
http://www.econometricsociety.org/

Econometrica, Vol. 78, No. 3 (May, 2010), 847–882

THE ROLE OF INFORMATION IN REPEATED GAMES
WITH FREQUENT ACTIONS

YULIY SANNIKOV
Princeton University, Princeton, NJ 08544-1021, U.S.A.

ANDRZEJ SKRZYPACZ
Graduate School of Business, Stanford University, Stanford,

CA 94305-5015, U.S.A.

The copyright to this Article is held by the Econometric Society. It may be downloaded,
printed and reproduced only for educational or research purposes, including use in course
packs. No downloading or copying may be done for any commercial purpose without the
explicit permission of the Econometric Society. For such commercial purposes contact
the Office of the Econometric Society (contact information may be found at the website
http://www.econometricsociety.org or in the back cover of Econometrica). This statement must
be included on all copies of this Article that are made available electronically or in any other
format.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6286756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.econometricsociety.org/


Econometrica, Vol. 78, No. 3 (May, 2010), 847–882

THE ROLE OF INFORMATION IN REPEATED GAMES
WITH FREQUENT ACTIONS

BY YULIY SANNIKOV AND ANDRZEJ SKRZYPACZ1

We show that in repeated interactions the avenues for effective provision of incen-
tives depend crucially on the type of information players observe. We establish this
conclusion for general repeated two-player games in which information arrives via a
continuous-time stationary process that has a continuous multidimensional Brownian
component and a Poisson component, and in which the players act frequently. The Pois-
son jumps can be used to effectively provide incentives both with transfers and value
burning, while continuous Brownian information can be used to provide incentives only
with transfers.

KEYWORDS: Repeated games, imperfect monitoring, frequent actions, Brownian
motion, Poisson process, Levy decomposition.

1. INTRODUCTION

CONSIDER A DYNAMIC INTERACTION in which players learn information con-
tinually over time. According to the Lévy decomposition theorem, if the infor-
mation process has independent and identically distributed increments (condi-
tional on current actions), it can be decomposed into a continuous Brownian
component and a discontinuous Poisson component. Figure 1 illustrates con-
tinuous and discontinuous information processes (specifically, log likelihood
ratios for a statistical test of cooperative behavior by one of the players).

The arrival of information can be classified into these two categories not just
on an abstract mathematical level, but also in practice. For example, members
of a team inside a firm may see continuously how close they are to comple-
tion of a project. They may also learn information from breakdowns and ac-
cidents that arrive discontinuously. Firms colluding in a market for chemicals
with secret price discounts can trace market prices of futures on their product
relatively continuously (with each change containing little information about
strategies) and can monitor infrequent (and informative) purchasing decisions
of large clients.

This paper shows that the effective use of information to provide incen-
tives in repeated two-player games with frequent actions depends crucially on
whether information arrives continuously or via sudden, informative events.
Motivated by the Lévy decomposition theorem, we assume that players learn
information through a mix of Brownian and Poisson processes. We assume that
the players’ actions affect only the drifts but not the volatilities of the Brown-
ian processes, to ensure that players learn information gradually (as illustrated

1We thank Dilip Abreu, Eduardo Faingold, Drew Fudenberg, Ben Golub, Patrick Hummel,
David Levine, Yuval Salant, and Larry Samuelson and three anonymous referees for helpful com-
ments. We also thank seminar participants at Harvard, UCLA, University of Chicago, University
of Rochester, Cowles 75th Anniversary Conference, SED 2006, and WEM 2006.
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FIGURE 1.—The evolution of log likelihood ratios if the null is true (cooperative behavior; top
panels) and if the alternative is true (bottom panels).

in the left panel of Figure 1), since volatility can be precisely estimated from
even small sample paths of the process.2 We require information flows (and
payoffs) to be invariant to changes in the frequency of moves. The information
about current actions is observed without delay; that is, the current actions
completely determine the distribution of current signals, independently of past
actions.

Existing theory describes two main ways to provide incentives in repeated
games. The first way is by burning value, as in the oligopoly of Green and
Porter (1984), where incentives to collude are created by the threat of trigger-
ing a price war. Strongly symmetric equilibria of Abreu, Pearce, and Stacchetti
(1986) (hereafter APS86), in which all players choose the same action in each
period, use only this way of creating incentives. The second way is by trans-
ferring continuation payoffs among players along tangent hyperplanes. Fuden-
berg, Levine, and Maskin (1994) (hereafter FLM) proved the folk theorem for
a class of games that satisfy identifiability conditions by constructing equilibria
that rely on this second way of creating incentives.3

We relate these two ways of providing incentives to the types of information
players observe in games with frequent actions. We establish that in the limit

2See Fudenberg and Levine (2007) for a model in which actions affect volatility, but players
observe only cumulative signals rather than their sample paths.

3Mailath and Samuelson (2006) provided an excellent exposition of the current theory of
discrete-time repeated games. In Proposition 8.2.1, Mailath and Samuelson (2006) showed that
the folk theorem typically fails for strongly symmetric equilibria, in which incentives are created
via value burning. In asymmetric equilibria, even though the folk theorem holds under appro-
priate conditions, for discount factors less than 1 payoffs are bounded away from efficiency. The
reason is that transfers of continuation values along tangent hyperplanes necessarily require value
burning when the set of equilibrium payoffs is strictly convex.
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as the period between the players’ actions, Δ, shrinks to 0, the set of payoffs
that players can attain equilibrium is bounded by

(a) using the Brownian information only to transfer value along tangent hy-
perplanes (tangent to the set of achievable equilibrium payoffs),

(b) using the Poisson signals separately from the Brownian information,
(c) ignoring multiple Poisson arrivals, and
(d) using the Brownian information linearly (i.e., making continuation pay-

offs a linear function of the Brownian information).
Poisson signals can be used both to transfer value along tangent hyperplanes

and to destroy value (by moving orthogonally to the tangent hyperplane).
To prove our result, we observe that restrictions (a)–(d) on the use of infor-

mation (even without additional restrictions on the size of transfers and value
destruction) bound the set of attainable payoffs to a possibly smaller set, which
we call M . In particular, we show that for any discount rate, the set M bounds
the set of attainable payoffs in pure-strategy sequential equilibria (SEp) when
the players move sufficiently frequently (Theorem 1). Restrictions (a)–(d) mat-
ter when players act frequently: for large Δ, the set of attainable payoffs can be
significantly larger than M .

For small Δ, impatient players cannot attain all of M , since they can only
transfer and destroy bounded amounts of continuation payoffs, and can only
do so inefficiently. To complement our main result, in Section 5.1 we show that
for generic games, players can attain any payoff profile inside M if the discount
rate r and the period between actions Δ are sufficiently close to 0. Moreover,
payoff profiles inside M can be attained while respecting restrictions (a)–(d)
on the use of information more and more strictly as Δ → 0.4 Thus, for high
frequency of moves and low discount rates, any other way of using information
contributes very little to satisfying the incentive compatibility constraints and
cannot significantly expand the set of payoffs attainable in equilibrium. These
“ineffective” ways of using information include

(a′) conditioning on Poisson and Brownian information jointly,
(b′) conditioning on multiple Poisson signals,
(c′) triggering value burning using Brownian information, and
(d′) using Brownian information nonlinearly.
What if players are impatient? The bound M on the set of attainable payoffs

still applies, and in Section 6 we also explore the interaction between restric-
tions (a)–(d) and incentive compatibility constraints/SEp payoff sets in games
with impatient players. While the results are weaker due to technical difficul-
ties, particularly with respect to restriction (d), Section 6 suggests that infor-
mational restrictions are important in general, and not just for patient players.

Several papers have studied games with frequent actions but focused on the
creation of incentives via value burning. Abreu, Milgrom, and Pearce (1991)

4Some restrictions, like linearity, cannot be satisfied exactly for Δ > 0 because payoffs are
bounded and signals are not.
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(hereafter AMP) used a repeated prisoners’ dilemma with Poisson signals to
show the distinction between increasing the frequency of actions while keeping
the flow of information constant, and increasing the discount factor toward 1.
They have also shown that under frequent actions, incentives can be provided
effectively by triggering punishments after single (but not multiple) arrivals of
Poisson signals. Sannikov and Skrzypacz (2007) showed that it is impossible
to provide incentives by using Brownian information to trigger punishments in
a repeated Cournot duopoly.5 Unlike Poisson signals, Brownian information
leads to much higher costs of type I errors, that is, triggering a punishment
when no deviation has occurred. Fudenberg and Levine (2007) studied a re-
peated game between one long-run player and a sequence of short-run play-
ers, and assumed that players observe only cumulative signals at the end of
each period, instead of continuously. In this setup, incentives can be created
only by value burning. They showed that attainable payoffs depend on whether
signals are Brownian or Poisson, and whether actions affect the variance or
only the mean of Brownian signals. If a deviation increases the variance of a
Brownian signal, the cost of type I errors drops dramatically. Fudenberg and
Levine (2009) focused on the ways that a continuous-time information process
can arise from a sequence of processes in discrete time. In contrast, we focus
on observations of the time path of a fixed continuous-time process at discrete
points of time. We build upon the intuition about the costs of type I errors that
appear in AMP, Sannikov and Skrzypacz (2007), and Fudenberg and Levine
(2007). The novelty of this paper is that it is the first to study repeated games
with general action spaces and payoff functions, the first to allow for both trans-
fers and value burning, and the first to consider information arrival through a
mix of continuous and discontinuous processes.

