependency on the sample size can be seen in Table 4.4. According to the barplot,
the gain in efficiency can be still high for larger sample sizes.

Table 4.4: The relative efficiency of the LS estimate &5 and the HV sf with respect to

the QML estimate (75 in percent depending on peakedness and sample
size in the GARCH model with S&P coefficients

Peakedness #4(v)
3 10 16

o? 800 1600 2000 800 1600 2000 800 1600 2000

LS/QML | 994 104.6 1043 432 774 833 195 447 543

Thus, according to the estimation of the variance (75, the GARCH(1,1) analysis strength-
ens the result in the ARCH(1) study, that the LS estimator (;3 and the historical volatil-

ity HV si outperforms than the QML estimator (;;3 and the QGLS estimator (73.

The doubts increase whether GARCH models can improve the estimation of 2. Fur-
thermore, as in the ARCH analysis, the GARCH results suggest to consider the LS
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estimates in GARCH models as an alternative for forecasting the conditional volatil-
ity hjj;, according to (3.22).

With respect to the estimation of the variance (75, the simulation study for the pa-
rameter (B, ao,x1,0) = (0.0005,0.00001,0.085,0.89) of the daily Dax data confirms
the relative good performance of the LS estimator and of the historical volatility HV,
compare Figure 4.15 and Figure 4.16 as well as Table A-24. Both are by far the better
estimators for (75. In addition, the sample size at which a good approximation for
the covariance estimator QML can be stated is further increased, compare the rate
of replications in the QML algorithm without convergence in Table A-23 and Table
A-25.

The performance of the QML estimation (;5 is considerably affected by outliers. This

outlier effect leads to a relative weak reliability in comparison to the LS estimation (73

and the HV sﬁ. Especially with regard to the estimation of 02, the simulation results
in the GARCH model support two step procedures, even more stronger than in the
ARCH model.
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As the HV s? is a relative reliable and robust estimator of ¢2, it can be used as a
separate input in the QML, QGLS and the LS method. This approach is known as
variance targeting, see Engle and Mezrich (1996). The variance targeting reduces
the number of estimated parameters and may improve the estimation as well as the
forecast.
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5 Conclusions

The main results in the simulation study of Fiorentini et al.(1996) for their ARCH
and GARCH model are confirmed. The robust covariance estimators QML and BW
perform very well. Even in smaller sample sizes, the asymptotic property holds, in
the considered ARCH model for T > 200 and in the considered GARCH for T > 400.

In the ARCH model with parameters from monthly S&P data, the analysis shows
that the approximation of the covariance estimator QML to the MSE considerably
depends on the degree of peakedness and skewness. For a higher but not unrealistic
degree of peakedness, the asymptotic property holds only for T > 800. As the covari-
ance estimator BW systematically underestimates the MSE the covariance estimator
QML estimator is to be preferable for empirical studies.

With higher peakedness and skewness the QML estimator for the parameter 8, xg and
a1 loses his advantage over the QGLS and even over the LS estimator. For the vari-
ance (75 the LS and the HV outperform the QML. The results raise doubts whether

ARCH models can improve the HV estimation s2. Quite on the contrary, the study
suggest to incorporate the relative reliable and robust HV estimation in the QML,
QGLS and the LS method.

The GARCH simulation results with parameters from monthly S&P data as well as
with daily DAX data indicate that in this important model for empirical financial
analysis an even greater sample size is needed for a good approximation of the co-
variance estimator QML to the MSE, at least T > 2000.

Even for the large sample size T = 2000, the validity of test is poor when peakedness
and skewness are high. In these cases, sequences of Boxplots show that upper and
lower quantile estimations substantially deviate from the corresponding quantiles of
the normal distribution.

Concerning 05, the GARCH analysis strengthen the ARCH results, that the LS esti-
mator (73 and the HV si perform better than the QML estimator (;5 and the QGLS

estimatorayz.

The GARCH study suggests to analyse the performance of the presented methods in
forecasting the conditional volatility in terms of (3.18). The high efficiency gain of the
HV sﬁ recommends to use it for estimation of the variance ¢? in a first step. Here, it
is worthwhile to scrutinize in futher research whether modified two step procedures

can improve the parameter estimation as well as conditional volatility forecasts.
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7 Appendix

Table A-1: ML estimates in the Fiorentini ARCH model with B = 0.29,a9
05,041 =05and y =2

OML | T | Mean | MSE | S | OP | H| QML | BW
100 | -0.29018 | 64.006 | 60.033 | 66.777 | 61.885 | 62400 | 59.400

200 | -0.28928 | 31718 | 30.157 | 31.943 | 30.530 | 30.507 | 30.066

B | 400 [ -028946 [ 15115 | 15.024 | 15514 | 15133 | 15108 | 14.972
800 | -0.28996 7573 7511 7.630 7.533 7.530 7.506

1200 | -0.29037 5.096 5.010 5.063 5.018 5.015 5.009
1600 | -0.28988 3.846 3.760 3794 3767 3764 3.756

100 | 0.50517 | 140.948 | 128.595 | 167.205 | 140.535 | 137.449 | 115.698

200 | 050400 | 63.074 | 62.982 | 72.645 | 65745 | 63.686 | 59.553

& [ 400 | 050104 | 31.300 | 30952 | 33387 | 31.624 | 31.089 | 30.146
800 | 050045 | 15798 | 15384 | 15924 | 15527 | 15435 | 15240

1200 | 050074 | 10.345 | 10249 | 10531 | 10.320 | 10.251 | 10.153
1600 | 0.50103 7515 7.696 7.840 7.735 7.709 7.654

100 | 0.47303 | 448.254 | 377.418 | 496.841 | 427.889 | 436.281 | 341.369

200 | 0.48433 | 207.765 | 191.978 | 224950 | 204253 | 202.650 | 182.671

& | 400 | 049249 | 99.987 | 97.155 | 106.054 | 100202 | 99.368 | 94.603
800 | 049768 | 4949 | 48921 | 51120 | 49592 | 49426 | 48414

1200 | 049755 | 33477 | 32.606 | 33.671 | 32928 | 32819 | 32334
1600 | 0.49883 | 24.882 | 24511 | 25.081 | 24.688 | 24647 | 24379

MSE and variance estimates multiplied by 10000

Table A-2: QML estimates in the Fiorentini ARCH model with B = 0.29, a9
05,09 =05and y =1

QML | T | Mean | MSE | S | OP | H| OML| BW
100 | -0.29113 68280 | 55.886 | 62.026 | 58.562 69.230 | 63.042

200 | -0.28784 35439 | 28611 | 28927 | 29.299 34176 | 33.060

B | 400 | -0.28996 16757 | 14389 | 13.526 | 14538 17.074 | 16952
800 | -0.28945 8413 7.197 6418 7.226 8.611 8.621

1200 | -0.29043 5.639 4.800 4207 | 43818 5.750 5.746
1600 | -0.28990 4276 3.601 3118 3.609 4320 4324

