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1. Introduction

This article compares control bands derived via stochastic impulse control with
ergodic criteria that maximize expected profits (or minimize expected costs) per unit
time and discounted criteria that maximize expected discounted profits (respectively
minimize expected discounted costs) over lifetime. To our knowledge this is the first
research effort that attempts such a comparison; the vast majority of the literature
related to stochastic impulse control problems examines discounted criteria. However,
in some problems® the choice of a discounting rate does not have a clear economic
interpretation. Moreover, comparing with previous comparative statics analyses (e.g.
Cadenillas and Zapatero, 1999, Suzuki and Pliska, 2004, Cadenillas et al. 2006) this is
the first time that sensitivity of the control bands with respect to the discounting rate
is examined.

As a means for the attempted comparison, we use the following problem. An
investor, in the absence of market frictions would aim to keep a constant amount (not
proportion!), say », of her wealth in a risky investment’. In the presence of
transactions costs, to avoid continuous rebalancing (and thus ruin) she seeks for an
optimal control band (L, U) with L<y<U for her risky holdings. Wealth is allowed to
fluctuate freely within the band and as soon as it reaches the boundaries it is adjusted
to the target level. The upper (lower) boundary is chosen so that wealth obtained (lost)
from adjustments to the target minus (plus) transaction costs maximizes (minimizes) a

power utility function.

! Like for instance when controlling an FX rate, see Jack and Zervos (2006), Melas and Zervos (2006).
2 Merton (1990, chapter 4) showed that such policies are optimal for investors that maximize
exponential utility of lifetime consumption. In Browne (1995) it is shown that such investment
strategies minimize the probability of ruin for investors that face an uncontrollable stochastic cash
flow. Browne (1998) displayed that constant amount of wealth in the risky asset is also optimal for
investors that aim to maximize the mean rate of return on risky investment (defined as the mean excess
return from investment above the risk free rate).



Similarly to the vast majority of related literature, we assume that instantaneous
asset returns follow a diffusion process with constant mean and volatility. Moreover,
we do not consider any finite fuel constraints for financing adjustments to the target
level from the lower boundary. Since our analysis takes into account fixed plus
proportional transaction costs per intervention, derivation of optimal policies requires
stochastic impulse control methods. A related problem derives control bands for some
target asset proportions; see Suzuki and Pliska (2004), Tamoura (2006), Kamarianakis
and Xepapadeas (2006).

During the past decade, numerous research efforts developed the stochastic impulse
control theory and applied it to problems emerging in economics and finance.
Important theoretical contributions include Harrison et al. (1983), Bensoussan and
Lions (1984), Dixit (1991), Dumas (1991) and Korn (1997, 1998). Buckley and Korn
(1999) and Baccarin (2002) applied the theory to the cash management problem,
Plehn-Dujowich (2005) derived control bands for optimal price adjustment in the
presence of menu costs, Jeanblanc-Pique (1993), Mundaca and Oksendal (1998) and
Cadenillas and Zapatero (1999, 2000) controlled an exchange rate, Suzuki and Pliska
(2004), Tamoura (2006) and Kamarianakis and Xepapadeas (2006) applied the theory
to control the risky fraction process of a portfolio, Jeanblanc-Pique and Shiryaev
(1995) and Cadenillas et al. (2005, 2006) derived optimal dividend policies,
Zakamouline (2006) performed utility-based European option pricing and hedging
and the list of applications is far from being complete. The aforementioned research
efforts have focused on the stochastic impulse control problem with discounted
optimization criteria; recently, Jack and Zervos (2006) considered the stochastic
impulse control problem with ergodic optimization criteria. The objective there was to

minimize a long-term expected criterion as well as a long term pathwise criterion that



penalize both deviations of the state process from a given nominal point and the use
of impulsive control effort per unit time.

The article is organized as follows. In the second section we display the model and
present the alternative discounted/ergodic stochastic impulse control objectives. In the
third section we examine how optimal rebalancing strategies can be computed via
standard diffusion theory for investors that maximize long run benefit minus cost per
unit time. The method presented in Jack and Zervos (2006) cannot be applied here
since the assumptions they state do not hold for our problem; instead we adopt a more
computationally intensive approach that follows the methodology presented in Karlin
and Taylor (1981, section 15.4) for a simple example®. The fourth section illustrates
the solution of the discounted problem, which is characterized as a system of quasi-
variational inequalities. In the fifth section we perform a sensitivity analysis and show
the dependence of optimal policy to the type of optimization objective. Our results
indicate linear dependence of the lower band of the considered (discounted) problem
to the discount rate. Moreover we discover significant differences between policies
derived with ergodic/discounted criteria; the magnitude of these differences varies
with parameters that characterize market behavior and investor’s preferences. For the
range of discount rates considered in our application the investor behaves in a less risk
averse manner when adopting the ergodic criterion. We conclude with some final

remarks and directions for further research in section six.

