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Abstract

We study a model where innovation comes in two varieties: im-
provements on existing products, and new products that expand the
scope of a technology. We make this distinction in order to highlight
how market structure can determine not only the quantity of inno-
vation but also its direction. We study two market structures. The
first is the canonical one from the endogenous growth literature, where
innovations can be developed by anyone, and developers market their
own innovations. We then consider a more concentrated industry,
where all innovation and pricing for a given technology is monopo-
lized. We study the implications of the different market structures
for both types of innovation, focusing on differences they induce in
the direction of technological change. We apply our model model to
the case of a hardware/software technology and analyze which market
structure offers greater profits to a monopolist who can monopolize
either hardware or software. We compare social welfare across the
market structures, and discuss whether one type of innovation should
be subsidized over another.
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1 Introduction

In this paper we analyze the relationship between market structure and in-
centives to innovate. We argue that market structure is an important de-
terminant of not only the quantity but also the direction of technological
change. We present a framework to study the decisions of researchers and
firms about both the intensity of research and the allocation of research ef-
forts. This multi-dimensionality of research decisions is the new tradeoff we
focus on. We argue that market power weakens incentives to generate in-
novations that increase the efficiency of existing uses of the technology and
strengthens the incentives to innovate by generating new uses for the tech-
nology. This tradeoff creates different innovation dynamics across different
market structures, and leads to insights for firm strategy and public policy.
In Section 2 we introduce a continuous time model of innovation. We

consider innovations of two types: efficiency improvements to existing uses
of the technology (efficiency innovations) and developments of new uses for
the technology (scope innovations). The main differentiating feature is that
improvements are characterized by larger “business stealing” that is, the
profits accrued to new, improved versions come with decreased profits of
old products. On the other hand, new uses have relatively little impact on
the profits of existing lines. We assume that developing a new use is more
costly than developing an improvement to an existing use and that there
are physical barriers on the number of possible uses (while the scope for
improvements is unbounded). The last assumption is sufficient for us to
characterize contrast cases where potential scope is relatively important or
unimportant.
The main economic force is that firms with market power over all ef-

ficiency levels of a given use internalize the “business stealing” effects of
efficiency improvements. As a result, compared with a competitive market
(with firms that each own only one efficiency level for one use) firms with
market power have weaker incentives to develop improvements but stronger
incentives to develop new uses. These differences influence innovation dy-
namics, long-run product structure and welfare.
There are many ways in which innovations differ in practice. The differ-

ences we focus on (we refer to them as efficiency vs. scope dimensions or
improvements vs. new use dimensions) can be illustrated via the following
examples. In the market for computer operating systems, some innovations
are improvements to existing functions, which allow a more efficient exe-
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cution of some tasks, while other innovations are new functions that allow
the computer to do new tasks. Similar distinction can be made for business
applications or video games. In the market for pharmaceuticals some innova-
tion comes in the form of an improvement to an existing cure, but also often
researchers come up with a cure for a previously uncured ailment. In general,
the relevant distinction comes from the demand side rather than from the
technological side.
For simplicity we study two polar market structures. On the one hand, in

Section 4 we consider a monopolist who controls all possible innovation, both
in terms of efficiency levels and scope of the technology. Such a situation leads
to expansion in scope for the reason described above: the monopolist seeks
to avoid displacing his own profits on existing products and does not have
to worry about having its profits taken over by a competitor. Over time, the
amount of research done by the monopolist decreases, as the physical limits
to the number of possible product lines are approached.
On the other hand, we consider in Section 3 a competitive innovation case

that mirrors the common setup of the endogenous growth literature. Each
efficiency level is monopolized, but all innovations compete with one another,
and there is free entry into innovation. Innovation often starts slower than
in the monopoly case, but as there are more and more products developed
the total intensity of research increases. At the same time, there is a shift of
research from new uses to improvements and eventually the market reaches a
steady-state in which further research is done solely on improvements. In the
long run the competition leads to a more narrow scope than the monopoly
achieves, but innovation never dries out.
Comparisons across these two polar market structures depend crucially on

the potential scope of technology — i.e. on how large is the limit on potential
product lines. The larger it is, the stronger are the monopolist incentives to
innovate (while the competitive market is usually unaffected), which makes
this market structure more efficient.
We apply this logic to a classic IO question of the optimal pricing of

hardware and software. In particular, in Section 5 we consider a hardware
monopolist who cannot commit to future innovation levels in software, but
can commit to a market structure for software. By giving up market power
in the software market, he might enhance the value of the hardware he sells
by increasing the amount of software that results.
As our prior intuition suggests, the choice hinges on the degree to which

scope innovations are possible. When the hardware promises a wide potential
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for software to undertake different jobs, the monopolist is best off providing
the software himself. However, if the potential for scope is not so great, the
monopolist may be better off giving up market power in software to enhance
the value of hardware, since consumers realize that business stealing concerns
will limit the rate of innovation for a software monopolist.
Our logic extends naturally to the question of social welfare and market

structure, which we touch upon in Section 6. Similar intuition suggests that
the socially optimal market structure depends on the potential a technology
has for being applied to a wide variety of areas. More generally, this points
out that considerations of the potential directions of technological change
might be important in answering questions about which market structure
most favors innovation and for informing intellectual property rights.
We also analyze how (and if) the government should subsidize innova-

tion. To answer this question, in Section 7 we compare a steady-state of a
competitive market and calculate the benefits to research on the two types of
innovation. An efficiency innovation creates a permanent increase in the level
of welfare. In contrast, a scope innovation, even if it has a smaller immediate
impact, it increases private returns to research and leads to a higher rate of
innovation (reflected in the growth rate of welfare).
This result has several implications. First, a society might want to think

about not only how much innovation will result from a particular stimulus,
but also might care about the type. For example, the government might
prefer that the NSF focuses on basic research to develop new research ar-
eas, rather than on applications that increase the efficiency of the earlier
innovations.
Furthermore, the government might care about the side of the research

market in which it intervenes. Typically the economic incidence of a tax or
subsidy is independent of its statutory incidence, so this concern does not
arise. Here, though, as in Romer (supply versus demand), the government
might be better off subsidizing innovations in particular areas on the demand
side, rather than giving a broad subsidy to the factors of production engaged
in research.
The relationship between market structure and incentives to innovate is

a fundamental topic in Industrial Organization. Since innovation and pro-
ductivity growth are so tightly connected, the topic is also relevant in macro-
economics. Most of the existing research focuses attention on the impact
of market structure on the amount of innovation. However, recent research
such as Acemoglu (2002) stresses that the direction of technological change.