100 | 049663 | 255.848 | 99.210 | 67.446 | 109.658 | 236.949 | 203.439

200 | 050187 | 121.419 | 49115 | 27566 | 52359 | 118853 | 109.722

& [ 400 | 0.50194 61417 | 24309 | 11977 | 25.116 58.850 | 57.034
800 | 0.50071 29.660 | 12.054 5466 | 12.285 29.717 | 29.148

1200 | 0.50049 19.442 8.007 3514 8.101 19.683 | 19.497
1600 | 0.50061 15.451 6.005 2577 | 6.059 143884 | 14783

100 | 0.48856 | 1149.967 | 449.815 | 339.591 | 542.336 | 1254.569 | 883.868

200 | 0.48492 | 581226 | 222.339 | 139.245 | 249.980 | 574500 | 472.095

@; [ 400 | 049087 | 296.767 | 112257 | 60.210 | 119.149 | 279.366 | 257.193
800 | 049641 | 141.143 | 56.637 | 27278 | 58.626 | 141.817 | 135480

1200 | 0.49605 93.658 | 37.652 | 17382 | 38487 | 93.084 | 90.623
1600 | 0.49776 73806 | 28359 | 12699 | 28.850 70.639 | 69.267

MSE and variance estimates multiplied by 10000
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Table A-3: ML estimates in the ARCH model with S&P coefficients = 0.01, a9 =
0.0009, a1 = 0.22 and v = 2(y3(v) = 0,774(v) = 3.00,74(¢) = 3)

QML | T | Mean | MSE | s| oP| H| QML | BW | BWg

100 | 0.01000 | 0.10835 | 0.09964 | 0.10803 | 0.10368 | 0.10927 | 0.09934 | 0.10003
200 | 0.01001 | 0.05138 | 0.05053 | 0.05259 | 0.05124 | 0.05202 | 0.05056 | 0.05067
400 | 0.01002 | 0.02574 | 0.02538 | 0.02591 | 0.02554 | 0.02570 | 0.02538 | 0.02540
800 | 0.01004 | 0.01307 | 0.01275 | 0.01290 | 0.01279 | 0.01282 | 0.01274 | 0.01274
1200 | 0.00999 | 0.00892 | 0.00850 | 0.00856 | 0.00851 | 0.00853 | 0.00850 | 0.00850
1600 | 0.00999 | 0.00648 | 0.00638 | 0.00642 | 0.00639 | 0.00639 | 0.00637 | 0.00638
100 | 0.00091 | 0.00034 | 0.00033 | 0.00042 | 0.00036 | 0.00036 | 0.00030 | 0.00030
200 | 0.00090 | 0.00017 | 0.00016 | 0.00018 | 0.00017 | 0.00017 | 0.00015 | 0.00015
&0 400 | 0.00090 | 0.00008 | 0.00008 | 0.00009 | 0.00008 | 0.00008 | 0.00008 | 0.00008
800 | 0.00090 | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00004
1200 | 0.00090 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003
1600 | 0.00090 | 0.00002 | 0.00002 | 0.00002 | 0.00002 | 0.00002 | 0.00002 | 0.00002
100 | 0.20644 | 268.091 | 232.683 | 329.032 | 273.442 | 294.460 | 201.111 | 201.497
200 | 0.20852 | 126.961 | 116.377 | 143.770 | 126.650 | 125.650 | 106.559 | 106.626
@ 400 | 0.21476 62.172 59.085 66.719 61.771 60.850 56.334 56.346
800 | 0.21932 30.439 29.872 31.950 30.505 30.168 29.171 29.174
1200 | 0.21880 20.489 19.889 20.859 20.224 20.093 19.550 19.551
1600 | 0.21777 15.825 14.876 15.414 15.039 14.959 14.705 14.706

™

MSE and variance estimates multiplied by 10000

Table A-4: QGLS estimates in the ARCH model with S&P coefficients f =
0.01, 29 = 0.0009, a1 = 0.22 and v = 2

QGLS \ T \ Mean \ MSE \ %2
100 | 0.00999 | 0.11192 | 0.10831

200 | 0.01001 | 0.05391 | 0.05397

B | 400 | 0.01002 | 0.02715 | 0.02701
800 | 0.01003 | 0.01366 | 0.01354
7200 | 0.01000 | 0.00940 | 0.00901
1600 | 0.00999 | 0.00686 | 0.00676
100 | 0.00093 | 0.00033 | 0.00034

200 | 0.00092 | 0.00017 | 0.00016

& [ 400 [ 0.00091 | 0.00008 | 0.00008
800 | 0.00091 | 0.00004 | 0.00004
1200 | 0.00090 | 0.00003 | 0.00003
1600 | 0.00090 | 0.00002 | 0.00002
100 | 0.17834 | 221.734 | 214.755

200 | 0.19205 | 120.998 | 111.003

& [ 400 | 020569 | 61.052 | 57.601
800 | 0.21416 | 30.226 | 29.448
1200 | 021528 | 20.613 | 19.697
1600 | 0.21499 | 15.898 | 14.762

MSE and variance estimates multiplied by 10000
1275 according to (3.16) and (3.18)
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Table A-5: Estimation of the variance (75 = ao/(1 —a1) = 0.0009/(1 —0.22) =
0.00115

| T

%O’yz l Mean l MSE

100 | 0.902 | 0.00119 | 0.00069
200 | 0.972 | 0.00116 | 0.00025
QML 400 | 0.998 | 0.00115 | 0.00012

800 1 | 0.00116 | 0.00006
1200 1 | 0.00115 | 0.00004
1600 1 | 0.00115 | 0.00003

100 | 0.902 | 0.00117 | 0.00050
200 | 0.972 | 0.00115 | 0.00024
QGLS 400 | 0.998 | 0.00115 | 0.00011

800 1 | 0.00115 | 0.00006
1200 1 | 0.00115 | 0.00004
1600 1 | 0.00115 | 0.00003

100 | 0.903 | 0.00117 | 0.00049
200 | 0.972 | 0.00115 | 0.00024
LS 400 | 0.998 | 0.00115 | 0.00012

800 1 | 0.00116 | 0.00006

1200 1 | 0.00115 | 0.00004

1600 1 | 0.00115 | 0.00003

100 1 | 0.00115 | 0.00048

200 1 | 0.00115 | 0.00024

HV 400 1 | 0.00115 | 0.00012
800 1 | 0.00116 | 0.00006

1200 1 | 0.00115 | 0.00004

1600 1 | 0.00115 | 0.00003

MSE multiplied by 10000, %ayz percentage of positive estimated variances

Table A-6: QGLS estimates in the ARCH model with S&P coefficients p =
0.01, a9 = 0.0009, a1 = 0.22 and v = 0.75(y3(v) = 0,%4(v) = 10,74(¢) =
17)