® Karlin and Taylor examined a simple cash management problem with cash dynamics following a
Brownian motion with no drift. The optimization objective minimized tracking error plus (fixed)
transaction costs per unit time. The setting of their problem allowed them to obtain analytical
expressions for the boundaries of the control band and the rebalancing point. For more complex
dynamics (e.g. geometric Brownian motion, mean reverting processes) this approach is
computationally very intensive and analytical expressions for the control boundaries are impossible to
obtain. To our knowledge this is the first time this method is used to solve a stochastic impulse control
problem with an ergodic optimization criterion after Karlin and Taylor’s seminal contribution.



2. Problem formulation

Consider a complete probability space (2, F, P) endowed with a filtration (F)),
which is the P-augmentation of the filtration generated by a one-dimensional
Brownian motion 7. Our state variable is the risky wealth X of an investor or a firm,
that in the absence of interventions follows a geometric Brownian motion process. In
the presence of interventions the state dynamics are described by the following

generalized Ito equation
X, =+ [uX,ds+[oX dW, =D I, &, (2.1)
0 0 n=l

where y is a non-negative constant representing the expected rate of return, ¢° is the
variance of the process with ¢ assumed positive, ¢&, is the magnitude of the nth
intervention and y represents the initial holdings which are strictly positive and for
simplicity are assumed to coincide with the target holdings. It is worth noting that the

expected value of X(7) is
EX(r) = yexp(ur) (2.2)
its variance is given by

VarX (f) = x° exp(2,ut)(exp(20'2t) —1) (2.3)



and we observe that while the expected value of X{(¢) in (2.2) increases at a rate
exp(ur) the standard deviation (square root of variance in equation 2.3) increases even
faster.

Turning to the specification of the objective function and transaction costs we

define the functions

gl(é:):: -K, ‘*‘yi(kﬁg)y1 ]{§>o}a &2 (Sg):: -K, _i(sz)yz I{§<o} (2.4)

1 V2

where ¢ represents the magnitude of intervention, K; and K, are positive constants
that represent fixed costs per intervention (independent of the size of transaction),
ki=1-x; with x; representing proportional costs for rebalancing from y+&>y to y,
k,=1+x, with x;, representing proportional costs for rebalancing from y+¢&<y to y and
71,7, €(041]. Specification (2.4) allows for different utilities for positive/negative
interventions and different fixed and proportional costs according to the type of
intervention. A similar choice regarding the form of the objective function has been
adopted in Cadenillas et al. (2006) for a dividend allocation problem. Because of the

fixed cost components, it suffices to consider trading strategies of the form {(z,,&, )},

where 7, is the time of the nth transaction and ¢, is the magnitude of the nth

intervention. {(z,,&,)} must satisfy some standard technical requirements: z, is a
stopping time, 7,< 7,+;, 7, > ®© as n — o, and &, is F, -measurable.

To proceed with formulating the ergodic optimization problem assume U and L be

fixed subject to —oo < L <U <o, and define T'(s) =7, be the hitting time of s for the

X process. Throughout the paper we let



T"=T,, =min{TU),T(L)}=TU) A T(L) (2.5)

be the first time the process reaches U or L and define the following quantities for the

risky wealth process X:

v () =Pr{T(U) < T(L)|X(0)=x] L<x<U, (2.6)
the probability the process reaches U before L starting from x, and

v, (x) = E[T"|x(0) =x], L<x<U, (2.7)

the mean time to reach U or L starting from x. Now the ergodic problem is

formulated as follows.

Problem 2.1 The investor wants to maximize long-run profits per unit time. In

particular, the investor wants to select the pair (T, &) that maximizes the expression

f(r.L,U) 2.8)

Jl(Z’T:f):Z(%lﬂU): N (Z)

with the numerator in (2.8) defined as follows:

f (. LU)=v(x)e(U - 2)+Q-v(x)e,(L - 7). (2.9)



Consider a cycle to be from one intervention returning the level of the risky holdings
back to y, to the next such intervention; the numerator weights expected gains and
losses as expressed by the corresponding utility functions in (2.4) by the probability of
reaching the upper or lower boundary during a transaction cycle and the denominator

is the expected duration of a transaction cycle.
Next, we formulate the discounted optimization problem.

Problem 2.2 The investor wants to maximize profits over lifetime. In particular, the

investor wants to select the pair (T, £) that maximizes the functional J, defined by

Jo(x,T,&)= E[Ze () oo + 224, )1{5,,<o})1{,,1@}} (2.10)

n=1

with A representing the discount rate and g,,g, as defined in (2.4).