4



In this paper we argue that market structure is an important determinant of
the direction of technological change.
Moreover, the model that we develop provides insight into the classic

literature on the measurement of the relationship between scale and inno-
vation (see, for instance, Scherer (1980), and, more recently, Aghion, et al.
(2005)). One way to interpret the two market structures we study is that
it entails a single large firm, with more market power, versus an industry
with many smaller firms. If one measured the relationship between firm size
and innovation using data from our two polar market structures, there would
be a variety of pitfalls. First, the industry life-cycle would matter; initially
the closed standard (large firms) do more innovating, but later the open
standard overtakes it. Moreover, the closed standard does different sorts of
innovation than the open standard, so comparing conventional measures of
innovation like patent counts might not be a consistent comparison across
market structures.
Our model has the potential to be developed in ways that have impli-

cations for other important policy issues. In discussing antitrust issues in
industries like computer software, Schmalensee (2000) suggests the impor-
tance of the industry’s Schumpeterian character. We further this line by
using modern Schumpeterian models to frame both positive and normative
discussion of such industries. We choose a structure that resembles most
closely that of Grossman and Helpman (1991), but of course the same ideas
could be embedded in a model along the lines of Aghion and Howitt (1992).
Our model adds endogenous variety, and in that sense is similar to a long
line of growth theory papers such as Romer (1987).
Our model provides a rationale for paying attention to whether support

for innovation takes place on the supply or demand side, as Romer (2000)
stresses. Since different types of innovations have different social benefits,
it may be that the government has an interest in guiding through targeted
support (such as NSF support for “basic” research) a particular type of in-
novation
The commitment benefit of opening markets that we study has been

developed in other contexts. For example, Shepard (1987) showed that li-
censing technologies to multiple competing firms can serve as a commitment
device for a monopolist seeking to deliver high quality. Similarly, Economides
(1996) discusses how a firm selling a product with network benefits might
allow competition as a way to commit to a large customer base.
Our model has implications relative to the long literature on durable
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goods monopolies (including Coase (1972), Stokey (1981), and Bulow (1982))
where a monopolist can sell an object up-front, but faces commitment prob-
lems in future actions. Our model has two dimensions for future actions, effi-
ciency improvements and increases in scope. The former involves the classic
commitment problem for the monopolist; the latter, however, brings a com-
parative advantage for the monopolist by being able to coordinate innovative
activity in a way that internalizes the effects on existing applications. In our
model, when the number of applications is small, quality improvements are
relatively important, and solving commitment problems with software com-
petition is relatively attractive. On the other hand, when the number of
potential applications is large, the software monopolist benefits from inter-
nalizing business stealing.

2 The Model

2.1 Standards and Applications

We study a continuous time, infinite horizon model. In each instant, con-
sumers derive utility from N̄ functions that are related under a common stan-
dard. The standard allows a function to be accomplished via a specialized
application. A given application j for function i has quality qji ≥ 1 per phys-
ical unit. Without an application, the consumer can accomplish the function
directly at a fixed quality q0i = φ ≤ 1 per physical unit. If the standard were
a particular type of computer, examples of directly accomplishing a function,
instead of using a specialized application, would be using pencil and paper
instead of a spreadsheet or a typewriter instead of a word processor. We will
consider two ways in which applications are consumed. Applications may
be consumed directly (which we call stand alone applications), or consumers
might have to purchase first a piece of hardware which allows the purchase
of applications as software (termed software applications).
We define the standard to be open if each application is owned by a

different firm. The standard is closed if all applications are owned by the
same firm and only this firm can innovate to obtain new innovations.1

1In the future we hope to consider a mixed setup with both multi-application and
single-application firms competing in a market.
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2.2 Preferences

For a given function i, the representative consumer consumes dji physical
units of application j. This leads to ei efficiency units of the function, where2

ei =
X
j

qji d
j
i

The representative consumer’s instantaneous utility from a bundle of effi-
ciency units {ei} of the various functions is

u ({ei})−
X
i

X
j

pjid
j
i − h

where pji is the price paid for application j on function i and h is the amortized
cost of the hardware.
In equilibrium consumers will choose only one quality level, the highest

quality, denoted simply qi, per function. Therefore, given consumption of di
units of that quality level of application i, utility is

u ({qidi})−
X
i

pidi − h

To simplify the analysis, for most of the paper we parameterize the utility
function to have a simple form:

Assumption 1: u ({qidi}) =
P

i ln(qidi).

This utility implies that the demands are independent across different
applications and the representative consumer spends a constant share of his
income on every application. In particular, if the representative consumer
buys applications qji at price p, his demand is d

j
i = 1/p.

2.3 Output Production: Firms and Competition

Qualities fall on a ladder with rungs of size λ > 1; i.e., for the jth quality
level on ladder i, qji = λqj−1i . The first application has quality q1i = λ. Each
physical unit requires one unit of labor to be produced, so the marginal cost
of production, per physical unit, is normalized to 1.

2The preference structure for a given application follows Grossman and Helpman
(1991).
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Competition Between Qualities in an Open Standard First, follow-
ing the endogenous growth literature such as Aghion and Howitt (1992) and
Grossman and Helpman (1991), suppose that each quality application is mo-
nopolized, perhaps due to a patent or a trade secret. There is a Bertrand
competition between qualities within a ladder. Non-leading-edge qualities
price at marginal cost; to match this price per efficiency unit, the leading
edge quality charges pji = λ for j > 1 and p1i = λ/φ.
Given demand xi on ladder i, profit flows for the leader are di(pi − 1),

where under Assumption 1, di = 1/pi. For instance, if φ = 1, di = 1/pi = 1/λ
and profits are λ−1

λ
≡ π. Although our assumption of no dependence of profits

on the number of applications is an extreme one, it is simply an expedient
abstraction to the idea that there is less business stealing on the creation of
new applications than on the creation of quality improvements.

Pricing in a Closed Standard If a single firm controls pricing on all ap-
plications, it faces only the limit price from consumers’ direct accomplishment
of the task. Therefore it can set price at most pji = λj/φ. Note that with the
Assumption 1, since unit elastic demand implies an infinite monopoly price,
the limit price always binds.

2.4 Pricing Hardware

When hardware is sold, it is by a monopolist. He charges all the expected
surplus from the applications in the standard. He cannot commit to a future
stream of innovations or prices for applications. Hardware is produced at zero
marginal cost.

2.5 Innovation

Innovation comes through research. Research can be done on either devel-
oping new applications (i.e. applications for functions with no applications
yet) or on improvements to existing applications (i.e. creating applications
of higher quality for functions with existing applications). In both cases, re-
search takes place continuously and innovations arrive according to a Poisson
process. The arrival rate is proportional to the amount of research intensity,
denoted xe for existing applications and xf for new (frontier) applications.
We assume that research intensity comes from one input, researchers,

and that the pool of this input is heterogenous in their skills. A researcher
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of type θ can provide one unit of research intensity, at a cost flow of θ for an
existing application, and a cost flow of θ + η for a frontier application. The
inclusion of η > 0 means that new applications are more costly to research.
Researchers’ types are distributed on [θl,∞) according to the cumulative
distribution function F (θ), with θl > 0. We normalize the outside option of
researchers to zero. In the open-standard case researchers may enter freely
into research at any instant. In the closed-standard case the researchers are
hired by the firm controlling all applications at a uniform wage.3 In order
to keep the model from trivially having no innovation, we assume that there
are types θ smaller than the value of profits of the leading application, or
F (π/r − η) > 0.
The critical feature of our model that ties different applications together is

the fact that they draw researchers from a common pool of scarce talent. As
a result, innovative effort on one application has an impact on the marginal
cost of innovation for all of the applications using the common factor. This
equilibrium effect is what gives rise to all of the results about the dynamics
across different applications that we develop below, and the differences that
develop between open and closed standards.
In the open-standard regime, when a researcher finds an innovation he

forms a firm and markets it (becoming one of the producers in the open stan-
dard). In the closed-standard regime, workers are hired by the monopolist
at a fixed research wage w. Researchers (and firms hiring them) maximize
the expected sum of discounted profits/wages net of research costs and use
a common discount rate r.

