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Abstract

Microeconomic lumpiness matters for macroeconomics. According to our DSGE model, it ex-

plains roughly 60% of the smoothing in the investment response to aggregate shocks. The remaining

40% is explained by general equilibrium forces. The central role played by micro frictions for ag-

gregate dynamics results in important nonlinearities and history dependance in business cycles. In

particular, booms feed into themselves. The longer an expansion, the larger the response of invest-

ment to an additional positive shock. Conversely, a slowdown after a boom can lead to a long lasting

investment slump, which is unresponsive to policy stimuli. Such dynamics are consistent with US

investment patterns over the last decade. Furthermore, the reduction in the relative importance of

general equilibrium forces for aggregate investment dynamics also facilitates matching conventional

RBC moments for consumption and employment.
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1 Introduction

Casual observation suggests that non-convexities in microeconomic capital adjustments is a widespread

pattern. Doms and Dunne (1998) corroborate this perception by documenting the lumpy nature of

equipment investment in US manufacturing establishments. The question then arises whether or not

these microeconomic frictions matter for macroeconomic behavior. In this paper we incorporate lumpy

adjustment in an otherwise standard dynamic stochastic general equilibrium (DSGE) model and con-

clude that they do.

The main impact of microeconomic lumpiness is to generate impulse responses for aggregate in-

vestment which are not only more persistent than in the standard RBC model, but also nonlinear and

history dependent. In particular, the longer an expansion, the larger the response of investment to fur-

ther shocks. Booms feed upon themselves. Conversely, a slowdown after a boom can lead to a long

lasting investment slump, which is unresponsive to policy stimuli. Such dynamics are consistent with

US investment patterns over the last decade.

Underlying our findings is an issue that is of central importance for micro-founded macroeconomics,

beyond our particular model. Namely the answer to the question: How much of aggregate smoothing—

and impulse responses in general—is accounted for by microeconomic features and how much by gen-

eral equilibrium forces? The basic RBC model attributes all of the smoothing to the latter. In contrast,

our model calibration indicates that microeconomic non-convexities account for an important part of

the smoothing in the response of investment to aggregate shocks.

Table 1: FROM AGGREGATE SHOCKS TO AGGREGATE RESPONSE: SOURCES OF SMOOTHING

Aggregate shocks

↓

partial equilibrium smoothing: micro frictions and aggregation

↓

general equilibrium smoothing: supply of labor and funds

↓

Aggregate response

This decomposition is the key to our calibration strategy and explains our starkly different results

from recent attempts to embody lumpy adjustment models in a DSGE framework (e.g. Veracierto (2002),

Thomas (2002) and Khan and Thomas (2003, 2005)). Table 1 illustrates this decomposition. The objec-

tive in any macroeconomic model is to trace the impact of aggregate shocks on aggregate endogenous
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variables (investment, in our context). The typical response is not one-for-one at impact, as a variety of

microeconomic frictions and general equilibrium constraints, smooth and spread over time the response

of the endogenous variable. We refer to this process as smoothing, and decompose it into partial equi-

librium (PE) and general equilibrium (GE) smoothing. In the context of nonlinear lumpy-adjustment

models, PE-smoothing includes not only microeconomic frictions but also the effect of aggregation on

the mapping from these frictions to aggregate responses. This is key in our class of models, as in many

instances aggregation can undo much of the effect of microeconomic frictions (recall the classic Caplin

and Spulber (1987) result where price-setters follow (S, s) rules but the aggregate price level behaves as

if there were no microeconomic frictions). In a nutshell, our key difference with the previous literature

is that through a combination of small adjustment costs and strong offsetting forces from aggregation,

previous models left almost no role for PE-smoothing. We argue below that such a conclusion is coun-

terfactual.

Table 2 illustrates our model’s decomposition between PE- and GE-smoothing: The upper entry

shows the volatility of aggregate investment rates in our model when neither smoothing mechanism is

present (in other words, when there are no adjustment costs at the microeconomic level and no price ad-

justments in the economy). The intermediate entries incorporate PE and GE-smoothing, one at a time,

while the lower entry considers both sources of smoothing simultaneously. Of course, both sources of

smoothing are not orthogonal, so some care is needed when quantifying their contributions to overall

smoothing.

Table 2: CONTRIBUTION OF PE AND GE FORCES TO SMOOTHING OF σ(I /K )

No frictions
(0.0458)

↙ ↘

Only PE smoothing ↓ Only GE smoothing
(0.0093) (0.0134)

↘ ↙

PE and GE smoothing
(0.0074)

Table 2 shows that the reduction of the standard deviation of the aggregate investment rate achieved

by PE-smoothing alone amounts to 88.7% of the reduction achieved by the combination of both smooth-

ing mechanisms. Alternatively, the additional smoothing achieved by PE-forces, compared with what

GE-smoothing achieves by itself, is 38% of the smoothing achieved by both sources. The 60% mentioned

in the abstract—slightly above the average of 63.3% of the above upper and lower bounds—conveniently
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summarizes the contribution of PE factors to aggregate smoothing.1

Given its centrality in differentiating our answer from that of previous models, our calibration strat-

egy is designed to capture the role of PE-smoothing as directly as possible. To this effect, we use sectoral

data to calibrate all the micro-frictions and aggregation parameters, before general equilibrium forces

have a chance to play a smoothing role. Specifically, we argue that the response of semi-aggregated (e.g.,

3-digit) investment to corresponding sectoral shocks is less subject to general equilibrium forces, and

hence serves to identify the relative importance of PE-smoothing. Once this step is taken, we can use

the elasticity of intertemporal substitution as a reduced form parameter to calibrate the extra smoothing

given by general equilibrium forces.2

Table 3: VOLATILITY AND AGGREGATION

Model 3-digit Aggregate 3-dig. Agg. Ratio
Data 0.0186 0.0074 2.51
Frictionless: 0.3642 0.0074 49.22
This paper: 0.0186 0.0074 2.51
Khan-Thomas-Lumpy (2005): 0.2524 0.0074 34.11

The first row in Table 3 shows the observed volatility of sectoral and aggregate investment rates, and

their ratio. The second row shows the same values for a model with no microeconomic frictions in in-

vestment (essentially, the standard RBC model), and the third row does the same for our model. We

reserve for later the fourth row, which reports the same statistics for the model in Khan and Thomas

(2005). It is apparent from this table that the frictionless RBC model fails to match the disaggregated

data (it was never designed to do so). In contrast, by reallocating smoothing from GE forces to PE-forces,

the lumpy investment model is able to match both aggregate and sectoral volatility. This pins down our

decomposition.

Aside from our main results characterizing the aggregate impact of microeconomic lumpiness, there

is an indirect benefit of adding microeconomic lumpiness to the standard model, as it facilitates match-

ing conventional RBC moments for consumption and employment. The reason is that in the standard

RBC model, where all the smoothing of the response of quantities to aggregate shocks is done by general

equilibrium forces, the volatility of investment relative to that of consumption and employment is too

1The exact expressions for the upper and lower bounds for the contribution of PE-smoothing are the following:

UB = log[σ(NONE)/σ(PE)]/ log[σ(NONE)/σ(BOTH)],

LB = 1− log[σ(NONE)/σ(GE)]/log[σ(NONE)/σ(BOTH)]

where NONE refers to the partial equilibrium the model with no microeconomic frictions, PE to the model that only has mi-
croeconomic frictions but prices are fixed, GE to the model with only GE constraints, and BOTH to the model with both micro
frictions and GE constraints. See Appendix E for more details.

2An alternative strategy would be to use plant level data to sort out the different parameter configurations. While much has
been learned from such explorations in other contexts, this is not a robust strategy in the case of lumpy adjustment models since
the mapping from microeconomic frictions to aggregate data, even before general equilibrium enters, is complex and often not
robust. It depends on subtle parameters such as the drift of the (micro) driving forces and, more generally, parameters that
affect the cross-section distribution of agents’ state variables.
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high relative to US data (see, e.g. King and Rebelo, 1999). Thus models that fit the second moments of

investment well (such as the standard RBC model), imply consumption and employment that are too

smooth. In contrast, in our model lumpy microeconomic frictions smooth investment and hence the

strength of general equilibrium forces needed to match investment volatility can be reduced. This re-

sults in consumption and employment becoming more volatile, fitting US data.

In our model we control the strength of the general equilibrium forces with the elasticity of intertem-

poral substitution, which we interpret as a reduced form parameter to capture unmodelled sources of

flat quasi-labor supply and capital supply to the primary sector of the economy. We find that the param-

eter of EIS that matches the data best exceeds 10. Whether one interprets this as a “puzzle” or as a hint

that the EIS parameter in these models is not what its microeconomic counterpart purports it to be, as

we do, is a matter of taste. However, it is important to stress that our main findings regarding the patterns

of aggregate investment survive reducing the EIS parameter to its conventional value of one. Moreover,

if one is willing to raise it to Gruber’s (2005) recent finding of 2, then our model also improves broader

moments-matching by over 40 percent.

Relation to the literature

Our main findings are qualitatively similar to those discussed in the partial equilibrium literature

on lumpy investment (see, in particular, Caballero and Engel (1999), Caballero, Engel and Haltiwanger

(1995) and Cooper, Haltiwanger and Power (1999)). However, as mentioned above, they are in stark

contrast with findings in the first wave of DSGE models, such as Veracierto (2002), Thomas (2002), and

Khan and Thomas (2003, 2005), who encountered a sort of “irrelevance” result:3 Essentially, they found

that embedding a model with microeconomic irreversibility and/or lumpiness in an otherwise standard

RBC model, makes no difference for macroeconomics (relative to the implications of the frictionless RBC

model). The reason for our difference can be seen in the last row of Table 3, which shows that the Khan

and Thomas model has a decomposition of smoothing between PE and GE forces similar to that of the

frictionless RBC model. That is, their frictions, once filtered by the aggregation process, have almost no

effect at the aggregate level even in partial equilibrium.

More precisely, Table 4 is analogous to Table 2 but for the Khan-Thomas model.4 It can be seen that

micro frictions imply no additional smoothing after GE forces have set in—they only account for some-

where between 0 and 18% of total smoothing. Thus we view their work as an important methodological

contribution on which we build our analysis, but not as an adequate assessment of the equilibrium im-

plications of lumpy microeconomic investment.

The remainder of the paper is organized as follows. In the next section we present our dynamic

general equilibrium model. Section 3 discusses the calibration method in detail. Sections 4 and 5 present

3More recently, Sim (2006) undoes Veracierto’s version of the irrelevance result by relaxing the certainty-equivalence assump-
tion, while Bayer (2006) finds that adjustment costs matter for aggregate investment dynamics in a two-country extension of
the Khan and Thomas model.