The intuition for our results is as follows. First, deviations yield per pe-
riod benefits on the order of Δ, the length of a period. Since punishments are
bounded by the range of continuation payoffs, events with probability less than
O(Δ) are negligible for incentives. Therefore, conditioning on multiple Poisson
arrivals is ineffective, as these events happen with probabilities on the order of
Δ2 per period. Second, treating the Poisson and Brownian parts independently
does not influence incentives much because the rare Poisson arrivals are much
more informative than the Brownian information (as shown by the changes
in the log likelihood ratios in Figure 1). Third, with Brownian information it is
too costly to provide incentives via value burning. This is because with normally
distributed log likelihood ratios, the optimal test for detecting a deviation has
a disproportionately large type I error (≈O(Δ1/2) per period) if a deviation in-
creases the probability of punishment by O(Δ). With Poisson signals, a similar

5For the Cournot game they studied, they showed that collusion is impossible even in asymmet-
ric equilibria. To prove this result, they assumed that goods are homogenous, so that deviations of
different players cannot be statistically identified by looking at the common market price.
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test would have a type I error O(Δ). Therefore, burning value upon Poisson ar-
rivals can be a part of an optimal incentive scheme if it is not possible to provide
incentives solely with transfers. Fourth, the linear use of Brownian information
to implement transfers is hardest to explain in words. Fundamentally, the result
has to do with the curvature of the set of available continuation payoffs. If the
set is smooth, its curvature defines a locally quadratic cost of transferring value
between players, and as Δ → 0, less and less information arrives per period
and transfers need to be small.6 A constrained maximization problem with a
quadratic cost function has a linear solution, hence the result. Of course, since
the set M is typically nonsmooth, we approximate it with smooth sets from both
outside and inside. Using outer approximations, Section 5 shows that nonlinear
use of Brownian information cannot significantly improve the set of attainable
payoffs over M . At the same time, Section 5.1 shows that inner approxima-
tions can be generically attained with approximately linear transfers for small
enough discount rates and high enough frequency of moves.7

Our construction of the set M uses the method of decomposing payoffs on
half-spaces (Fudenberg and Levine (1994), Kandori and Matsushima (1998))
with restrictions (a)–(d). These informational restrictions are closely con-
nected with the theory of repeated games in continuous time. In fact, in con-
tinuous time, restrictions (a)–(d) above are the only ways of using informa-
tion. For example, in the continuous-time games of Sannikov (2007), which
involve only Brownian information, continuation values in optimal equilibria
move tangentially along the boundary of the set of equilibrium payoffs.8 In the
games of Faingold and Sannikov (2007) between a large player and a popu-
lation of small players, the only way to provide incentives is by burning value
(and hence the set of equilibrium payoffs in those games collapses to the static
Nash payoffs when players can act continuously because, as we show here, no
dynamic incentives can be provided in the limit).

This paper is organized as follows. Section 2 presents the model. Section 3
describes the construction of set M and relates it to intuition from continuous

6One may wonder why we ignore extreme realizations of Brownian signals even though they
are very informative about the players’ actions (see Mirrlees (1974), Holmström and Milgrom
(1987), Müller (2000), Hellwig and Schmidt (2002), and Fudenberg and Levine (2007)). There
are two reasons. First, transfers in a repeated game are bounded by the set of feasible payoffs (un-
like in the standard principal-agent models where it is assumed that agent’s utility is unbounded
from below), and extreme realizations of Brownian signals are very unlikely. As a result, incen-
tives created by conditioning on those extreme realizations are negligible. Second, if the set of
continuation payoffs is strictly convex, large transfers are too costly since they need to be accom-
panied by value burning (and small transfers for small probability events have negligible impact
on incentives).

7The folk theorem of FLM also uses a smooth inner approximation for the set of feasible and
individually rational payoffs.

8The characterization of Sannikov (2007) requires additional assumptions, such as pairwise
identifiability of action profiles. These assumptions are not needed to characterize the set M in
our paper.
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time. Section 4 provides examples. Section 5 presents the main result formally
for games with small discount rates and Section 6 extends our main insights
to general discount rates. Section 7 concludes by discussing the issues of effi-
ciency, games with more than two players, and the connection between Brown-
ian signals and Poisson signals that arrive frequently. The Appendix contains
main proofs and the Supplemental Material (Sannikov and Skrzypacz (2010))
contains additional, more technical proofs.

2. THE MODEL

Consider a repeated game with frequent moves. Two players choose actions
a1 and a2 from finite sets A1 and A2, respectively. We denote an action profile
by a = (a1� a2). Players can change their actions only at discrete time points
t ∈ {0�Δ�2Δ� � � �},9 but they observe signals that carry imperfect information
about their actions continuously.

The flow of information is independent of Δ. For any fixed action profile,
public signals arrive via a continuous-time process with independent and iden-
tically distributed (i.i.d.) increments. Motivated by the Lévy decomposition
theorem, we divide public signals into their continuous and discontinuous com-
ponents.10 The continuous component is given by the k-dimensional process

dXt = μ(a1� a2)dt + dZk
t �

where Zk
t is a k-dimensional standard Brownian motion and μ is a function

from action profiles to Rk.11 The discontinuous Poisson component of the pub-
lic signal takes values y from a finite set Y and has a value-specific intensity
λ(y|a), conditional on the actions taken by players. We make the following
assumptions.

ASSUMPTION 1: λ(y|a) is positive for all (y�a) (full support).

ASSUMPTION 2: The dimension of the Brownian signal is k≥ 1.12

ASSUMPTION 3: Actions do not affect the volatility of Brownian signals.

9Throughout the paper, we suppress the dependence of actions on time to simplify notation.
10Continuous-time processes with i.i.d. increments are called Lévy processes (see Barndorff-

Nielsen, Mikosch, and Resnick (2001, Theorems 1.1–1.3) or Sato (1999)). By the Lévy decompo-
sition theorem (see Protter (2005, Theorem 42)), any Lévy process in Rk can be represented as a
sum of a k-dimensional Brownian motion (a continuous component) and a compounded Poisson
process (a jump process that can take many values).

11As we mentioned in footnote 2, we restrict the actions to affect only the drift (and not the
volatility). See Fudenberg and Levine (2007) for discussion of games in which players affect
volatility. We also assume that the volatility is 1, but this is without loss of generality.

12It is possible for the Brownian signal to be completely uninformative, as in Examples 2 and 3
in Section 4. In this case, the Brownian signal is just a public randomization device.
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The last assumption is required to ensure that Brownian signals carry in-
formation continuously (as illustrated in the left panel of Figure 1), because
volatility is observed instantaneously and perfectly.

The flow of payoffs that the players receive is also defined independently
of Δ. At any moment of time t, player i’s incremental payoff is given by

dGt(ai� aj)= bi(ai)dXt + ci(ai)dt +
∑
y∈Y

hi(ai� y)dJy�t

for some functions bi :Ai → Rk� ci :Ai → R, and hi :Ai × Y → R, where dJy�t
is the indicator function for a realization of a jump with value y at time t. The
interpretation is that b is the sensitivity of player i’s payoff to the Brownian
component of the signal, ci is the private benefit or cost of action ai, and hi

is the realization of player i’s payoff for the jump y (these can be asymmetric
across the players). This definition presents the most general way a player’s
payoff can depend on his current action and the current public signal.13

The expected flow of payoffs is

gi(ai� aj)= bi(ai)μ(a)+ ci(ai)+
∑
y∈Y

hi(ai� y)λ(y|a)�

We denote g(a) = (g1(a)�g2(a)).
Players discount payoff flows at a common discount rate r and maximize the

sum of (normalized) expected discounted payoffs

r

∫ ∞

0
e−rtgi(ai� aj)dt�

A public strategy is a mapping from history of the public signals Xt and Jyt
into actions. Without loss of generality, we consider public strategies that are
not functions of the entire paths of signals Xt and Jyt , but only of the history of
sufficient statistics about the players’ actions, (x� (jy)), where

x=Xt −Xt−Δ ∼N(Δμ(a)�ΔI)(1)

and jy is the number of arrivals of Poisson signals of type y in a given period.14

13A reader unfamiliar with imperfect public monitoring games may be surprised that dGi does
not depend directly on aj . If it did, player i could infer something about aj from his payoffs
and not only from the public signal. Note that the expected payoffs do depend on both actions
(because actions affect the distribution of signals).

14There is no need to use the paths of signals for public randomization because the signal space
is continuous (since k≥ 1) and so by Abreu, Pearce, and Stacchetti (1990), public randomization
is not required to convexify the set of equilibrium payoffs.
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A public perfect equilibrium (PPE) is a profile of public strategies that in-
duces a Nash equilibrium after any public history of the repeated game. As-
sumption 1 (full support) implies that the set of pure-strategy PPE is equiva-
lent to the set of pure-strategy sequential equilibria (SEp). We focus on the set
V (Δ� r) of SEp payoff profiles for a game with period length Δ and discount
rate r. Abreu, Pearce, and Stacchetti (1990) (APS90) together with Assump-
tion 2 (that the signal space is continuous) imply that the set V (Δ� r) is convex.
To guarantee existence, we assume that the stage game has at least one Nash
equilibrium in pure strategies.