3 Innovation Dynamics in Open Standard

In this section we consider the equilibrium of the economy when the standard
is open. We will keep Assumption 1 and assume that applications are stand
alone, so h = 0 (i.e. there is no hardware to buy). We will also disregard
the assumption that N̄ is bounded and instead will establish an endogenous
bound on the number of functions for which under the open standard appli-
cations will ever be developed.

3In the open-standard case, WLOG the researchers can also be hired by a continuum
of firms that have a free entry to the innovation process and compete for the researchers.
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3.1 Analytic Results

Given the profits π from the Bertrand pricing game, the innovation takes
place competitively. We will characterize a recursive equilibrium, in which
the decision rules of the researchers depend only on the current state of
the industry. Since obtaining an improvement over an existing application
yields the same profit flows regardless of the identity of the function or the
current quality level of the application, in such an equilibrium the strategies
of the researchers (and expected profits of the producers) depend only on the
current number of functions with existing applications, which we denote by
N.
For simplicity we take φ = 1, which allows us to reduce the payoff flows

for the current highest-quality application for any function to be π = λ−1
λ
.

Once we deliver the results we will discuss the case of φ < 1.

Assumption 2: φ = 1.

Denote total research by x (N) ≡ xe(N) + xf(N). Since the benefits of
research are independent of type, research follows a cutoff rule: if type θ does
research on one of the applications, all types θ0 < θ do as well (although they
can do it on some other application). The cutoff θ̄ (N) must satisfy:

F (θ̄(N)) = x (N) (1)

The cutoff θ̄ (N), as well as the allocation across the two activities is deter-
mined by free-entry conditions: the cutoff type must be indifferent between
researching any of the existing applications (unless xe (N) < 0), researching
a frontier application (unless xf (N) < 0) and opting out of research.
Define c (x) = F−1 (x), the cost of the marginal researcher in the existing

application search, so that θ̄ (N) = c (x (N)). It is increasing from (1). Let
ρ (N) = xe(N)

x(N)
be the probability that the new innovation is for an existing

application. Let the random variable τ (N) be the arrival time of an inno-
vation given the aggregate research intensity x (N) . The expected discount
factor can be calculated using the Poisson distribution as:

δ (N) ≡ E
£
e−rτ(N)|x (N)¤ = x (N)

x (N) + r

Note that the expected time it takes for an application to be replaced by an
improved one depends on the search intensities, hence the expected discount
factor depends on the current state of the industry, summarized by N.
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To calculate the expected benefit of doing research, let first V (N) be the
value of an incumbent firm just as a new innovation arrives, but without
knowing what application it is for. It is described recursively by

V (N) = ρ (N)

µ
1− 1

N

¶
((1− δ (N))π + δ (N)V (N)) (2)

+(1− ρ (N)) ((1− δ (N + 1))π + δ (N + 1)V (N + 1))

This allows us to define the flow of expected benefit to the two research
activities:

Ve (N) = (1− δ (N))π + δ (N)V (N) (3)

Vf (N) = (1− δ (N + 1))π + δ (N + 1)V (N + 1)

Ve (N) /r and Vf (N) /r are the expected total profits of a researcher condi-
tional on achieving one of the corresponding innovations when the current
state is N. By the properties of Poisson distribution they also represent the
flow of expected profits from innovation. Therefore, the free-entry conditions
for the researchers are:

Ve (N) /r ≤ θ̄ (N) (4)

Vf (N) /r ≤ θ̄ (N) + η

with equality whenever the corresponding task is undertaken by a positive
mass of researchers.
Formally, the recursive equilibrium requires that agents optimize accord-

ing to equation (4) given (2) and (3), and these individual decisions agree
with aggregate variables in (1).
Next we summarize the results of this section in a proposition. We follow

the proposition with a discussion, including a series of lemmas, that establish
the result, as well as establishing a sufficient condition for uniqueness of the
equilibrium.

Proposition 1 There exists some N∗ such that xf(N) > 0 and xe(N) > 0
for N < N∗. Further, xf(N∗) = 0 and xe(N

∗) > 0. Finally, x(N) is
increasing in N .
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Despite the fact that the per period profits are the same for new applica-
tions and improvements to existing applications (π), competitive innovators
may be willing to pay the additional cost to develop a new application. The
reason is that, due to the increasing cost of researchers, research intensity on
existing applications rises less than proportionally to the number of existing
applications. As a result, the amount of research on improvements, per appli-
cation, is declining in the number of applications; this implies that the value
of having a marketable application rises as the total number of applications
increases. If that value is rising fast enough from N to N+1, the extra value
from developing a new application makes the extra cost worth paying. Even-
tually this increased value gets small and may be insufficient to draw research
in new applications. We then reach a steady state number of applications,
N∗, at which point there is only research in existing applications.
On the other hand, anytime there is research on new applications, there

must also be research on improving existing applications. If there were only
research on new applications for a given N , then developing an improvement
would make more profits than a new application: it would earn profits until
the next new application, at which point the continuation value would be as
much as the new application would have made. This is of course impossible
since improvements are less expensive. We get the following picture of inno-
vation. For N below the steady state, there are both types of research, with
total research intensity increasing due to the rising value of a leading edge
application.
In order to see the results in Proposition 1, suppose first that there are

some states N and N + 1 in which both research dimensions are active in
equilibrium. Using the free entry condition we can now characterize the
equilibrium aggregate research intensity for times when both activities are
undertaken.
Note that (3) implies Ve (N + 1) = Vf (N) . Combining it with the free

entry conditions we get:

c (x (N + 1)) = c (x (N)) + η (5)

For example, if F (θ) = (θ − θl) /a, then c (x) = ax+ θl and:

x (N) = x (N + 1)− η/a

This condition allows us to show that aggregate research is increasing in
N :
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Lemma 1 As long as both research tasks are active, aggregate research effort
x(N), and value V (N) are increasing in N.

Proof. Monotonicity of x (N) follows directly from (5) and monotonicity of
c (x) .
Regarding V (N), from the free-entry conditions we have

Ve (N + 1) /r − Ve (N) /r = η

⇓
(δ (N)− δ (N + 1))π + δ (N + 1)V (N + 1)− δ (N)V (N) = rη

⇓
(δ (N)− δ (N + 1))| {z }

<0

(π − V (N))| {z }
>0

+δ (N + 1) (V (N + 1)− V (N)) = rη

where (δ (N)− δ (N + 1)) < 0 because we have proven that x (N) is
increasing. As the first element on the LHS is negative, we must have
V (N + 1) > V (N) for the equality to hold.
Next, we establish the existence of a steady-state and that before stead-

state both research tasks are indeed active:

Lemma 2 For any N, x (N) > 0. For any N > 0 such that xf (N) > 0, it
must be that xe (N) > 0. Finally, there exists N∗ such that for all N ≥ N∗

xf (N) = 0.

Proof. We start with the second claim. Suppose xe (N) = 0 and xf (N) > 0.
Then, combining (2) and (3) we get Ve (N) = Vf (N) , which contradicts the
free entry conditions (4) .
Now, suppose that there exists anN such that x (N) = 0. Then δ (N) = 0

and Ve (N) = π. Since there are researchers with θ < π/r (which we assumed
to get any innovation in equilibrium), that violates free entry condition.
Finally, suppose that for all N , xe (N) and xf (N) are positive. From the

analysis before we know that this would imply Ve (N + 1) = Ve (N) + rη for
all N. But that is not possible as Ve (N) ∈ (0, π) .
We will assume that this N∗ < N̄ (the total number of feasible func-

tions). In a steady-state N∗, the value and research intensity can be easily
determined as they satisfy the Bellman equation and the free-entry condition:

V (N∗) =
µ
1− 1

N∗

¶
((1− δ (N∗))π + δ (N∗)V (N∗)) (6)
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(1− δ (N∗))π + δ (N∗)V (N∗)| {z }
Ve(N∗)

= rc (xe (N
∗)) (7)

Call the solution to these two equations, for arbitrary N , V̂ (N) and x̂e(N),
with the associated δ̂(N).

