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1. Introduction 
 
   This article compares control bands derived via stochastic impulse control with 

ergodic criteria that maximize expected profits (or minimize expected costs) per unit 

time and discounted criteria that maximize expected discounted profits (respectively 

minimize expected discounted costs) over lifetime. To our knowledge this is the first 

research effort that attempts such a comparison; the vast majority of the literature 

related to stochastic impulse control problems examines discounted criteria. However, 

in some problems1 the choice of a discounting rate does not have a clear economic 

interpretation. Moreover, comparing with previous comparative statics analyses  (e.g. 

Cadenillas and Zapatero, 1999, Suzuki and Pliska, 2004, Cadenillas et al. 2006) this is 

the first time that sensitivity of the control bands with respect to the discounting rate 

is examined.   

   As a means for the attempted comparison, we use the following problem. An 

investor, in the absence of market frictions would aim to keep a constant amount (not 

proportion!), say χ, of her wealth in a risky investment2. In the presence of 

transactions costs, to avoid continuous rebalancing (and thus ruin) she seeks for an 

optimal control band (L, U) with L<χ<U for her risky holdings. Wealth is allowed to 

fluctuate freely within the band and as soon as it reaches the boundaries it is adjusted 

to the target level. The upper (lower) boundary is chosen so that wealth obtained (lost) 

from adjustments to the target minus (plus) transaction costs maximizes (minimizes) a 

power utility function.  

                                                 
1 Like for instance when controlling an FX rate, see Jack and Zervos (2006), Melas and Zervos (2006). 
2 Merton (1990, chapter 4) showed that such policies are optimal for investors that maximize 
exponential utility of lifetime consumption. In Browne (1995) it is shown that such investment 
strategies minimize the probability of ruin for investors that face an uncontrollable stochastic cash 
flow. Browne (1998) displayed that constant amount of wealth in the risky asset is also optimal for 
investors that aim to maximize the mean rate of return on risky investment (defined as the mean excess 
return from investment above the risk free rate). 
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   Similarly to the vast majority of related literature, we assume that instantaneous 

asset returns follow a diffusion process with constant mean and volatility. Moreover, 

we do not consider any finite fuel constraints for financing adjustments to the target 

level from the lower boundary. Since our analysis takes into account fixed plus 

proportional transaction costs per intervention, derivation of optimal policies requires 

stochastic impulse control methods. A related problem derives control bands for some 

target asset proportions; see Suzuki and Pliska (2004), Tamoura (2006), Kamarianakis 

and Xepapadeas (2006).   

   During the past decade, numerous research efforts developed the stochastic impulse 

control theory and applied it to problems emerging in economics and finance. 

Important theoretical contributions include Harrison et al. (1983), Bensoussan and 

Lions (1984), Dixit (1991), Dumas (1991) and Korn (1997, 1998). Buckley and Korn 

(1999) and Baccarin (2002) applied the theory to the cash management problem, 

Plehn-Dujowich (2005) derived control bands for optimal price adjustment in the 

presence of menu costs, Jeanblanc-Pique (1993), Mundaca and Oksendal (1998) and 

Cadenillas and Zapatero (1999, 2000) controlled an exchange rate, Suzuki and Pliska 

(2004), Tamoura (2006) and Kamarianakis and Xepapadeas (2006) applied the theory 

to control the risky fraction process of a portfolio, Jeanblanc-Pique and Shiryaev 

(1995) and Cadenillas et al.  (2005, 2006) derived optimal dividend policies, 

Zakamouline (2006) performed utility-based European option pricing and hedging   

and the list of applications is far from being complete. The aforementioned research 

efforts have focused on the stochastic impulse control problem with discounted 

optimization criteria; recently, Jack and Zervos (2006) considered the stochastic 

impulse control problem with ergodic optimization criteria. The objective there was to 

minimize a long-term expected criterion as well as a long term pathwise criterion that 
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penalize both deviations of the state process from a given nominal point and the use 

of impulsive control effort per unit time.  

   The article is organized as follows. In the second section we display the model and 

present the alternative discounted/ergodic stochastic impulse control objectives. In the 

third section we examine how optimal rebalancing strategies can be computed via 

standard diffusion theory for investors that maximize long run benefit minus cost per 

unit time. The method presented in Jack and Zervos (2006) cannot be applied here 

since the assumptions they state do not hold for our problem; instead we adopt a more 

computationally intensive approach that follows the methodology presented in Karlin 

and Taylor (1981, section 15.4) for a simple example3. The fourth section illustrates 

the solution of the discounted problem, which is characterized as a system of quasi-

variational inequalities. In the fifth section we perform a sensitivity analysis and show 

the dependence of optimal policy to the type of optimization objective. Our results 

indicate linear dependence of the lower band of the considered (discounted) problem 

to the discount rate. Moreover we discover significant differences between policies 

derived with ergodic/discounted criteria; the magnitude of these differences varies 

with parameters that characterize market behavior and investor’s preferences. For the 

range of discount rates considered in our application the investor behaves in a less risk 

averse manner when adopting the ergodic criterion. We conclude with some final 

remarks and directions for further research in section six.     