4The difference between the value reported in the last row of this table and the corresponding value in Table 2 reflects
differences in calibration strategies. These differences are irrelevant for the substantive implications.
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Table 4: CONTRIBUTION OF PE AND GE FORCES TO SMOOTHING OF σ(I /K ): KHAN AND THOMAS

No frictions
(0.1050)

↙ ↘

Only PE smoothing ↓ Only GE smoothing
(0.0660) (0.0080)

↘ ↙

PE and GE smoothing
(0.0080)

the main macroeconomic implications of the model. Section 6 concludes and is followed by several

appendices.

2 The Model

In this section we describe our model economy. We start with the problem of the production units, fol-

lowed by a brief description of the households and the definition of equilibrium. We conclude with a

sketch of the equilibrium computation. We follow closely Kahn and Thomas (2005) both in terms of sub-

stance and notation. Aside from parametric differences, we have three main departures from Kahn and

Thomas (2005). First, production units face persistent sector-specific productivity shocks, in addition

to aggregate and idiosyncratic shocks. Second, production units undertake some within-period mainte-

nance investment which is necessary to continue operation (there is fixed proportions and some parts

and machines that break down need to be replaced, see McGrattan and Schmitz (1999) for evidence on

the importance of maintenance investment). Third, the distribution of aggregate productivity shocks is

continuous rather than a Markov discretization.5

2.1 Production Units

The economy consists of a large number of sectors, which are each populated by a continuum of pro-

duction units. Since we do not model entry and exit decisions, the mass of these continua is fixed and

normalized to one. There is one commodity in the economy that can be consumed or invested. Each

production unit produces this commodity, employing its pre-determined capital stock (k) and labor (n),

5This allows us to compute conditional nonlinear impulse response functions, as in Section 4, which are essentially deriva-
tives of an aggregate of interest, such as the investment rate, to the innovation of the aggregate productivity shock.
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according to the following Cobb-Douglas decreasing-returns-to-scale production function (θ+ν< 1):

yt = ztεS,tεI ,t kθt nν
t , (1)

where zt , εS and εI denote aggregate, sectoral and unit-specific (idiosyncratic) productivity shocks. The

assumption of decreasing returns captures in reduced form any market power the production unit may

have.

We denote the trend growth rate of aggregate productivity by (1−θ)(γ−1), so that y and k grow at

rate γ−1 along the balanced growth path. From now on we work with k and y (and later C ) in efficiency

units. The detrended aggregate productivity level, which we also denote by z, evolves according to an

AR(1) process, with normal innovations v with zero mean and variance σ2
A :

log zt = ρA log zt−1 + vt . (2)

The sectoral and idiosyncratic technology processes follow Markov chains, that are approximations

to continuous AR(1) processes with Gaussian innovations. The latter have standard deviations σS and

σI , and autocorrelations ρS and ρI , respectively.6 Productivity innovations at different aggregation levels

are independent. Also, sectoral productivity shocks are independent across sectors and idiosyncratic

productivity shocks are independent across productive units.

In each period, each production unit draws from a time-invariant distribution, G , its current cost

of capital adjustment, ξ ≥ 0, which is denominated in units of labor. G is a uniform distribution on

[0, ξ̄], common to all units. Draws are independent across units and over time, and employment is freely

adjustable.

At the beginning of each period, a production unit is characterized by its pre-determined capital

stock, the sector it belongs to and the corresponding sectoral productivity level, its idiosyncratic pro-

ductivity, and its capital adjustment cost. Given the aggregate state, it decides its employment level, n,

production occurs, maintenance is carried out, workers are paid, and investment decisions are made.

Then the period ends.

Upon investment the unit incurs a fixed cost of ωξ, where ω is the current real wage rate. Capital

depreciates at a rate δ, but units may find it necessary during the production process to replace certain

items.

Define ψ̄ ≡ γ
1−δ > 1 as the maintenance investment rate needed to compensate depreciation and

trend growth. The degree of necessary maintenance, χ, can then be conveniently defined as a fraction

of ψ̄. If χ= 0, no maintenance investment is needed; if χ= 1, all depreciation and trend growth must be

undone for a production unit to continue operation. We can now summarize the evolution of the unit’s

capital stock (in efficiency units) between two consecutive periods, from k to k ′ after investment i takes

place, as follows:

6We use the discretization in Tauchen (1986), see Appendix C for details.
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Fixed cost paid γk ′

i 6= 0: ωξ (1−δ)k + i

i = 0: 0
[
(1−δ)(1−χ)+χγ]

k

If χ= 0, then k ′ = (1−δ)k/γ and the table is identical to the one found in Kahn and Thomas (2005),

while if χ= 100%, then k ′ = k. In the paper, we treat χ as a primitive parameter.7

Notice that χ is obviously irrelevant for the units that actually adjust at the end of the period. This is

not to say that these units do not have to spend on maintenance within the production period, but rather

their net capital growth, conditional on incurring the fixed cost and optimal adjustment, is independent

of this expenditure. This is essentially a feature of only having fixed adjustment costs, as opposed to more

general adjustment technologies that include a component that depends on the magnitude of capital

adjustments.

Given the i.i.d. nature of the adjustment costs, it is sufficient to describe differences across produc-

tion units and their evolution by the distribution of units over (εS ,εI ,k). We denote this distribution

by µ. Thus, (z,µ) constitutes the current aggregate state and µ evolves according to the law of motion

µ′ = Γ(z,µ), which production units take as given.

Next we describe the dynamic programming problem of each production unit. We will take two

shortcuts (details can be found in Kahn and Thomas, 2005). First, we state the problem in terms of

utils of the representative household (rather than physical units), and denote by p = p(z,µ) the marginal

utility of consumption. This is the relative intertemporal price faced by a production unit. Second, given

the i.i.d. nature of the adjustment costs, continuation values can be expressed without explicitly taking

into account future adjustment costs.

It will simplify notation to define an additional parameter, ψ ∈ [1,ψ̄]:

ψ= 1+ (ψ̄−1)χ, (3)

and write maintenance investment as:8

i M = (ψ−1)(1−δ)k. (4)

Let V 1(εS ,εI ,k,ξ; z,µ) denote the expected discounted value—in utils—of a unit that is in idiosyn-

cratic state (εI ,k,ξ), and is in a sector with sectoral productivity εS , given the aggregate state (z,µ). Then

the expected value prior to the realization of the adjustment cost draw is given by:

V 0(εS ,εI ,k; z,µ) =
∫ ξ̄

0
V 1(εS ,εI ,k,ξ; z,µ)G(dξ). (5)

7We note that this maintenance investment is quite different from what Kahn and Thomas (2005) call maintenance invest-
ment in their “extended model.” For us, maintenance refers to the replacement of parts and machines without which produc-
tion cannot continue. For them, it is an extra margin of adjustment for small projects.

8Note that if ψ= 1, then i M = 0, and if ψ= ψ̄, then i M = (γ−1+δ)k, undoing all trend devaluation of the capital stock.
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With this notation the dynamic programming problem is given by:

V 1(εS ,εI ,k,ξ; z,µ) = max
n

[
zεSεI kθnν−ω(z,µ)n − i M + (1−δ)ψk

)
p(z,µ) +

max
{
−(1−δ)ψkp(z,µ)+βE[V 0(εS

′,εI
′,ψ

1−δ
γ

k; z ′,µ′)] ,

max
k ′

(−ξω(z,µ)p(z,µ)−γk ′p(z,µ)+βE[V 0(εS
′,εI

′,k ′; z ′,µ′)]
)}]

, (6)

where both expectation operators average over next period’s realizations of the aggregate, sectoral and

idiosyncratic shocks, conditional on this period’s values.

The first line represents the flow value of a production unit that optimally adjusts its employment

level. The second line is the continuation value, if only necessary maintenance investment has occurred.

The third line is the continuation value, if units incur the fixed costs of adjustment and then adjust opti-

mally.

Taking as given intra- and intertemporal prices, ω(z,µ) and p(z,µ), respectively, and the law of mo-

tion Γ(z,µ), the production unit chooses optimally labor demand, whether to adjust its capital stock at

the end of the period, and the optimal capital stock, conditional on adjustment. This leads to policy

functions: N = N (εS ,εI ,k; z,µ) and K = K (εS ,εI ,k,ξ; z,µ). Since capital is pre-determined, the optimal

employment decision is independent of the current adjustment cost draw.

2.2 Households

We assume a continuum of identical households that have access to a complete set of state-contingent

claims. Hence, there is no heterogeneity across households. Moreover, they own shares in the production

units and are paid dividends. We do not need to model the household side explicitly, and concentrate

instead on the first-order conditions to determine the equilibrium wage and the intertemporal price.

Households have a felicity function in consumption and leisure of the following form:

U (C , N h) =


C 1−σC

1−σC
− AN h , if σC 6= 0

logC − AN h , otherwise,
(7)

where C denotes consumption, N h the household’s supply of labor and σC is the inverse of the elasticity

of intertemporal substitution (EIS). Households maximize the expected present discounted value of the

above felicity function. By definition we have:

p(z,µ) ≡UC (C , N h) =C (z,µ)−σC , (8)

and from the intratemporal first-order condition:

ω(z,µ) =−UN (C , N h)

p(z,µ)
= A

p(z,µ)
. (9)
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2.3 Recursive Equilibrium

A recursive competitive equilibrium is a set of functions(
ω, p,V 1, N ,K ,C , N h ,Γ

)
,

such that

1. Production unit optimality: Taking ω, p and Γ as given, V 1(εS ,εI ,k; z,µ) solves (6) and the corre-

sponding policy functions are N (εS ,εI ,k; z,µ) and K (εS ,εI ,k,ξ; z,µ).

2. Household optimality: Taking ω and p as given, the household’s consumption and labor supply

satisfy (8) and (9).

3. Commodity market clearing:

C (z,µ) =
∫

zεSεI kθN (εS ,εI ,k; z,µ)νdµ −
∫ ∫ ξ̄

0
[γK (εS ,εI ,k,ξ; z,µ)− (1−δ)k]dGdµ.

4. Labor market clearing:

N h(z,µ) =
∫

N (εS ,εI ,k; z,µ)dµ +
∫ ∫ ξ̄

0
ξJ

(
ψ

1−δ
γ

k −K (εS ,εI ,k,ξ; z,µ)dGdµ,

where J (x) = 0, if x = 0 and 1, otherwise.

5. Model consistent dynamics: The evolution of the cross-section that characterizes the economy,

µ′ = Γ(z,µ), is induced by K (εS ,εI ,k,ξ; z,µ) and the exogenous processes for z, εS and εI .

Conditions 1, 2, 3 and 4 define an equilibrium given Γ, while step 5 specifies the equilibrium condi-

tion for Γ.