Lemma 3 V̂ (N) is increasing in N ; x̂e(N) is increasing in N .

Proof. Pick any N and consider N 0 = N + 1. V̂ (N) increasing: suppose
not. Then x̂e(N) would weakly decrease to satisfy (7) But that implies that
δ̂ (N) would weakly decrease; since V (N) < π (the maximum flow payoff),
(6).implies that V (N∗) is increasing.
Finally, suppose x̂e(N) is weakly decreasing. That would require that

δ (N∗) is weakly decreasing and would violate (7) since we have already
established that V̂ (N) is increasing.
In order for N∗ to be a steady state, it must be the case that it is not

profitable to search for a new application at N∗, even if no further effort on
new applications were researched. In other words, at the steady state N∗,
the following inequality holds:

(1− bδ (N + 1))π + bδ (N + 1) V̂ (N + 1) ≤ r (c (x̂e (N)) + η) (8)

where bδ (N + 1) =
x̂e(N + 1)

r + x̂e(N + 1)

is the expected discount factor if at state N+1 the research is xe = x̂e(N+1)
and xf = 0. Condition (8) can be simplified to

c (x̂e (N + 1))− c (x̂e (N)) ≤ η

If c (x̂e (N)) is concave, there clearly exists exactly one "crossing point"
which provides a sufficient condition for uniqueness of the steady-state and
equilibrium:

Lemma 4 Suppose c (x̂e (N)) is concave in N. Then the steady state N∗ is
unique.

It can be verified directly that c (x̂e (N)) is in fact concave for many
distribution functions F, for example a linear one (see also the numerical
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example in the next section). The intuition why we should expect it to hold
is as follows: suppose first that δ (N) is constant. Then the solution to (6)
V (N) is concave because

¡
1− 1

N

¢
is concave. Now, for (7) to hold, c (x̂e (N))

and δ (N) have to increase. This adjustment has to be larger the more V (N)
increases, so it is smaller for larger N. Therefore, for a lot of shapes of c (x)
we would obtain that the c (x̂e (N)) would be concave.
Once we find N∗ and xe (N

∗) , we can solve the open-standard model by
working from the eventual steady state. In particular, iterating on (5) we
get:

Lemma 5 Aggregate research effort x(N) is increasing in N according to
c (x (N + 1)) = c (x (N)) + η.

Given x(N) for all N ≤ N∗ and V (N∗), we can use equation (4) to cal-
culate V (N). Finally, to compute the individual values xe(N) and xf(N),
given x (N) and V (N) , we can use equation (2). Note that this construc-
tion is unique for a given N∗, so that c (x̂e (N)) concave delivers a unique
equilibrium.

3.2 Numerical Example

We assume that F is linear, F (θ) = (θ − θl) /a, and so c (x) = ax+ θl.
We consider the following parameters: r = 5% (annual interest rate)

a = 0.01, θl = 0.2, η = θl/25, λ = 1.5 (so quality increases by 50%). Then
N∗ = 9. In the steady-state x (N∗) ≈ 9.66, which is also the average number
of improvements per year. The research intensities are shown in the figure
as a function of N : the top line is total investment, the decreasing line is the
investment in new applications, and the third line is investment in existing
applications.

Note that the difference between the extra cost η of a new application is
at most four percent of the cost of researching an improvement (for θ = θl),
but yet differences between intensities research intensities new and existing
applications are large.
The expected time to the next frontier application is drawn in the next

figure:
It takes less than 5 months for the first application to be invented. The

time till next frontier application stays below one year only until 3 ladders
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exist and finally reaches over 49 years (not shown on the figure) for the move
from N = 8 to N∗.Note that the difference between the extra cost η of a
new application is at most 4% of the cost of researching an improvement (for
θ = θl), but yet differences between intensities research intensities new and
existing applications are great.

4 Innovation Dynamics in a Closed Standard

4.1 Analytic Results

As we described above, with a closed standard pricing of the applications will
be different as the monopolist owns all applications. The optimal strategy
of the monopolist will depend now not only on N but on the whole state of
the applications, i.e. not only on how many functions have application but
also on the quality of existing applications.
Recall that quality improves at rungs of λ > 1 and let ji denote the

number of rungs that the best application has over the default level φ = 1,
so that qji = λj. If there is no application for a given function, then let ji = 0.
Let Q = {j1, ..., jN} denote the state of the applications. The monopolist
chooses research activities xe (Q) , xf (Q) to maximize expected profits. As
we argued before, the optimal price of the best application for function i is
λji . At that price demand is xi = 1/pi = 1/λji and hence the monopolist
obtains a flow of profits

πj = 1− 1

λj

which is increasing and concave in j. The profit gain from a unit increase in
quality is

∆j = πj+1 − πj =
1

λj

µ
1− 1

λ

¶
which is decreasing in j and ∆j → 0. For now, assume ∆0− η > ∆1, so that
the monopolist prefers to invest in frontier applications before improving
existing ones. We will later discuss how the optimal innovation strategy
differs if this condition is not satisfied.
We begin by summarizing the results as a proposition.

Proposition 2 If ji = 0 for any i, then xf > 0 and xe = 0. Existing
applications are improved only if ji = minQ. Total innovation x is strictly
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decreasing in the number of innovations achieved. There exists a level j∗ such
that all research stops once all applications reach j∗.

We will prove this proposition through a sequence of lemmas and at the
same time we will provide a more detailed characterization. We first argue
that the optimal strategy is to continue research only up to a level j∗ and
to put research activity only at the current lowest-level application, i.e. one
that maximizes ∆j. As a result, research is done in layers: at any time the
monopolist works on the lowest-level applications until he brings all of them
to the next level. This continues until he reaches level j∗ with all of them.

Lemma 6 Optimal research strategy in the closed standard satisfies:
a) In the long run research stops once all applications reach a level j∗ which
is the smallest integer s.t. ∆j∗ < rθl
b) In the long run all functions have applications.
c) In any time the research is done on a product with the highest ∆j (i.e.
lowest ji).

Proof. See appendix.
This partial characterization allows us to reduce the state space to rele-

vant points with applications on two levels only. Abusing slightly notation,
let Q now denote a pair (j, k) where j is the lowest level of applications across
i and k is the number of functions on this level. We will use a convention
that Q + 1 ≡ (j, k − 1) and (j, 0) ≡ ¡j + 1, N¢ . Finally, let C (x) = xc (x)
denote the total cost of hiring xmass of researchers, each at wage c (x), where
c (x) = F−1 (x) if xf = 0 and c (x) = F−1 (x) + η if xf > 0.
We can prove the following monotonicity result.

Lemma 7 x(Q) is strictly decreasing.

Proof. See appendix.
The intuition is that the rewards to research decrease for two reasons.

First, the immediate rewards, ∆j, are weakly decreasing. Second, as there
is only a finite number of rewards, the increase in continuation-payoffs are
strictly decreasing: finding the first innovation brings closer the profits from
all the subsequent innovations, an effect missing for the last innovation.
We will now determine recursively the levels x (Q) of optimal research.