 
 

                                                 
3 Karlin and Taylor examined a simple cash management problem with cash dynamics following a 
Brownian motion with no drift. The optimization objective minimized tracking error plus (fixed) 
transaction costs per unit time. The setting of their problem allowed them to obtain analytical 
expressions for the boundaries of the control band and the rebalancing point. For more complex 
dynamics (e.g. geometric Brownian motion, mean reverting processes) this approach is 
computationally very intensive and analytical expressions for the control boundaries are impossible to 
obtain. To our knowledge this is the first time this method is used to solve a stochastic impulse control 
problem with an ergodic optimization criterion after Karlin and Taylor’s seminal contribution.    
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2. Problem formulation 
 
   Consider a complete probability space (Ω, F, P) endowed with a filtration (Ft), 

which is the P-augmentation of the filtration generated by a one-dimensional 

Brownian motion W. Our state variable is the risky wealth X of an investor or a firm, 

that in the absence of interventions follows a geometric Brownian motion process. In 

the presence of interventions the state dynamics are described by the following 

generalized Ito equation 

 

 { }∫ ∑∫
∞

=
<−++=

t

n
ntss

t

st n
IdWXdsXX

0 10

ξσµχ τ ,              (2.1) 

 

where µ is a non-negative constant representing the expected rate of return, σ2 is the 

variance of the process with σ assumed positive, ξn is the magnitude of the nth 

intervention and χ represents the initial holdings which are strictly positive and for 

simplicity are assumed to coincide with the target holdings. It is worth noting that the 

expected value of X(t) is 

 

    )exp()( ttEX µχ= ,                 (2.2) 

 

its variance is given by 

 

 ( )1)2exp()2exp()( 22 −= tttVarX σµχ               (2.3) 
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and we observe that while the expected value of X(t) in (2.2) increases at a rate 

exp(µt) the standard deviation (square root of variance in equation 2.3) increases even 

faster. 

   Turning to the specification of the objective function and transaction costs we 

define the functions 

 

 ( ) ( ) { } ( ) ( ) { }02
2

2201
1

11
21 1:,1: <> −−=+−= ξ

γ
ξ

γ ξ
γ

ξξ
γ

ξ IkKgIkKg            (2.4) 

 

where ξ  represents the magnitude of intervention, K1 and K2 are positive constants 

that represent fixed costs per intervention (independent of the size of transaction), 

k1=1-κ1 with κ1 representing proportional costs for rebalancing from χ+ξ>χ to χ, 

k2=1+κ2 with κ2 representing proportional costs for rebalancing from χ+ξ<χ to χ and 

( ]1,0, 21 ∈γγ . Specification (2.4) allows for different utilities for positive/negative 

interventions and different fixed and proportional costs according to the type of 

intervention. A similar choice regarding the form of the objective function has been 

adopted in Cadenillas et al. (2006) for a dividend allocation problem. Because of the 

fixed cost components, it suffices to consider trading strategies of the form ( ){ }nn ξτ , , 

where τn is the time of the nth transaction and ξn is the magnitude of the nth 

intervention. ( ){ }nn ξτ ,  must satisfy some standard technical requirements: τn is a 

stopping time, τn< τn+1, ∞→nτ  as ∞→n , and ξn  is 
n

Fτ -measurable. 

   To proceed with formulating the ergodic optimization problem assume U and L be 

fixed subject to ∞<<<∞− UL , and define sTsT =)(  be the hitting time of s for the 

Χ process. Throughout the paper we let 
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 { } )()()(),(min,
* LTUTLTUTTT LU ∧===                                                (2.5) 

 

be the first time the process reaches U or L and define  the following quantities for the 

risky wealth process X: 

 

 { }xXLTUTxv =<= )0()()(Pr)(1  UxL << ,                                     (2.6) 

 

the probability the process reaches U before L starting from x, and 

 

 [ ]xXTExv == )0()( *
2 ,  UxL << ,                        (2.7) 

 

the mean time to reach U or L starting  from x. Now the ergodic problem is 

formulated as follows. 

 

Problem 2.1 The investor wants to maximize long-run profits per unit time. In 

particular, the investor wants to select the pair (T, ξ) that maximizes the expression  

  

 ( ) ( ) ( )
( )χ

χχξχ
2

1
,,,,,,

v
ULfULzTJ ==                (2.8) 

 

with the  numerator in (2.8) defined as follows: 

 

 ( ) ( ) ( ) ( )( ) ( )χχχχχ −−+−= LgvUgvULf 2111 1,, .             (2.9) 

 



 8

Consider a cycle to be from one intervention returning the level of the risky holdings 

back to χ, to the next such intervention; the numerator weights expected gains and 

losses as expressed by the corresponding utility functions in (2.4) by the probability of 

reaching the upper or lower boundary during a transaction cycle and the denominator 

is the expected duration of a transaction cycle.  

 

Next, we formulate the discounted optimization problem. 

 

Problem 2.2 The investor wants to maximize profits over lifetime. In particular, the 

investor wants to select the pair (T, ξ) that maximizes the functional J2 defined by 

 

 ( ) ( ) { } ( ) { }( ) { }⎥
⎦

⎤
⎢
⎣

⎡
−+= ∞<

∞

=
<>

−∑ nnn

n IIgIgeETxJ
n

nnx τξξ
λτ ξξξ

1
02012 :,,          (2.10) 

 

with λ representing the discount rate and 21, gg  as defined in (2.4). 