3. Maximization of long run profits per unit time

To solve problem (2.1) we use basic tools from the theory of diffusions (see Karlin
and Taylor, 1981 and Borodin and Salminen, 2002). Similar to a large nhumber of
stochastic impulse control problems formulated as quasi-variational inequalities
(QVI), derivation of the control bands pertains to the solution of a system of nonlinear
equations. Unfortunately, these nonlinear equations turn out to be significantly more
complex compared to the ones derived from the QVI approach. Nevertheless, one

may relatively easily derive them using any software that performs symbolic



calculations and solve the resultant system using standard routines that perform

algorithms like Newton-Raphson or one of its descendants.

To calculate the numerator and denominator in (2.8) we note that v; and v; in (2.6)

and (2.7) need to satisfy the following differential equations

2.2 2
ay  o'x d‘;1:0forL<x<U,v1(L)=0, v (U)=1; (3.1)
dx 2 dx

2.2 2
Do (TN Vs _ g for L<x<U, vy(L)=v,(U)=0. (3.2)
dx 2 dx

To solve these problems, let the scale function of the X process be denoted as

S(x) = j “s@t)dt

(3.3)
where
s(x) =expy— r {Z—ﬂ}dt : (3.4)
ot
Let also
mx) =+ (35)
- o’x?s(x) '
denote the speed density of the process. The solution to (3.1) is
y() =S =SW) e cu, (3.6)
SWU)-S(L)



and the solution to (3.2) is formulated as follows

v, (x) = 2%) [ [s@)-s@m(@ydr + 1-v, ][ Ts () - S(L)]m(r)dt}. (3.7)

Now the scale function for the geometric Brownian motion (2.1) and the

corresponding speed measure are expressed by

1-a
S(x) =2 (3.8)
1-a
and
a-2
m(x) = (3.9)
(o2
with
a2t (3.10)

A transaction cycle for the X process starts at the exogenously defined target level y
and finishes the first time the process reaches L or U. One may easily calculate
expected profit minus cost during a cycle by substituting (3.6) and (3.8) in (2.9). In
words, the expected profit minus cost per transaction cycle is comprised by two
components: the profit of reaching first U and depositing U-y (expressed by utility g1),
weighted by the probability that X reaches U first, starting from y and the cost of
reaching first L and injecting y-L to reach y (expressed by the utility g;) weighted by
the probability that X reaches L first. For the expected cycle time, using (3.7)-(3.10),

we obtain

10



xlog(x)(U“L — UL )+ U log(U)(L'x ™ — Lx)+ L* log(L)(Ux —U“x*2)
UL v L)a-1)o?

v,(x) =2

(3.11)

To find the (L,U) pair that maximizes (2.8), one has to find all the local maxima of
z. Thus, one should take the corresponding derivatives, find the (Z,U) pairs that equate
them to zero and select among them the ones for which the Hessian is negative
definite. The expressions for the second derivatives are lengthy, thus we chose to
present here only the first derivatives; all calculations were performed via
MATLAB’s Symbolic Math toolbox. The derivatives of z in (2.8) with respect to U

and L are formulated as follows:

dz A — A, 4,4,

dUu A (3.12)
and
dz _ A - 4,44, (3.13)
dL A,
with
4, = "1()6{](171 (U —x)" _ U_”(gl(U—x)—gz(x—L))] (3.14)
U -x) S(U)-S(L)
L “vlx kzyz(x_l')y2 _L“(gl(U—x)—gz(x—L))J 3.15
A b S vs)s @19

11



4, = (0)g,(U - x)+ 1- v (x))g,(x— L)) (3.16)

— 4, 2u(log(U) - log(x) \a —1)- o>
A, = +
(SW) - S(L))x U (3.17)
_ady A4,U7*
Ux  (SU)-S(L))L > x

+ U—Zax—2a+10

, - 4, 2u(log(x) —log(L))a —1)-o*
Ay = +
(S(U)-S(L))x L (3.18)
a4, AL
L (S(U)-S(L)U > x

-2 —2a+1
+ Lo

A4:——2ﬁ917 (3.19)
2u-o?)

A4, - 2(1_—"1(")2) (3.20)
(2u-0?)

A, = 2[ ¢! (x)fe B (1—v1(x2))A7 J (3.21)
(2;1—0'2) Ux (Z,u—az) L*x

4, = xU(2(log(U) - log(x)) - o(log(U) - log(x)) - 6% )+ Ux o (3.22)

A, = xL™* (2 u(log(x)—log(L))- o*(log(x)—log(L)) - 0'2)— Lx*o?.  (3.23)

12



The derivatives form a system of two nonlinear equations, which can be solved
computationally using the Newton-Raphson algorithm or one of its successors;
numerical results are presented at the fifth section. The method of this section may
seem quite tedious in terms of computations but in contrast to the QVI approach it can
easily accommodate constraints (e.g. via Lagrange multipliers). Hence in contrast to
the QVI approach one may easily search for (L, U) that (for instance) maximize (2.8)

and at the same time the probability of reaching U first starting from y is at least p.