The value function of the monopolist is defined recursively through the op-
timization problem:
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VM (Q) = max
x

r

x+ r
(π (Q)− C (x)) +

x

x+ r
VM (Q+ 1) (9)

The first order condition is

VM (Q+ 1)− (π (Q)− C (x))

(x+ r)
= C 0 (x) (10)

For example, if F (θ) = (θ − θl) /a, then C (x) = ax2 + θlx, the FOC
becomes

VM (Q+ 1)− π (Q) = ax2 + 2rax+ rθl

and the optimal choice is

x =

r
r2 +

VM (Q+ 1)− π (Q)− rθl
a

− r

which is positive as long as VM (Q+ 1)− π (Q) > rθl, i.e. the gain is worth
hiring some researchers.4

From lemma 6 we can find j∗ as the closest integer higher than the solution
to∆j = rθl. This can be simplified rewritten as j = ln ((λ− 1) / (rλθl)) / lnλ.
Given this j∗, let Q∗ =

¡
j∗, N

¢
. The value in this steady-state is:

VM (Q
∗) = Nπj∗

That allows us to solve recursively for x (Q) and VM (Q) by iterating on (10)
and (9) and finishes the description of the equilibrium.

Remark 1 We have assumed that ∆0 − η > ∆1. If that does not hold, the
optimal research policy varies only slightly. Let j0 be the smallest j such that
∆0 − η > ∆1. If j0 > 1, then the optimal strategy is to develop first the j0

applications for a given function before developing a frontier application for
a new function.

Remark 2 Given the symmetry across applications, all strategies with a
given level of aggregate x (Q) that put all the research activity at the lowest-
quality applications, but differ in the division of x (Q) among them are payoff
equivalent and lead to the same evolution of applications.

4For xf > 0 these formulas have to be modified to replace θl with θl + η.

19



0

5

10

15

20

25

0 20 40 60 80

x

0

20

40

60

0 200 400 600 800

x

Figure 3: Innovation in a Closed Standard

4.2 Numerical Example

We keep the parameters from the open-standard example: r = 5% (annual
interest rate), a = 0.01, θl = 0.2, η = θl/25, λ = 1.5. The new parameter
we need to specify is N. We will compare two values: N = 9 and N = 100.
Given these parameter values, j∗ = 8 so the monopolist will research up to
8 applications per ladder. The figures show the dynamics of innovation as a
function of J =

P
ji for N = 9 on the left and for N = 100 on the right.

The intensity of innovation is huge in the beginning (as compared with
the open standard): for N = 9 it takes on average less than a month in
between the first 30 innovations (in the open standard in the steady-state the
innovations come on average 1.2 months apart and the speed of innovation
is much slower in the beginning - the first innovation arrives an order of
magnitude faster in the closed standard). Note also that for N = 100. the
innovation starts almost 3 times as large!
Note further that one can interpret these differences as differences be-

tween innovation by large firms (the monopolized closed standard) and small
firms (the open standard). However, in this case, the model suggests that
measurement of these differences is difficult. First, whether you observe more
innovation by large or small firms depends on the point in the product cy-
cle; in the beginning, it appears that large firms do more innovating, but
later on the pattern reverses. Moreover, our model suggests that different
market structures lead to different types of innovation, so simply measur-
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ing a one dimensional innovation variable for each is not an apples-to-apples
comparison.

5 Software Applications with Open and Closed
Standards

The analysis so far focused on stand-alone applications and took the market
structure as given. We now use the model to consider software applications
and to better understand the tradeoffs in choosing a closed or open standard
regime. In this section we consider the choice by the owner of hardware and
in the next section we discuss the welfare consequences.
In particular, we allow for the possibility that hardware can be sold by

the monopolist. The hardware in our model has no use in itself, but is neces-
sary to use any application. We assumed that hardware is infinitely durable
and bought in the beginning of the game, in anticipation of future applica-
tions (that assumption is unrealistic, as hardware always comes with some
applications immediately available, but that simplification is not affecting
the economics we describe).
The consumers will be willing to pay up to their expected surplus for the

hardware, which equals their total utility minus the utility that they could
obtain from directly performing the function. In the closed standard, the
monopolist always follows limit pricing of applications to the direct option.
Therefore, there is zero expected surplus from the hardware, all profits come
from sales of the applications. In other words, if the software market is
monopolized, the hardware can be sold by competitive firms.

5.1 Hardware Pricing in Open Standard

If the standard is open, then prices are pi = 1/λ, quantity is 1/λ and con-
sumer surplus (over the outside option) from good i with quality qji = λj

is
CS (j) = (j − 1) lnλ

Therefore the hardware seller can extract up to the expected present value
of CS (j) summed over all applications.
Let J =

P
ji be the number of quality improvements summed over all
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applications. Then the current flow of surplus given J is

CS (J,N) = (J −N) ln (λ)

In the steady-state the expected total consumer surplus for a current J
is:

U (J,N∗) =
¡
1− δk (N∗)

¢ ∞X
k=0

δk (N∗)CS (J + k,N∗)

= ln (λ)

µ
J −N∗ +

δ (N∗)
1− δ (N∗)

¶
In a state N < N∗, the total surplus is:

U (J,N) = (1− δ)CS (J,N) + δ (ρU (J + 1, N) + (1− ρ)U (J + 1, N + 1))

(note that δ = δ (N) and ρ = ρ (N)). Since research intensity for the open
standard depends only on N , we can expand this as

U (J,N) = (1− δ)
¡
CS (J,N) + δρCS (J + 1, N) + δ2ρ2CS (J + 2, N) ...

¢
+δ (1− ρ)U (J + 1, N + 1) + δ2ρ (1− ρ)U (J + 2, N + 1) + ...

and so

U (J,N) = ln (λ) (1− δ)
∞X
k=0

(δρ)k (J −N + k)+(1− ρ) δ
∞X
k=1

(δρ)k−1 U (J + k,N + 1)

We guess that
U (J,N) = ln (λ) (J −N + aN)

and plug this back in for U(J + k,N + 1) to get :

U (J,N) = ln (λ)

µ
J +

aδ (1− ρ) + δρ

1− δρ

¶
This confirms the guess; we get the following recursive equation for a :

aN =
aN+1δ (N) (1− ρ (N)) + δ (N) ρ (N)

1− δ (N) ρ (N)
(11)
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Since we have found before aN∗=
δ(N∗)
1−δ(N∗) , we can use (11) to calculate aN for

all N < N∗.Then we can calculate

U (0, 0) = ln (λ) a0

and the optimal hardware price is

ln (λ) a0/r

The analysis so far allows us to calculate and compare the profits in the
two regimes numerically, but direct analytic comparison is difficult. Therefore
in the next two sections we develop further results to highlight the role scope
of feasible innovation plays in the choice of the hardware monopolist. For
simplicity we will focus on the linear case F (θ) = (θ − θl) /a.

5.2 Large N̄

First we develop a result for the case where the future is relatively important
(low r) N̄ is high and η is small. In this case, it is better to extract surplus
through monopolizing applications, since there is a great deal of benefit in
internalizing the benefits of making the scope as large as possible. Of course
one must be sufficiently patient to make this plan profitable.
We first establish two lemmas, which serve to compute the payoff from a

closed standard and bound above the payoff for an open standard

Lemma 8 In the linear case, F (θ) = (θ − θl) /a, as N →∞, the value from
the closed standard converges to 1

4
(π−r(θl+η))2

ar2
(in flow terms)

Proof. See appendix.