Denote by V the set of all feasible payoff profiles (i.e., the convex hull of
g(a)), and denote by V ∗ the set of feasible and individually rational payoff
profiles (V less the profiles with a payoff smaller than the pure-strategy mini-
max payoff of one of the players). Let V̄ denote the maximal distance between
any two points of V . Then V̄ is a bound on transfers and value burning in any
equilibrium. We call any unit vector in the payoff space a direction.

3. THE USE OF INFORMATION WHEN Δ IS SMALL

Our goal is to show that the set of payoff profiles, attainable in equilibria
when the time period between actions is small, is bounded by what can be
achieved by using information in a limited number of ways. We find informa-
tional restrictions that apply differently to two standard ways of creating incen-
tives in repeated games: (i) transfers of continuation values between players
along tangent hyperplanes (as in the folk theorem of FLM) and (ii) value burn-
ing, that is, choosing continuation payoffs orthogonally to the tangent hyper-
plane, as in Green–Porter equilibria (or APS86) that involve jumps to a price
war on the equilibrium path. Specifically, we show that for any r, as Δ → 0,
the set of equilibrium payoffs is bounded by a set M constructed under the
following informational restrictions:

(a) using the Brownian signals only to transfer value along tangent hyper-
planes (tangent to the set of achievable equilibrium payoffs),

(b) using the Poisson signals separately from the Brownian signals,
(c) ignoring multiple arrivals of Poisson signals, and
(d) using the Brownian signals linearly (i.e., making continuation payoffs a

linear function of the Brownian signals).
Poisson information can be used both to transfer value tangentially and to

destroy value by moving orthogonally to the tangent hyperplane. The results
suggests that these are the only effective ways of using information when Δ
is small. As a complement, we show that for generic games, any point in the
interior of M is attainable in equilibrium uniformly for all small Δ when players
are sufficiently patient (both results are presented formally in Section 5). When
players are impatient, for small Δ, the set of attainable payoffs, V (Δ� r), is
strictly smaller than M . Section 6 discusses the relationship between V (Δ� r)



GAMES WITH FREQUENT ACTIONS 855

and the set of payoffs that can be achieved in equilibria with a restricted use of
information.15

The set M is defined using linear programs, with embedded informational
restrictions, that bound the weighted sum of the players’ payoffs in all direc-
tions. For a given direction (set of weights) N = (N1�N2), the bound is given
by the program

D(N) = max
a�β�d(y)

(
g(a)+

∑
y∈Y

d(y)λ(y|a)
)

·N s.t. d(y) ·N ≤ 0(2)

and

gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti +

∑
y∈Y

di(y)(λ(y|a)− λ(y|a′))≥ 0(IC)

for all alternative action profiles a′ = (a′
i� aj) in which one of the players i de-

viates while his opponent j follows the action profile a (i.e., (IC) is a set of
incentive compatibility constraints that look at all single-player deviations). In
this program, T = (T1�T2) denotes the unit tangent vector obtained by rotating
N in the clockwise direction, β ∈ Rk denotes the linear impact of the Brown-
ian signal x on incentives, and d(y) = (d1(y)�d2(y)) refers to the jump in the
players’ continuation payoffs following a single arrival of a Poisson signal of
type y . Thus

∑
y∈Y d(y) ·Nλ(y|a) represents the value burning necessary to en-

force the profile a. Note that value burning is defined relative to the direction
N in which program (2) maximizes expected payoffs and does not necessarily
mean a reduction in expected continuation payoffs for both players. Using a
continuous-time limit game (as Δ → 0), we provide heuristic justification for
these constraints in Section 3.1.

With the bounds D(N) on the weighted sums of players payoffs for all N ,
the set M is defined as an intersection of half-spaces

M =
⋂
N

H(N)� where H(N) = {v ·N ≤D(N)}�

Figure 2 shows how the maximal half-space H(N) in the direction N is gener-
ated using program (2). The idea is to minimize the expected “value burning”
in equilibrium, that is, how much below the boundary of this half-space the
players have to move to provide incentives.

REMARK: Mechanically, our construction of M is similar to that of Fuden-
berg and Levine (1994) (hereafter FL),16 who found the set of payoffs that

15Section 6 uses the same restrictions as the definition of the set M with the exception of
linearity with respect to Brownian signals.

16See also Kandori and Matsushima (1998).
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FIGURE 2.—Vectors N�T and a half-space H(N) generated by destroying value∑
y∈Y d(y)λ(y|a) ·N .

patient players can attain when the folk theorem fails. The difference is that
we place restrictions on the use of information to characterize attainable pay-
offs as Δ → 0, rather than as r → 0 analyzed by FL. If we carried out FL’s
construction directly without restrictions on the use of information, we would
typically find that the entire set V ∗ of all feasible and individually rational pay-
offs is attainable in equilibrium as r → 0. This difference implies that for many
games,

lim
r→0

lim
Δ→0

V (Δ� r) � lim
Δ→0

lim
r→0

V (Δ� r)�

It is the case in Example 1 in Section 4: in this case, point (2�2) can be achieved
for any Δ in the limit as r → 0 by burning value conditional on arrival of ex-
treme realizations of x, but it cannot be achieved for any r in the limit as Δ→ 0.

3.1. Heuristic Interpretation of D(N)

Heuristically, in continuous time when the current pair of promised utilities
Wt is on the boundary of the equilibrium value set, the motion of continuation
values is locally described by

dWt = r(Wt − g(a))dt + rβ(dXt −μ(a)dt)T(3)

+ r
∑
y∈Y

d(y)(dJy�t − λ(y|a)dt)�

where a is the current action profile, T is the direction tangent to the boundary
at Wt�β is a vector controlling the sensitivity of the tangential motion of payoffs
to the Brownian component of the signal, dJy�t is a counting process equal
to 1 whenever Poisson shock y arrives, and d(y) is the jump in continuation
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values that occurs when Poisson shock y arrives (such that Wt +d(y) lies in the
equilibrium payoff set).

The term r(Wt − g(a))dt stands for promise keeping: the expected change
in continuation payoffs is equal to the difference in promised and expected re-
alized payoffs. The expected value of all the other elements, which represent
provision of incentives via continuation values, is equal to zero. The expression
rβ(dXt −μ(a)dt)T represents incentives provided by monitoring the Brown-
ian component of the signal and moving continuation payoffs only along the
tangent to the boundary of the equilibrium value set with sensitivity β. It dis-
allows the normal component of the motion of Wt to depend on the Brownian
signal to prevent continuation values from escaping the equilibrium value set.
The expression

r
∑
y∈Y

d(y)(dJy�t − λ(y|a)dt)

represents incentives provided by monitoring the Poisson process.
Expression (3) confirms our claims about the use of information directly in

continuous time and explains the constraints (IC). In (3), the Brownian compo-
nent of the signal is used to provide incentives only through tangential transfers
that are linear in dXt .17 This is the only option in continuous time, but the re-
sult of this paper is that it is close to optimal in discrete time as Δ → 0 as well,
because all other ways of using Brownian information have a negligible effect
on incentives as Δ → 0. At the same time, the Poisson component can be used
to provide incentives both via transfers and via value burning. Finally, the two
signals are not used jointly.

With such restrictions on the use of information to provide incentives, it is
easy to see that (IC) follow from (3). Indeed, the left hand side of (IC) rep-
resents the joint effect of a deviation on the current payoff and continuation
value, where the effect on continuation value can be read from (3).

4. EXAMPLES

This section illustrates the construction of M on a simple partnership game.
Two players choose effort ai = 0 or 1, and the expected stage-game payoffs are
given by

gi(a1� a2)= 4a1 + 4a2 − a1a2 − 5ai�

Each partner gets her share of the expected revenue 4a1 + 4a2 − a1a2 but pays
the cost of effort 5ai. The static Nash equilibrium of this game is (0�0), and

17Sannikov (2007) has shown that in a class of continuous-time games with a Brownian noise
only, in optimal equilibria, continuation values move tangentially along the boundary of the equi-
librium set.
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the matrix of expected stage-game payoffs is
0 1

0 0�0 4�−1
1 −1�4 2�2

We will analyze three monitoring/production technologies with these expected
payoffs:

EXAMPLE 1—Continuous Monitoring: The first technology has a flow cost of
2 and yields a stochastic stream of revenue 2 dXt , where dXt = μ(a1� a2)dt +
dZt and μ(a1� a2)= 4a1 + 4a2 − a1a2 + 1.

EXAMPLE 2—Discontinuous Monitoring With Good News: With the sec-
ond technology, revenue arrives in amounts of 2 with a Poisson intensity
λG(a1� a2)= 4a1 + 4a2 − a1a2 + 1 and there is also a fixed cost flow of 2.18

EXAMPLE 3—Discontinuous Monitoring With Bad News: The third tech-
nology brings a continuous revenue flow of 14.5, except for occasional sud-
den losses. These losses cost 2 each and arrive with a Poisson intensity of
λB(a1� a2)= 7�25 − (4a1 + 4a2 − a1a2).