4. Maximization of discounted profits minus costs over lifetime
This section characterizes the stochastic impulse control problem as a system of
quasivariational inequalities following the arguments demonstrated in Cadenillas ez

al. (2006).
Admissible strategies

Since we want to maximize the functional J; in problem 2.2 we should consider only

those strategies for which J is well defined and finite. In order that

E[i e (g,(& ) R -ACIN <o})1{7n <w}} (4.1)

n=1

be well defined and finite, we need that

S

E[ie"l"'l{,"@}} <o and E[ie‘“"

n=1 n=1

I{T”<w}:| <0, (42)

To obtain the inequality on the left-hand-side, we need that

13



vTel0,):  Plimr, <Tj= (4.3)

To obtain the inequality on the right-hand-side, we need that

lim Ele™" (T +)|=0 (4.4)
and
Eﬁ e‘”X(t)dt} <o, (4.5)

The last two conditions are implied from the formula of integration by parts (see, for
instance, section VI1.38 of Rogers and Williams (1987)) which postulates that for

every 0<s<t<oo,

Ele#x(t+)- Ele X (s +)]= (1 - ﬂ)Eﬁe‘i“X(u )du} + E{i eEL . M} . (4.6)

s n=.

DEFINITION 4.1 [Admissible controls]. We shall say that an impulse control is
admissible if the conditions (4.3)-(4.5) are satisfied. We shall denote by A(x) the class

of admissible impulse controls.

The Value Function

Let us denote by V" the value function. That is, for every x (O, ®),

V(x)=supl/, (6 T, & (T, &) e A(x)}- 4.7

14



For a function ¢: [0,00) — R we define the maximum utility operator M by

M¢(x) = sup{¢(x -5+ gl(f)[{bo} +8 (_5)1{.§<o} feRx-Se (O’ oo)} (4.8)

MV(x) represents the value of the strategy that consists in choosing the best immediate
intervention and then selecting optimally the times and the amounts of the future

control actions. Let us consider the differential operator 3 defined by

2
Sl//(X) ::lO_ZXZ d W(X) +/JX dl//(X)

2 i’ o) (4.9)
Now we intend to find the value function and an associated optimal strategy.

Suppose there exists an optimal strategy for each initial point. Then, if the process
starts at x and follows the optimal strategy, the expected utility associated with this
optimal strategy is ¥»(x). On the other hand, if the process starts at x, makes
immediately the best immediate intervention, and then follows an optimal strategy,
then the expected utility associated with this strategy is M¥(x). Since the first strategy
is optimal, its associated expected utility is greater or equal than the expected utility
associated with the second strategy. Furthermore, when these two expected utilities
are equal, it is optimal to intervene. Hence, V' (x) > MV (x), with equality when it is
optimal to intervene. In the continuation region, that is, when there are not

interventions, we must have 3V (x)=0 (this is an heuristic application of the

dynamic programming principle to the problem we are considering). These intuitive

15



observations can be applied to give a characterization of the value function. We

formalize this intuition in the next two definitions and theorem.

DEFINITION 4.2 (QVI) We say that a function v:(0,00)—>iRsatisﬁeS the quasi-

variational inequalities for Problem 2.2 if for every x e (O, oo) :

JIv(x) <0, (4.10)
v(x) > Mv(x), (4.11)
(v(x) — Mv(x) )(Sv(x)) =0 (4.12)

Quasi-variational inequalities have been studied, for instance, in Bensoussan and
Lions (1984), Perthame (1984a, 1984b) and Baccarin (2004) but the theory developed
in those references cannot be applied directly to the above QVI.

A solution v of the QVI separates the interval (O,oo) into two disjoint regions: a

continuation region

C:= {x € (O, oo): v(x)>Mv(x) and Jv(x)= 0}

and an intervention region

Y= {x € (O, oo): v(x)=Mv(x) and 3Jv(x)< O}.

From a solution to the QVI it is possible to construct the following stochastic impulse

control.

16



DEFINITION 4.3 Let v be a solution of the QVI. The following stochastic impulse

control

(1,8 )= (e, ) o7 i & e E)
is called the QVI-control associated with v (if it exists):

o =inff = 0:v(X7 (1)) = (X (o))}
& = argsup(X" (7)) = )+ 2u(E) o) + £2(E) ey 1 E € R X (7))~ £ € (0,0)}

and, forevery n>2:

o=infl= o, (X)) = (X ))

n

& = argsup(X7 (1)) — &)+ &) gy + €2 (-E) gy 1 E € R X (7)) £ € (0,00))

where 7, =0 and &5 =0.