 
  
 
3. Maximization of long run profits per unit time 

 
   To solve problem (2.1) we use basic tools from the theory of diffusions (see Karlin 

and Taylor, 1981 and Borodin and Salminen, 2002). Similar to a large number of 

stochastic impulse control problems formulated as quasi-variational inequalities 

(QVI), derivation of the control bands pertains to the solution of a system of nonlinear 

equations. Unfortunately, these nonlinear equations turn out to be significantly more 

complex compared to the ones derived from the QVI approach. Nevertheless, one 

may relatively easily derive them using any software that performs symbolic 
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calculations and solve the resultant system using standard routines that perform 

algorithms like Newton-Raphson or one of its descendants.  

   To calculate the numerator and denominator in (2.8) we note that v1 and v2 in (2.6) 

and (2.7) need to satisfy the following differential equations 

 

           0
2 2

1
222

1 =+
dx

vdx
dx
dvx σµ  for UxL << , 1)(,0)( 11 == UvLv ;                (3.1) 

 

1
2 2

2
222

2 −=+
dx

vdx
dx
dvx σµ  for UxL << , 0)()( 22 == UvLv .                    (3.2) 

 

To solve these problems, let the scale function of the X process be denoted as  

 

 ∫=
x

dttsxS )()( ,                                                                                   (3.3) 

where 
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Let also 

 
)(

1)( 22 xsx
xm

σ
=                                                                                           (3.5) 

 

denote the speed density of the process. The solution to (3.1) is  

 

 
)()(
)()()(1 LSUS
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=   for UxL ≤≤ ,                                     (3.6) 
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and the solution to (3.2) is formulated as follows 

 

      [ ] [ ] [ ]{ }∫∫ −−+−=
x

L

U

x
dttmLStSxvdttmtSUSxvxv )()()()(1)()()()(2)( 112 .           (3.7)      

                                                                                                                                     

Now the scale function for the geometric Brownian motion (2.1) and the 

corresponding speed measure are expressed by  

 

 
a

xxS
a

−
=

−
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                                                  (3.8) 

and 

2

2

)(
σ

−

=
axxm                                         (3.9) 

with 

2
2
σ
µ

=a .                (3.10) 

 

   A transaction cycle for the X process starts at the exogenously defined target level χ 

and finishes the first time the process reaches L or U. One may easily calculate 

expected profit minus cost during a cycle by substituting (3.6) and (3.8) in (2.9). In 

words, the expected profit minus cost per transaction cycle is comprised by two 

components: the profit of reaching first U and depositing U-χ (expressed by utility g1), 

weighted by the probability that X reaches U first, starting from χ and the cost of 

reaching first L and injecting χ-L to reach χ (expressed by the utility g2) weighted by 

the probability that X reaches L first. For the expected cycle time, using (3.7)-(3.10), 

we obtain 
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                         (3.11)

  

   To find the (L,U)  pair that maximizes (2.8), one has to find all the local maxima of 

z. Thus, one should take the corresponding derivatives, find the (L,U) pairs that equate 

them to zero and select among them the ones for which the Hessian is negative 

definite. The expressions for the second derivatives are lengthy, thus we chose to 

present here only the first derivatives; all calculations were performed via 

MATLAB’s Symbolic Math toolbox. The derivatives of z in (2.8) with respect to U 

and L are formulated as follows: 
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( ) ( ) ( )( )LxgxvxUgxvA −−+−= 21112 )(1)(                                                (3.16) 
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The derivatives form a system of two nonlinear equations, which can be solved 

computationally using the Newton-Raphson algorithm or one of its successors; 

numerical results are presented at the fifth section. The method of this section may 

seem quite tedious in terms of computations but in contrast to the QVI approach it can 

easily accommodate constraints (e.g. via Lagrange multipliers). Hence in contrast to 

the QVI approach one may easily search for (L, U) that (for instance) maximize (2.8) 

and at the same time the probability of reaching U first starting from χ is at least p. 

 
 
4. Maximization of discounted profits minus costs over lifetime 
 
   This section characterizes the stochastic impulse control problem as a system of 

quasivariational inequalities following the arguments demonstrated in Cadenillas et 

al. (2006). 

 

Admissible strategies 

Since we want to maximize the functional J2 in problem 2.2 we should consider only 

those strategies for which J2 is well defined and finite. In order that 
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be well defined and finite, we need that  
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To obtain the inequality on the left-hand-side, we need that 
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 [ ) { } 0lim:,0 =≤∞∈∀
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To obtain the inequality on the right-hand-side, we need that 
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The last two conditions are implied from the formula of integration by parts (see, for 

instance, section VI.38 of Rogers and Williams (1987)) which postulates that for 

every ∞<≤< ts0 , 
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DEFINITION 4.1 [Admissible controls]. We shall say that an impulse control is 

admissible if the conditions (4.3)-(4.5) are satisfied. We shall denote by A(x) the class 

of admissible impulse controls. 