The three technologies correspond to the following “business models”:
Model 1. The partners manage a large number of small accounts; their ef-

forts are the management of their salespeople. The revenues (net of costs)
come from a large number of small customers with i.i.d. decisions.

Model 2. The partners run a business with a small number of large accounts
and spend time jointly preparing proposals for clients. Since the partners have
different areas of expertise, they are not able to value each other’s input to the
proposals. Thus the only way to judge their efforts is by clients’ decisions.

Model 3. The partners manage a production technology with a long-term
contract providing a steady stream of revenue, but occasional large repairs or
customer complaints (caused by production mistakes) draw large one-time ex-
penses.

Next, we find the set M for each monitoring technology.
Set 1. With continuous monitoring, instruments (β1�β2) = (βT1�βT2) en-

force action profiles in which each player maximizes

gi(a1� a2)+βiμ(a1� a2)= (1 +βi)(4a1 + 4a2 − a1a2)+βi − 5ai�

Therefore, player i chooses action 1 if aj = 0 and βi ≥ 1/4 or if aj = 1 and
βi ≥ 2/3. Various pairs (β1�β2) give rise to stage-game payoffs illustrated in
the left panel of Figure 3. From this figure we can read which payoff pairs are

18To be consistent with Assumption 2, in Examples 2 and 3 the players also observe a nonin-
formative Brownian signal. However, this signal plays no role in the definition of M .
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FIGURE 3.—Payoffs achievable by pairs (β1�β2) and M in Example 1.

enforceable on each tangent hyperplane. For example, all payoffs except for
(2�2) are enforceable on the negative 45-degree tangent (since in the direc-
tion that maximizes the sum of payoffs T1 = −T2 so that β1 = −β2). Ironically,
(2�2) is the most efficient payoff profile, so the maximal hyperplane in the neg-
ative 45-degree direction passes through points (4�−1) and (−1�4). The right
panel of Figure 3 shows the set M constructed with the help of the left panel.

Set 2. In this case, λG(a1� a2) is the same as μ(a1� a2) from the previous ex-
ample, and the mapping from instruments (d1� d2) to payoffs in Figure 4 looks
exactly the same as in Figure 3. However, now it is possible to burn value when
a Poisson signal arrives (so we do not need to have (d1� d2)= (dT1� dT2)). From
Figure 4, we see that the set M becomes larger due to value burning to enforce
payoffs (4�−1) and (−1�4). We omit the detailed derivation of this set. Inter-
estingly, even though good news signals are not useful for providing incentives
in high-payoff strongly symmetric equilibria (as shown by AMP and Fudenberg
and Levine (2007)), they can be useful in providing incentives in asymmetric
equilibria (so the set M contains higher average payoffs than the best equilib-
rium in AMP).

FIGURE 4.—Payoffs achievable by pairs (d1�d2) and M in Example 2.
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FIGURE 5.—Enforceable actions and M in Example 3.

Set 3. Figure 5 illustrates the construction of the set M for this case. In this
case it is possible to enforce the payoff pair (2�2) by burning 2/3 units of payoff
for each player (i.e., d = (−2/3�−2/3)) when a bad news jump arrives (which
happens with intensity 0.25).

5. PROVING THE BOUND IN GAMES WITH FREQUENT ACTIONS

In this section we prove the main theorem, which shows that the set M
bounds payoffs attainable as Δ→ 0 for any r > 0.

THEOREM 1: For any ε > 0 and r > 0, there exists Δ∗ such that for any Δ<Δ∗,
there is no SEp achieving a payoff vector that is at distance at least ε from the
set M .

The rest of this section sketches the proof of Theorem 1 and the Appendices
(both text and online) fill in the details. We start with the following definition:

DEFINITION 1: A payoff profile w is generated by the set W if there
is a current-period action profile a and a map ω(x� (jy)) from signals to
continuation-value transitions that satisfy the feasibility constraint w + ω(x�
(jy)) ∈ W , the promise-keeping constraint

w = (1 − e−rΔ)g(a)+ e−rΔE
[
w+ω(x� (jy))|a

]
(4)

⇒ w = g(a)+ e−rΔ

1 − e−rΔ
E

[
ω(x� (jy))|a

]
�

and the IC constraints

(gi(a)− gi(a
′))+ e−rΔ

1 − e−rΔ

(
E

[
ωi(x� (jy))|a

] −E
[
ωi(x� (jy))|a′]) ≥ 0(5)
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FIGURE 6.—The set M and the family of curves C(s).

for any a′ (such that a′
j = aj and a′

i ∈ Ai).19

The first important step of the proof is a construction of a family of contin-
uously expanding closed convex curves C(s)� s ∈ [ε� s̄] containing M such that
the following conditions hold:

(i) The distance between any point of C(ε) and M is at most ε.
(ii) The set V is contained inside C(s̄).

(iii) For sufficiently small Δ> 0 and any s ∈ [ε� s̄], not a single point of C(s)
can be generated by the convex hull of C(s).

If we have a family of curves around M that satisfies conditions (i), (ii), and
(iii), it follows immediately that the set of SEp payoffs, V (Δ� r), lies inside
C(ε) for sufficiently small Δ. Otherwise, there are arbitrarily small Δ such that
V (Δ� r) sticks outside the set C(ε), as shown in Figure 6. If so, let us find
the smallest set C(s) that contains V (Δ� r) for a given Δ. Because sets C(s)
expand continuously, there exists an extreme point v of V (Δ� r) that touches
the boundary of C(s). Then, following APS90, since v is generated by V (Δ� r),
it must also be generated by the convex hull of C(s), leading to a contradiction.

The family of curves C(s) required for our proof is constructed in Appen-
dix A. However, instead of making sure that property (iii) holds directly, in
Appendix A we ensure that no curve has a single point generated by the curve
directly in continuous time, even if the constraints are relaxed by ε′. The family
of curves C(s) constructed in Appendix A satisfies properties (i), (ii), (iii′), and
a technical uniform curvature condition (iii′′):

(iii′) There exists ε′ > 0 such that no point on any curve C(s) is ε′-generated
using continuous-time instruments by the curve C(s).

19Throughout the paper we write continuation payoffs as w +ω(x� (jy)) where w is the equi-
librium expected payoff vector in the current period.
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(iii′′) There is some κ > 0 such that the curvature of any curve C(s) at any
point is at least κ.20

The following definition of ε′-generation (used in condition (iii′)), motivated
by the continuous-time intuition of Section 3.1, works for our argument:

DEFINITION 2: A point w on a curve of curvature κ is ε′-generated using
continuous-time instruments {a�β�d} by the curve if |d(y)| ≤ V̄ � d(y) ·N ≤ 0,

(g(a)−w) ·N − r

2
κ|β|2 +

∑
y

(d(y) ·N)λ(y|a)+ ε′ ≥ 0�(6)

and the IC constraints relaxed by ε′ hold for any a′ (such that a′
j = aj and

a′
i ∈Ai),

gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y∈Y

di(y)(λ(y|a)− λ(y|a′))+ ε′ ≥ 0�

where N and T are the normal and tangential vectors to the curve at w.

In the definition, note that the term rκ|β|2/2 in (6) takes into account value
destruction induced by the tangential transfers of continuation values along
the boundary of a curve of positive curvature κ. An analogous term arises due
to Ito’s lemma in continuous-time models.21 Note that ε′ relaxes both the IC
constraints and the promise-keeping constraint.

To complete our argument, we need to present a continuity argument to
show that a family of curves that satisfies property (iii′) must also satisfy prop-
erty (iii) for all sufficiently small Δ. The bound on curvature in property (iii′′)
then ensures that the continuity argument works uniformly for all points on all
curves.

The argument is by contradiction. Suppose that for arbitrarily small Δ, there
exists a point w on one of the curves C(s) that is generated by the convex hull of
the curve using discrete-time instruments {a�ω(x� (jy))}. We would like to then
show that w is ε′-generated by the curve using continuous-time instruments
{a�β�d(y)}, with β and d defined by

β= e−rΔ

1 − e−rΔ

∫
(ω(x�0) · T)xfa(x)dx and

d(y)= Δe−rΔ

1 − e−rΔ
Ex[ω(x�y)|a]�

20Curvature is defined as the rate, at which the tangential angle changes with arc length.
21See Sannikov (2007).
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where 0 denotes the event in which no Poisson jump arrives, y is the event
in which exactly one signal of type y arrives, and fa(x) is the density of the
Brownian signal under action profile a.

Lemma B1 in Appendix B implies that

(gi(a)− gi(a
′))+ e−rΔ

1 − e−rΔ
(E[ωi|a] −E[ωi|a′])

= (gi(a)− gi(a
′))

+ e−rΔ

1 − e−rΔ
Ti

∫
(ω(x�0) · T)x(μ(a)−μ(a′))fa(x)dx

+ e−rΔ

1 − e−rΔ

∑
y

Δ(λ(y|a)− λ(y|a′))Ex[ωi(x� y)|a] +O(Δ0�4999)

= gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y

di(y)(λ(y|a)− λ(y|a′))+O(Δ0�4999)

and Lemma B2 implies that

(g(a)−w) ·N − r

2
κ|β|2 +

∑
y

(d(y) ·N)λ(y|a)+O(Δ)≥ 0(7)

with the terms O(Δα) (with α> 0) bounded in absolute value by KΔα for some
constant K, uniformly for all sufficiently small Δ� s ∈ [ε� s∗], and w ∈ C(s).