Lemma 9 The hardware price for the open standard is bounded above by
ln (λ) π−rθl

r
(in flow terms).

Proof. See Appendix.

Proposition 3 If r < π
θl+4a lnλ

then there exists η∗ > 0 such that for all
η ≤ η∗ if N is sufficiently large, the monopolist prefers to have a closed
standard rather than an open one.
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Proof. From the above calculations for open and closed standards, we will
calculate a ratio

1

4

(π − r (θl + η))2

ar2
/

µ
ln (λ)

π − rθl
r

¶
which is continuously decreasing in η. At η = 0 the ratio is:

1

4ar lnλ
(π − rθl)

This expression is positive and decreasing in r. Solving for it to be equal 1
yields the bound. Given r less than this bound we can find an η∗ > 0 such
that ratio is still less than 1. Then, for any η ≤ η∗ we can findN large enough
that the payoffs under the closed are arbitrarily close to the calculated bound
(for this and all larger N).

Remark 3 For a given η we can calculate a bound on the interest rates:

r∗ = π
θl + η + 2a lnλ− 2

p
ηa lnλ+ a2 ln2 λ

(θl + η)2 + 4aθl lnλ

Then, if r < r∗ we can find N
∗
such that for all N ≥ N

∗
the closed standard

is more profitable.
This bound converges to the one in proposition as η → 0. For example, if
θl = a = 0.1, η = θl/10 and λ = 1.5 (so that π = 1

3
) then the bound is

r∗ = 118%. Any discount rate smaller than that makes the monopolist prefer
a closed standard for sufficiently high N.

5.3 Small N̄

We will now argue that if N is small and r is small, then the open standard
choice will be more profitable (we keep F (θ) linear). We will focus on the
case N = 1 as it illustrates the intuition best.
For the open standard, once the first application is developed, the free-

entry condition is:
(1− δ)π/r = c (x)

which in the linear case yields that steady-state x∗ solves:

π

r + x∗
= ax∗ + θl (12)
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Direct calculation shows x∗ is decreasing in r.
Following the calculations in Section 5.1, consumer surplus for j > 0 is

CS (j) = (j − 1) lnλ, and CS (0) = 0. Let δ = x∗
x∗+r . The expected surplus

after the first application is developed is:

U (1, 1) = (1− δ)CS (1, 1) + δ (1− δ)CS (2, 1) + δ2 (1− δ)CS (3, 1) ...

= (1− δ) ln (λ)
∞X
k=0

kδk = ln (λ)
x∗

r

Using condition (12) we can find that limr↓0 x∗ > 0. so U (1, 1) is on the order
O
¡
1
r

¢
for small r.

We can now bound U (0, 0) = h. The free entry condition at N = 0 is

(1− δ)π + δ V (1)| {z }
=0

= r (axf + θl + η)

which yields:
xf = (

π

r + x∗
− (θl + η))/a (13)

Remark 4 We have assumed that η is small enough so that xf > 0. This
assumption corresponds in this case to:

η <
π

r + x∗
− θl

the above inequality holds for small r if

π > η
θl + η

a

If η is too large compared with π, then the open standard will fail to develop
even the first application. Then the closed standard is necessary to overcome
the public-good aspect of the higher cost of developing a new application and
clearly the closed standard will be more profitable.
On the other hand, if the hardware comes with the first application, then this
additional restriction is not necessary.

Assuming π > η θl+η
a
, xf converges to a strictly positive number as r → 0.

Therefore the price of hardware (in payoff flows) is

h = U (0) =
xf

xf + r
U (1)→ O

µ
1

r

¶
In the closed standard the profit flow is at most πj→∞ = 1. Therefore:
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Proposition 4 If π > η θl+η
a
, then there exists r∗ > 0 such that if r < r∗ and

N is sufficiently small, the open standard is more profitable to the hardware
owner than the closed standard.

Proof. Follows directly from the calculations above: for N = 1 and small
r, the total profits from closed standard are at most 1/r, while the price of
hardware in the open standard is on the order O (1/r2) .

5.4 Numerical example (effects of N)

Return to our two numerical examples. As N∗ = 9, then as long as N ≥ 9,
the price of hardware is independent of N. Contrary, the profits in the closed
standard depend crucially on N. In the figure below we compare the profits
from hardware in the open standard (the horizontal line) with the profits
from software in the closed standard regime (the increasing curve). As the
discussion in this section points out, for smallN the profits are higher from an
open standard and when N is large they are higher from the closed standard
case (in this example the cutoff is N = 91).
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6 Social Welfare

In the previous section we calculated the surplus the hardware owner can
expect from different market structures. For policy questions it is useful to
calculate social welfare under various production structures.5 The only por-
tion of surplus that we have not calculated so far is the surplus of researchers.

6.1 Surplus of the researchers

The supply function of the researchers is c (x) . Therefore the flow of producer
surplus is simply:

PS (x) =

Z x

0

(c (x)− c (u)) du

In the linear case, c (x) = ax+ θl, we have

PS (x) =
1

2
ax2

(Note that it does not depend on θl, so the surplus calculation when the
researchers work on existing applications or frontier ones is the same).
In the closed standard case, the total expected discounted researcher sur-

plus is:
VR (Q) = (1− δ (Q))PS (x (Q)) + δ (Q)VR (Q+ 1)

and we have VR (Q∗) = 0. So we can find the VR (0) iteratively.
In the open standard case, given an N, the total expected discounted

researcher surplus is:

VR (N) = (1− δ (N))PS (x (N)) + δ (N) (ρVR (N) + (1− ρ)VR (N + 1))

Hence

VR (N) = ((1− δ (N))PS (x (N)) + δ (N) (1− ρ)VR (N + 1)) / (1− δ (N) ρ)

Also, at N∗ the surplus flow becomes constant:

VR (N
∗) = PS (x (N∗))

5Note that we do not study a planner with complete control, as he would trivially do
only quality improvements, and sell at marginal cost, given our preference structure.
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so again it is easy to find the time-zero expected discounted producer surplus
of the researchers.
Note that in our model the consumers are left with no surplus due to their

homogeneity and unit-elastic demand. As a result, the difference between to-
tal surplus and the surplus of the owner of hardware is small unless research
is done on a very large scale. Therefore the inefficiency of the decision of
the monopolist will be in general small (see the following example). A bet-
ter model to study policy questions would expand the model and introduce
heterogenous consumers to allow for consumer surplus in either regime.

6.2 Numerical Example

After adding the welfare of researchers to obtain total welfare calculation for
the numerical examples we have presented before, the picture as a function
of N looks like this:
For comparison we have also plotted the value in the closed standard (the

difference between the total surplus in the open standard and the hardware
price is negligible as the research intensity is small in the open standard).
As we see, for a wide range on N the hardware owner’s preferences agree

with maximization of total surplus. Only in the range N ∈ {84, ...90} the
hardware monopolist would choose to open the standard while the total sur-
plus would be maximized by keeping it closed. Still, the potential social
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inefficiency is small in this example.