QML | T | Mean |  MSE | s| op| H| OML| BW | BWg

100 | 0.01003 0.10615 | 0.09168 | 0.10890 | 0.09719 0.11541 | 0.10095 | 0.10507
200 | 0.01001 0.05572 | 0.04741 | 0.05114 | 0.04879 0.05783 | 0.05308 | 0.05427
B 400 | 0.01000 0.02829 | 0.02419 | 0.02453 | 0.02450 0.02823 | 0.02709 | 0.02741
800 | 0.01000 0.01389 | 0.01228 | 0.01193 | 0.01236 0.01400 | 0.01373 | 0.01381
1200 | 0.01000 0.00933 | 0.00820 | 0.00780 | 0.00823 0.00934 | 0.00922 | 0.00926
1600 | 0.00998 0.00715 | 0.00616 | 0.00579 | 0.00618 0.00700 | 0.00693 | 0.00695
100 | 0.00088 0.00098 | 0.00024 | 0.00011 | 0.00026 0.00087 | 0.00079 | 0.00079
200 | 0.00089 0.00049 | 0.00012 | 0.00004 | 0.00012 0.00046 | 0.00043 | 0.00043
) 400 | 0.00089 0.00024 | 0.00006 | 0.00002 | 0.00006 0.00024 | 0.00023 | 0.00023
800 | 0.00090 0.00013 | 0.00003 | 0.00001 | 0.00003 0.00012 | 0.00012 | 0.00012
1200 | 0.00090 0.00009 | 0.00002 | 0.00001 | 0.00002 0.00008 | 0.00008 | 0.00008
1600 | 0.00090 0.00006 | 0.00001 0 | 0.00001 0.00006 | 0.00006 | 0.00006
100 | 0.24662 | 1142.865 | 278.124 | 179.470 | 370.560 | 1384.500 | 770.578 | 790.326
200 | 0.22887 500.722 | 124.105 62.973 | 152.721 622.340 | 397.222 | 400.648
&1 400 | 0.22238 260.764 59.764 24.195 68.559 280.292 | 215.501 | 216.266
800 | 0.21890 127.135 29.080 10.093 31.374 129.674 | 111.661 | 111.801
1200 | 0.21894 84.584 19.339 6.210 20.356 82.905 77981 78.030
1600 | 0.21922 60.980 14.488 4434 15.085 61.498 57.923 57.948

MSE and variance estimates multiplied by 10000
0 means a number smaller than 0.00005

26



Table A-7: QGLS estimates in the ARCH model with S&P coefficients f =
0.01, 29 = 0.0009, a1 = 0.22 and v = 0.75

QGLS ‘ T ‘ Mean ‘ MSE ‘ 092
100 | 0.01002 | 0.10273 | 0.10588

200 | 0.00999 | 0.05279 | 0.05282

B | 400 | 0.01001 | 0.02662 | 0.02652
800 | 0.01000 | 0.01297 | 0.01325
1200 | 0.01000 | 0.00862 | 0.00883
1600 | 0.00999 | 0.00654 | 0.00661
100 | 0.00092 | 0.00102 | 0.00118

200 | 0.00092 | 0.00052 | 0.00066

&o [ 400 | 0.00091 | 0.00027 | 0.00036
800 | 0.00091 | 0.00014 | 0.00019
1200 | 0.00091 | 0.00009 | 0.00013
1600 | 0.0009T | 0.00007 | 0.00010
100 | 0.16692 | 517.235 | 760.310

200 | 0.18000 | 363.107 | 485.378

&, | 400 | 0.18953 | 232179 | 292.948
800 | 0.20009 | 129.101 | 163.705
1200 | 0.20643 | 92.864 | 118.505
1600 | 0.20982 | 72457 | 91.824

MSE and variance estimates multiplied by 10000

Table A-8: Estimation of the variance 02 = ag/(1 — 1) = 0.00115

y
l T l % ayz l Mean l MSE l Mean(cor) l MSE(cor)
100 | 0.768 | 0.00168 | 0.71205 0.00133 0.00786
200 | 0.896 | 0.00150 | 0.85154 0.00123 0.00233
QML 400 | 0.969 | 0.00123 | 0.01065 0.00118 0.00079
800 | 0.996 | 0.00118 | 0.00059 0.00116 0.00031
1200 | 0.999 | 0.00116 | 0.00027 0.00116 0.00020
1600 1 | 0.00116 | 0.00017 0.00115 0.00014
100 | 0.777 | 0.00137 | 0.11275 0.00120 0.00288
200 | 0.891 | 0.00129 | 0.28304 0.00116 0.00117
QGLS 400 | 0.963 | 0.00119 | 0.00612 0.00115 0.00057
800 | 0.995 | 0.00116 | 0.00045 0.00115 0.00028
1200 | 0.998 | 0.00116 | 0.00032 0.00115 0.00019
1600 | 0.999 | 0.00116 | 0.00026 0.00115 0.00014
100 | 0.801 | 0.00119 | 0.00299 0.00116 0.00186
200 | 0.904 | 0.00117 | 0.00132 0.00115 0.00093
LS 400 | 0.970 | 0.00115 | 0.00070 0.00114 0.00048
800 | 0.996 | 0.00115 | 0.00035 0.00115 0.00026
1200 | 0.999 | 0.00115 | 0.00031 0.00114 0.00018
1600 1 | 0.00115 | 0.00025 0.00115 0.00014
100 1 | 0.00115 | 0.00265 0.00112 0.00121
200 1 | 0.00115 | 0.00128 0.00113 0.00065
HV 400 1 | 0.00115 | 0.00070 0.00114 0.00036
800 1 | 0.00115 | 0.00035 0.00114 0.00019
1200 1 | 0.00115 | 0.00031 0.00114 0.00013
1600 1 | 0.00115 | 0.00025 0.00115 0.00010

MSE multiplied by 10000, %0; percentage of positive estimated variances, Mean (cor) and MSE(cor):

after elimination of 1% of replications due to outliers in the QML estimation ?(3.
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Table A-9: Moments of QML residuals @ and &