 

The Value Function 

Let us denote by V the value function. That is, for every ( )∞∈ ,0x , 

 

 ( ) ( ){ })(,;,;sup:)( 2 xTTxJxV Α∈= ξξ .              (4.7) 
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For a function [ ) ℜ→∞,0:φ we define the maximum utility operator M by 

 

{ } { } ( ){ }∞∈−ℜ∈−++−= <> ,0,:)()()(sup:)( 0201 ξξξξξφφ ξξ xIgIgxxM .          (4.8) 

 

MV(x) represents the value of the strategy that consists in choosing the best immediate 

intervention and then selecting optimally the times and the amounts of the future 

control actions. Let us consider the differential operator ℑ  defined by 

 

 )()()(
2
1:)( 2

2
22 x

dx
xdx

dx
xdxx λψψµψσψ −+=ℑ .                                         (4.9)   

 

Now we intend to find the value function and an associated optimal strategy. 

   Suppose there exists an optimal strategy for each initial point. Then, if the process 

starts at x and follows the optimal strategy, the expected utility associated with this 

optimal strategy is V(x). On the other hand, if the process starts at x, makes 

immediately the best immediate intervention, and then follows an optimal strategy, 

then the expected utility associated with this strategy is MV(x). Since the first strategy 

is optimal, its associated expected utility is greater or equal than the expected utility 

associated with the second strategy. Furthermore, when these two expected utilities 

are equal, it is optimal to intervene. Hence, )()( xMVxV ≥ , with equality when it is 

optimal to intervene. In the continuation region, that is, when there are not 

interventions, we must have 0)( =ℑ xV  (this is an heuristic application of the 

dynamic programming principle to the problem we are considering). These intuitive 
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observations can be applied to give a characterization of the value function. We 

formalize this intuition in the next two definitions and theorem. 

 

DEFINITION 4.2 (QVI) We say that a function ( ) ℜ→∞,0:v satisfies the quasi-

variational inequalities for Problem 2.2 if for every ( )∞∈ ,0x : 

 

 0)( ≤ℑ xv ,                           (4.10)   

  )()( xMvxv ≥ ,                           (4.11) 

 ( )( ) 0)()()( =ℑ− xvxMvxv               (4.12) 

 

Quasi-variational inequalities have been studied, for instance, in Bensoussan and 

Lions (1984), Perthame (1984a, 1984b) and Baccarin (2004) but the theory developed 

in those references cannot be applied directly to the above QVI.  

   A solution v of the QVI separates the interval ( )∞,0  into two disjoint regions: a 

continuation region 

  

 ( ){ }0)()()(:,0: =ℑ>∞∈= xvandxMvxvxC             

 

and an intervention region 

 

 ( ){ }0)()()(:,0: <ℑ=∞∈=Σ xvandxMvxvx . 

 

From a solution to the QVI it is possible to construct the following stochastic impulse 

control.  



 17

 

DEFINITION 4.3 Let v be a solution of the QVI. The following stochastic impulse 

control  

 ( ) ( ),......,,,...;,...,,, 2121
v
n

vvv
n

vvvvT ξξξτττξ =  

 

is called the QVI-control associated with v (if it exists): 
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and, for every 2≥n : 
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v
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where 0:0: 00 == vv and ξτ . 

 

This means that the investor intervenes whenever v and Mv coincide and the size of 

her control actions solve the optimization problem corresponding to Mv(x).  

   Korn (1997, Theorem 3.2) has developed a general sufficient condition of 

optimality for stochastic impulse control problems, and applied it to some examples. 

In each example, he shows that an admissible control satisfies that sufficient 

condition, and is therefore optimal. We have developed the following version of 

Theorem 3.2 of Korn (1997). This version is suitable for the application that we 

consider in this paper. 
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THEOREM 4.1 Let [ )( )ℜ∞∈ ;,01Cv  be a solution of the QVI and let ( )∞∈ ,0,ba  be 

such that [ ) { }( )ℜ−∞∈ ;,,02 baCv . Suppose that for every ay ≥ : 

 

 ( ) 1
11)( γχλµ −+= xxv ,                                    (4.13) 

 

and for every abx <≤<0  

 

 ( ) 2
22)( γχλµ xxv −−= ,                                                                             (4.14) 

 

where ( )∞∈ℜ∈ ,0,,, 2121 λλµµ and . Then, for every ( )∞∈ ,0x : 

 )()( xvxV ≤ .                (4.15) 

 

Furthermore, if the QVI-control ( )vvT ξ,  corresponding to v is admissible, then it is an 

optimal stochastic impulse control and for every ( )∞∈ ,0x : 

 

 ( )vvTxJxvxV ξ,;)()( 2== .              (4.16) 

 

Proof.  See Appendix. 