2.4 Solution

As is well-known, (6) is not computable, since µ is infinite dimensional. Hence, we follow Krusell and

Smith (1997, 1998) and approximate the distribution µ by its first moment over capital, and its evolution,

Γ, by a simple log-linear rule. In the same vein, we approximate the equilibrium pricing function by a

log-linear rule:9

log k̄ ′ = ak +bk log k̄ + ck log z, (10)

log p = ap +bp log k̄ + cp log z, (11)

9We experimented with an interaction term between k̄ and z, but this did not yield any improvement in the fit of the equi-
librium rule.
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where k̄ denotes aggregate capital holdings. Given (9), we do not have to specify an equilibrium rule for

the real wage. As usual with this procedure, we posit this form and verify that in equilibrium it yields a

good fit to the actual law of motion (see the Appendix C for details).

To implement the computation of sectoral data, we simplify the problem further and impose two

additional assumptions: 1) ρS = ρI = ρ and 2) enough sectors, so that sectoral shocks have no aggregate

effects. Both assumptions combined allow us to reduce the state space in the production unit’s problem

further to a combined technology level ε≡ εSεI . Now, logε follows an AR(1) with first-order autocorrela-

tion ρ and Gaussian innovations N (0,σ2), with σ2 ≡ σ2
S +σ2

I . Since the sectoral technology level has no

aggregate consequences by assumption, the production unit cannot use it to extract any more informa-

tion about the future than it has already from the combined technology level. Finally, it is this combined

productivity level that is discretized into a 19-state Markov chain. The second assumption allows us to

compute the sectoral problem independently of the aggregate general equilibrium problem.10

Combining these assumptions and substituting k̄ for µ into (6) and using (??) and (10), we get a

computable dynamic programming problem:

V 1(ε,k,ξ; z, k̄) = max
n

[
zεkθnν−ω(z, k̄)n − i M + (1−δ)ψk

)
p(z, k̄)+

max
{
−(1−δ)ψkp(z, k̄)+βE[V 0(ε′,ψ

1−δ
γ

k; z ′, k̄ ′)],

max
k ′

(−ξω(z, k̄)p(z, k̄)−γk ′p(z, k̄)+βE[V 0(ε′,k ′; z ′, k̄ ′]
)}]

, (12)

and policy functions N = N (ε,k; z, k̄) and K = K (ε,k,ξ; z, k̄). We solve this problem via value function

iteration on V 0 and Gauss-Hermitian numerical integration over log(z) (for details, see Appendix C).

Several features facilitate the solution of the model. First, note that, as mentioned above, the employ-

ment decision is static. In particular it is independent of the investment decision at the end of the period.

Hence we can use the production unit’s first-order condition to maximize out the optimal employment

level:

N (ε,k; z, k̄) =
(ω(z, k̄)

νzεkθ

)1/(ν−1)
. (13)

Next, we examine the production unit’s investment decision. Let us denote the gross value of adjusting

capital net of the additional wage bill due to adjustment by Va :

Va(ε; z, k̄) ≡ max
k ′

(−γk ′p(z, k̄)+βE[V 0(ε′,k ′; z ′, k̄ ′)]
)
. (14)

From this, it is obvious that neither Va nor the optimal target capital level, conditional on adjustment,

depend on current capital holdings. This reduces the number of optimization problems in the value

function iteration considerably. Denote the latter by k∗ = k∗(ε; z, k̄). Furthermore, let us denote the

value of inaction as Vi :

Vi (ε,k; z, k̄) ≡−(1−δ)ψkp(z, k̄)+βE[V 0(ε′,ψ
1−δ
γ

k; z ′, k̄ ′)]. (15)

10In Appendix C.3 we show that our results are robust to this simplifying assumption.
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Comparing (14) with (15) shows that Va(ε; z, k̄) ≥Vi (ε,k; z, k̄),11 which means that if ξ̄= 0, i.e. in a fric-

tionless economy, the necessary maintenance feature is completely irrelevant. With this notation, there

exists an adjustment cost factor that would make a production unit just indifferent between adjusting

and not adjusting:

ξ̂(ε,k; z, k̄) = Va(ε; z, k̄)−Vi (ε,k; z, k̄)

ω(z, k̄)p(z, k̄)
≥ 0. (16)

We define ξT (ε,k; z, k̄) ≡ min
(
ξ̄, ξ̂(ε,k; z, k̄)

)
. Production units with ξ≤ ξT (ε,k; z, k̄) will adjust their capital

stock. Thus,

k ′ = K = K (ε,k,ξ; z, k̄) =
k∗(ε; z, k̄), if ξ≤ ξT (ε,k; z, k̄),

ψ1−δ
γ k, otherwise.

(17)

We define mandated investment for a unit with current state (ε, z, k̄) and current capital k as:

x(ε; z, k̄) ≡ logγk∗(ε; z, k̄) − logψ(1−δ)k.

That is, mandated investment is the investment rate the unit would undertake, after maintaining its

capital, if its current adjustment cost draw were equal to zero. This concludes the computation of the

production unit’s decision rules and value function, given the equilibrium pricing and movement rules

(??) and (10).

The second step of the computational procedure takes the value function V 0(ε,k; z, k̄) as given, and

pre-specifies a randomly drawn sequence of aggregate technology levels: {zt }. We start from an arbitrary

distribution µ0, implying a value k̄0. We then re-compute (12) at every point along the sequence {zt },

and the implied sequence of aggregate capital levels {k̄t }, without imposing the equilibrium pricing rule

(10):

Ṽ 1(ε,k,ξ; zt , k̄t ; p) ≡ max
n

(
ztεkθnν− A

p
n − i M + (1−δ)ψk

)
p+

max
{
−(1−δ)ψkp +βE[V 0(ε′,ψ

1−δ
γ

k; z ′, k̄ ′(kt ))],

max
k ′

(−ξA−γk ′p +βEε′|ε,z ′|zt [V 0(ε′,k ′; z ′, k̄ ′(kt ))]
)}

. (18)

This yields new “policy functions”

Ñ = Ñ (ε,k; zt , k̄t , p)

K̃ = K̃ (ε,k,ξ; zt , k̄t , p).

We then search for a p such that, given these new decision rules and after aggregation, the goods market

clears (labor market clearing is trivially satisfied). We then use this p to find the new aggregate capital

level.

This procedure generates a time series of {pt } and {k̄t } endogenously, with which assumed rules (??)

11The production unit can always choose k∗ =ψ 1−δ
γ k.
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and (10) can be updated via a simple OLS regression. The procedure stops when the updated coefficients

ak , bk , ck and ap , bp , cp are sufficiently close to the previous ones. We operationalize this by using an

F-test for equality of coefficients. We show in Appendix C that the implied R2 of these regressions are

high for all model specifications, generally well above 0.99, indicating that production units do not make

large mistakes by using the rules (??) and (10), and that higher moments of µ are unlikely to matter for

equilibrium outcomes.

3 Calibration

For most parameters of the model (β, δ, γ, ν, ρA and ρI ) we use the fairly standard values in Kahn and

Thomas (2005)—these values can be found in Appendix A. We depart from Kahn and Thomas (2005)

with respect to θ,σA ,σI , as well asσC and ξ̄. The first three are relatively minor departures,12 the second

group is more central to our new calibration procedure. Finally, we determine σS by a standard Solow

residual calculation, while ρS is set equal to ρI for computational feasibility (see Appendices A and B for

details).

Typically, adjustment cost parameters are calibrated to match establishment level moments. Khan

and Thomas (2005), for example, choose ξ̄ to match the fraction of LRD plant-level observations with an

investment rate above 20%.

There are two problems with using plant level statistics to pin down certain parameters such as those

that determine adjustment costs. First, this is usually done assuming that the basic unit in the model cor-

responds to the units from which the micro investment statistics are calculated (e.g., establishments in

the LRD). There is no reason why this correspondence should be correct. Indeed, the stark nature of

capital adjustments at the unit level in DSGE models with lumpy investment possibly fits better what

is observed within subunits of an establishment, rather than at the establishment level.13 Second, and

more importantly, in nonlinear models such as the lumpy adjustment model, aggregation itself (before

general equilibrium) can yield too much power to apparently small changes in microeconomic param-

eters. For example, anything that changes the drift of mandated investment gaps (such as maintenance

investment), changes the mapping from microeconomic adjustment costs to aggregate dynamics (re-

call Caplin and Spulber’s (1987) extreme example where adjustment costs cannot be inferred from the

behavior of aggregates).

In Appendix D we present a simple extension of the paper’s main model, illustrating that there are too

many degrees of freedom for us to use micro-level statistics to pin down the model’s parameters. This

example shows how, by adding two micro parameters with no macroeconomic consequences, one can

obtain a very good fit of observed micro moments. That is, the problems of matching micro moments

and matching more aggregate moments are orthogonal in this extension.

12Our production function has more curvature than the one considered in Khan and Thomas, yet note that Gourio and
Kashyap (2005) consider a much larger curvature than we do and are unable to completely break the irrelevance result. The
reason, we conjecture, is that by not having idiosyncratic shocks and maintenance investment, their cross-section distribution
remains too close to a self-replicating distribution a la Caplin and Spulber (1987). More on this below.

13Abel and Eberly (2002) and Bloom (2005) match a large number—250 or a continuum— of model-micro-units to one ob-
served productive unit (firm or establishment).
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Given these concerns, we follow an alternative approach where we replace plant-level data by sec-

toral data.14 More precisely, given a value of χ, we choose ξ̄ and σC to match the volatility of sectoral and

aggregate US investment rates, respectively. In this approach we assume that the sectors we consider

are sufficiently disaggregated so that general equilibrium effects can be ignored while, at the same time,

there are enough micro units to justify the computational simplifications that can be made with a large

number of units.

Given a set of parameters, the sequence of sectoral investment rates is generated as follows: the units’

optimal policies are determined as described in Section 2, working in general equilibrium. Next, starting

at the steady state, the economy is subjected to a sequence of sectoral shocks. Since sectoral shocks are

assumed to have no aggregate effects and ρI = ρS , productive units perceive these shocks as part of their

idiosyncratic shock and use their optimal policies with a value of the aggregate shock equal to one and

the value of the idiosyncratic shock equal to the product of the sectoral and “truly” idiosyncratic shock,

i.e. log(ε) = log(εS)+ log(εI ).15

The remaining parameter values are chosen as follows: θ, the output elasticity of capital, is reduced

to 0.18, in order to capture a revenue elasticity of capital, θ
1−ν , equal to 0.5, while keeping the labor share

at its 0.64-value. In reduced form, this allows us to capture the main consequence of imperfect compe-

tition for investment decisions. The sectoral TFP calculation results in σS = 0.0586. We fix the combined

(idiosyncratic and sectoral) standard deviation, σ, at 0.1, leaving us with a residual σI of 0.0812.

The value of sectoral volatility of investment rates we match is 0.0186. As noted in the introduction,

this number is one order of magnitude smaller than the one predicted by the frictionless RBC model (or

the Khan-Thomas model).16 This stark difference is immune to working with 4-digit sectors, in which

case the average volatility grows only slightly to 0.0254. Yet the assumption of a large enough number of

units in every sector is less tenable in the 4-digit case, which is why we work with sectors at the 3-digit

level.