This means that the investor intervenes whenever v and Mv coincide and the size of
her control actions solve the optimization problem corresponding to Mv(x).

Korn (1997, Theorem 3.2) has developed a general sufficient condition of
optimality for stochastic impulse control problems, and applied it to some examples.
In each example, he shows that an admissible control satisfies that sufficient
condition, and is therefore optimal. We have developed the following version of
Theorem 3.2 of Korn (1997). This version is suitable for the application that we

consider in this paper.

17



THEOREM 4.1 Let ve CH[0,0);,R) be a solution of the QVI and let a,b € (0,0) be

such that v e C*([0,00)—{a,b};R). Suppose that for every y>a:

v(x) = g + A(x - )", (4.13)

and for every 0<x<b<a

v(x) = s, = A (x = x)7, (4.14)

where w1, € R, and A, A, €(0,0). Then, for every x €(0,):

V(x)<v(x). (4.15)

Furthermore, if the QVI-control (T V,é‘”) corresponding to v is admissible, then it is an

optimal stochastic impulse control and for every x € (0, oo) N

V(x)=v(x)=J2(x;TV,§V). (4.16)

Proof. See Appendix.

The solution of the QVI

We conjecture that there exists an optimal solution (T,§) characterized by two
parameters L, U with 0 < L < y <U < oo such that the optimal strategy is to stay in the
band [L,U] and jump to y when reaching the boundaries. That is we conjecture that

forevery i e N:

18



r,=inflt>7,,: X, ¢(L,U)}
and

XrH :Xr,. +¢ :Z(IX,I_:U +IX,,:L)'

Thus, the value function would satisfy

Vxe[U,oo): V(x) :V(Z)_Kl"‘i[kl(X—Z)]h

1

and

vxe(0.L]: V) =v(2) K, -~z -2 .

72

If " were differentiable in {L,U}, then from (4.19), (4.20) we would get

V)=V -2)
and

Vi(L)=k (g =Ly

We also conjecture that the continuation region is the interval (Z,U), so

2
Vx € [L,U]: Iv(x) = lo.zxz d V(ZX) o dv(x) av(x) =0.
2 dx dx

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

19



Applying standard methods of ordinary equations, we see that the general solution to

(4.23) is given by
v(x) =Cx™ +C,x™“ (4.24)
where C;,C, are unknown constants and

_—2u +o° i-(4,u2 ~4uc’® +o' +8/162)1/2

2

(4.25)

a =
1,2
20

In summary, we conjecture that the solution is described by (4.17)-(4.18) and the four

unknowns L, U, C3, C; are a solution to a system of four nonlinear equations

WU) = h(x) ~ K, +~ k(U - )" (4.26)
71
ML) = h(x) - K, — k" (7~ L) (4.27)
W(U)=kl (U -z (4.28)
W(L)=ky(y-L)*" . (4.29)
where
h(x) = Cx“ +C,x*. (4.30)

20



The above are proved rigorously in the following theorem.

THEOREM 4.2. Let L, U with L < x <U <o be a solution of the system of equations

(4.26)-(4.29). Let us define the function V : (O, oo) — Rby

h(;()—Kl+ikl”(x—;()7l if x>U
1

V(x)=<h(x) if L<x<U

W) - Ky~ k(g =2 if x<L

2

If for every x>U

%azxzkfl ()/1 —1)(x—;()“_2 + k]t (x—;()”_l -1 h(;g)—Kl + -2

71

for every x<L

V2

Lotk W) sk Gy A )k,

72
the function @ _: [;(, U] — R defined by

141
@, (x)=h(x)+K, - K (x— )" is decreasing in [y, U]

71

and the function ‘¥, [L, ;(] — R defined by

7

(4.31)

(x—x)* |<0,

(4.32)

(4.33)

(4.34)

21



72
Y, (x)=h(x)+K, + ke (¥ —x)? is increasing in [L, 1] (4.35)

2

then v is the value function of problem 2.2. That is

v(x) =V (x) =sup{/, (6, T, § ) (T, &) € A(x)}

and the optimal strategy is given by (4.17), (4.18).

Proof. See Appendix.

5. Numerical illustration

In this section, we provide numerical solutions for the ergodic and discounted
stochastic impulse control problems considered at sections 3 and 4. For the ergodic
problem one has to find the solutions to a system of two nonlinear equations that
correspond to the derivatives of z in (2.8) with respect to L and U. This can be
achieved via performing an algorithm like the Newton-Raphson or one of its
descendants several times for different starting values. The (L, U) pairs for which the
derivatives equal zero are local maxima if the Hessian of the system at these points is
negative definite. The process of finding global maxima can be guided by a three-
dimensional plot of z in (2.8) as depicted below. For the discounted problem of the
fourth section we provide numerical solutions for the system of nonlinear equations
(4.26)-(4.29) and derive the four unknowns: the two outer boundaries L and U and the

two constants C; and C; in (4.23) that characterize the evolution of the value function

22



within the control band. The reader should note that both nonlinear systems are
complex and their convergence is sensitive to the initial values provided as starting
points. For the sensitivity analysis conducted at the second part of this section, we
first found appropriate initial values for a baseline experiment and then, for each
perturbation of the parameters, we plugged as starting values the outcomes of the

previous run. MATLAB codes are available upon request from the authors.