Thus, if there are arbitrarily small Δ for which the set V (Δ� r) sticks outside
C(ε), it follows that for all ε′ > 0, there is a point v on one of the curves C(s)
that can be ε′-generated using continuous-time instruments by C(s). This leads
to a contradiction.22

5.1. Converse of the Theorem

Payoffs outside M cannot be achieved for small Δ. We now present a partial
converse of this statement: for small Δ and r, one can attain any payoff inside
the set M−, defined below. Appendix O-D in the Supplemental Material shows
that generically M− = M (and also provides a nongeneric example in which
these two sets are different).23

22Assuming that a Nash equilibrium in pure strategies exists, we guaranteed that M is non-
empty. However, for the case when M is empty, we could construct a family of curves C(s),
starting from an appropriately chosen point C(ε) ∈ V , to show that V (Δ� r) is empty as well for
small Δ.

23By generically we mean here that for any game structure (the set of actions of each player,
the set of possible Poisson jumps, and the number of dimensions of the Brownian signal), the
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DEFINITION 3: Define the set M(ε) analogously to M , but replacing the
(IC) constraints in the program (2) by the tighter constraints

gi(a)−gi(a
′)+β(μ(a)−μ(a′))Ti +

∑
y∈Y

di(y)(λ(y|a)−λ(y|a′)) ≥ ε�(ICε)

that is, requiring the incentive constraints to be slack by ε. Let M− =
limε↓0 M(ε), that is, the limit of M(ε) as we take ε to zero from below (tight-
ening the ICε constraints less and less).

Clearly, M(0) = M and M(ε) is decreasing in the set-inclusion sense (for
sufficiently large ε�M(ε) is empty and for very negative ε�M(ε) equals V ).

We can now state formally our version of the converse of our main theorem:

THEOREM 2: For any smooth convex set W in the interior of M−, there exist r∗

and Δ∗ such that for all r ≤ r∗ and Δ≤ Δ∗, any payoff profile in W is attainable in
a SEp.

The proof of Theorem 2 in Appendix O-C builds upon the methods of FLM.
However, in contrast to FLM, we establish the result not only for any r ≤ r∗, but
also uniformly for all Δ ≤ Δ∗. Moreover, we show that the set W can be gen-
erated while respecting the informational restrictions (a)–(d) from Section 3
more and more strictly as Δ→ 0. We sketch the proof below.

In Proposition O-C1 in the Supplemental Material, we show that for any v on
the boundary of W there exists a neighborhood of v of radius δv, a discount rate
rv, and period length Δv such that any extreme point of W in this neighborhood
is generated by W for all discount rates and period lengths not exceeding rv and
Δv. These open neighborhoods form a cover of the boundary of W . Since the
boundary is compact, any cover has a finite subcover, which implies that W is
self-generating for sufficiently small r and Δ.

In the proof of Proposition O-C1, we reverse the steps from the proof of
Theorem 1. We start with the continuous-time instruments (found in the con-
struction of M) to build discrete-time instruments that generate the desired
payoffs. In the process, to satisfy feasibility constraints, we might tighten the
IC constraints by a term that converges to zero as Δ → 0, which explains why
we need to use the set M− instead of M . Since the discrete-time instruments
are based on continuous-time ones, they satisfy informational restrictions (a)–
(d) from Section 3 more and more precisely as Δ→ 0.

statement is true everywhere except for a set of game parameters of measure 0. For a given game
structure, there are finitely many game parameters that specify for each action profile payoff to
each player, the mean of the Brownian signal and the intensity of each possible Poisson jump.
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6. IMPATIENT PLAYERS, r > 0

We now illustrate that our results regarding the effective uses of information
in games with frequent actions are relevant for any r > 0, not just in the limit as
r → 0. We show that if we restrict continuation payoffs to (a) provide incentives
with Brownian signals only tangentially, (b) use Brownian and Poisson signals
separately, and (c) not condition on multiple arrivals of Poisson signals, then
the set of attainable payoffs cannot collapse beyond the set of ε-strict equilibria
for all sufficiently small Δ. We comment on restriction (d), linearity, at the end
of this section.

Let us define ε-strict equilibria via an operator B(W �ε), which gives the
set of value pairs generated by a convex closed set W , with the incentive con-
straints tightened by ε.

DEFINITION 4: A value pair v ∈ R2 is ε-generated by W if

v = (1 − e−rΔ)g(a)+ e−rΔE[w|a]�
where the action profile, a, and a function from signals to continuation values,
w, satisfy the following conditions:

(i) Feasibility, that is, w takes values in W .
(ii) IC constraints, that is, (gi(a) − gi(a

′)) + e−rΔ

1−e−rΔ (E[wi|a] − E[wi|a′]) ≥ ε
for all deviations a′ of players i = 1�2.

Let B(W �ε) be the convex hull of values v ∈ R2 that are ε-generated by W .

For ε = 0, B(W �ε) is the standard set operator from APS90, whose largest
fixed point is the set of all SEp payoffs V (Δ� r). Denote the largest fixed point
of the operator B(W �ε) by V (Δ� r�ε). By an argument analogous to Theo-
rem 4 from APS90, V (Δ� r�ε) is compact. The set of ε-strict equilibrium payoffs
V (Δ� r�ε) is weakly decreasing in ε (in the set inclusion sense). As a function of
ε, V (Δ� r�ε) may have only countably many discontinuities, and we conjecture
that for generic parameters of the stage game and generic r, it is continuous in
ε at ε = 0.

The next definition formalizes our restrictions on the use of information.

DEFINITION 5: A maximal value pair v ∈ R2 restricted-generated by W in
the direction N solves

max
a�w(x�y)

v ·N

subject to four constraints:
(i) Promise keeping, v = (1 − e−rΔ)g(a)+ e−rΔE[w|a].

(ii) Feasibility, that is, w takes values in W .
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(iii) Continuation values satisfy informational restrictions (b) and (c),

w(x� y)= v+ 10ω(x�0)+
∑
y∈Y

1yd(y)�

(iv) IC constraints that respect restriction (a),

gi(a)− gi(a
′)

+ e−rΔ

1 − e−rΔ

(
E

[
Ti(ω(x�0) · T)+

∑
y∈Y

1ydi(y)
∣∣a]

−E

[
Ti(ω(x�0) · T)+

∑
y∈Y

1ydi(y)
∣∣a′

])

+ e−rΔ

1 − e−rΔ

(
E

[
Ni(ω(x�0) ·N)|a] −E

[
Ni(ω(x�0) ·N)|a′])

−

≥ 0�

where (z)− equals 0 if z is positive and z otherwise.24

Let BR(W ) be the convex hull of values v ∈ R2; such that v is the maximal
pair restricted-generated by W in some direction N .

Definition 5 imposes restrictions (a)–(c) on the use of information to pro-
vide incentives. We can show that the restrictions have a small effect on the
provision of incentives and, if V (Δ� r�ε) is continuous at ε = 0, on the set of
attainable payoffs:

THEOREM 3: For every ε > 0 there exists Δ∗ > 0 such that for all Δ ≤ Δ∗,
V (Δ� r�ε)⊆ BR(V (Δ� r�ε)).

In words, SEp with the provision of incentives restricted as in Definition 5
can attain a set of payoffs at least as large as the set of ε-strict SEp pay-
offs without any restrictions. To see that this follows from the theorem, note
that standard APS90 arguments imply that if a set is restricted-self-generated
(i.e., if W ⊆ BR(W )), then all points in this set can be supported by SEp in
which incentives are provided in the restricted ways. Therefore, V (Δ� r�ε) ⊆
BR(V (Δ� r�ε)) implies that the set of SEp with restricted incentive provision is
at least as large as V (Δ� r�ε).

PROOF OF THEOREM 3: Consider (a�w = v + ω) that maximize v · N sub-
ject to constraints (i) and (ii) from Definition 4, and let us, first, show that

24The notation (·)− is used in these IC constraints to ignore the positive impact of the normal
component of ω(x�0) on these constraints.
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the maximal value restricted-generated by V (Δ� r�ε) in the direction N im-
proves upon v. Let d(y) = Ex[ωi(x� y)|a] and consider the pair (a�wR) =
(a� v + 10ω(x�0) + ∑

y∈Y 1yd(y)). Then, by an argument analogous to that in
Lemma B1,

E[ωi|a] −E[ωi|a′]
=E

[
Ti(ω(x�0) · T)+

∑
y∈Y

1ydi(y)
∣∣a]

−E

[
Ti(ω(x�0) · T)+

∑
y∈Y

1ydi(y)
∣∣a′

]
+O(Δ1�4999)�

Thus (a�wR) satisfies the IC constraint (iv) in Definition 5 when Δ is suffi-
ciently small. Also, v + d(y) ∈ V (Δ� r�ε), so (a�wR) satisfies the feasibility
constraint (ii). Finally, relative to (a�w)� (a�wR) improves upon the objective
function in Definition 5 by not destroying value following multiple arrivals of
Poisson signals.