Finally, to avoid biasing our comparison against the frictionless model, we recalibrate the standard

deviation of aggregate shocks so that this model—the one with higher curvature and σC = 1—matches

the volatility of the aggregate investment rate. The corresponding value for σA turns out to be 0.0095. In

what follows, we refer to this as the “frictionless model” to differentiate it from the “standard RBC model”.

14Needless to say, an even better approach is to combine data at both levels of aggregation. Moreover, the time variation in
micro moments contain plenty of useful information for aggregate dynamics. Our general methodological point, however, is to
emphasize giving relatively more weight to fairly aggregated data when interested in understanding aggregate phenomena.

15The standard deviation of the truly unit specific component of the perceived idiosyncratic shock is set so that the stan-
dard deviation of the idiosyncratic component that enters the unit’s policy function remains constant and equal to the value
used when calculating the policies under GE considerations. Details about the sectoral computation can be found in Ap-
pendix C.3. There we also document a robustness exercise where, instead of assuming that sectoral shocks have no general
equilibrium effects, we recompute the optimal policies when micro units consider the distribution of sectoral productivity
shocks—summarized by its mean—as an additional state variable. The results we obtain confirm the validity of our assump-
tion.

16This statement is robust to decreasing the output elasticity of capital as we do in our model: the sectoral standard deviation
of investment rates remains well above 0.20 in a frictionless model with the curvature value in Khan and Thomas.
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Results

Table 5 presents the parameters we obtain for alternative values of the maintenance parameter χ.17

The first column in this table depicts the largest adjustment cost units could pay.18 Of course, the average

cost actually paid is much lower, as shown in the second column. Productive units wait for good draws

to adjust, and the adjustment cost they pay on average when adjusting is between 6 and 7% of the mean

value of the distribution of adjustment costs. Since the average wage in the models is close to one and

N = 0.33 on average, three times the second column is approximately equal to the average cost paid

when adjusting, as a fraction of the wage bill.

Table 5: CALIBRATED PARAMETERS

Model Largest adj. cost, ξ̄ Avge. ξ when adj. EIS
Frictionless: 0.000 0.0000 1.00
No maintenance: 1.551 0.0478 6.94
25% maintenance: 0.680 0.0225 7.69
50% maintenance: 0.239 0.0083 9.09
100% maintenance: 0.046 0.0014 32.25

The last column in Table 5 shows the estimated value for the elasticity of intertemporal substitution

(EIS). It is not surprising that since microeconomic adjustment costs substitute for general equilibrium

as a smoothing mechanism, the calibrated EIS are higher in our models. What is noteworthy, nonethe-

less, is how much higher these are relative to the standard unitary elasticity used in the standard RBC

model. Of course, neither in the latter model nor in ours is this parameter likely to represent what it is

interpreted to be doing. Rather it is an efficient reduced-form parameter to capture the elasticity of the

supply of funds and of the quasi-labor supply. Interpreted in this manner, our calibration suggests that

these elasticities are substantially higher at business cycle frequency than conventionally assumed. We

return to this issue later in the paper.

Finally, it is useful to highlight at this stage the central role of maintenance investment. Note that as

it increases, adjustment costs can be lowered and the EIS raised, and still match sectoral and aggregate

investment rates. In other words, it substitutes for both, PE- and GE-smoothing mechanisms. The reason

for this role is complex, as it follows from the effect maintenance investment has on the drift of the

mandated investment process. As this drift is reduced – which happens as maintenance investment rises

– the cross-section distribution of mandated investment becomes less bunched near regions where the

probability of adjustment is high, and hence the economy’s response to shocks becomes more muted.

We return to this issue in the next section, when discussing the aggregate nonlinearities that arise in

these models.

17In order to avoid computational problems associated with a very extended distribution, when computing the model for
χ= 1 we actually work with χ= 0.98.

18We also choose the parameter A that captures the relative importance of leisure in the household’s utility by matching the
fraction of time worked to 1/3. The resulting value varies between 2.20 (frictionless case) and 0.968 (χ= 1).
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4 Aggregate Investment Dynamics

Our model calibration indicates that microeconomic non-convexities account for an important part of

the smoothing in the response of investment to aggregate shocks. In this section we characterize in

more detail the rich aggregate features, beyond smoothing, that emerge from lumpy microeconomic

adjustment. In fact, many of the investment features highlighted in the partial equilibrium literature also

appear in our DSGE setting. In particular, here we show that, as in Caballero and Engel (1999), lumpy

adjustment models have the potential to generate aggregate impulse responses that are nonlinear and

history dependent.

Let us illustrate these features with the help of a particular sample path that is roughly designed to

mimic the boom-bust investment episode in the US during the last decade. For this, we simulate the

paths of the frictionless and lumpy (with χ= 0.5) economies that result from a sequence of five consecu-

tive two-standard deviations positive aggregate productivity shocks, followed by a long period where the

innovations are equal to zero. Both economies start from their respective steady states.

Figure 1: Investment boom-bust episode
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Figure 1 shows the evolution of the aggregate investment rates (as log-deviations from their steady

state values) for these two economies. There are important difference between them: While at the outset

of the boom phase their response is similar, eventually the investment rate in the lumpy economy reacts

by more than the frictionless economy to further positive shocks. The flip side of the lumpy economy’s

larger boom is a more protracted decline in investment during the bust phase. Let us discuss these two

phases in turn.

Figure 2 plots the evolution of the responsiveness index defined in Caballero and Engel (1993b), both

for the lumpy model and for the frictionless model. This index captures the response of the aggregate

investment rate to an increase in the current aggregate shock. At each point in time, this index is calcu-

lated conditional on the history of shocks, summarized by the current distribution of capital across units
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Figure 2: Responsiveness Index
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(see Appendix F for the formal definition).19

Note first that the index fluctuates much less in the frictionless economy than in the lumpy economy.

Recall also that the frictionless economy only has general equilibrium forces to move this index around.

Moreover, since the general equilibrium forces are much stronger in the frictionless model than in the

lumpy economy, we can safely conclude that the contribution of the general equilibrium forces to the

volatility of the index in the lumpy economy is minor.

It then follows from this figure that it is the decline in the strength of the PE-smoothing mechanism

that is responsible for the rise in the index during the boom phase. As a result, eventually the index of

responsiveness in the lumpy economy vastly exceeds that of the frictionless economy, which explains

the larger investment boom observed in the lumpy economy after a history of positive shocks.20

The reason why PE-smoothing falls as the boom progresses, and hence the index of responsiveness

rises, can be understood in relation to the Caplin and Spulber (1987) result. In that economy there is no

aggregate price (the equivalent of our investment) smoothing regardless of the extent of micro frictions.

That is, there is no partial equilibrium smoothing mechanism, despite the presence of micro frictions

(lumpy price adjustment, in their case). This disconnect between micro and macro frictions is due to

the fact that while few agents adjust to the most recent aggregate shock, the price increase each adjuster

chooses is inversely proportional to the fraction of adjusters, so that the aggregate responds one-for-one

with the shock. More precisely, Caplin and Spulber assume a simple (S, s) model and, crucially, also

assume that the cross section distribution of price deviations from a common target is uniform in the

(S, s)-interval.21 In this context, an infinitesimal (positive) shock ∆m implies that a fraction ∆m/(S − s)

19The index is normalized by c ≡ 1/(1−α−θ) so that in the absence of adjustment costs, equilibrium forces and aggregate
productivity shocks the index takes the value one, see Appendix F for details.

20Note that while the frictionless economy has a a higher responsiveness index at the outset, this gap is short-lived so while
the investment rate in the frictionless economy exceeds that of the lumpy economy early on, this difference is not noticeable in
the scale of the figure.

21See Caballero and Engel (1991) for conditions under which the economy converges to the uniform distribution in Caplin
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of the agents adjust by (S− s), where S is the trigger threshold and s is the target level of the (S, s) policies

followed by agents. It follows that the aggregate price response is:

∆m

S − s
× (S − s) =∆m,

and micro frictions have no aggregate implications.

In our lumpy model, the economy is not in such a limit: The product of the fraction of adjusters and

the average size of their adjustment is much less than the aggregate shock, and hence there is substantial

PE-smoothing. However, while not at the limit, the lumpy economy does move in the direction of Caplin

and Spulber’s “frictionless” limit as further positive shocks accumulate (and away from this limit as these

shocks cease and the investment overhang is undone).

Figure 3: Investment boom-bust episode: Cross-section and hazard
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Figure 3 illustrates the mechanism described in the previous paragraphs. It shows the cross-section

of mandated investment (and the probability of adjusting, conditional on mandated investment) at three

points in time: the beginning of the episode with the economy at its steady state (solid line), the peak

of the boom (dashed line) and the trough of the cycle (dash-doted line).22 It is apparent that during the

boom the cross-section of mandated investment moves toward regions where the probability of adjust-

ment is higher. The fraction of units with mandated investment close to zero decreases considerably

during the boom, while the fraction of micro units with mandated investment rates above 40% increases

significantly. Also note that the fraction of units in the region where mandated investment is negative

decreases during the boom, since the sequence of positive shocks moves units away from this region.

and Spulber (1987).
22See Section 2 for the formal definition of mandated investment. Also note that the scale on the left of the figure is for the

mandated investment densities, while the scale on the right is for the adjustment hazards.
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The convex curves in Figure 3 depict the adjustment hazard, that is, the probability of adjusting con-

ditional on the corresponding value of mandated investment. It is clear that the probability of adjusting

increases with the (absolute) value of mandated investment. This is the ‘increasing hazard property’ de-

scribed in Caballero and Engel (1993a). We also note that as the boom proceeds, the adjustment hazard

shifts upward, so that aggregate investment becomes more responsive to positive and negative shocks

(see Figure 2) not only because units concentrate in a region where they adjust by more, but also because

the probability of adjusting in this region is higher.

In summary, the decline in the strength of PE-smoothing during the boom (and hence the larger

response to shocks) results mainly from the rise in the share of agents that adjust to further shocks. This

is in contrast with the frictionless (and Calvo style models) where the only margin of adjustment is the

average size of these adjustments. This is shown in Figure 4, which decomposes the responsiveness

index into two components: one that reflects the response of the fraction of adjusters and another that

captures the response of average adjustments of those who adjust. Of course, both series add up to the

overall responsiveness index in Figure 2. It is apparent that most of the smoothing—approximately 70%

in this metric—is done by variations in the fraction of adjusters.

Figure 4: Decomposition of Responsiveness Index: Intensive and Extensive Margins
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Figure 5: Decomposition of I /K into Intensive and Extensive Margins
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The importance of fluctuations in the fraction of adjusters is even more pronounced if we decompose

the path of the aggregate investment rate into the contributions from the fluctuation of the fraction of

adjusters and the fluctuation of the average size of adjustments, as shown in Figure 5. Both series are

in log-deviations from their steady state values. This is consistent with what Doms and Dunne (1998)

documented for establishment level investment in the US, where the fraction of units undergoing major

investment episodes accounts for a much higher share of aggregate (manufacturing) investment than

the average size of their investment.