5.1 A specific example

We first consider the following data for market characteristics and investor’s

preferences:

©=01 =02 A=001 K, =005 K,=005 k =095 k,=11 y=10 y, =08 y,=09.

For the ergodic problem we find as possible solutions the pairs (9.0796, 10.1348) and
(6.4081, 16.3629). Calculation of the Hessian at these points indicates that the first
pair is the global maximum whereas the second is a saddle point; a three-dimensional

plot of the z function in (2.8) complies with the previous arguments (figure 1).

For the discounted problem we find two possible optimal quadruplets:

U=10.1338 L=9.0116 (C1=157.2394 (,=534.1197

and

U=19.2442 [=4.8551 (1=52.4051 (»=45.9706,
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with only the first one satisfying conditions (4.32)-(4.35). For both problems errors
are of the order 10°. We observe that for the discounting rate of the benchmark
example, the investor that adopts the discounted criterion intervenes earlier (later)
than the one that adopts the ergodic criterion in the right (left) side of y. The
probability of reaching U first, starting from y is 0.9089 for the control band of the
discounted problem and 0.9004 for the ergodic problem respectively. Apparently,
given the discounting rate of the benchmark example, the investor that adopts the

ergodic criterion behaves in a less conservative manner.

<<Figure 1>>

5.2 Sensitivity Analysis

To conduct sensitivity analysis, we use as baseline values the ones used in the
previous example and perturb each parameter separately to uncover how optimal
strategies are affected. Table 1 presents control bands for the discounted problem for
varying discount rate at two levels of volatility. In both cases the upper boundaries
seem to be almost unaffected from the changes in the discount rate; on the contrary,
lower boundaries depend linearly to the discount rate. Indeed, for o =0.2 we get
perfect fit (regression’s R? equals one) from the regression line L =9.014—0.234-1
whereas for o =0.3 the perfect fitting line is expressed as L =8.968—-0.126- 4.
Thus, for increasing levels of volatility lower control boundaries become less
sensitive to the discount rate. As the discount rate decreases, control bands of the

discounted problem come closer to the ones of the ergodic problem.

<<Table 1>>
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Sensitivity of the control bands with respect to the cost parameters is examined in
tables 2 and 3. The intuition is clear: the investor rebalances more often with lower
transaction costs. We also observe that the control boundaries from the ergodic and
discounted optimization criteria differ more as transaction costs increase with lower

boundaries differing more than the upper ones. Sensitivity analysis with respect to y,
and y, is performed at tables 4 and 5. As y, increases, wealth obtained from
adjustments to the target level from the upper boundary becomes more important to
the investor; the upper boundaries increase and the lower ones decrease faster for both
ergodic/discounted problems (figure 2). The differences between ergodic/discounted
control boundaries increase as y, increases. As expected, the opposite findings are
true for increasing levels of y,. Figure 2 displays the ergodic/discounted control
boundaries for varying y, and y,. Our findings suggest that the perfect fitting curves
are third order polynomials. The corresponding curves for y,, 7, ranging between 0.8

and 0.9 are formulated as

U,sc =—119+473.4-y, —580.5- 72 + 258.2 5°
Uppg =—181.1+697.9 -7, —850.9- 7 +346.8- 5,
Lpe =—1029+3707 -y, —4379- 72 +1708-5°
Ly, =—648.9+2370-y, — 281872 +1105- 5

(5.1)

Tables 6-8 examine the sensitivity with respect to volatility, expected return and
target level respectively. As volatility increases the left part of the control band
becomes wider whereas the right part gets narrower. On the other hand both
boundaries increase with increasing levels of x and y and the difference between

discounted/ergodic control bands are larger as x increases. The control boundaries can
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be expressed as (perfect fitting) regression lines for the range of x values considered

in our numerical experiment:

U pse =10.13+0.0108 - 4
U, =10.13+0.02-
Ly =8.931+0.806 - 1
Ly =8.954+1.249 - 11

(5.2)

The slopes of the regression lines indicate a faster rate of change for the ergodic
boundaries as u increases.