T | 7| s m@ | m@ | € | s 1) | (@)
100 -0.00037 0.99841 -0.00928 6.67219 -0.00002 0.00115 -0.00405 7.90015
200 -0.00053 0.99917 -0.01261 7.69700 -0.00002 0.00115 0.00064 9.35890
400 0.00000 0.99957 0.00210 8.42688 -0.00001 0.00115 -0.00786 10.81308
800 | 0.00020 | 099978 | 0.00622 | 8.88707 | 0.00001 | 0.00115 | 0.00866 | 11.88406
1200 | 0.00013 | 099986 | 0.00415 | 9.19369 | 0.00001 | 0.00115 | 0.0089 | 12.76738
1600 | 0.00018 | 0.99989 | -0.00085 | 9.30884 | 0.00001 | 0.00115 | -0.01419 | 13.21444

Table A-10: OML, QGLS and LS estimates in the ARCH model with S&P coeffi-
cients f = 0.01, g = 0.0009, 21 = 0.22 and ¥ = 0.6(13(v) = 0,74(v) =
16,714(¢) = 60)

QML QGLS LS
‘ T H Mean ‘ MSE ‘ QML ‘ BW H Mean ‘ MSE ‘ ag H Mean MSE
100 || 0.00994 | 0.11529 | 0.13941 | 0.09990 || 0.00996 | 0.10983 | 0.10579 || 0.00995 | 0.11834
200 || 0.00996 | 0.06229 | 0.06058 | 0.05484 || 0.00996 | 0.05402 | 0.05338 || 0.00998 | 0.06131
B | 400 || 0.01000 | 0.02881 | 0.03083 | 0.02877 || 0.01000 | 0.02470 | 0.02669 || 0.01000 | 0.02737
800 || 0.01000 | 0.01468 | 0.01501 | 0.01445 || 0.01000 | 0.01253 | 0.01319 || 0.01000 | 0.01405
1200 |[ 0.01001 | 0.00967 | 0.01015 | 0.00975 || 0.01001 | 0.00843 | 0.00883 || 0.01001 | 0.00957
1600 |[ 0.01000 | 0.00743 | 0.00743 | 0.00725 || 0.01001 | 0.00639 | 0.00659 || 0.01001 | 0.00712
100 || 0.00086 | 0.00148 | 0.00137 | 0.00120 || 0.00091 | 0.00158 | 0.00167 || 0.00101 | 0.00564
200 || 0.00088 | 0.00073 | 0.00066 | 0.00062 || 0.00092 | 0.00081 | 0.00095 || 0.00101 | 0.00261
ap | 400 || 0.00089 | 0.00038 | 0.00037 | 0.00035 || 0.00092 | 0.00044 | 0.00054 || 0.00100 | 0.00101
800 || 0.00089 | 0.00020 | 0.00019 | 0.00018 || 0.00091 | 0.00022 | 0.00029 || 0.00098 | 0.00046
1200 |[ 0.00090 | 0.00013 | 0.00013 | 0.00013 || 0.00091 | 0.00015 | 0.00020 || 0.00098 | 0.00035
1600 |[ 0.00090 | 0.00010 | 0.00010 | 0.00009 || 0.00091 | 0.00011 | 0.00015 || 0.00097 | 0.00027
100 || 0.27395 | 1822.118 | 2869.610 | 1227.906 0.171 | 662.739 | 1068.457 0.107 | 323.463
200 || 0.25475 | 1047.638 | 1458254 | 787.812 0.175 | 506.937 | 757.544 0.113 | 257.064
a; | 400 || 0.2318T | 483.193 | 609.709 | 405.458 0.182 | 356.931 | 458.849 0.123 | 233704
800 || 0.21895 | 207.141 | 252587 | 195.045 0.190 | 225484 | 261.883 0.133 | 180.134
1200 || 0.22086 | 148.256 | 166.613 | 134.962 0200 | 155.227 | 187.316 0.142 | 148575
1600 || 0.22066 | 109.919 | 113.274 99.215 0204 | 119514 | 146458 0.146 | 140.890

MSE and variance estimates multiplied by 10000
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Table A-11: Estimation of the variance 02 = o/ (1 — aq) = 0.00115

y
l T l %O’yz l Mean l MSE l Mean(cor) l MSE(cor)
100 | 0.719 | 0.00179 0.78087 0.00133 0.00994
200 | 0.834 | 0.00165 1.00551 0.00128 0.00512
QML 400 0.937 | 0.00141 0.17572 0.00123 0.00233
800 | 0.990 | 0.00123 0.02551 0.00117 0.00072
1200 0.998 | 0.00119 0.00126 0.00117 0.00042
1600 | 0.999 | 0.00117 0.00126 0.00116 0.00028
100 | 0.744 | 0.00268 | 39.00784 0.00123 0.00515
200 | 0.848 | 0.00123 0.00899 0.00117 0.00188
QGLS 400 | 0931 | 0.00129 0.30060 0.00117 0.00120
800 0.983 | 0.00117 0.00475 0.00114 0.00051
1200 | 0.994 | 0.00118 0.00725 0.00115 0.00036
1600 | 0.998 | 0.00117 0.00399 0.00115 0.00026
100 0.775 | 0.00122 0.01393 0.00116 0.00275
200 | 0.870 | 0.00119 0.00650 0.00115 0.00149
LS 400 | 0945 | 0.00116 0.00152 0.00114 0.00081
800 0.992 | 0.00114 0.00065 0.00113 0.00044
1200 | 0.998 | 0.00115 0.00046 0.00114 0.00031
1600 0.999 | 0.00115 0.00034 0.00114 0.00023
100 1 | 0.00116 0.01136 0.00111 0.00178
200 1 | 0.00116 0.00582 0.00112 0.00106
HV 400 1 | 0.00116 0.00148 0.00113 0.00059
800 1 | 0.00114 0.00065 0.00113 0.00032
1200 1 | 0.00115 0.00046 0.00114 0.00023
1600 1 | 0.00115 0.00034 0.00114 0.00017

MSE multiplied by 10000, %Uyz percentage of positive estimated variances

Table A-12: Moments of QML residuals ¢ and &

T | v | ss | m@) | m(@) | e | st | @ | (@) | rate

100 | 0.00058 | 0.99983 | -0.00784 8.74001 0.00000 | 0.00116 | -0.02076 | 10.20088 | 0.81

200 | 0.00005 | 0.99963 | -0.02117 | 10.37299 0.00002 | 0.00116 0.00301 | 12.89472 | 0.90

400 | 0.00002 | 0.99940 | -0.00859 | 12.20757 | -0.00000 | 0.00116 | -0.02526 | 15.73314 | 0.96

800 | 0.00013 | 0.99971 | -0.01173 | 13.44752 | 0.00000 | 0.00114 | 0.01299 | 18.39020 | 0.99

1200 | 0.00005 | 0.99980 | -0.00328 | 13.94305 | 0.00000 | 0.00115 | 0.00080 | 20.05828 | 1.00