 

The solution of the QVI 

We conjecture that there exists an optimal solution ( )ξ,T  characterized by two 

parameters L, U with ∞<<<< UL χ0 such that the optimal strategy is to stay in the 

band [ ]UL,  and jump to χ when reaching the boundaries. That is we conjecture that 

for every Ν∈i : 
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 ( ){ }ULXt tii ,:inf 1 ∉>= −ττ               (4.17) 

and 

 ( )LXUXi iiii
IIXX == +=+=

+ ττ
χξττ .             (4.18) 

 

Thus, the value function would satisfy  

 

 [ ) ( )[ ] 1
1

1
1

1)()(:, γχ
γ

χ −+−=∞∈∀ xkKvxVUx                       (4.19) 

and 

 ( ] ( )[ ] 2
2

2
2

1)()(:,0 γχ
γ

χ xkKvxVLx −−−=∈∀ .                      (4.20) 

 

If V were differentiable in { }UL, , then from (4.19), (4.20) we would get 

 

 ( ) ( ) 1
1

11 −−=′ γγ χUkUV                (4.21) 

and 

 ( ) ( ) 1
2

22 −−=′ γγ χ LkLV  .              (4.22) 

 

We also conjecture that the continuation region is the interval ( )UL, , so  

 

 [ ] 0)()()(
2
1)(:, 2

2
22 =−+=ℑ∈∀ xv

dx
xdvx

dx
xvdxxvULx λµσ .          (4.23) 
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Applying standard methods of ordinary equations, we see that the general solution to 

(4.23) is given by 

 

 21
21)( aa xCxCxv +=                                      (4.24) 

 

where C1,C2 are unknown constants and 

  

 ( )
2

2/124222

2,1 2
8442

σ
λσσµσµσµ ++−±+−

−=a .           (4.25) 

 

In summary, we conjecture that the solution is described by (4.17)-(4.18) and the four 

unknowns L, U, C1, C2 are a solution to a system of four nonlinear equations 

 

 ( ) 11
1

1
1

1)()( γγ χ
γ

χ −+−= UkKhUh              (4.26) 

 

 ( ) 22
2

2
2

1)()( γγ χ
γ

χ LkKhLh −−−=                         (4.27) 

 

 ( ) ( ) 1
1

11 −−=′ γγ χUkUh                            (4.28) 

 

 ( ) ( ) 1
2

22 −−=′ γγ χ LkLh  .              (4.29) 

where 

 21
21)( aa xCxCxh += .                                     (4.30) 
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The above are proved rigorously in the following theorem. 

 

THEOREM 4.2. Let L, U with ∞<<< UxL  be a solution of the system of equations 

(4.26)-(4.29). Let us define the function ( ) ℜ→∞,0:V by 

 

 

( )

( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<−−−

≤≤

>−+−

=

LxifxkKh

UxLifxh

UxifxkKh

xV

22

11

2
2

2

1
1

1

1)(

)(

1)(

:)(
γγ

γγ

χ
γ

χ

χ
γ

χ

                       (4.31) 

 

If for every x>U 

 

( )( ) ( ) ( ) ( ) 01
2
1 1

1
1111

1

1
1

1
1

2
11

22 <⎥
⎦

⎤
⎢
⎣

⎡
−+−−−+−− −− γ

γ
γγγγ χ

γ
χλχµχγσ xkKhxxkxkx ,  

        (4.32) 

for every x<L 

 

          ( )( ) ( ) ( ) ( ) 01
2
1 2

2
2222

2

2
2

1
2

2
22

22 <⎥
⎦

⎤
⎢
⎣

⎡
−−−−−−−− −− γ

γ
γγγγ χ

γ
χλχµχγσ xkKhxxkxkx ,  

        (4.33) 

the function [ ] ℜ→Φ Ux ,: χ  defined by 

 

( ) 1
1

1

1
1)(:)( γ

γ

χ χ
γ

−−+=Φ xkKxhx  is decreasing in [χ,U]                          (4.34) 

 

and the function [ ] ℜ→Ψ χχ ,: L  defined by 
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( ) 2
2

2

2
2)(:)( γ

γ

χ χ
γ

xkKxhx −++=Ψ  is increasing in [L, χ]                          (4.35) 

 

then v is the value function of problem 2.2. That is  

 

 ( ) ( ){ })(,;,;sup)()( 2 xTTxJxVxv Α∈== ξξ   

 

and the optimal strategy is given by (4.17), (4.18). 

 

Proof. See Appendix. 

 
 
5. Numerical illustration 
 
In this section, we provide numerical solutions for the ergodic and discounted 

stochastic impulse control problems considered at sections 3 and 4. For the ergodic 

problem one has to find the solutions to a system of two nonlinear equations that 

correspond to the derivatives of z in (2.8) with respect to L and U. This can be 

achieved via performing an algorithm like the Newton-Raphson or one of its 

descendants several times for different starting values. The (L, U) pairs for which the 

derivatives equal zero are local maxima if the Hessian of the system at these points is 

negative definite. The process of finding global maxima can be guided by a three-

dimensional plot of z in (2.8) as depicted below. For the discounted problem of the 

fourth section we provide numerical solutions for the system of nonlinear equations 

(4.26)-(4.29) and derive the four unknowns: the two outer boundaries L and U and the 

two constants C1 and C2 in (4.23) that characterize the evolution of the value function 
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within the control band. The reader should note that both nonlinear systems are 

complex and their convergence is sensitive to the initial values provided as starting 

points. For the sensitivity analysis conducted at the second part of this section, we 

first found appropriate initial values for a baseline experiment and then, for each 

perturbation of the parameters, we plugged as starting values the outcomes of the 

previous run. MATLAB codes are available upon request from the authors. 