<< Tables 2-8 >>
<<Figure 2>>

6. Concluding Remarks

Stochastic impulse control problems examined in the literature during the past
decade have focused on discounted criteria over lifetime. However in some problems
the choice of a discounting rate does not have a clear economic interpretation; in such
cases a manager would prefer to adopt an ergodic criterion that optimizes an objective
function per unit time. This work uses an investment problem as a means to compare
control bands derived by ergodic/discounted criteria. Sensitivity analysis of the
optimal policies indicates that the magnitude of the differences between
ergodic/discounted control bands is a function of the coefficients that characterize
investor’s preferences and market behavior.

A research question that emerges next is related to the constrained stochastic
impulse control problem. For instance, in the investment problem considered in this

paper, one may place finite fuel constraints on the financing of positive impulses from
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a bank account. Another application is related to the optimal dividend policy or
harvesting policy where a manager may desire rebalancing points (levels of cash
reservoir or population levels after dividend payout or harvesting) from which a lower
benchmark can be reached with a certain probability (say less than 0.05) to avoid

bankruptcy/species extinction.
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Appendix
Proof of Theorem 4.1
The differentiability of v implies its continuity, and therefore its boundedness in the

compact interval [b,a]. Furthermore, v' is bounded in (O,oo) because it is continuous
in [ba], for every xefa,0):v(x)e [0,/11;/1(U—;( )”lJ and for every

xe(0,b]:V(x) € [—/12;/2(;(—L)“‘l,—/lzyz(;()“‘lj. Let (7,£) be an admissible policy,
and denote by X = X" the trajectory determined by (T,£). We observe that
condition (4.4), the boundedness of v in the compact interval [b,a] and its

boundedness by a linear function in (0,5)u (a,0) imply that
lim Ele " W(x(T+))]=0. (A1)

Furthermore, condition (4.5) and the boundedness of v’ imply that
E{ j {e-“X(t)v'(X(t))}zdt} <. (A2)
0

We may write, for every £>0 and ne N,
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Since X is a continuous semimartingale in the stochastic interval (z, ,,z,] and v is
twice continuously differentiable in (0,00)—{a,b}, we may apply an appropriate

version of Ito’s formula (Rogers and Williams, 1987, section 1V.45). Thus, for every

ieN,

e—ﬂ(mr,- )V(er, )_ e_Z(MTH )V(X(M’:fl )+)

= je’i‘ {v’(XS),uXS + %0'21/"()(S)XS2 - /lv(XS)} + J‘e’i“v'(XS)O'XSdWS

(tat;q.tnT;] (tatiq.tnt;]
= J-e_bSv(Xs)ds + J.e_bv'(Xs)O'Xdes
(tatig,tnT;] (tatiq tnT;]

Now according to inequality (4.10),

IO )V( X,. )_ o Mt )v( X ) ) < e *V(X,)oX dW,,

(tntiq.tnT;]

and this inequality becomes an equality for the QVI-control associated with v.

According to inequality (4.11), in the event {r, <t} we have

0, o, e e+l o

and this inequality becomes an equality for the QVI-control associated with v.

Combining the above inequalities and taking expectations, we obtain

v(x)E, [e_ﬂ(’”" )V(X (tne, )+ )]

2E, [i{{l{rlq}eh’ {gl(éi )1{;>0} +8; (fl )I{§,<o}}}_ e_ﬂsv'(Xx)O'XxdWx }}

i=1 (t/\‘r,,l,tm',-]
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with equality for the QVI-control associated with v. From condition (4.3),
Iim{v(x)— E. le’l(’”” )V(X (tre, )t )J} =v(x)-E, [e_i’v(X " )]

and according to (A2),

IAT,
lim E{ [ervi(x, )o-XSdWS:I = 0.

n—>0
0

Thus,

v(x)-E, [e_MV(X " )] > E, {1 e {gl (EN ooy + 82 (E ) }}
with equality for the QVI-control associated with v. According to (Al)
lim{y()- £ e v(x,, )]f = v(x)
and according to the monotone convergence theorem

lim £, {I{T,gt}e_hi {gl(égi )I{gj w0} T &2 (égz )I{§i<o} }}

—0

=E, {1 ame {gl(fi Mieoop+ &2 (E ) o }} |

Hence,

v(x)z E, {I{r,@o}e%ﬁ {gl (é:z )I{§i>o} + 4, (é:, )I{§i<o} }}
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with equality for the QVI-control associated with v. Therefore for every

(T,f)e A(x):

v(x)ZJ(x;T,é:),

with equality for the QVI-control associated with v.[]

Proof of Theorem 4.2

We observe that if /" were a solution to the QVI then, according to theorem 4.1, V'
would be the value function and the optimal strategy would be given by (4.17)-(4.18).
Indeed, ¥ is twice continuously differentiable in (0,L)u(L,U)u(U,«) and once
continuously differentiable in {Z, U}. Furthermore, J has the form (4.13) in (U,oo)
and (4.14) in (0,L). In addition, the QVI-control associated with ¥ is admissible,
because the trajectory X generated by the QVI-control associated with 7" behaves like

a geometric Brownian motion in each random interval (r,,z,,) and satisfies
P{vte(0,0): X(r) e[L,U]}=1. Thus, the conditions (4.3)-(4.5) would be satisfied,
and the QVI-control associated to V would be admissible. Hence it only remains to

verify that 7 is a solution to the QVI.