1600 | 0.00013 | 0.99985 | 0.00500 | 14.22863 | 0.00000 | 0.00115 | -0.00210 | 20.71042 | 1.00
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Table A-13: OQOML, QGLS and LS estimates in the ARCH model with S&P coef-
ficients B = 0.01,a9 = 0.0009,07 = 022 and ¥y = 1, yp = 6,8 =
0.025(n3(v) = 2.02,n4(v) = 12, n4(e) = 27)

QML QGLS LS

‘ n H Mean ‘ MSE ‘ QML ‘ BW ‘ BWg H Mean ‘ MSE ‘ ‘792 H Mean MSE
100 || 0.00973 | 0.12140 | 0.14029 | 0.10770 | 0.12064 || 0.00999 | 0.11464 | 0.10911 || 0.01011 | 0.12507

200 || 0.00983 | 0.05990 | 0.06576 | 0.05738 | 0.06268 || 0.01001 | 0.05314 | 0.05394 || 0.01006 | 0.05904

B | 400 |[ 0.00983 | 0.02915 | 0.03022 | 0.02909 | 0.03132 || 0.00993 | 0.02613 | 0.02672 || 0.00996 | 0.02885
800 || 0.00998 | 0.01380 | 0.01451 | 0.01477 | 0.01585 || 0.01000 | 0.01233 | 0.01333 || 0.01003 | 0.01403

1200 || 0.00992 | 0.00981 | 0.00950 | 0.00980 | 0.01050 || 0.00995 | 0.00891 | 0.00879 || 0.00997 | 0.01001
1600 || 0.00995 | 0.00688 | 0.00708 | 0.00735 | 0.00786 || 0.00997 | 0.00618 | 0.00660 || 0.00998 | 0.00699

100 || 0.00088 | 0.00130 | 0.00150 | 0.00104 | 0.00107 || 0.00094 | 0.00128 | 0.00151 || 0.00105 | 0.00260

200 || 0.00089 | 0.00065 | 0.00064 | 0.00055 | 0.00056 || 0.00093 | 0.00064 | 0.00081 || 0.00102 | 0.00116

@y [ 400 [ 0.00089 | 0.00032 | 0.00031 | 0.00029 | 0.00029 || 0.00091 | 0.00032 | 0.00042 || 0.00100 | 0.00058
800 || 0.00090 | 0.00016 | 0.00016 | 0.00015 | 0.00015 || 0.00091 | 0.00016 | 0.00021 || 0.00099 | 0.00034

1200 || 0.00090 | 0.00010 | 0.00010 | 0.00010 | 0.00010 || 0.00090 | 0.00010 | 0.00014 || 0.00097 | 0.00023
1600 || 0.00090 | 0.00008 | 0.00008 | 0.00007 | 0.00008 || 0.00091 | 0.00008 | 0.00011 || 0.00097 | 0.00019

100 || 0.28212 | 2138.688 | 7169.387 | 1319.890 | 1400.020 0.166 | 806.363 | 1325.168 0.086 | 329.033

200 || 0.25325 | 1023.443 | 1415210 | 646492 | 659.531 0.175 | 536.194 | 790.352 0.103 | 257.920

ap [ 400 [[ 023020 | 413825 | 478.891 | 313.199 | 314922 0.190 | 334.182 | 438.181 0.120 | 196.801
800 || 021991 | 197229 | 201516 | 157.837 | 158.001 0.197 | 189.458 | 228.826 0.135 | 154.197

1200 || 0.21920 | 124.693 | 127543 | 108.690 | 108.790 0203 | 126240 | 157.478 0.143 | 129.649
1600 || 0.21666 93411 90.486 82.057 82.105 0205 | 96306 | 118.537 0.148 | 110.754

MSE and variance estimates multiplied by 10000

Table A-14: Estimation of the variance O'yz =uny/

l T l %05 l Mean l MSE l Mean(cor) l MSE(cor)

100 | 0.649 | 0.00338 | 74.68363 0.00154 0.02049

200 | 0.828 | 0.00182 3.29567 0.00137 0.00695

QML 400 | 0.945 | 0.00136 0.13826 0.00122 0.00140
800 | 0.991 | 0.00120 0.00190 0.00118 0.00049

1200 | 0.998 | 0.00117 0.00035 0.00116 0.00029

1600 | 0.999 | 0.00116 0.00024 0.00116 0.00021

100 | 0.675 | 0.00218 9.50793 0.00137 0.00941

200 | 0.833 | 0.00155 0.80065 0.00124 0.00277

QGLS 400 | 0.942 | 0.00121 0.00333 0.00118 0.00096
800 | 0.990 | 0.00117 0.00060 0.00116 0.00044

1200 | 0.998 | 0.00116 0.00034 0.00115 0.00027

1600 | 0.999 | 0.00115 0.00024 0.00115 0.00020

100 | 0.720 | 0.00127 0.00517 0.00123 0.00328

200 | 0.859 | 0.00119 0.00190 0.00117 0.00135

LS 400 | 0.951 | 0.00116 0.00102 0.00115 0.00069
800 | 0.991 | 0.00116 0.00052 0.00115 0.00039

1200 | 0.998 | 0.00115 0.00034 0.00114 0.00026

1600 | 0.999 | 0.00115 0.00030 0.00114 0.00020

100 1 | 0.00118 0.00415 0.00114 0.00193

200 1 | 0.00116 0.00177 0.00114 0.00096

HV 400 1 | 0.00115 0.00100 0.00114 0.00051
800 1 | 0.00116 0.00052 0.00115 0.00028

1200 1 | 0.00115 0.00034 0.00114 0.00019

1600 1 | 0.00115 0.00030 0.00114 0.00014

MSE multiplied by 10000, %0’5 percentage of positive estimated variances
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Table A-15: Moments of QML residuals ¢ and i

T o | 2| a0 | (o) | ¢ s2 | (@) | 7ma(®) | rate
100 | 0.00365 | 0.99755 | 1.55140 | 9.53594 | 0.00037 | 0.00118 | 1.71353 | 11.35415 | 0.84
200 | 0.00288 | 0.99879 | 1.78779 | 10.74138 | 0.00023 | 0.00116 | 1.93298 | 13.15655 | 0.94
300 | 0.00162 | 0.99946 | 1.89501 | 11.32281 | 0.00013 | 0.00115 | 2.06507 | 14.99902 | 0.99
800 | -0.00002 | 0.99976 | 1.95841 | 11.60277 | 0.00005 | 0.00116 | 2.18984 | 1690020 | 1.00
1200 | 0.00040 | 0.99984 | 1.98001 | 11.72125 | 0.00004 | 0.00115 | 2.22699 | 17.67808 | 1.00
1600 | 0.00036 | 0.99989 | 1.98989 | 11.74605 | 0.00003 | 0.00115 | 225114 | 18.23502 | 1.00