Figure 6: Aggregate Capital
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Let us now turn to the bust phase. Figure 6 illustrates the “overaccumulation” of capital resulting

from the large investment boom in the lumpy economy. As a result of this boom, once the positive

shocks subside, the economy experiences an “overhang” that leads to the protracted investment slump

shown in Figure 1.

Returning to Figure 3, we see the large capital accumulation during the boom leaves an unusually

large fraction of units in the region close to zero mandated investment, where units are very unlikely to

respond to a shock, due to the low values of the adjustment hazard in this region. This explains the sharp

drop in the responsiveness index shown in Figure 7.

The observation of the slump in the responsiveness index has important implications for the econ-

omy’s ability to return to its steady state investment rate, as the latter becomes unresponsive to positive

stimuli, such as a positive aggregate shock or policy intervention (e.g., an investment tax credit). Figure 7,

illustrates this mechanism by plotting the impulse responses of the frictionless and lumpy economies

following a positive aggregate shock that takes place in period 14, when the gap between index of respon-

siveness of the frictionless and lumpy economy is maximal.23 The more sluggish response of investment

23These impulse responses are plotted in deviation from the paths without the new shock, and—like the responsiveness
index—normalized by the standard deviation of the aggregate shock and c ≡ 1/(1−α−θ). See footnote 19 and Appendix F for
the rationale underlying the latter normalization constant.
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Figure 7: Impulse Responses at the Trough
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in the lumpy economy is apparent.

Figure 8: Boom-bust episode and maintenance: Investment rate
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Let us conclude this section by returning to the role of the maintenance parameter. Figure 8 illus-

trates the boom-bust cycle for different values of this parameter. It is apparent that the size of the boom-

bust cycle increases with the importance of maintenance. The reason, again, is linked to the mechanism

discussed above. When maintenance investment is large, the drift of the processes for microeconomic

mandated investment (defined as the investment rate if the unit draws a zero adjustment cost) is small,

since maintenance investment offsets depreciation and trend growth. This is important in these models,

as it implies that the cross section distributions of such investment are far from the Caplin-Spulber limit,

and hence there is plenty of space for them to vary in response to shocks. As before, this variation trans-
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lates into countercyclical fluctuations in the degree of PE-smoothing, which exacerbates the magnitude

of an aggregate investment boom in the face of an unusually long string of positive aggregate shocks.

5 Indirect Effects: Improved Conventional RBC Moment-Matching

While the frictionless RBC model fits the volatility of investment well, it falls short in terms of the volatility

of consumption, output and employment (King and Rebelo, 1999). Since in our model microeconomic

frictions smooth aggregate investment, they simultaneously improve the fit of the relative volatility of

investment to that of other aggregates and create space to raise the volatility of investment through a

reduction in GE-smoothing mechanisms. However, the latter reduction also raises the volatility of con-

sumption and employment. While we did not use information on consumption and employment volatil-

ity in our calibration, the tables below show that an indirect benefit of our procedure is a significant

improvement in the fit of the model along these dimensions as well.

We also use this section to show that our results on aggregate investment dynamics survive main-

taining the degree of GE-smoothing at conventional levels (EIS around one).

5.1 Volatility and Persistence

Table 6: VOLATILITY OF AGGREGATES

St.dev. St.dev. rel. to σ(Y )
Y C I N C I N

Data: 2.00 1.73 5.94 2.00 0.86 2.97 1.00
Frictionless: 1.40 0.65 6.61 0.85 0.47 4.71 0.61
King-Rebelo: 1.39 0.61 4.09 0.67 0.44 2.95 0.48
This paper: 2.15 1.60 5.85 2.01 0.75 2.73 0.94

Table 6 reports the observed volatility of U.S. aggregates, and those implied by the frictionless model,

by the standard RBC model (from King and Rebelo (1999), which differs from frictionless in the curva-

ture parameter and its quarterly frequency), and by our model, both in absolute terms (percentages) and

relative to the standard deviation of output. For our model we assume 50% maintenance yet the results

that follow are valid for all values of the parameter χ (for other values of χ, ranging from 0 to 100%, see

Appendix G).24 It is apparent from this table that our model is successful in fitting the volatility of aggre-

gate consumption, investment, employment and capital, which we did not use in the calibration stage

(recall that we calibrated the volatility of sectoral and aggregate investment rates). In fact, the lumpy

model does substantially better than the frictionless and standard RBC models. Table 7 shows that our

24Since, by construction, our models match the volatility of the aggregate investment rate, we do not include this aggregate.
As usual, but with the exception for the aggregate investment rate, the series are log-HP-filtered with a smoothness parameter
of 100. Also, for obvious reasons, our model’s counterpart of output is C + I .
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model also provides a better match for four of the five observed persistence (first-order autocorrelation)

measures.25

Table 7: PERSISTENCE OF AGGREGATES

Y C I N I /K
Data: 0.53 0.58 0.47 0.52 0.71
Frictionless: 0.42 0.61 0.36 0.35 0.57
This paper: 0.47 0.52 0.43 0.47 0.69

Figure 9 exhibits the impulse response function for consumption, employment, and the investment

rate, for the frictionless and our model (χ= 0.50).26 They corroborate the findings reported in the previ-

ous tables. It is apparent that there are significant differences between the lumpy model and the friction-

less model for consumption and employment. Even for small shocks and an economy that starts off at

its steady state (this is what the impulse response function reports), there are clear differences in the dy-

namic response of aggregate quantities. More importantly, these differences constitute an improvement

over the frictionless model in terms of the fit of US aggregate data. The differences for the investment

rate are smaller, which is not surprising since we imposed that both models have the same volatility. Yet

even in this case, the fact that our model exhibits higher persistence than the RBC model, brings it closer

to the data (see the last column in Table 7).

Given the success of the lumpy-high EIS model, we went further and tested formally whether it is

rejected. Column (1) in Table 8 considers the variance and autocovariances of C , I , N and Y when

calculating the standard chi-square-statistic (see Ingram and Lee, 1991).27 Since the resulting weighting

matrix is very close to singular, we exclude both moments involving Y in column (2).28 It is clear that our

model also outperforms the frictionless model using this formal approach. Furthermore, if we avoid a

poorly conditioned weighting matrix by excluding one of the moments, our model is not rejected by the

data, which is a rarity for this kind of highly over-identified structural models.

Table 8: CHI-SQUARE-STATISTICS

(1) (2)
Frictionless: 53.3 44.7
This paper: 30.5 1.9
Critical value: 11.1 7.8

25For χ= 0.75 the fit is better for all persistence measures, see Appendix G.
26The impulse responses are the log-deviations from the steady-state to a one-standard deviation innovation in the aggregate

productivity shock.
27The chi-square statistics we obtain vary little with whether we consider the standard or the autocorrelation robust weighting

matrix. The results we report are for the latter.
28Recall that: Y =C + I . The conditioning number for the weighting matrix falls by a factor of 20.
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Figure 9: Impulse response of C , N and I /K
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5.2 On general equilibrium smoothing

The main reason for the gain in matching conventional RBC moments for consumption, employment

and output, is that microeconomic lumpiness generates substantial smoothing of aggregate investment,

thereby reducing the burden on general equilibrium smoothing to match investment volatility. Once the

relative importance of general equilibrium smoothing is reduced, aggregate consumption and employ-

ment can react more aggressively to aggregate shocks.

The only parameter to control the strength of general equilibrium forces in our model is the EIS,

which needs to be raised substantially to match aggregate moments. If interpreted literally as a microe-

conomic preferences parameter, our numbers for the EIS are much higher than the standard estimates

found in the literature. The most recent analysis of this matter is Gruber (2005), who uses a careful iden-

tification strategy based on households responses to tax movements. He finds an EIS of two, which is on

the high end of previous estimates.29 Table 9 below reports the moments from our lumpy adjustment

model, both when we impose the conventional EIS value of one (which is used mainly for analytical

convenience) and when we use Gruber’s estimate.

Table 9: RELATIVE VOLATILITY AND PERSISTENCE OF AGGREGATES

St.dev. rel. to σ(Y ) Persistence
C I N Y C I N I /K

Data: 0.86 2.97 1.00 0.53 0.58 0.47 0.52 0.71
Frictionless: 0.47 4.71 0.61 0.42 0.61 0.36 0.35 0.57
This paper: 0.75 2.73 0.94 0.47 0.52 0.43 0.47 0.69
EIS = 1: 0.60 3.54 0.44 0.44 0.48 0.42 0.42 0.69
EIS = 2: 0.69 3.03 0.68 0.45 0.49 0.42 0.44 0.69
Frictionless with high EIS: 0.72 5.72 0.95 0.53 0.80 0.28 0.50 0.44

The volatility results are reported normalized by the standard deviation of output, since the overall

volatility of quantities is too low now that we add more sizeable GE-smoothing to PE-smoothing.30,31

It is apparent from this table that the lumpy model with more conventional EIS values still does sub-

stantially better than the frictionless model in terms of relative volatility and persistence. When the EIS

is set to one, the lumpy model does better in six out of the eight statistics reported in the table, and when

the EIS is raised to two (as in Gruber), it does better for seven out of eight statistics.

Conversely, the last row of the table shows that if one runs the frictionless model with our estimate

of the EIS for the χ = 0.5 case, which is around 9, the volatility of investment rises too much and its

29Also, see Hansen and Singleton (1996), who find a slightly higher value for the EIS.
30Alternatively, we could recalibrate σA so as to match the aggregate investment rate. The moments reported in the table

do not vary if we take this approach—nor do the persistence measures—and overall volatility is in the right ballpark now. The
values of σA obtained this way are 0.0133 for EIS= 1 and 0.0122 for EIS= 2.

31The standard deviation of aggregate investment rates declines from 0.0074 to 0.0053 and 0.0058, respectively, in the models
with EIS= 1 and EIS= 2. The upper bound on the fraction of overall smoothing accounted for by the partial equilibrium are 74%
and 78%, respectively, while the lower bounds are 16 and 20%. These numbers are in the same ballpark as those reported in
Table 2. The resulting percentage standard deviations of output are 1.18% and 1.52%.
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persistence drops too much relative to US data.32

Finally, a note on the robustness of our main results. Figure 10 reports the path of the index of respon-

siveness for the same experiment as in the previous section for conventional levels of the EIS (and the

frictionless model).33 Again, it is apparent that the source of nonlinearities reported in the previous sec-

tion survives the increase in GE-smoothing brought about by the reduction in the EIS. This conclusion

is confirmed by Figure 11 which shows that, for values of the EIS equal to 1 and 2, the path of the aggre-

gate investment rate in the model with lumpy investment differs substantially from the corresponding

trajectory for the model where GE forces are the only source of smoothing. As before, the boom is more

pronounced and the overhang period more protracted.