 

5.1 A specific example  

 

We first consider the following data for market characteristics and investor’s 

preferences: 

 

9.08.0101.195.005.005.001.02.01.0 212121 ========== γγχλσµ kkKK . 

 

For the ergodic problem we find as possible solutions the pairs (9.0796, 10.1348) and 

(6.4081, 16.3629). Calculation of the Hessian at these points indicates that the first 

pair is the global maximum whereas the second is a saddle point; a three-dimensional 

plot of the z function in (2.8) complies with the previous arguments (figure 1).  

For the discounted problem we find two possible optimal quadruplets: 

U=10.1338    L= 9.0116 C1=157.2394  C2=534.1197 

and 

U=19.2442 L= 4.8551 C1=52.4051 C2=45.9706, 
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with only the first one satisfying conditions (4.32)-(4.35). For both problems errors 

are of the order 10-8.  We observe that for the discounting rate of the benchmark 

example, the investor that adopts the discounted criterion intervenes earlier (later) 

than the one that adopts the ergodic criterion in the right (left) side of χ. The 

probability of reaching U first, starting from χ is 0.9089 for the control band of the 

discounted problem and 0.9004 for the ergodic problem respectively. Apparently, 

given the discounting rate of the benchmark example, the investor that adopts the 

ergodic criterion behaves in a less conservative manner.  

<<Figure 1>> 

5.2 Sensitivity Analysis 

To conduct sensitivity analysis, we use as baseline values the ones used in the 

previous example and perturb each parameter separately to uncover how optimal 

strategies are affected. Table 1 presents control bands for the discounted problem for 

varying discount rate at two levels of volatility. In both cases the upper boundaries 

seem to be almost unaffected from the changes in the discount rate; on the contrary, 

lower boundaries depend linearly to the discount rate. Indeed, for 2.0=σ  we get 

perfect fit (regression’s R2 equals one) from the regression line λ⋅−= 234.0014.9L  

whereas for 3.0=σ  the perfect fitting line is expressed as λ⋅−= 126.0968.8L . 

Thus, for increasing levels of volatility lower control boundaries become less 

sensitive to the discount rate. As the discount rate decreases, control bands of the 

discounted problem come closer to the ones of the ergodic problem. 

<<Table 1>> 
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   Sensitivity of the control bands with respect to the cost parameters is examined in 

tables 2 and 3. The intuition is clear: the investor rebalances more often with lower 

transaction costs. We also observe that the control boundaries from the ergodic and 

discounted optimization criteria differ more as transaction costs increase with lower 

boundaries differing more than the upper ones. Sensitivity analysis with respect to 1γ  

and 2γ  is performed at tables 4 and 5. As 1γ  increases, wealth obtained from 

adjustments to the target level from the upper boundary becomes more important to 

the investor; the upper boundaries increase and the lower ones decrease faster for both 

ergodic/discounted problems (figure 2). The differences between ergodic/discounted 

control boundaries increase as 1γ  increases.  As expected, the opposite findings are 

true for increasing levels of 2γ . Figure 2 displays the ergodic/discounted control 

boundaries for varying 1γ  and 2γ . Our findings suggest that the perfect fitting curves 

are third order polynomials. The corresponding curves for 1γ , 2γ  ranging between 0.8 

and 0.9 are formulated as 

 

3
2

2
22

3
2

2
22

3
1

2
11

3
1

2
11

1105281823709.648

1708437937071029

8.3469.8509.6971.181

2.2585.5804.473119

γγγ

γγγ

γγγ

γγγ

⋅+⋅−⋅+−=

⋅+⋅−⋅+−=

⋅+⋅−⋅+−=

⋅+⋅−⋅+−=

ERG

DISC

ERG

DISC

L

L

U

U

.             (5.1) 

 

   Tables 6-8 examine the sensitivity with respect to volatility, expected return and 

target level respectively. As volatility increases the left part of the control band 

becomes wider whereas the right part gets narrower. On the other hand both 

boundaries increase with increasing levels of µ and χ and the difference between 

discounted/ergodic control bands are larger as µ increases. The control boundaries can 
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be expressed as (perfect fitting) regression lines for the range of µ values considered 

in our numerical experiment: 

 

µ
µ
µ

µ

⋅+=
⋅+=
⋅+=

⋅+=

249.1954.8
806.0931.8
02.013.10
0108.013.10

ERG

DISC

ERG

DISC

L
L
U
U

.                                     (5.2) 

 

The slopes of the regression lines indicate a faster rate of change for the ergodic 

boundaries as µ increases. 

<< Tables 2-8 >> 
<<Figure 2>> 

 
 

 
 
6. Concluding Remarks 
 
   Stochastic impulse control problems examined in the literature during the past 

decade have focused on discounted criteria over lifetime. However in some problems 

the choice of a discounting rate does not have a clear economic interpretation; in such 

cases a manager would prefer to adopt an ergodic criterion that optimizes an objective 

function per unit time. This work uses an investment problem as a means to compare 

control bands derived by ergodic/discounted criteria. Sensitivity analysis of the 

optimal policies indicates that the magnitude of the differences between 

ergodic/discounted control bands is a function of the coefficients that characterize 

investor’s preferences and market behavior. 