Now we are ready to argue that BR(V (Δ� r�ε)) contains V (Δ� r�ε). If not,
then there is v′ ∈ V (Δ� r�ε) that is not in BR(V (Δ� r�ε)). Since BR(V (Δ� r�ε))
is convex and closed, the separating hyperplane theorem implies that there
is a hyperplane {w : (w − v′) · N = 0} such that (w − v′) · N < 0 for all w ∈
BR(V (Δ� r�ε)). Then the maximal point v of V (Δ� r�ε) in the direction N can-
not be improved upon by any point in BR(V (Δ� r�ε)), since (v − v′) · N ≥ 0,
a contradiction. Q.E.D.

REMARK: While Definition 5 does not incorporate the restriction on the lin-
ear use of Brownian signals, we conjecture that this restriction would not harm
the set of attainable payoffs by a significant amount when Δ is small. To see the
intuition, imagine a set W that ε-generates itself (that is, W ⊆ B(W �ε)) and
that is smooth at all points on the boundary generated with the use of Brown-
ian information (i.e., points where the Brownian information has an impact on
the IC constraints).25 Consider one such point v with a normal vector N . What
is the optimal way to use Brownian information to maximize a vector of payoffs
in the direction N? If κ > 0 is the curvature near v, and with the expectation
that transfers ω(x�0) are small (on the order of

√
Δ to provide incentives on

the order of Δ), we are trying to minimize value destroyed∫
κ

2
(ω(x�0) · T)2fa(x)dx(8)

25It is natural to allow W to have kinks at a Nash equilibrium payoff points, for example, as in
the continuous-time games of Sannikov (2007).
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subject to providing a given level of incentives D(a′)Δ against each deviation
a′, that is,∫

(ω(x�0) · T)Ti(fa(x)− fa′(x))dx≥D(a′)Δ�

Letting ρ(a′) be the Lagrange multiplier on the incentive constraint with re-
spect to deviation a′, the first-order condition is

κω(x�0) · T +
∑
a′

ρ(a′)Ti

(
1 − fa′(x)

fa(x)

)
= 0�

Thus, for approximation (8), optimal transfers are linear in the likelihood ratio.
Moreover, likelihood ratios themselves are approximately linear in x in the
range where x falls with probability close to 1, as one can see from the Taylor
expansion

fa′(x)

fa(x)
= exp

((
x−Δ

μ(a′)+μ(a)

2

)
(μ(a′)−μ(a))

)

= 1 +
(
x−Δ

μ(a′)+μ(a)

2

)
(μ(a′)−μ(a))

+ 1
2

(
x−Δ

μ(a′)+μ(a)

2

)2

(μ(a′)−μ(a))2 + · · · �

The main difficulty in transforming this intuition into a general result for im-
patient players is the construction of such a set W that is close to V (Δ� r�ε).
One idea is to construct W using a continuous-time game, since equilibrium
payoff sets in continuous time tend to have smoothness properties whenever
Brownian information is used to provide incentives (see Sannikov (2007)), and
to show that W approximates V (Δ� r�ε) for small Δ. Since such an argument
falls beyond the scope of the paper, we leave the linearity conjecture to future
research.

7. CONCLUDING REMARKS

Identifiability

FLM have provided identifiability conditions on the noise structure of the
stage game that are sufficient for establishing a folk theorem. In our setup we
can provide analogous sufficient conditions on the Lévy process for the set M
to coincide with the set V ∗.

We say that an action profile a is enforceable on the hyperplane N if
D(a�N) = 0. Following the logic from FLM, we have M = V ∗ if the follow-
ing two conditions hold:
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(i) All action profiles are enforceable on all regular hyperplanes, with N1,
N2 �= 0.

(ii) All action profiles with a best-response property for player i, includ-
ing the profile that maximizes player i’s payoff and the profile that min-maxes
player i, are enforceable on the coordinate hyperplane with Ti = 0.

Let us derive sufficient conditions on signal structure for (i) and (ii) to hold.
Denote by Gi(a) ∈ R|Ai|−1 the gain vector with entries gi(a

′
i� aj) − gi(a) for all

deviations a′
i �= ai of player i. Denote by Πi(a) the (|Ai|−1)× (k+|Y |) matrix

with rows

(μ(a′
i� aj)−μ(a)�λ(y|a′

i� aj)− λ(y|a)� y ∈ Y)

for all deviations a′
i �= ai of player i. Then action pair a is enforceable on the

hyperplane parallel to T if and only if there are vectors β ∈ Rk and dT ∈ R|Y |

that, together with dN = 0, satisfy the conditions (IC) from (2), that is,[
G1(a)

G2(a)

]
≤

[
T1Π1(a)

T2Π2(a)

](
β

dT

)
�(9)

PROPOSITION 1: The following two conditions are sufficient for (i) and (ii) to
hold, and thus for M to coincide with V ∗:

Pairwise Identifiability: The row-spaces of the matrices Π1(a) and Π2(a) in-
tersect only at the origin.

Individual Full Rank: There is no linear dependence among the rows of the
matrix Πi(a).

PROOF: For the regular hyperplanes, (9) can always be solved for β and dT

with equality if there is no linear dependence among the rows of the matrix[
T1Π1(a)

T2Π2(a)

]
�

which is equivalent to having pairwise identifiability and individual full rank.
Thus, (i) holds under these conditions.

Moreover, (ii) also holds. Indeed, consider a profile a with a best-response
property for player i. Then individual full rank implies that equation

Gj(a)= TjΠj(a)

(
β

dT

)
has a solution, and the best-response property of player i implies that

Gi(a)≤ 0 = TiΠi(a)

(
β

dT

)
�

This completes the proof. Q.E.D.
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More Than Two Players

While a formal analysis of games with n > 2 players would be more compli-
cated, let us argue informally that our methods and results extend to that set-
ting as well. First, to define the set M , for a direction N in the n-dimensional
payoff space, let

D(N) = max
a�B�d(y)

(
g(a)+

∑
y∈Y

d(y)λ(y|a)
)

·N

s.t. d(y) ·N ≤ 0� B ·N = 0 and

gi(a)− gi(a
′)+ eiB(μ(a)−μ(a′))

+
∑
y∈Y

di(y)(λ(y|a)− λ(y|a′))≥ 0

for all deviations a′ = (a′
i� a−i) of each player i = 1� � � � � n, where d(y) ∈ Rn�B ∈

Rn×k, and ei represents the ith coordinate vector (with ith coordinate 1 and the
rest 0). The maximal half-space in the direction N and the set M are defined
in the same way as before:

H(N)= {v ·N ≤ D(N)} and M =
⋂
N

H(N)�

With this generalized definition of M , our main theorem (see Section 5) holds
for n > 2 players. To prove this result formally, we could construct a family
of continuously expanding convex surfaces C(s), s ∈ [ε� s∗], around M , rather
than curves. Surface C(ε) is constructed by starting from an approximation
of M as an intersection of finitely many half-spaces H(N) (see Lemma O-A
in the Supplemental Material), and by drawing a sphere of sufficiently large
radius near each half-space (see Lemma A1 in Appendix A). Analogously to
our proof for two players, this family of surfaces can be used to show that points
outside M cannot be attained in equilibrium for sufficiently small Δ given any
discount rate r.

Do Small Modeling Differences Matter?

Given our result about the dichotomy between continuous and discontinu-
ous information, one may wonder what happens when Poisson signals arrive
more frequently, and when they carry little information individually and, in the
right limit, information approaches Brownian motion. Is there a discontinuity
between Poisson and Brownian information in this limit? Does the choice of
how to model information that arrives frequently but in small pieces lead to
large differences in results?
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Our intuition is that typically it does not: that Poisson jumps that arrive
frequently and individually carry little information have similar properties to
Brownian information when incentives are concerned, even if Δ is so small that
multiple jumps per period are extremely rare. Suppose that |λ(y|a)− λ(y|a′)|
is significantly smaller than λ(y|a) (so that the right panel in Figure 1 would
look similar to the left panel, which is the measure of how informative are indi-
vidual arrivals). Then first, burning value upon an arrival of signal y destroys a
lot of value but contributes very little to incentives. As a result, analogously to
the case of continuous information, burning value conditional on this informa-
tion is an ineffective way of providing incentives. Second, regarding linearity,
to provide some very informal intuition, assume that the set of equilibrium pay-
offs has a well defined and continuous curvature. Suppose an arrival of jump y
optimally triggers a tangential transition of continuation values from v to v+ω.
Because signal y carries little information, the transition ω should be small to
keep down the cost of the tangential transfers. When v and v+ω are close and
the curvature of the set of equilibrium payoffs is continuous, the optimization
problems at these two points should be similar. If a second jump y arrives a
few periods later, it should be followed by a similar transition (approximately
to v + 2ω). Thus, the cumulative transition becomes approximately linear in
the number of Poisson arrivals.

Therefore, even if all events in the world are discrete, and even if Δ is so
small that only one event can possibly occur per period, our intuition is that
typically using Brownian motion to model signals that individually contain very
little information may not have any major impact on results.