Table A-16: ML estimates in the Fiorentini GARCH model with f = —0.29,ap =
0.20,a7 = 0.35,0 =0.45and ¢y =2

ML | T | Men | MSE | s| op| H| QML | BW
200 | -0.2890 | 31.990 | 30.507 | 32.865 | 31216 | 31.662 | 30.419

B [ 400 | -02908 | 15399 | 15266 | 15.887 | 15434 | 15491 | 15.246

800 | 02903 | 7.887 | 7623 | 7.788 | 7.664 | 7.666 | 7.615

1200 | -02897 | 5190 | 5076 | 5151 | 5089 | 5083 | 5.073

200 | 0.2433 | 212.156 | 186.437 | 257.152 | 145.895 | 158544 | 158.389

& | 400 | 02204 | 61.022 | 54039 | 63200 | 57941 | 76771 | 51.064
800 | 02107 | 25064 | 23.234 | 25591 | 23958 | 24907 | 22413

1200 | 02057 | 15071 | 14675 | 15651 | 14947 | 15.187 | 14369

200 | 03500 | 150.642 | 143.836 | 179.446 | 152103 | 157.370 | 132.771

& [ 400 | 03484 | 73974 | 71463 | 8LO098 | 73997 | 76170 | 68337
800 | 03506 | 35500 | 35674 | 38.135 | 36239 | 36.645 | 35.013

1200 | 03488 | 24.186 | 23549 | 24793 | 23.795 | 23.771 | 23.146

200 | 03907 | 439.644 | 432.716 | 623532 | 324.014 | 353.089 | 359.521

§ [ 400 | 04228 | 156962 | 139.555 | 164.283 | 146.288 | 186.461 | 131.803

800 | 04355 | 66907 | 62441 | 68926 | 63.823 | 67.196 | 60.342

1200 | 04429 | 42658 | 40314 | 43.158 | 40.814 | 41.604 | 39.453

MSE and variance estimates multiplied by 10000

Table A-17: QML estimates in the Fiorentini GARCH model with g = —0.29, a9 =
0.20,a1 =0.35,6 =045and vy =1

ML | T | Mean | MSE | s | oP | H| QML | BW
200 | -0.2895 | 31.873 | 27.128 | 28.594 | 28.026 | 32.253 | 30.864

B [ 400 | 02902 | 16336 | 13681 | 13402 | 13918 | 15997 | 15697
800 | 02899 | 8.021 6872 6386 | 6926 | 8.008 7972

1200 | 02900 | 539 1588 1173 | 4611 | 5332 5327

200 | 02495 | 281.074 | 619570 | 760.139 | 131449 | 253.938 | 666.938

& [ 400 | 02226 | 105530 | 39444 | 26079 | 39.732 | 117869 | 77230
800 | 0.2108 | 40613 | 16,066 8813 | 16754 | 40430 | 34852

1200 | 02080 | 25473 | 10.259 5205 | 10647 | 26289 | 23185

200 | 03619 | 383.262 | 154835 | 110.119 | 172505 | 407.011 | 308.626

& | 400 | 03576 | 188332 | 75603 | 43864 | 80405 | 195058 | 168439
800 | 03558 | 92.356 | 37.229 | 18942 | 38.730 | 96.064 | 87.602

1200 | 03516 | 61.736 | 24436 | 11.752 | 25059 | 61.506 | 58.005

200 | 0.3684 | 672.491 | 1788.821 | 2257.209 | 359.949 | 637.495 | 1855.250

5 [ 400 | 04119 | 307.014 | 116944 | 83327 | 115271 | 308479 | 211.644
800 | 04314 | 127094 | 50315 | 28902 | 52.080 | 124486 | 104.719

1200 | 04371 | 81446 | 32772 | 17255 | 33.823 | 83.095 | 71781

MSE and variance estimates multiplied by 10000
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Table A-18: ML estimates in the GARCH model with S&P coefficients f =
0.01, 29 = 0.00015,47 = 0.15,0 = 0.72 and v = 2

ML | T | Men | MSE | S | OP | H | QML | BW

400 | 0.009985 0.023979 0.023827 0.024559 0.024040 0.024322 0.023892
800 | 0.009989 0.011886 0.011873 0.012072 0.011924 0.011963 0.011877
B | 1200 | 0.009999 0.007805 0.007918 0.008003 0.007938 0.007955 0.007926
1600 | 0.010002 0.005810 0.005940 0.005987 0.005951 0.005962 0.005945
2000 | 0.009997 0.004696 0.004746 0.004778 0.004754 0.004760 0.004748
400 | 0.000240 0.000696 0.001438 0.001842 0.000256 0.000313 0.001276
800 | 0.000176 0.000092 0.000064 0.000071 0.000058 0.000075 0.000061
&1 | 1200 | 0.000166 0.000034 0.000029 0.000031 0.000030 0.000035 0.000029
1600 | 0.000162 0.000025 0.000020 0.000021 0.000021 0.000023 0.000020
2000 | 0.000160 0.000016 0.000015 0.000016 0.000016 0.000016 0.000015

400 | 0.155208 34.665029 | 34.163404 | 40.185192 34.896348 36.910025 | 31.930475

800 | 0.152280 15912496 | 15.921534 | 17.459049 16.230682 17.070181 | 15.326092
&y | 1200 | 0.151985 10.510070 | 10.391240 | 11.054135 10.574944 10.958017 | 10.164867
1600 | 0.150728 7.721586 7.672395 8.036404 7.765652 7.968565 7.555073
2000 | 0.151051 6.093172 6.111097 6.349549 6.167958 6.276940 6.030999

400 | 0.627255 | 698.287546 * * | 299.498608 | 341.602924 *

800 | 0.692165 | 118.837997 | 89.495139 | 99.215006 83.104477 | 105.417232 | 85.446554
1200 | 0.703180 51.512609 | 44.774565 | 47.774876 46.202658 52.829229 | 43.919473
1600 | 0.707649 35.997877 | 31.972537 | 33.585732 32.488778 35.456071 | 31.539443
2000 | 0.709801 25.846380 | 24.507326 | 25.491539 24.717805 25.980988 | 24.250893

S

MSE and variance estimates multiplied by 10000
* unreliable estimate (exceeds more than two times the MSE value)

Table A-19: QML estimates in the GARCH model with S&P coefficients p =
0.01, g = 0.00015, 01 = 0.15,6 = 0.72 and v = 0.75

ML | T | Mean | MSE | s | oP | H | QML | BW
400 | 0.009999 0.024359 |  0.020815 | 0.021376 |  0.021156 |  0.024757 |  0.024064