   A research question that emerges next is related to the constrained stochastic 

impulse control problem. For instance, in the investment problem considered in this 

paper, one may place finite fuel constraints on the financing of positive impulses from 
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a bank account. Another application is related to the optimal dividend policy or 

harvesting policy where a manager may desire rebalancing points (levels of cash 

reservoir or population levels after dividend payout or harvesting) from which a lower 

benchmark can be reached with a certain probability (say less than 0.05) to avoid 

bankruptcy/species extinction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 28

 
Appendix 
 
Proof of Theorem 4.1 

The differentiability of v implies its continuity, and therefore its boundedness in the 

compact interval [b,a]. Furthermore, v′  is bounded in ( )∞,0  because it is continuous 

in [b,a], for every [ ) ( )[ ]1
11

1,0)(:, −−∈′∞∈ γχγλ Uxvax  and for every 

( ] ( ) ( )[ ]1
22

1
22

22 ,)(:,0 −− −−−∈′∈ γγ χγλχγλ Lxvbx . Let ( )ξ,T  be an admissible policy, 

and denote by ( )ξ,TXX =  the trajectory determined by ( )ξ,T . We observe that 

condition (4.4), the boundedness of v in the compact interval [ ]ab,  and its 

boundedness by a linear function in ( ) ( )∞∪ ,,0 ab  imply that  

  

( )[ ] 0)(lim =+−

∞→
TXveE T

T

λ .                          (A1)

          

Furthermore, condition (4.5) and the boundedness of v′ imply that  

 

( ){ } ∞<⎥
⎦

⎤
⎢
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⎡
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− dttXvtXeE t

0

2)()(λ .                                     (A2)

          

We may write, for every t>0 and Ν∈n , 
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Since X is a continuous semimartingale in the stochastic interval ( ]ii ττ ,1−  and v is 

twice continuously differentiable in ( ) { }ba,,0 −∞ , we may apply an appropriate 

version of Ito’s formula (Rogers and Williams, 1987, section IV.45). Thus, for every 

Ν∈i , 
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Now according to inequality (4.10),   
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and this inequality becomes an equality for the QVI-control associated with v. 

According to inequality (4.11), in the event { }ti ≤τ  we have 
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and this inequality becomes an equality for the QVI-control associated with v. 

Combining the above inequalities and taking expectations, we obtain 
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with equality for the QVI-control associated with v. From condition (4.3), 
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and according to (A2), 
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Thus,  
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with equality for the QVI-control associated with v. According to (A1) 

  

( )[ ]{ } )()(lim xvXveExv t
t

xt
=− +

−

∞→

λ               

 

and according to the monotone convergence theorem  
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with equality for the QVI-control associated with v. Therefore for every 

( ) )(, xT Α∈ξ : 

 

 ( )ξ,;)( TxJxv ≥ ,                

 

with equality for the QVI-control associated with v.  

 

 

Proof of Theorem 4.2 

We observe that if V were a solution to the QVI then, according to theorem 4.1, V 

would be the value function and the optimal strategy would be given by (4.17)-(4.18). 

Indeed, V is twice continuously differentiable in ( ) ( ) ( )∞∪∪ ,,,0 UULL  and once 

continuously differentiable in {L, U}. Furthermore, V has the form (4.13) in ( )∞,U  

and (4.14) in ( )L,0 . In addition, the QVI-control associated with V is admissible, 

because the trajectory X generated by the QVI-control associated with V behaves like 

a geometric Brownian motion in each random interval ( )1, +nn ττ  and satisfies 

( ) [ ]{ } 1,)(:,0 =∈∞∈∀ ULtXtP . Thus, the conditions (4.3)-(4.5) would be satisfied, 

and the QVI-control associated to V would be admissible. Hence it only remains to 

verify that V is a solution to the QVI. 

   By construction of h, we have for every UxL ≤≤ : 

 

 .0)()( =ℑ=ℑ xhxV  

 

According to condition (4.32), for every x>U : 
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and according to condition (4.33),  for every x<L 
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Thus )(xVℑ  is zero in [ ]UL,  and negative in ( ) ( )∞∪ ,,0 UL , so inequality (4.10) is 

satisfied. 

   We note that  
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and observe that  
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and according to (4.34) the function v-Mv is decreasing in (χ, U) with v(U)-Mv(U) =0,  

so v-Mv is positive in (χ,U]. Additionally, 

 [ ) ( ) 2
2

2

2
2)()()()(:, γ

γ

χ
γ

χχ xkKhxhxMvxvLx −++−=−∈∀  

and according to (4.35) the function v-Mv is increasing in (L,χ) with v(L)-Mv(L) =0, 

so v-Mv is positive in [L,χ). Thus v-Mv equals zero in the intervention region 

( ] [ )∞∪∞− ,, UL  and is positive in the continuation region (L,U), so inequalities 

(4.10)-(4.12) are satisfied. Hence v is a solution of the QVI and this proves the 

theorem.  
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Figure 1. 3-dimensional views of the z function in (2.8) for the parameters of the 

benchmark example.     
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Figure 2. Control bands for the discounted and ergodic problems for varying levels of 

1γ  and 2γ . 
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Table 1. Control bands for the discounted problem for varying discount rate for two 

levels of volatility. 