Figure 10: Responsiveness Index and Boom-bust Episode: Robustness
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32We re-calibrate the standard deviation of aggregate technology, so that the standard deviation of aggregate investment rates
is exactly matched. This results in σA = 0.0048, and a percentage standard deviation for output of 1.25%.

33Since now the models overall display less volatility compared to the frictionless model, we depict log-deviations of the
sensitivity index from the steady state.
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Figure 11: Aggregate Investment Rate and Boom-bust Episode: Robustness
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6 Final Remarks

We have shown that adding realistic lumpy capital adjustment at the microeconomic level to an oth-

erwise standard RBC model has important macroeconomic implications. In particular, the impulse re-

sponse functions of aggregate investment become history dependent. Relative to the standard DSGE

model, booms feed into themselves and can lead to significantly larger capital accumulation following a

string of positive shocks. Busts, on the other hand, can lead to protracted periods of depressed invest-

ment, which are largely unresponsive to policy stimuli.

That is, the differences introduced by the lumpy model are most significant at the times that matter

the most: during pronounced booms and recessions. Furthermore, the smoothing of aggregate invest-

ment stemming from the microeconomic frictions reduces the burden of smoothing that is typically

borne by general equilibrium forces. This shift in the smoothing mechanism has the important side

effect of significantly improving the fit of consumption and employment volatility as well.

Roughly, we calibrated the strength of the partial equilibrium smoothing mechanism by fitting sec-

toral data and used the elasticity of intertemporal substitution to control the additional smoothing that

takes place from sectoral to aggregate data. It is apparent that in this logic, or in that of the standard RBC

model, the EIS as is not a structural parameter but a reduced form way of capturing more complex labor

and capital market specifications. Thus, the substantial gains obtained from increasing the EIS point

in the direction of finding flatter labor and capital supplies than implied by the standard model. On

the capital supply side, there are many good reasons why even with a true EIS around one, the effective

capital supply is substantially flatter. Most prominently, the US economy is open and receives massive

capital flows. Also, capital can be reallocated across sectors which are not perfectly synchronized in their

cyclical responses. On the labor supply side, there is a large number of theories and evidence of flat

quasi-labor supplies. These are old themes, which our model and findings only help making a stronger
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case for.

Either way, whether one interprets the EIS parameter structurally or not, or whether one is married

to an EIS of one or not, this papers has shown that contrary to previous claims, the lumpy model enriches

the dynamic responses of DSGE models in important dimensions.
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A Parameter Appendix

The following table summarizes the common parameters of all the model specifications explored in the

paper:

ρA σA ρ σS σI δ γ β θ ν

0.8254 0.00953 0.53 0.0583 0.0812 0.0690 1.0160 0.9770 0.1800 0.6400

The parametersρA ,δ,γ,ρ,ν andβ are taken from Kahn and Thomas (2005). They are standard values.

The calibration of the other parameters is explained in Section 3.

B Data Appendix

B.1 Aggregate Data

We use yearly U.S. data on consumption, investment, employment and capital, from 1960-1996. Since

our model is a closed economy without government, we look at C + I rather than GDP data. The stan-

dard moments, however, do not differ much. The data on investment and capital include equipment and

structures. They stem from the BEA: Stock of net nonresidential fixed assets and real cost investment.34

These series are in 1996 chained dollars. Consumption data are from the yearly “Personal real consump-

tion expenditures - billions of chained 2000”-series (PCECCA), from St. Louis FED. Employment data are

from the “Total private employment”-series (CES0500000001), from the Bureau of Labor Statistics. They

exclude farm employment, and are based on payroll data. The key statistics for aggregate investment

rates are a standard deviation of 0.0074 and a persistence of 0.71

Throughout the paper, for both real data and simulated data, we take the raw series for investment

rates, since they do not exhibit an obvious trend in our time frame, but we do follow the RBC convention

of log-hp-filtering, with bandwidth parameter 100, the series for consumption, investment, employment

and “output”.

B.2 Sectoral Data

For lack of good industry data outside of manufacturing, the data source here is the NBER manufac-

turing data set, publicly available on the NBER website. It contains yearly 4-digit industry data for the

manufacturing sector, according to the SIC-87 classification. We look at the years 1960-1996, later years

are not available. We take out industry 3292, the asbestos products, because this sector essentially dies

out in the nineties. This leaves us with 458 industries altogether.

Since the sectoral model analysis has to satisfy two requirements: 1) isolation from general equilib-

rium effects, 2) contain a large number of production units, we think that the 3-digit level is the best

34(http://www.bea.gov/bea/dn/faweb/details/).
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compromise aggregation level. This leaves us with 140 industries. Hence, we sum employment levels,

real capital, nominal investment and nominal value added onto the 3-digit level. The deflators for in-

vestment and shipments are a weighted sum (weighted by investment and value added, respectively).

This allows us to compute series of real investment and real value added. Since the data base does not

contain separate deflators for value added (as opposed to shipments), we use the one for shipments to

compute a real value added series. Moreover, since the data base does not contain implicit deflators for

capital, we just sum real capital. The deflators on the 4-digit level are generally identical or very close to

each other, so that this is a justifiable procedure.

TFP-Calculation: Since our model is essentially about value added production as opposed to output

production—we do not model utilization of materials and energy—we do not use the TFP-series in the

data set, which are based on a production function for output. Rather, we use a production function

for real value added in employment and real capital with payroll as a fraction of value added as the

employment share, and the residual as capital share, and perform a standard Solow residual calculation

for each industry separately.

Next, in order to extract the residual industry-specific and uncorrelated-with-the-aggregate compo-

nent for each industry, we regress each industry time series of logged Solow residuals on the time series

of the cross-sectional average of logged Solow residuals and a constant. The residuals of this regression

are then taken as the pure sectoral Solow residual series, by construction, they are uncorrelated with the

cross-sectional average series. We then compute an AR(1)-specification for each of these series. Finally,

the value-added-weighted average of these coefficients is then taken to be ρS = 0.70 and σS = 0.0583.

Since this computation is subject to substantial measurement error and somewhat arbitrary choices,

we perform a number of robustness checks: 1) We fix the employment share and capital share to ν= 0.64

and θ = 0.18, as in our model parametrization for all industries. 2) We study a production function that

distinguishes between production workers and non-production workers. 3) We look at raw industry-

specific Solow residual series, and a series, where we simply subtract the time series of the cross-sectional

average. 4) We look at non-weighted averages to get the final AR(1) coefficients. 5) We look at medians

instead of averages. The results for σS are fairly robust. Finally, to check how much the results are influ-

enced by using 3-digit data, the corresponding values for the 4-digit data are: ρS = 0.69 and σS = 0.0762.

Calculation of I/K-Moments: To extract a pure sectoral component of the time series of the industry

investment rate, we perform the same regression that was used for TFP-calculation. We do not log or

filter the investment rate series. The common component is now a capital-weighted average of the in-

dustry investment rates. Again, we perform robustness checks 3)-5) from above, with fairly stable results.

The resulting sectoral time series moments for the 3- and 4-digit level are given in the following table:

Persistence STD

3-digit 0.65 0.0186

4-digit 0.49 0.0299
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For calibration, we use the 3-digit level standard deviation. Similar results would obtain if we use

the 4-digit standard deviation instead, since the standard deviation of sectoral investment rates in the

frictionless model are one order of magnitude higher than the numbers above (see footnote 16).

C Numerical Appendix

In this appendix, we describe in detail the numerical implementation of the model computation. All

codes were computed in Matlab 6.5R13.

C.1 Decision Problem

Given the assumptions we made in the main paper: 1) ρS = ρI = ρ, and 2) approximating the distribu-

tion µ by the aggregate capital stock, k̄, the dynamic programming problem has a 4-dimensional state

space: (k, k̄, z,ε). Since the employment problem has an analytical solution, there is essentially just one

continuous control, k ′. We discretize the state space in the following ways:

1. k: nk = 30 grid points from [0,5], with a lower grid width at low capital levels, where the curvature

of the value function is highest. In general, the value function is fairly linear.

2. k̄ : nk̄ = 11 grid points in [0.60,1.10], equi-spaced.

3. z : nz = 10 grid points in [0.93,1.075] with closer grid points around unity. For the Gauss-Hermitian

integration (see Judd, 1998) we use 7 integration nodes.

4. ε: nε = 19. The grid points are equi-spaced (in logs) and the total grid width is given by 3×
√

σ2

1−ρ2 ,

the unconditional variance of the combined technology process. For the transition matrix we use

the procedure proposed in Tauchen (1986). The large state space here slows down computation

considerably, but we need it for a meaningful sectoral simulation.

We check the robustness of our computations by varying the number of grid points and Gauss-

Hermitian integration nodes.

We note that for all partial equilibrium computations the dimension of the state space collapses to

three, k̄ is no longer needed to compute prices and aggregate movements. Instead, we follow Kahn and

Thomas (2005) in fixing the intertemporal price and the real wage at their average levels from the general

equilibrium simulations.

Since we allow for a continuous control, k, and k̄ and z can take on any value continuously, we

can only compute the value function exactly at the grid points above and interpolate for in-between

values. This is done by using a multidimensional cubic splines procedure, with a so-called “not-a-knot”-

condition to address the large number of degrees of freedom problem, when using splines (see Judd,

1998). We compute the solution by value function iteration, using 20 steps of policy improvement after

each actual optimization procedure. The optimum is found by using a golden section search, which is

fast and robust. Due to the nature of the non-convexity, the optimal return level does not depend on k,
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which reduces the number of optimization problems to be solved at each iteration to nk̄ ×nz ×nε. Upon

convergence, we check single-peakedness of the objective function, to guarantee that the golden section

search is reasonable.

C.2 Equilibrium Simulation

For the calibration of the general equilibrium models we draw one random series for the aggregate tech-

nology level and fix it across models. For calibration purposes we use T = 600 and discard the first 100

observations. The statistics we report are then based on a series of T = 2600, with the first 600 identical

to those in the calibration process. We find that, generally, the statistics are robust to T . We start from

an arbitrary individual capital distribution and the stationary distribution for the combined productivity

level. The model economies typically settle fast into their stochastic steady state. Since with idiosyn-

cratic shocks, adjustment costs and necessary maintenance some production unit may not adjust for a

very long time, we take out any individual capital stock in the distribution that has a marginal weight

below 10−10, in order to save on memory. We re-scale the remaining distribution proportionally.

As in the production unit’s decision problem, we use a golden section search to find the optimal

target capital level, given p. We find the market clearing intertemporal price, using the Matlab built-

in function fzero, which uses a combination of bisection, secant and inverse quadratic interpolation

methods. Precision of the market-clearing outcome is generally below 10−5 for the frictionless models,

and below 10−7 for the lumpy models (these numbers are maxima, not averages).