7 Subsidizing innovation

The equilibria we have characterized above do not achieve social first-best
along many directions: the prices of the final products are above marginal
cost of production, too little innovation takes place and in the closed standard
case, the monopsony power in the market for researchers creates inefficiency
there. Hence there are many ways a government can intervene to improve
efficiency. We now focus on one possibility: subsidizing innovation in an
open standard and ask how the social returns compare between subsidizing
frontier or existing applications.
To keep things simple, we focus on one-time unexpected subsidy for

the marginal researcher in the steady state of the open standard to avoid
crowding-out of private innovation caused by the anticipated future govern-
ment subsidy. In equilibrium the steady state innovation level x∗ is socially
inefficient, in the sense that the total surplus would increase if additional re-
searchers joined the innovation effort. The reason is that the private return is
equal to r

x∗+rπ while the social return is equal to CS∆/r: the second number
is higher because the social benefits accrue forever, while the private returns
occur only until the firm gets replaced by an improvement (plus, given our
demand structure, the increase in flow of consumer surplus is higher than
the profit flow: CS∆ = lnλ > λ−1

λ
= π).6 Therefore a subsidy to research

increases total welfare. Any such policy would have to decide whether to
favor improvements of existing applications or development of frontier appli-
cations.
To model this, we simply ask what the planner’s payoff would be to one

arrival of each type of innovation. For a quality improvement, the benefit
is just CS∆/r = (lnλ) /r. Innovation in a frontier application would have
two effects. First, it creates additional profit flow, without business stealing,
hence a return to firms of π/r (assuming that the innovation is sold to a
firm that then sells it at profit maximizing price; if instead the price is set at
marginal cost, then the return is larger, but we want to focus on intervention
in innovation alone). Second, a frontier innovation increases N and hence the
steady state intensity of research from x̂e (N

∗) to x̂e(N∗+1) (recall from Sec-

6CS∆ denotes an increase of equilibrium consumer surplus flow of having one additional
application: CS∆ = CS (J + 1, N)− CS (J,N) .
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tion 3 that x̂e(N) is defined as the equilibrium research intensity if no further
frontier applications are expected in the future).7 This second effect is going
to dominate in the long run, even though flow of benefit from inventing an
improvement to existing applications is higher than from inventing a frontier
application, because increase in x leads to an increase in the growth rate of
future welfare. Therefore a sufficiently patient planner will prefer subsidizing
frontier applications.
Formally, the steady-state free-entry condition is:

π

r + x̂e(N)/N
− c(x̂e(N)) = 0 (14)

This expression is increasing in N and decreasing in x̂e, hence unless c(x) is
vertical at x̂e(N∗), it must be the case that x̂e(N∗ + 1) > x̂e(N

∗). Further-
more, notice that this expression is decreasing in x̂e faster if c(x) is increasing
faster (to the right of x̂e(N)).
One might be concerned about the behavior or N∗ as r gets small; the

following lemma shows that N∗ converges to a finite number, and so, for
large enough N̄ , an additional ladder is feasible even for small r.

Lemma 10 limr→0N∗ <∞.

Proof. See Appendix.
Given that N∗ is well defined for small r, we can state formally the com-

parative static in r :

Proposition 5 Suppose c(x) is finite for all x. For sufficiently low r, the
planner obtains a higher social return from (one-time, unexpected) investment
in frontier applications than in existing applications.

Proof. As we argued above, the total social return the one-time creation of
one additional existing application is simply a constant flow of one additional
"step" consumer surplus: CS∆/r.When instead a new frontier application is
invented, customers do not gain any additional surplus immediately (as we
assumed that the product will be sold by a monopolist) but they will enjoy a

7We assume that c (x̂e (N)) is concave in N to make sure that N∗ +1 will be indeed a
steady state, see Lemma 4. There is also a third effect that the frontier application costs
more, but compared to all future benefits it is likely to be small and hence we ignore η in
this section.
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faster rate of arrival of future innovations: x̂e(N∗ + 1) instead of x(N∗). (In
terms of total surplus there is also an increase of profits for the industry, but
it is sufficient to compare the consumers’ gain). That leads to a total gain
of:

CS∆
r2

(x̂e(N
∗ + 1)− x(N∗))

The ratio of the total returns to customers from the two types of innovation
is hence

x̂e(N
∗ + 1)− x(N∗)

r
(15)

As r→ 0, condition (14) converges to:

Nπ = x̂ec(x̂e(N))

hence even in the limit x̂e(N) is strictly increasing in N. Therefore, for suffi-
ciently small r the return to customers (and total social return) is higher if
the planner subsidizes frontier applications.
To understand the role of the shape of c(x) on the planner’s preference,

consider the following comparative static: fix c(x) for x ≤ x(N∗), but, for
x > x(N∗), let c̃(x) < c(x), so that c̃(x) is flatter (more elastic) than c(x).
Under c̃(x), an additional ladder has more social benefit (because it will
increase x by more than if the costs were given by c(x),according to (15)).
But, by contrast, an additional ladder is less attractive to the innovator
under c̃(x), for the same reason; the high rate of future arrivals discourages
frontier research. As a result, for both cost functions, the steady state is N∗

with research x(N∗), but the social benefit of an additional ladder is greater
under c̃(x).
This logic is summarized in the following proposition.

Proposition 6 Let c̃(x) = c(x) for x ≤ x(N∗), but let c̃(x) < c(x) for
x > x(N∗). Then the planner has a greater preference for frontier research
under c̃(x)

One interpretation of new ladders versus improvements is the contrast
between basic research and applied developments. The model suggests both
a rationale for governmental support for basic research (the greater research
intensity that they foster), and an intuition for when this impact is likely to
justify government involvement. For flat c(x), the private benefit to frontier
research is small, but the social benefit from an additional ladder is large.
Both are driven by the fact that flat c(x) leads to a big impact of a new
ladder on equilibrium research intensity.
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8 Conclusion

We have shown that analyzing two margins for innovation (improvements
versus new products), the tradeoff between different market structures is
not so much about quantity of innovation as about allocation of innovative
efforts. Closed standards/firms with market dominance are good at coming
up with new products while open standards/markets with many small firms
are better at improving products. The welfare consequences depend crucially
on the fundamentals of the technology, like possible scope of applications.
The models suggests that market structure impacts not only the amount

but also the direction of technological change. Considering other ways that
market structure affects the direction of technological change, as introduced
by Acemoglu (2002), seems to be an interesting way to extend the basic
structure.
The model could be applied in other ways. Klepper and Thompson (2005)

show that a variety of empirical facts about firm dynamics can be explained
through a model of submarkets, where submarkets arrive exogenously. One
can view the arrival of new applications as a sort of new submarket; one would
only have to add obsolescence for it to match Klepper and Thompson’s notion
more directly. We have focused on two market structures which correspond to
some real world situations. Considering other market structures, including
an optimal one for extraction of surplus for the monopolist, is a topic for
future research.

9 Appendix A: Proofs

Proof of lemma 6. a) the benefit to innovation at a given product is at
most (1− πj) /r =

1
rλj

. As the cost of hiring researchers is at least c (0) = θl,
for high enough j the expected benefit becomes larger than marginal cost,
making further research unprofitable. Now, suppose that the research stops
at some j. If ∆j > rθl, then a profitable deviation is to hire researchers with
θ ∈ [θl, θl + ε] for some small ε. If ∆j−1 < rθl then a profitable deviation is
to reduce research activity to zero once the application reaches level j − 1.
b) That follows directly from the assumption that F (π/r − η) > 0 (or

equivalently, π1/r > θl + η), so the expected benefit of the first application
is higher than the cost of hiring the most efficient researchers.
c) Given a researcher is hired, it is optimal to put his activity in a product
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with the highest expected return. The immediate return, ∆j, is the highest
for the goods with the lowest j and the continuation return (from subsequent
innovations, ∆j+1...∆j∗−1) is also highest for those goods. Hence such strat-
egy is optimal (see the proof of lemma 7 for a more detailed calculation).