λ  2.0=σL 2.0=σU 3.0=σL 3.0=σU  

0.005 9.0127 10.1338 8.9671 10.1332 

0.010 9.0116 10.1338 8.9664 10.1332 

0.015 9.0104 10.1338 8.9658 10.1332 

0.020 9.0093 10.1337 8.9652 10.1332 

0.025 9.0081 10.1337 8.9646 10.1332 

0.030 9.0069 10.1337 8.9639 10.1332 

0.035 9.0057 10.1337 8.9633 10.1332 

0.040 9.0046 10.1337 8.9627 10.1332 

0.045 9.0034 10.1337 8.9620 10.1332 

0.050 9.0022 10.1336 8.9614 10.1331 
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Table 2. Control bands for the discounted and ergodic problems for varying levels of 
fixed costs. 

  K1 K2 LERG UERG LDISC UDISC 
0.09 0.09 7.9845 10.2968 7.6466 10.2912 

0.08 0.08 8.2411 10.2529 7.9816 10.2489 

0.07 0.07 8.5131 10.2112 8.3280 10.2085 

0.06 0.06 8.7956 10.1718 8.6759 10.1701 

0.05 0.05 9.0796 10.1348 9.0116 10.1338 
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Table 3. Control bands for the discounted and ergodic problems for varying levels of 
proportional costs. 

  1k  2k  LERG UERG LDISC UDISC 

0.95 1.10 9.0796 10.1348 9.0116 10.1338 

0.96 1.09 9.1524 10.1324 9.0956 10.1314 

0.97 1.08 9.2180 10.1301 9.1702 10.1291 

0.98 1.07 9.2768 10.1278 9.2365 10.1268 

0.99 1.06 9.3297 10.1254 9.2955 10.1245 

0.99 1.05 9.3507 10.1249 9.3188 10.1241 

0.99 1.04 9.3708 10.1244 9.3708 10.1234 

0.99 1.03 9.3902 10.1239 9.3623 10.1230 

0.99 1.02 9.4087 10.1234 9.3826 10.1225 
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Table 4. Control bands for the discounted and ergodic problems for varying levels of 
1γ . 

1γ  LERG UERG LDISC UDISC 

0.80 9.0796 10.1348 9.0116 10.1338 

0.81 8.8899 10.1511 8.7875 10.1498 

0.82 8.6739 10.1696 8.5233 10.1678 

0.83 8.4361 10.1907 8.2226 10.1882 

0.84 8.1837 10.2148 7.8937 10.2114 

0.85 7.9248 10.2429 7.5485 10.2380 

0.86 7.6674 10.2761 7.1999 10.2691 

0.87 7.4182 10.3161 6.8597 10.3059 

0.88 7.1826 10.3657 6.5373 10.3504 

0.89 6.9651 10.4298 6.2392 10.4056 

0.90 6.7693 10.5186 5.9700 10.4769 
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Table 5. Control bands for the discounted and ergodic problems for varying levels of 
2γ . 

2γ  LERG UERG LDISC UDISC 

0.80 8.3896 10.1381 8.2058 10.1367 

0.81 8.4502 10.1379 8.2770 10.1365 

0.82 8.5129 10.1377 8.3506 10.1364 

0.83 8.5775 10.1375 8.4265 10.1361 

0.84 8.6442 10.1372 8.5047 10.1359 

0.85 8.7129 10.1369 8.5853 10.1357 

0.86 8.7835 10.1366 8.6679 10.1354 

0.87 8.8558 10.1362 8.7524 10.1351 

0.88 8.9296 10.1358 8.8383 10.1347 

0.89 9.0044 10.1353 8.9250 10.1343 

0.90 9.0796 10.1348 9.0116 10.1338 
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  Table 6. Control bands for the discounted and ergodic problems for varying levels of 

σ . 
σ  LERG UERG LDISC UDISC 

0.30 9.0053 10.1337 8.9664 10.1332 

0.25 9.0342 10.1341 8.9833 10.1334 

0.20 9.0796 10.1348 9.0116 10.1338 
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Table 7. Control bands for the discounted and ergodic problems for varying levels of 
µ. 

 
µ LERG UERG LDISC UDISC 

0.12 9.1014 10.1352 9.0264 10.1340 

0.11 9.0907 10.1350 9.0191 10.1339 

0.10 9.0796 10.1348 9.0116 10.1338 

0.09 9.0679 10.1346 9.0038 10.1337 

0.08 9.0555 10.1344 8.9958 10.1336 

0.07 9.0424 10.1342 8.9875 10.1335 

0.06 9.0286 10.1340 8.9789 10.1334 

0.05 9.0139 10.1338 8.9700 10.1332 
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Table 8. Control bands for the discounted and ergodic problems for varying levels of 

χ. 
χ LERG UERG LDISC UDISC 

10.02 9.0992 10.1548 9.0313 10.1538 

10.00 9.0796 10.1348 9.0116 10.1338 

9.98 9.0599 10.1148 8.9919 10.1138 

9.95 9.0305 10.0848 8.9623 10.0838 

 
 