To further assess the quality of the assumed log-linear equilibrium rules, we perform the following

simulation: for each point in the T = 2600 time series, we iterate for a time series of T̃ = 100 aggregate

capital and the intertemporal price forward, using only the equilibrium rules. We then compare the ag-

gregate capital and p after T̃ steps with the actually simulated ones, when the equilibrium price was

updated at each step. We then compute maximum absolute percentage deviations, mean squared per-

centage deviations, and the correlation between the simulated values and the out-of-sample forecasts.

The following two tables summarize the numerical results for each model. The rows contain: the co-

efficients of the log-linear regression, its R2 and standard error, the R2 of a regression that includes the

log of the standard deviation of the capital distribution to assess the room for improvement by using

higher moments,35 the F-value for equality of coefficients in the equilibrium loop, and the three above

measures that assess the out-of-sample quality of the equilibrium rules. First for aggregate capital:

35Note that the standard deviation was not actually used in the equilibrium calculation.
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FL 0-maint. 0.25-maint. 0.5-maint. 1.00-maint.

ak̄ -0.0534 -0.0631 -0.0563 -0.0514 -0.0622

bk̄ 0.7361 0.7967 0.7971 0.7991 0.7546

ck̄ 0.6143 0.5795 0.5820 0.5796 0.5908

R2 1.0000 0.9991 0.9988 0.9987 0.9981

SE 0.0001 0.0010 0.0012 0.0013 0.0013

R2
std 1.0000 0.9999 0.9998 0.9997 0.9983

F 7.5e−5 1.05e−10 0 0 0

MAD(%) 0.11 0.87 0.99 1.04 1.25

MSE(%) 0.02 0.35 0.40 0.42 0.31

Correl. 0.9999 0.9954 0.9942 0.9937 0.9955

Then for p:

FL 0-maint. 0.25-maint. 0.5-maint. 1.00-maint.

ap 0.7947 0.1056 0.0948 0.0801 0.0215

bp -0.3044 -0.0918 -0.0841 -0.0728 -0.0263

cp -0.6622 -0.2299 -0.2133 -0.1884 -0.0610

R2 1.000 0.9967 0.9971 0.9978 0.9983

SE 0.0000 0.0004 0.0003 0.0002 0.0000

R2
std 1.0000 0.9997 0.9997 0.9997 0.9987

F 0.0002 5.5e−12 0 0 1.1e−11

MAD(%) 0.03 0.11 0.10 0.09 0.05

MSE(%) 0.01 0.03 0.03 0.02 0.01

Correl. 0.9999 0.9991 0.9990 0.9990 0.9989

Figure 12: Assessing the approximate forecasting rules
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It can be seen from Figure 12 and the table above that the equilibrium rules generally perform very

well. Inclusion of the second moment of the capital distribution may yield a mild improvement of the
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approximation quality, but it is doubtful, whether aggregate statistics can be changed in any significant

way. As can be expected, in models I-V, with low σC , the influence of aggregate variables on prices dras-

tically decreases, these scenarios are close to partial equilibrium.

C.3 Sectoral Simulation

Underlying the sectoral simulation are four assumptions: first, a large enough number of sectors and,

secondly, that σS is large enough relative to σA , so that we can compute the sectoral implications of

our model independently of the aggregate general equilibrium calculations. This is also reflected in our

treatment of the sectoral data as residual values, which are uncorrelated with aggregate components.

Thirdly, we make use of the assumption that a sector is large enough to comprise a large number of

production units by invoking a law of large numbers now for the true idiosyncratic productivity. Finally,

ρS = ρI , and the independence of sectoral and the idiosyncratic productivity, so that we can treat sectoral

and truly idiosyncratic uncertainty as one state variable in the general equilibrium problem.

We start by fixing the aggregate technology level at its average level: zSS = 1. The converged equilib-

rium law of motion for aggregate capital can then be used to compute the steady state aggregate capital

level that belongs to this aggregate productivity. It is the fix point of the aggregate low of motion, evalu-

ated at zSS :

k̄SS ≡ exp
ak̄

1−bk̄
. (C3.1)

This, in turn, leads to the steady state pSS ≡ exp(ap +bp log(k̄SS)).

Then we specify a separate grid for idiosyncratic and sectoral productivity in such a way that all new

grid points and any product of them will lie on the original 19-state grid for the combined productivity,

used in the general equilibrium problem. Recall that this was specified for (ρ = 0.53,σ = 0.1). Given

the equi-spaced (in logs) nature of the combined grid this is obviously possible. Thus, the idiosyncratic

grid comprises 11 grid points, and the sectoral grid 9 grid points, both equi-spaced and centered around

unity. This naturally reflects σI > σS . The implied grid width for the idiosyncratic grid is 2.0514 times

the unconditional standard deviation, and 2.2870 times the unconditional standard deviation for the

sectoral grid. Both values are well within commonly used ranges. We then use Tauchen’s method to

compute transition matrices for the Markov chain, given by the sectoral and the truly idiosyncratic grid.

Parameters used are (ρ = 0.53,σS = 0.0586) and (ρ = 0.53,σI =
√
σ2 −σ2

S = 0.0812), respectively.

We then recompute optimal target capital levels as well as gross values of investment at zSS , k̄SS ,

once and for all at the 19 values for ε. By construction, these are then also the values for any (εS ,εI )-

combination. Note that we use the value functions computed from the general equilibrium case. We

draw a random series of T = 2600 for εS , which remains fixed across all models, start from an arbitrary

capital distribution and the stationary distribution for the idiosyncratic technology level, and follow the

behavior of this representative sector, using the sectoral policy rules. The details are similar to the one

used in the equilibrium simulation.

We finally test our first two assumptions in the sectoral computation: a continuum of sectors, so that

sectoral shocks do not have aggregate consequences; and that the fact that σS À σA allows us to fix the
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aggregate environment to its steady state level, when computing sectoral data and working with sectoral

data that have been purified of their aggregate components.

To this end, we compute the equilibrium with a finite number of sectors. Also, the sectoral data

are computed subjecting it to the moving aggregate environment, now explicitly allowing for full GE-

smoothing. This requires introducing another aggregate state variable, given by: ε̄S,t ≡∑
i=1,...,NS

log(εS,t (i )),

where NS is the finite number of sectors. Obviously, ε̄S,t = 0,∀ t , as NS →∞, by the law of large numbers

and assuming sectoral independence.

We fix a set of NS independent draws of εS of length T = 600. We then fit an AR(1)-process to the

resulting ε̄S,t -process. Not surprisingly, ρε̄S ≈ ρI = ρS . We fix it at the latter value. This additional aggre-

gate state is then integrated over by Gauss-Hermitian integration, which is facilitated by the fact that the

ε̄S,t -process is independent of the aggregate technology process (by assumption).

We choose two different values for NS . First, 400, which roughly equals the number of 3-digit SIC-

87 sectors in the U.S. (395). Since, however, sectors are of very different size and overall importance,

and also often correlated, we decrease, secondly, NS to 100 for robustness reasons. The resulting σε̄S are

0.0030 and 0.0060, respectively. Notice that in both cases σε̄S is considerably smaller than σA , so that we

should not expect too large an effect from this additional aggregate uncertainty.

In order to make the computation viable, we have to scale down the numerical specification of the

computation, in particular the grid lengths: nk = 20, nk̄ = 7, and nz = 7. The grid length for the additional

aggregate shock is also 7, equi-spaced, between [−0.03,0.03] for NS = 100, and [−0.015,0.015] for NS =
400. We use 3 nodes for both continuous aggregate shocks in the Gauss Hermitian integration. We also

check that these numerical changes as such do not affect the results too much in the original simplified

computations.

The following table shows the aggregate and sectoral standard deviations for investment rates for the

frictionless model and the model for χ = 0.5. The sectoral standard deviations are shown as a weighted

average (the unweighted averages are only insignificantly different) both for the raw sectoral investment

rates and the residual sectoral investment rates (see section B.2).

Frictions: GE GE GE and micro GE and micro

Number of sectors: 100 400 100 400

Aggr. St.dev. 0.0095 0.0079 0.0078 0.0075

Sect. St.dev. - raw 0.2037 0.2050 0.0196 0.0196

Sect. St.dev. - res. 0.2033 0.2047 0.0180 0.0180

The first important observation is that the numbers obtained here are not much different from what

we have obtained in the simplified computation, which is in particular true for theχ= 0.5-model. Specif-

ically, the frictionless model continues to fail to match observed sectoral volatility by an order of mag-

nitude. Secondly, the numbers deviate in the expected direction: the aggregate standard deviation in-

creases, because there is an additional aggregate shock, but only slightly so; the sectoral standard devia-

tions decrease a little bit, because now general equilibrium forces contribute also to sectoral smoothing.
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And, most importantly, the numbers show that the results obtained in the main part of the paper are

biased in favor of the frictionless model, in particular if we look at the NS = 100 case. Following our orig-

inal calibration, in this case σA would have to be decreased below its current value to match observed

aggregate volatility of investment rates, but then in the χ = 0.5-model, the calibrated σC would have to

be even lower, thus placing an even lower weight on general equilibrium forces.

D Matching Establishment Statistics

One argument we used in the main text to justify the use of sectoral rather than plant level data to cal-

ibrate micro frictions was that in nonlinear models small changes at the micro level can lead to large

differences after aggregating across micro units, before general equilibrium forces set in, and hence it

is better to calibrate at a more robust level of aggregation. We provided the Caplin and Spulber (1987)

model as an example of the complex mapping from micro frictions to aggregate smoothing due to them.

The other, closely related, argument we used is that there are many determinants of plant level mo-

ments which are irrelevant for the macro dimensions we are concerned with, and hence do not seem

to be fruitful moments to base a macro model on. In this appendix we provide support to this claim by

showing in a model that matches sectoral and aggregate moments, that minor modifications of the mi-

cro underpinnings of the model can lead to a satisfactory match of establishment level moments as well.

Furthermore, in the simple extension we propose, the initial match of sectoral and aggregate moments

is unaffected by the extension.

D.1 A Simple Extension

A first choice we need to make when matching the model to micro data is to decide how many micro

units in the model correspond to one establishment. Choices by other authors have covered a wide

range, going from one to a number large enough—sometimes a continuum—so that adding additional

units makes no difference.36

Two additional issues arise if we choose to model an establishment as the aggregation of many micro

units. First, we must address the extent to which shocks—both productivity and adjustment costs—

are correlated across units within an establishment.37 Second, we must take a stance on the fact that

establishments sell off and buy what in our model corresponds to one or more micro units.

Next we present a simple model that incorporates the issues mentioned above. The economy is

composed of sectors (indexed by s), which are composed of establishments (indexed by e), which are

composed of units (indexed by u). The log-productivity shock faced by unit u in establishment e in

sector s at time t is decomposed into aggregate, sectoral, establishment and unit level shocks as follows:

log zuest = logεA
t + logεS

st + logεF
est + logεU

uest ,

36Cooper and Haltiwanger (2005) and Khan and Thomas (2005) are examples of the former; Abel and Eberly (2002) and Bloom
(2005) of the latter.