800 | 0.010013 0.012024 | 0.010449 | 0010129 | 0.010530 | 0.012175 | 0.012040

p [ 1200 | 0.009986 0.008128 | 0.006972 | 0.006589 | 0.007008 | 0.008077 |  0.008027
1600 | 0.010002 0.006102 | 0.005244 | 0.004879 | 0.005264 | 0.006049 |  0.006044
2000 | 0.009995 0.004803 | 0.004191 | 0.003861 | 0.004202 | 0.004827 | 0.004827

400 | 0.000288 0.001070 | 21.102062 | 27.435340 | 0.000214 | 0.000480 | 16.431927

800 | 0.000205 0.000296 | 0.000080 | 0.000051 | 0.000043 | _ 0.000180 | _ 0.000180

& | 1200 | 0.000178 0.000121 | 0.000018 | 0.000007 | _0.000019 | 0.000101 | _ 0.000060
1600 | 0.000170 0.000074 | 0.000012 | 0.000004 | 0.000013 | _ 0.000056 | _ 0.000041
2000 | 0.000163 0.000039 | 0.000008 | 0.000003 | _ 0.000009 | _0.000040 | _ 0.000029

400 | 0.175327 136.370913 33.918759 | 15.413689 37.926862 | 202.469482 | 114.767566
800 | 0.163658 60.270965 14.472905 5.353295 15.483723 70.544890 54.347606
&y | 1200 | 0.158194 38.086409 8.875458 2.986825 9.333275 42.947335 34.950818
1600 | 0.155250 26.695053 6.369299 2.019288 6.635194 28.831341 25.367866
2000 | 0.154527 20.374321 4.967593 1.516026 5.137731 22.039439 19.856429

400 | 0.552410 | 1299.479532 * * | 287.328817 | 637.022832 *

800 | 0.651764 408.379443 | 119.474057 | 75.912416 66.548917 | 271.855435 | 262.067319
1200 | 0.684285 180.415137 30.935418 | 12.584935 32.503040 | 165.140469 96.566709
1600 | 0.695203 117.464964 20.888199 7.782649 21.825726 95.911272 68.954021
2000 | 0.702380 68.255820 14.850344 5.079317 15.627472 69.827289 51.975478

S

MSE and variance estimates multiplied by 10000
* unreliable estimate (exceeds more than two times the MSE value)
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Table A-20: QML estimates in the GARCH model with S&P coefficients p =

0.01, a9 = 0.00015,a7 = 0.15,6 = 0.72 and v = 0.6

QML | T | Mean | MSE | s | OP | H | QML | BW
400 | 0.010032 0.024558 | 0.019603 | 0.020471 |  0.020031 |  0.025635 |  0.024638

800 | 0.010009 0012320 | 0.009904 | 0.009556 | 0.010007 | 0.012560 | 0.012431

B [ 1200 | 0.009991 0.008241 | 0.006643 | 0.006198 | 0.006691 | 0.008609 |  0.008286
1600 | 0.010002 0.006035 | 0.004996 | 0.004553 | 0.005021 | 0.006250 |  0.006227
2000 | 0.009989 0.004987 | 0.003995 | 0.003597 | 0.004012 | 0.004995 | _ 0.004984

400 | 0.000299 0.001107 | 68.630125 | 134766125 | 0.000204 | 0.000410 | 41.037056

800 | 0.000219 0.000398 | 11.041167 | 10735009 | 0.000046 | 0.000241 | 11.683868

& | 1200 | 0.000191 0.000203 | 0.000031 | 0.000014 | 0.000021 | _0.000144 | _ 0.000115
1600 | 0.000176 0.000107 | 0.000011 | 0.000003 | 0.000012 | _ 0.000093 | _ 0.000057
2000 | 0.000168 0.000063 | 0.000008 | _0.000002 | _0.000008 | _ 0.000062 | _ 0.000040

400 | 0191365 | 266.633762 | 40.394923 | 14.436780 | 48.255705 | 365488836 | 207.079463

800 | 0.172752 | 115636597 | 16336691 | 4568930 | 18403758 | 136.557269 | 95.156130

fp [ 1200 | 0.164340 | 70.853354 | 9748340 | 2.394210 | 10.608007 | 85.716600 | 61.553544
1600 | 0.160063 | 47.142065 | 6.814800 | 1553504 | 7.326165 | 53544349 | 43.835/34
2000 | 0.156763 | 38.088251 | 50204430 | 1.123961 | 5.556717 | 42.812362 | 34367995

400 | 0.525659 | 1453589507 * * | 288.958667 | 524.347817 *

800 | 0.627315 | 603.342167 * * | 72.895044 | 348.637479 *

§ [1200 | 0.665402 | 314.018853 | 49.847216 | 22281513 | 35120852 | 253.938018 | 177.717625
T600 | 0684532 | 179.957457 | 20.313980 | 6.010881 | 21949546 | 157927518 | 93.669209
2000 | 0.695936 | 115599856 | 14413514 | 3.834310 | 15.687110 | 116.839738 | 71.229445

MSE and variance estimates multiplied by 10000
* unreliable estimate (exceeds more than two times the MSE value)

Table A-21: QML estimates in the GARCH model with S&P coefficients B
0.01, g = 0.00015, 01 = 0.15,6 =0.72,y =1,¢ = 0.025and pp = 6

QML | T | Mean | MSE | S | OP | H | QML | BW
400 | 0.009795 0.024865 0.019603 0.026872 0.020132 0.025455 0.025999

800 | 0.009893 0.012354 0.009897 | 0.013005 0.010046 0.012257 0.013180

B [ 1200 | 0.009915 0.007937 0.006619 0.008556 0.006694 0.0080438 0.008803
1600 | 0.009958 0.005928 0.004974 0.006378 0.005021 0.005977 0.006639
2000 | 0.009968 0.004808 0.003990 0.005109 0.004023 0.004762 0.005315

400 | 0.000330 0.001427 1.782753 3.793751 0.000243 0.000664 0.947438

800 | 0.000228 0.000466 0.000366 0.000302 0.000051 0.000179 0.000671

& [ 1200 | 0.000192 0.000203 0.000035 0.000015 0.000020 0.000120 0.000119
1600 | 0.000175 0.000100 0.000014 0.000005 0.000011 0.000067 0.000054
2000 | 0.000168 0.000059 0.000007 | 0.000002 0.000008 0.000056 0.000034

400 | 0.190733 | 253.783096 | 43.054958 | 15.084097 | 52.004212 | 291.732950 | 176.480349

800 | 0.172263 99.064311 | 17.089455 4.682566 | 19.340010 | 107.735843 | 77.187966