Final Remark

Repeated games are a useful abstraction—a system of simplifying assump-
tions that allows us to gain intuition about more complicated dynamic systems.
One of these assumptions is the idea of a period—a friction that does not have
a real counterpart in many applications and that one can question whether
the simplifying assumptions of repeated games are adequate to study dynamic
interactions.26 In this paper we attempted to uncover fundamental principles
of how incentives can be provided in repeated interactions that are robust to
the assumption of fixed periods by allowing the players to act frequently. As in
many other areas of economic theory (for example, bargaining, asset pricing),
looking at the outcomes of the games as frictions disappear (i.e., as Δ→ 0) has
proven fruitful in developing new results.

26Disturbing examples appear in Abreu, Milgrom, and Pearce (1991) and Sannikov and Skrzy-
pacz (2007), who showed that the scope of cooperation can change drastically when players are
allowed to move frequently. Also, see Fudenberg and Olszewski (2009) for interesting new results
about games, in which different players observe signals at different random time points.
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The intuitions of our paper can be applied to any area concerned with a dy-
namic incentive provision. In particular, we envision applications for account-
ing (in the area of information release and incentives), finance (in the area of
dynamic contracts), and industrial organization (in the study of dynamic col-
lusion). Although we work with a repeated game model, the results can be
directly applied to analysis of optimal self-enforcing contracts. Furthermore,
the contributions can be translated to more complicated nonstationary envi-
ronments with public state variables.

APPENDIX A: CONSTRUCTION OF THE FAMILY OF
CURVES C(s) CONTAINING M

In this appendix, for a given M and ε > 0, we construct a family of strictly
convex curves C(s), s ∈ [ε� s̄] around M , which expand continuously as s in-
creases from ε to s̄. Each curve is a union of a finite number of arcs that satisfies
the following properties:

(i) M is contained in the inside of C(ε), and the distance between any
point on the curve C(ε) and M is at most ε.

(ii) The set V is contained inside the curve C(s̄).
(iii′) There exist ε′ > 0 such that for any s ∈ [ε� s̄] and any point v on C(s)

with a normal N�v is not ε′-generated using continuous-time instruments by
the corresponding arc.

Because the number of arcs is finite, we have another property:
(iii′′) There exists κ > 0 such that the curvature of any curve C(s) at any

point is at least κ.
Recall that by definition of ε′-generation (Definition 2), property (iii′) means

that there are no instruments {a�β�d} that satisfy the conditions

(g(a)− v) ·N − r

2
κ(v)|β|2 +

∑
y

(d(y) ·N)λ(y|a)+ ε′ ≥ 0�

|d(y)| ≤ V̄ � d(y) ·N ≤ 0

and

gi(a)− gi(a
′)+β(μ(a)−μ(a′))Ti

+
∑
y∈Y

di(y)(λ(y|a)− λ(y|a′))+ ε′ ≥ 0�

For short, when condition (iii′) holds for v on an arc, then we say that this point
is unattainable.
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We start with a polygonal approximation of the set M as an intersection
supporting half-spaces

M ⊆
K⋂

k=1

H(Ñk)

with the property that the distance from any point of the polygon to M is at
most ε/2. Such an approximation exists by Lemma O-A in the Supplemental
Material.

The following lemma allows us to draw a circular arc outside each supporting
half-space H(Ñk), such that for some ε′ = ε′

k > 0, every point on the intersec-
tion of the circular arc with the set V is unattainable.

LEMMA A1: Consider a supporting half-space H(N) of the set M at point
v ∈ M . Consider circles of various radii that pass through point w = v + Nε/2
tangentially to T , as illustrated in Figure 7. Then there is a sufficiently large radius
ρ (thus, a sufficiently small curvature κ = 1/ρ) and a sufficiently small value of
ε′ > 0, such that not a single point of the arc of the circle with radius ρ inside the
set V ∗ can be ε′-generated by the arc.

PROOF: Take a decreasing sequence of positive numbers εn → 0. If the
lemma is false, then we can choose a sequence of radii ρn → ∞ for which
the arc Rn has an εn-generated point wn by this arc (using instruments
{an�βn�dn(y)}). Without loss of generality, we can assume that a stays fixed
along the sequence (because we can always choose an appropriate subse-
quence).

FIGURE 7.—Circular arcs of various radii near a supporting half-space H(N).
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Let us show that for the sequence {βn�dn(y)}, the linear inequalities

(g(a)−w) ·N +
∑
y

(dn(y) ·N)λ(y|a) ≥ 0� dn(y) ·N ≤ 0�

and

gi(a)− gi(a
′)+βn(μ(a)−μ(a′))Ti

+
∑
y∈Y

dn�i(y)(λ(y|a)− λ(y|a′))≥ 0

are satisfied arbitrarily closely as n → 0. Then Lemma A2 below implies that
there exists a pair (d�β) for which these inequalities hold exactly, which con-
tradicts H(N) being a supporting hyperplane of M (since (g(a) − w) · N <
(g(a)− v) ·N).

Note that for sufficiently large ρn, we have

|N −Nn| ≤ 2κnV̄ �

where Nn is the normal vector to point wn of arc Rn. Also, since

(g(a)−wn) ·Nn − r

2
κn|βn|2 +

∑
y

(dn(y) ·Nn)λ(y|a)+ ε′
n ≥ 0 and

dn(y) ·Nn ≤ 0�

it follows that

r

2
κn|βn|2 ≤ (g(a)−wn) ·Nn + ε′

n ≤ 2V̄ �

Therefore,

gi(a)− gi(a
′)+βn(μ(a)−μ(a′))Ti +

∑
y∈Y

dn�i(y)(λ(y|a)− λ(y|a′))

≥ gi(a)− gi(a
′)+βn(μ(a)−μ(a′))Tn�i

+
∑
y∈Y

dn�i(y)(λ(y|a)− λ(y|a′))− |βn||μ(a)−μ(a′)||T − Tn|

≥ −ε′
n −

√
4V̄
rκn

|μ(a)−μ(a′)|2V̄ κn

→ 0�

dn(y) ·N ≤ dn(y) ·Nn + |dn(y)||N −Nn| ≤ 2V̄ 2κn → 0�
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and

(g(a)−w) ·N︸ ︷︷ ︸
≥(g(a)−wn)·N

+
∑
y

(dn(y) ·N)λ(y|a)

≥ (g(a)−wn) ·Nn +
∑
y

(dn(y) ·Nn)λ(y|a)

− V̄ |N −Nn| −
∑
y

|dn(y)||N −Nn|λ(y|a)

≥ −ε′
n − 2V̄ 2κn − 2V̄ 2κn

∑
y

λ(y|a)

→ 0� Q.E.D.

LEMMA A2: Let Q be an m × n matrix and let q ∈ Rm. Suppose that for all
ε ∈ Rm such that ε > 0 there exists an xε ∈ Rn such that Qxε ≥ q− ε. Then there
is an x∗ ∈ Rn such that Qx∗ ≥ q.

PROOF27: The proof relies on Farkas’ lemma: There exists x such that Qx ≥ b
if and only if for all y ≥ 0 such that yTQ = 0, we have yTb≤ 0.

Since for all ε ∈ Rm such that ε > 0 there exists an xε ∈ Rn such that Qxε ≥
q−ε, Farkas’ lemma implies that for all y ≥ 0 such that yTQ = 0� yT (q−ε)≤ 0
for all ε ≥ 0. Taking ε to 0, we find that for all y ≥ 0 such that yTQ = 0,
yTq ≤ 0. Therefore, by Farkas’ lemma again there exists x∗ ∈ Rn such that
Qx∗ ≥ q. Q.E.D.

Using Lemma A1, we construct circular arcs outside every face of the polyg-
onal approximation such that every point of the intersection of any arc with the
set V cannot be ε′-generated for ε′ = mink ε

′
k.

Denote by C(ε) the union of these arcs. Note that the distance between C(ε)
and M is bounded from above by ε since the distance between the polygon⋂K

k=1 H(Ñk) and the set M is at most ε/2, and each arc is constructed through
the point wk = vk + Ñkε/2 that is at distance ε/2 away from the polygon.

To construct the family of curves C(s), s ∈ [ε� s̄] we translate the arcs out
continuously until they bound the set V , as shown in Figure 8. Note that if
we translate an arc out, every point of the arc remains unattainable (because
translation does not change the curvature of the arc).

27We thank an anonymous referee for suggesting this beautiful short proof.
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FIGURE 8.—Construction of circular arcs around supporting half-spaces of M .