37For tractability, all models assume that decisions are made at the micro-unit level, not the establishment level.
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where logεA
t ∼ AR(1;ρA ,σA), logεS

st ∼ AR(1;ρS ,σS), logεF
est ∼ AR(1;ρE ,σE ) and logεU

uest ∼ AR(1;ρU ,σU ).38,39

Consistent with the assumptions we made in the paper, we assume ρS = ρE = ρU and denote the com-

mon value by ρ.

An establishment is composed of a large number (continuum) of units. The extent to which the be-

havior of units within an establishment is correlated will depend on the relative importance of σU and

σE . The larger σE , the larger the correlation of productivity shocks across units within an establish-

ment and the more coordinated their investment decisions will be. For simplicity we assume that the

adjustment costs drawn by units belonging to an establishment are independent, so that even if units’

productivity shocks are perfectly correlated, there is some heterogeneity in units’ behavior.

The sectoral and aggregate investment series generated by this model will be the same as those gen-

erated by the model we developed in the main text as long as σ2
E +σ2

U = σ2
I , since all we are doing in

this extension is grouping micro units into groups we call “establishments” which has no implication for

sectoral aggregates.40 We therefore can decompose σ2
I into the sum of σ2

U and σ2
E as we please, with-

out affecting sectoral and aggregate statistics of our model. We define ζ ∈ [0,1] via σ2
U = ζσ2

I , so that

σ2
E = (1− ζ)σ2

I . Productivity shocks are the same across units within a establishment when ζ = 0, their

correlation decreases as ζ increases.

Regarding the sale and purchase of micro units, we assume that in every period an establishment

with capital Kest suffers a sales/purchase shock τest , so that its capital becomes (1+τest )Kest . The τ’s

are i.i.d. draws from a zero mean normal distribution with standard deviation στ. Since the sectors

in our model are composed of a continuum of establishments, our choice of a distribution with zero

mean for purchase/sales shocks ensures that sectoral and aggregate statistics are unaffected by this ex-

tension as well. We choose a normal distribution because it incorporates only one additional parameter

(parsimony) and it is symmetric (thus any asymmetries in the histogram of investment rates cannot be

attributed to this choice).

We denote by ĩest the investment rate for a given establishment according to our model, and by iest

the corresponding investment rate recorded by the LRD. The latter differs from the former in that it in-

cludes the sale/purchase of units from other establishments, which is ignored in our original model. We

then have:

iest = (1−τest )ĩest −τest (1−δ). (19)

Summing up, our (admittedly simple) extension introduces two parameters over which we can opti-

mize to fit establishment level moments without affecting the match of sectoral and aggregate statistics.

These parameters are the degree to which productivity shocks are correlated across units within an es-

38xt ∼ AR(1;ρ,σ) means that the process xt follows an AR(1) with first order autocorrelation ρ and standard deviation of
innovations equal to σ.

39Sectoral innovations are independent across sectors and independent from the innovations of the aggregate shock. Es-
tablishment level innovations are independent across establishments and independent from the innovations of the aggregate
and sectoral shocks. Finally, unit level innovations are independent across units and independent from the innovations of the
aggregate, sectoral and establishment-level shocks.

40The assumption that investment decisions are made at the unit level—and not at the establishment level—is important
here. Remember that our objective here is not to add realism to our original model, it is to show that matching micro moments
isn’t a robust way of pinning down microeconomic parameters.
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tablishment, and the average magnitude of sales and purchases of micro units across establishments.

D.2 Matching Establishment Level Statistics

We work with χ = 0.50. For a fixed value of ζ, we generate a histogram with 2,500 realizations of estab-

lishment level I /K using our model.41

Denote by fi , i = 1, ...,5 the fraction of LRD establishments that adjusted less than −20%, between

−20 and −1%, between −1% and 1%, between 1 and 20% and above 20%, respectively. And denote by

πi (στ) the fraction of units with adjustment in the previous bins after applying the transformation de-

scribed in (19). We choose the value of στ that minimizes
∑

i | fi −πi (στ)|/ fi , that is, we minimize the

absolute relative error.

Table 10 presents our results. We present the estimated values for the five statistics considered in the

extension Khan and Thomas (2005) introduce to obtain a better match of LRD moments. As can be seen,

our model does a reasonable job matching the micro statistics which have been considered earlier in the

literature. In fact, our fit is similar to the one Khan and Thomas (2005) obtain when they extend their

model to fit the micro statistics. Also, the statistics we obtain vary rather little with ζ, as long as ζ is larger

than zero (say, above 0.1). We report our estimates for ζ= 1 and ζ= 0.5 (the corresponding values for στ

are 0.134 and 0.133, respectively).

Table 10: MATCHING LRD MOMENTS

Model |I /K | < 1% I /K > 20% I /K <−20% I /K ≥ 1% I /K ≤−1%
Data 8.2 18.7 1.9 80.9 10.9
Khan-Thomas extension: 4.8 18.0 1.5 72.0 23.2
Our model extension (ζ= 1): 4.8 20.1 1.9 70.7 24.5
Our model extension (ζ= 0.5): 4.8 20.3 1.9 70.6 24.6

E Decomposing PE- vs. GE-smoothing

This section describes how we decompose the relative contributions of smoothing by PE- and GE-forces.

We first remove both smoothing from adjustment costs as well as GE-smoothing from the model,

by fixing the intertemporal price and the real wage at their average values, the resulting model has no

sources of smoothing (NONE). Next, we introduce micro frictions and aggregate across units (PE), and

then also include GE-smoothing through market prices (BOTH). We also consider the case with general

equilibrium smoothing without micro frictions (GE).

The first four columns in Table 11 report the standard deviation of aggregate investment rates for

all possible combinations of sources of smoothing. The last column reports upper and lower bounds,

41We compute these investment rates using the approximation described in Appendix C.3 with σ2
S +σ2

E in the role of σ2
S , and

σ2
I −σ2

E in the role of σ2
I .
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UB ,LB , on the relative importance of PE-smoothing in the various models, as measured by:

UB = log[σ(NONE)/σ(PE)]/ log[σ(NONE)/σ(BOTH)],

LB = 1− log[σ(NONE)/σ(GE)]/log[σ(NONE)/σ(BOTH)]

In the case of our model, the importance of PE-smoothing increases with χ. This is consistent with our

discussion in Section 4, since the cross-section of mandated investment for χ= 0 is closest to that in the

Caplin and Spulber (1987) setting with no smoothing via partial equilibrium aggregation. Yet even for

χ = 0 we have that the midpoint of the interval defined by the lower and upper bound for the fraction

explained by micro smoothing is almost 60%.

Table 11: SMOOTHING DECOMPOSITION

Model Sources of smoothing PE/total smoothing

None PE GE PE + GE Lower bd. Upper bd.
Khan-Thomas-Lumpy (2005): 0.1050 0.0660 0.0080 0.0080 0.0% 18.0%
Our model (0 maint.): 0.0458 0.0096 0.0133 0.0074 32.2% 85.7%
Our model (25% maint.): 0.0458 0.0094 0.0138 0.0074 34.2% 86.9%
Our model (50% maint.): 0.0458 0.0091 0.0148 0.0074 38.0% 88.7%
Our model (75% maint.): 0.0458 0.0089 0.0159 0.0074 42.0% 89.9%
Our model (100% maint.): 0.0458 0.0083 0.0236 0.0074 63.6% 93.7%

It becomes apparent that in this metric the lumpy model put forth by Khan and Thomas (2005) is

very close to a frictionless model already in its PE set up, so that their irrelevance result for the aggregate

becomes somewhat less surprising.

F The Responsiveness Index

Given an economy characterized by µt and aggregate productivity level zt we denote the resulting aggre-

gate investment rate by I
K (µt , log zt ) and define

I+(µt , log zt ) ≡
[

I

K
(µt , log zt +σA) − I

K
(µt , log zt )

]
/σA ,

I−(µt , log zt ) ≡
[

I

K
(µt , log zt −σA) − I

K
(µt , log zt )

]
/(−σA),

where σA is the standard deviation of the aggregate innovation.

Following Caballero and Engel (1993) we define the Responsiveness Index F (µt , log zt ) for I
K as:

Fk,t ≡ 0.5(1−θ−ν)
[
I+(µt , log zt ) + I−(µt , log zt )

]
. (20)

The factor (1−θ−ν) is included so that the index is approximately one when no sources of smoothing

are present. More precisely, in a static, partial equilibrium setting, with no time-to-build, micro units
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solve:42

max
k,n

zkθnν−ωn −k.

Solving this problem leads to the following optimal capital target level as a function of aggregate tech-

nology:

k∗ =C z1/(1−θ−ν),

where C is a constant that depends on the wage and the technology parameters. Taking logs and first

differences leads to

∆ logk∗ = 1

1−θ−ν∆ log z,

thereby justifying the normalization constant.

G Robustness to Variations in the Maintenance Parameter

In this appendix we show that the results reported for our model in Section 5 vary little with the choice

of the maintenance parameter χ. Hence our conclusions are robust to having considered only the case

χ = 0.50 in that section. The tables below present the volatility measures, persistence measures, and

J-statistic for values of χ between 0 and 100%.

Table 12: VOLATILITY OF AGGREGATES AND χ

St.dev. St.dev. rel. to σ(Y )
Y C I N C I N

Data: 2.00 1.73 5.94 2.00 0.86 2.97 1.00
Frictionless: 1.40 0.65 6.61 0.85 0.47 4.71 0.61
King-Rebelo: 1.39 0.61 4.09 0.67 0.44 2.95 0.48
0% maint.: 2.06 1.51 5.91 1.91 0.73 2.87 0.93
25% maint.: 2.09 1.54 5.90 1.95 0.73 2.82 0.93
50% maint.: 2.15 1.60 5.85 2.01 0.75 2.73 0.94
75% maint.: 2.22 1.67 6.10 2.09 0.75 2.75 0.94
100%-maint.: 2.42 1.93 6.81 2.37 0.80 2.81 0.98

42For notational simplicity we leave out idiosyncratic and sectoral shocks.

41



Table 13: PERSISTENCE OF AGGREGATES AND χ

Y C I N I /K
Data: 0.53 0.58 0.47 0.52 0.71
Frictionless: 0.42 0.61 0.36 0.35 0.57
0% maint.: 0.46 0.51 0.43 0.45 0.68
25% maint.: 0.46 0.51 0.43 0.46 0.69
50% maint.: 0.47 0.52 0.43 0.47 0.69
75% maint.: 0.48 0.56 0.40 0.47 0.65
100%-maint.: 0.50 0.62 0.36 0.50 0.56

Table 14: J -STATISTICS AND χ

(1) (2)
Frictionless: 53.3 44.7
0% maint.: 22.2 2.0
25% maint.: 25.6 1.8
50% maint.: 30.5 1.9
75% maint.: 28.9 1.3
100%-maint.: 28.2 9.7
Critical value: 11.1 7.8
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