By construction of /, we have forevery L<x<U:

IV (x) =3h(x) =0.

According to condition (4.32), for every x>U :
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) = S0 o 2 k2 A M) K e 1) <0
1

and according to condition (4.33), for every x<L

72
SV (3) =2 ok, ~ D =2 kg (=) - l[hm_ a k; - x)n} -
2

Thus 37 (x) is zero in [L,U] and negative in (0,L)u (U, ), so inequality (4.10) is
satisfied.

We note that

h(y)-K, +ikjl(x—;()” if  x>U
1

MV (x) ={ h(x) - min(K,, K,) if L<x<U

W) - K-~k (r =2y i x<L

2

and observe that
V}(E[L,U]: v(;()—Mv(;():min(Kl,Kz)>O.

Moreover,

‘v’xe(;(,U]: v(x) = Mv(x) = h(x) - h(y)+ K, - K (x—;()h,

7

32



and according to (4.34) the function v-Mv is decreasing in (y, U) with v(U)-Mv(U) =0,
S0 v-Myv is positive in (y,U]. Additionally,
72

vrellz): ()= My(x) = h(x) = h(x) + K, + 2 (5 - x)*

V2

and according to (4.35) the function v-Mv is increasing in (L,y) with v(L)-Mv(L) =0,
S0 v-Mv is positive in [L,y). Thus v-Mv equals zero in the intervention region
(oo, L]U[U,») and is positive in the continuation region (L,U), so inequalities
(4.10)-(4.12) are satisfied. Hence v is a solution of the QVI and this proves the

theorem.d
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Figure 1. 3-dimensional views of the z function in (2.8) for the parameters of the

benchmark example.

36



i 102 . o
0 B
UERG
LERG
- UDISC a7
4 — OisC
52
ar
]
5 : - : a2 ST
8 85 B 8 ” a5 a

YI

Figure 2. Control bands for the discounted and ergodic problems for varying levels of
ypand z,.
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Table 1. Control bands for the discounted problem for varying discount rate for two

levels of volatility.

Ulo =0.2

U|O':0.3

10.1338

10.1332

10.1338

10.1332

10.1338

10.1332

10.1337

10.1332

10.1337

10.1332

10.1337

10.1332

10.1337

10.1332

10.1337

10.1332

10.1337

10.1332

10.1336

10.1331
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Table 2. Control bands for the discounted and ergodic problems for varying levels of

fixed costs.

Uerc

Upisc

10.2968

10.2912

10.2529

10.2489

10.2112

10.2085

10.1718

10.1701

10.1348

10.1338
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Table 3. Control bands for the discounted and ergodic problems for varying levels of

proportional costs.

Uerc

Upbisc

10.1348

10.1338

10.1324

10.1314

10.1301

10.1291

10.1278

10.1268

10.1254

10.1245

10.1249

10.1241

10.1244

10.1234

10.1239

10.1230

10.1234

10.1225
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Table 4. Control bands for the discounted and ergodic problems for varying levels of
V1

Uerc

Upisc

10.1348

10.1338

10.1511

10.1498

10.1696

10.1678

10.1907

10.1882

10.2148

10.2114

10.2429

10.2380

10.2761

10.2691

10.3161

10.3059

10.3657

10.3504

10.4298

10.4056

10.5186

10.4769
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Table 5. Control bands for the discounted and ergodic problems for varying levels of

Vo

Uerc

Upisc

10.1381

10.1367

10.1379

10.1365

10.1377

10.1364

10.1375

10.1361

10.1372

10.1359

10.1369

10.1357

10.1366

10.1354

10.1362

10.1351

10.1358

10.1347

10.1353

10.1343

10.1348

10.1338
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Table 6. Control bands for the discounted and ergodic problems for varying levels of

o.

Uerc

Upisc

10.1337

10.1332

10.1341

10.1334

10.1348

10.1338
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Table 7. Control bands for the discounted and ergodic problems for varying levels of

U

Uerc

Upisc

10.1352

10.1340

10.1350

10.1339

10.1348

10.1338

10.1346

10.1337

10.1344

10.1336

10.1342

10.1335

10.1340

10.1334

10.1338

10.1332
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Table 8. Control bands for the discounted and ergodic problems for varying levels of

Uerc

Upisc

10.1548

10.1538

10.1348

10.1338

10.1148

10.1138

10.0848

10.0838
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