Proof of lemma 7. Rewrite the closed standard problem in the following
way. Let pQ = (π(Q)− π(Q− 1)) /r, the incremental benefit of the Qth
innovation, where there are Q∗ = j∗N̄ innovations. Note that pQ is weakly
decreasing. Let C(x) = xc(x).
The closed standard problem is choosing xn, n ∈ {1, 2, ...Q∗) to maximize

x1
r + x1

p1 − r

r + x1
C(x1) +

x1
r + x1

µ
x2

r + x2
p2 − r

r + x2
C(x2)

¶
+

x1
r + x1

x2
r + x2

µ
x3

r + x3
p3 − r

r + x2
C(x3)

¶
+

...Ã
N−1Y
i=1

xi
r + xi

!µ
xN

r + xN
pN − r

r + xN
C(xN)

¶
Let

G(Q) = max
{xQ,...xQ∗}

Q∗X
i=Q

i−1Y
j=Q

xj
r + xj

µ
xi

r + xi
pi − r

r + xi
C(xi)

¶
Note that the solution to the whole problem is G(1).Denote the solution to
this problem for anyQ by {xQn }. Note further thatG(Q) is strictly decreasing,
since, for G(Q), choosing {xQQ, xQQ+1..., xQQ∗−1, xQQ∗} = {xQ+1Q+1, x

Q+1
Q+2..., x

Q+1
Q∗ , 0}

gives at least as high a payoff as G(Q+1), and increasing the last term from
zero makes the payoff strictly higher.
The first order condition for xn in the full problem is

pn +G(n+ 1) = C 0(xn)(r + xn)− C(xn)

If C 0(xn)(r + xn) − C(xn) is increasing, then it is immediate that, since
the right hand side is strictly decreasing, the left hand side must be strictly
increasing. Extending the proof to arbitrary C is a direct application of
simple ironing techniques; lettingR(x) = C 0(xn)(r+xn)−C(xn), and defining
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the

κ(x) =

Z x

0

R(x)dx

κ̄(x) = conv(κ(x))

the virtual value for the right hand side is defined almost everywhere by dκ̄
dx
,

and extended by right limits everywhere else.
Proof of lemma 8. Note that, for the closed standard,

VM (Q) = max
x
(1− δ) (Nπ − xc (x)) +

x

x+ r
(VM (Q+ 1))

As N →∞, x converges to a constant that maximizes

xπ/r − xc (x)

The FOC is:
π/r = xc0 (x) + c (x)

in the linear case, F (θ) = (θ − θl) /a ⇒ c (x) = ax + θl + η, the optimal
choice is:

x =
1

2

π − (θl + η) r

ar
(16)

and the sum of expected discounted profits:

VM (0) = (1− δ) (0− xc (x)) + δ (1− δ) (π − xc (x)) ...

= (1− δ)
∞X
k=0

¡
δkkπ

¢− xc (x)

= π
x

r
− xc (x)

(the last equality uses δ
1−δ = x/r).

Substituting the optimal x from (16):

VM (0) =
1

4

(π − r (θl + η))2

ar2

Proof of lemma 9. The hardware price (in terms of payoff flow) for an
open standard is bounded by the steady state discounted sum of consumer
surplus, which is

ln (λ)max

½
1,

δ (N∗)
1− δ (N∗)

¾
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In order to calculate δ(N∗)
1−δ(N∗) =

x(N∗)
r
, calculate:

V (N∗) =

µ
1− 1

N∗

¶
((1− δ (N∗))π + δ (N∗)V (N∗))

⇓
V (N∗) = πr

N∗ − 1
N∗r + x (N∗)

Now, the free-entry condition (7) is:

r

x (N∗) + r
π +

x (N∗)
x (N∗) + r

V (N∗) = r (ax(N∗) + θl)

Combining with V (N∗) yields:

x (N∗) =
1

2a

µq
(arN∗ + θl)

2 + 4aN∗ (π − rθl)− (arN∗ + θl)

¶
For any r, x (N∗) is increasing in N∗ and

lim
N∗→∞

x (N∗) = π − rθl

which is a uniform bound on x∗ (N∗) , that allows us to bound the price of
hardware without finding the steady state. The hardware price (in terms of
payoff flow ) is at most:

h ≤ ln (λ) π − rθl
r

Proof of lemma 10. Recall that x̂e(N) is defined by the solution to (6)
and (7) which yields

c (x̂e(N)) =
π

r + x̂e(N)/N

So x̂e(N) is decreasing in r and increasing in N. As r → 0, this condition
becomes:

c (x̂e(N)) x̂e(N) = Nπ (17)

so x̂e(N) converges to a number. Now, to see that the steady-state N∗

is bounded away from ∞ as r → 0,suppose c0 (x) is bounded from above.
Suppose that for every N ,

c (x̂e(N + 1))− c (x̂e(N)) > η
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(the opposite inequality is our condition for N∗, see discussion before Lemma
4). Then, in (17) the LHS is growing at least linearly, while the RHS is
growing much slower than linearly. So it cannot work. Therefore, even as
r→ 0, N∗ is bounded.

10 Appendix B: φ < 1

Throughout the paper we have maintained Assumption 2 that φ = 1. How
would the analysis change if instead:

Assumption 2B: φ < 1.
The fundamental change is that profits earned by a frontier application

will be higher than profits earned by subsequent improvements, that is π1 >
πj>1 = π. How is it going to affect the dynamics of innovation?
In the open standard case, if π1 − η < π, then the equilibrium changes

only slightly. In particular, equation (2) for non-frontier (j ≥ 2) applications
has to be supplemented by a value of frontier applications (j = 1) :

V1 (N) = ρ (N)

µ
1− 1

N

¶
((1− δ (N))π1 + δ (N)V1 (N)) (18)

+(1− ρ (N)) ((1− δ (N + 1)) π1 + δ (N + 1)V1 (N + 1))

Also, we need to modify the benefit to xf :

Vf (N) = (1− δ (N + 1)) π1 + δ (N + 1)V1 (N + 1)

and the free-entry condition changes accordingly. The N∗ has to be cal-
culated with the new value of Vf (N) and a lower φ clearly leads to a (weakly)
higher N∗. If π1 is very large (in particular, sufficiently larger than π − η),
then the equilibrium can change qualitatively as well: it is possible that
for some N all research activity will be in the frontier applications, that is
xf > 0 = xe. The reason Lemma 2 can be overturned is that when π1 − π
is larger than η, paying more for a frontier application can be more than
compensated by the higher profits (for this to happen it is not sufficient that
π1 − η > π, since due to business stealing returns to innovation are smaller
than πj/r).
In the closed standard the changes are less dramatic: we have already

taken into account that the C (x) function differs for frontier and non-frontier
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applications by ηx.Nowwe have to allow for π (Q) to vary as well and increase
∆0 accordingly. A higher π0 will clearly imply a more intensive research on
the frontier applications, but once j = 1 is reached for all N, it will not have
any further effects.
Finally, in terms of the choice between closed and open standard, the

impact of a higher π1 is ambiguous. On one hand, if N > N∗ the closed
standard will enjoy the higher π1 from a larger number of products. On the
other hand, a larger π1 may tip an increase in N∗ (even from 0 to 1 - see
Remark 4) and hence to a large increase in the price of hardware.
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