@ [ 1200 | 0.163438 55960507 | 10.005918 2432833 | 11.004563 | 63815196 | 47.878205
1600 | 0.159643 39.383601 6.976699 1.586842 7476095 | 42.765826 | 34476318
2000 | 0.156063 28.923702 5.295695 1.160328 5609834 | 31.842292 | 26.638507

400 [ 0491464 | 1844.647502 * * | 373245558 | 917.276856 *

800 | 0.617817 | 690.204659 | 568.578447 | 510.158376 | 79.696092 | 281.706670 | 969.426044

5 [ 1200 | 0.665059 | 322151505 | 55.304576 | 23.512562 | 33.991914 | 198.930003 | 187.902412
1600 | 0.686715 | 173976539 | 25.193799 8.887737 | 20.547883 | 125119564 | 98.003932
2000 | 0.696106 | 111.164791 | 13.816354 3376656 | 15.093561 | 105440458 | 66.007392

MSE and variance estimates multiplied by 10000
* unreliable estimate (exceeds more than two times the MSE value)
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Table A-22: Estimation of the variance ¢

GARCH model with S&P coefficients and y = 0.6

l T l % fryz l Mean l MSE l Mittel(cor.) l MSE(cor.) ‘

400 | 0.851200 | 0.001970 | 0.663215 0.001430 0.018869

800 | 0.953400 | 0.001569 | 0.230604 0.001316 0.006293

QML | 1200 | 0.981800 | 0.001430 | 0.192501 0.001244 0.002726
1600 | 0.992800 | 0.001315 | 0.048208 0.001215 0.001553

2000 | 0.996200 | 0.001467 | 5.343096 0.001195 0.001088

400 | 0.843900 | 0.001830 | 1.004775 0.001349 0.012523

800 | 0.945700 | 0.001516 | 0.336445 0.001270 0.005054

QGLS | 1200 | 0.977600 | 0.001390 | 0.105158 0.001218 0.002547
1600 | 0.989900 | 0.001318 | 0.060702 0.001195 0.001562

2000 | 0.993900 | 0.001237 | 0.024938 0.001175 0.001071

400 | 0.816700 | 0.001206 | 0.015127 0.001135 0.002308

800 | 0.893300 | 0.001158 | 0.004976 0.001117 0.001230

LS | 1200 | 0.916500 | 0.001146 | 0.001971 0.001118 0.000901
1600 | 0.935100 | 0.001143 | 0.001480 0.001119 0.000694

2000 | 0.938800 | 0.001142 | 0.001860 0.001117 0.000591

400 1 | 0.001175 | 0.010829 0.001115 0.000755

800 1 | 0.001157 | 0.004991 0.001117 0.000434

HV | 1200 1 | 0.001153 | 0.002172 0.001123 0.000312
1600 1 | 0.001149 | 0.001543 0.001125 0.000242

2000 1 | 0.001150 | 0.001997 0.001123 0.000198

MSE multiplied by 10000, %(73 percentage of positive estimated variances, MSE(cor) :

elimination of 1% of replications due to outliers in the QML estimation

ng/ (1 — a1 —6) = 0.00115 in the

Table A-23: Moments of QML residuals ¢ and & in the GARCH model with S&P
coefficients and y = 0.6

T_| 0 | s3 | m@) | na(o) | € s2 13(8) | na(®) | rate
400 | -0.00009 | 0.999 | 0.00585 11.3 -0.00000 | 0.00118 | 0.01674 159 | 0.82
800 | -0.00009 | 1.003 | -0.00168 12.7 | -0.00001 | 0.00116 | -0.01195 199 | 0.90
1200 | 0.00024 | 0.999 0.01594 13.4 0.00001 0.00115 0.00435 22.8 0.94
1600 | 0.00001 0.999 0.00194 13.7 -0.00000 | 0.00115 0.00542 247 0.96
2000 | -0.00007 | 0.999 0.00201 14.0 -0.00001 | 0.00115 0.00044 26.2 0.97

rate of replications in the QML algorithm without convergence
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Table A-24: Estimation of the variance ¢?

GARCH model with DAX coefficients and v = 0.6

l T l % ?fyz l Mean l MSE l Mean(cor.) l MSE(cor.)

400 | 0.726100 | 0.003212 | 583.287018 0.000241 0.000985

800 | 0.848100 | 0.000438 0.357907 0.000247 0.000775

ML g9,y | 1200 | 0.914100 | 0.000390 0.215043 0.000242 0.000588
1600 | 0.938400 | 0.000348 0.026509 0.000242 0.000520

2000 | 0.962600 | 0.000355 0.060930 0.000240 0.000444

400 | 0.735300 | 0.000376 0.097119 0.000225 0.000691

800 | 0.859700 | 0.000375 0.166630 0.000235 0.000680

TSLS(99py | 1200 | 0.917800 | 0.000356 0.091866 0.000224 0.000413
1600 | 0.939300 | 0.000315 0.034853 0.000227 0.000412

2000 | 0.959700 | 0.000303 0.018330 0.000225 0.000336

400 | 0.779400 | 0.000215 0.001076 0.000193 0.000216

800 | 0.903500 | 0.000210 0.001412 0.000189 0.000121

LS99y | 1200 | 0.950600 | 0.000197 0.000396 0.000185 0.000088
1600 | 0.966800 | 0.000200 0.000894 0.000186 0.000072

2000 | 0.976200 | 0.000201 0.004372 0.000184 0.000057

400 1 | 0.000198 0.000642 0.000181 0.000026

800 1 | 0.000203 0.000799 0.000185 0.000016

MM(ggp) 1200 1 | 0.000195 0.000359 0.000183 0.000011
1600 1 | 0.000199 0.000820 0.000186 0.000010

2000 1 | 0.000195 0.000212 0.000185 0.000008

ng/ (1 —a; —6) = 0.00020 in the

MSE multiplied by 10000, %(Tyz percentage of positive estimated variances, MSE(cor):

elimination of 1% of replications due to outliers in the QML estimation (”Tyz.

Table A-25: Moments of QML residuals 7 and & in the GARCH model with DAX
coefficients and ¢y = 0.6

2

| 3 | 3 | m@) [ me) | @ 2| ) | @ | rae
400 -0.00014 | 1.001 0.00850 114 0.00000 0.00020 0.01272 14.6 0.74
800 -0.00002 | 1.001 0.02234 12.7 0.00000 0.00020 0.02367 19.2 0.85
1200 | -0.00019 | 1.000 | 0.01340 134 -0.00000 | 0.00020 | 0.00602 22.0 0.90
1600 | -0.00010 | 1.000 | -0.00245 13.8 -0.00000 | 0.00020 | -0.01819 25.3 0.93
2000 | -0.00017 | 1.000 | -0.00384 14.1 0 0.00020 | 0.01988 26.9 0.95

rate of replications in the QML algorithm without convergence
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