APPENDIX B: LEMMAS

LEMMA B1: If

∣∣ω(x� (jy))
∣∣ ≤ V̄ � |E[ω|a]| ≤ 1 − e−rΔ

e−rΔ
V̄ = O(Δ), and(10)

ω ·N ≤ −κ|ω · T |2/2

for some κ > 0, then

E[ωi|a] −E[ωi|a′](11)

= Ti

∫
(ω(x�0) · T)x · (μ(a)−μ(a′))fa(x)dx

+Δ
∑
y

(λ(y|a)− λ(y|a′))Ex[ωi(x� y)|a] +O(Δ1�49999)�

with the term O(Δ1�49999) bounded in absolute value by KΔ1�49999 for some constant
K, uniformly for all sufficiently small Δ�a, and ω that satisfy the above bounds.28

PROOF: First,

E[ω|a] −E[ω|a′]

=
∫

ω(x�0)(fa(x)− fa′(x))dx

28Expression (11) is the expected change in player i continuation payoffs when he considers a
deviation to a′

i . Note that ωi(x� (jy)) = Ti(ω(x� (jy)) ·T)+Ni(ω(x� (jy)) ·N), where (ω(x� (jy)) ·
T) is the tangential component of ω and (ω(x� (jy)) ·N) is the normal component.
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+
∑
y

(
Pr[y|a]Ex[ω(x�y)−ω(x�0)|a]

− Pr[y|a′]Ex[ω(x�y)−ω(x�0)|a′])
+E

[(
ω(x� (jy))−ω(x�0)

)
1∑

jy>1|a
] −E

[(
ω(x� (jy))−ω(x�0)

)
1∑

jy>1|a′]︸ ︷︷ ︸
O(Δ2)

�

because the probability of multiple jumps arriving is O(Δ2).
Second, we have∫

(ω(x�0) · T)(fa(x)− fa′(x))dx

=
∫
(ω(x�0) · T)

×
(

1 − exp
((

μ(a)+μ(a′)
2

Δ− x

)
(μ(a)−μ(a′))

))
fa(x)dx

=
∫
(ω(x�0) · T)x(μ(a)−μ(a′))fa(x)dx

+
∫
(ω(x�0) · T)

(
1 − x(μ(a)−μ(a′))

− exp
((

μ(a)+μ(a′)
2

Δ− x

)
(μ(a)−μ(a′))

))
fa(x)dx�

Now, using the inequality (A2 +B2 ≥ 2AB) we bound the second term by

2
∣∣∣∣
∫
(ω(x�0) · T)

(
1 − x(μ(a)−μ(a′))

− exp
((

μ(a)+μ(a′)
2

Δ− x

)
(μ(a)−μ(a′))

))
fa(x)dx

∣∣∣∣
≤ Δ1/2

∫
(ω(x�0) · T)2fa(x)dx

+Δ−1/2
∫ (

exp
((

μ(a)+μ(a′)
2

Δ− x

)
(μ(a)−μ(a′))

)
− 1 + x(μ(a)−μ(a′))

)2

︸ ︷︷ ︸
( μ(a)+μ(a′)

2 Δ(μ(a)−μ(a′))+ 1
2 (

μ(a)+μ(a′)
2 Δ−x)2(μ(a)−μ(a′))2+···)2

× fa(x)dx

= O
(
Δ3/2)�

where the last equality follows since∫
(ω(x�0) · T)2fa(x)dx≤ − 1

κ

∫
(ω(x�0) ·N)fa(x)dx=O(Δ)(12)
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and the Taylor expansion of the second integrand(
μ(a)+μ(a′)

2
Δ(μ(a)−μ(a′))

+ 1
2

(
μ(a)+μ(a′)

2
Δ− x

)2

(μ(a)−μ(a′))2 + · · ·
)2

delivers terms of orders Δ2, Δx2, x4� � � � � whose expectation under the density
fa of N(Δμ(a)�ΔI) is at least Δ2.

This step shows that the nonlinear elements of (ω(x�0) · T) are not im-
portant for provision of incentives. The intuition lies behind the condition
κ|ω · T |2/2 ≤ |ω ·N|, which holds due to the curvature of C(s). Because

|E[ω ·N|a]| ≤ 1 − e−rΔ

e−rΔ
V̄ =O(Δ)�

ω ·T is limited to be small. But then only the linear term in the Taylor expansion
of fa′(x)/fa(x) contributes significantly to incentives as Δ gets small.

Third, generalizing an argument from Sannikov and Skrzypacz (2007), Ap-
pendix O-B in the Supplemental Material shows that∫

(ω(x�0) ·N)(fa(x)− fa′(x))dx≤O(Δ1�49999)

whenever

ω(x�0) ·N ∈ [−V̄ �0] and |E[ω ·N|a]| ≤O(Δ)�

The meaning is that incentive provision by triggering the destruction of value
with Brownian signals is inefficient. The destruction of value of order Δ creates
incentives weaker than the order of Δ1�49999 (the result follows from properties
of the Normal distribution).

Fourth, we can decompose

Pr[y|a]Ex[ω(x�y)−ω(x�0)|a] − Pr[y|a′]Ex[ω(x�y)−ω(x�0)|a′](13)

= (Pr[y|a] − Pr[y|a′])Ex[ω(x�y)|a]︸ ︷︷ ︸
A

− (Pr[y|a] − Pr[y|a′])Ex[ω(x�0)|a]︸ ︷︷ ︸
B

+ Pr[y|a′]
∫
(ω(x� y)−ω(x�0))(fa(x)− fa′(x))dx︸ ︷︷ ︸

C

�
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FIGURE 9.—Bound on the area between two density functions.29

We now bound the three terms on the right-hand side of (13).
Since |ω(x�y)−ω(x�0)| ≤ V̄ and∫

|fa(x)− fa′(x)|dx < 2Δ|μ(a)−μ(a′)| 1√
2πΔ

(14)

(see Figure 9), it follows that

C = Pr[y|a′]
∫
(ω(x� y)−ω(x�0))(fa(x)− fa′(x))dx= O

(
Δ3/2

)
�

For term B, |E[ω|a]| ≤ 1−e−rΔ

e−rΔ V̄ implies that

E[ω|a]︸ ︷︷ ︸
O(Δ)

= Pr[0|a]Ex[ω(x�0)|a] +
∑
jy �=0

Pr[(jy)|a]Ex

[
ω(x� (jy))|a

]
︸ ︷︷ ︸

O(Δ)

⇒ Ex[ω(x�0)|a] =O(Δ)�30

So B =O(Δ2). Finally, term A in (13) is

Δ
∑
y

(λ(y|a)− λ(y|a′))E[ω(x�y)|a] +O(Δ2)�

It follows that the entire expression in (13) is

Δ
∑
y

(λ(y|a)− λ(y|a′))E[ω(x�y)|a] +O
(
Δ3/2

)
�

Adding the four steps establishes the claim. Note that the term O(Δ1�49999) in
(11) is bounded in absolute value by KΔ1�49999 for some K that depends only on
V̄ and κ. Q.E.D.

29For a multidimensional x, inequality (14) can be justified by integrating along the plane
orthogonal to the line between μ(a) and μ(a′) first, and then integrating along the line that
connects μ(a) and μ(a′) (which gives the one-dimensional integral illustrated in Figure 9).

30Pr[0] is the probability of no jump arriving; Pr[(jy)] is the probability of (jy) jumps arriving.
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We now establish Lemma B2 to verify that the inequality (7) holds.

LEMMA B2: Under conditions (10), we have

E[ω ·N|a] ≤ −P[0|a]
∫

κ

2
(ω(x�0) · T)2fa(x)dx

+
∑
y

P[y|a]Ex[ω(x�y)|a] ·N

≤ 1 − e−rΔ

e−rΔ

(
− rκ

2
|β|2 +

∑
y

(d(y) ·N)λ(a)+O(Δ)

)
�

PROOF: The first inequality follows from the conditions ω(x�0) · N ≤
−κ(ω(x�0) · T)2/2 and ω(x� (jy)) · N ≤ 0 whenever (jy) involves more than
one jump.31 The second inequality follows if we show that

|β|2 ≤ e−rΔP[0|a]
r(1 − e−rΔ)

∫
(ω(x�0) · T)2fa(x)dx+O(Δ)

and

d(y)λ(a)= e−rΔP[y|a]
1 − e−rΔ

E[ω(x�y)|a] +O(Δ)�

By Cauchy–Schwarz inequality,(∫
xωT(x�0)fa(x)dx

)2

≤
(∫

ωT(x�0)2fa(x)dx

)
︸ ︷︷ ︸

O(Δ) by (12)

(∫
x2fa(x)dx

)
︸ ︷︷ ︸

E[x2]=μ(a)2Δ2+Δ

�

Therefore,

β2 ≤ e−2rΔ

(1 − e−rΔ)2

(
Δ

∫
ωT(x�0)2fa(x)dx+O(Δ3)

)

= e−rΔP[0|a]
r(1 − e−rΔ)

∫
(ω(x�0) · T)2fa(x)dx+O(Δ)�

31The curve C(s) with the point w on the boundary is contained in the parabolic region {v : (v−
w) ·N ≤ κ((v−w) ·T)2}, since every point of C(s) has curvature greater than κ, by condition (iii).
Therefore, ω(x�0) ·N ≤ −κ(ω(x�0) · T)2.
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where we used P[0|a] = 1 − O(Δ)�e−rΔΔ/(1 − e−rΔ) = 1/r + O(Δ), and∫
(ω(x�0) · T)2fa(x)dx= O(Δ).
Also,

d(y)λ(y|a) = Δe−rΔλ(y|a)
1 − e−rΔ

E[ω(x�y)|a]

= e−rΔP[y|a]
1 − e−rΔ

E[ω(x�y)|a] +O(Δ)

since P[y|a] = Δλ(y|a)+O(Δ2). Q.E.D.

Lemma B2 in combination with

1 − e−rΔ

e−rΔ
(v− g(a)) ·N =E[ω ·N|a]

implies (7).
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