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Abstract  

 In this paper we    test   the    effects   of  temporal aggregation (disaggregation)       on   the 
efficiency of  portfolio construction  using the mean variance optimization approach. Using 
Monte Carlo techniques and empirical data from the Athens Stocks Exchange we confirm that   
the use of temporally aggregated data   effects   very seriously the efficiency of the constructed 
portfolio. Especially as the degree of temporal aggregation increases   the application of 
optimization techniques   could   lead to different results regarding the percentage of stocks 
participation, the weights and finally the total   portfolio performance. 
 
Keywords: Portfolio Optimization, Stocks; Temporal Aggregation; Stochastic Simulation, 
The Banking Sector of the Athens Stocks Exchange;   
JEL classification: C32, C43, C51, G14. 
 

1. Introduction 
Temporal aggregation poses many interesting questions which have been explored in 
time series analysis and which yet remain to be explored. An early example of 
research in this area is Quenouille (1957), where the temporal aggregation of 

),,( qdpARMA  processes is studied. Amemiya and Wu (1972), and Brewer (1973) 
review and generalize Quenouille's result by including exogenous variables. Zellner 
and Montmarquette (1971) discuss the effects of temporal aggregation on estimation 
and testing. Engle (1969) and Wei (1990) analyze the effects of temporal aggregation 
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on parameter estimation in a distributed lag model. Other contributions in this area 
include Tiao (1972), Stram and Wei (1986), Weiss (1984), Rossana R.J. and Seater, 
J.J.,(1995), Granger and Silkos (1995),  Marcellino (1999), and finally Tommaso Di 
Fonzo(2003) to name but a few. 

In this paper we investigate the effects of temporal aggregation on the application of 
the mean variance approach in portfolio management1. More specifically we 
investigate the effects of temporal aggregation of the returns of the stocks of the 
portfolio. on the  portfolio’s performance,  as this performance can be approximated 
from: (a) the percentage of the number o stock is  participate  in the portfolio, (b) the 
structure of the portfolio and finally (c) the future  portfolio performance.      

Using empirical data from the Athens Stocks Exchange and stochastic simulation 
techniques we end up with the general conclusion that the efficient portfolio 
management is closely related with the level of temporal aggregation (disaggregation) 
of the returns of the portfolio’s stocks. In other words , the use of the returns of the 
stocks we  want  to participate to the portfolio, in daily, weekly, monthly etc basis,  
could lead us to different results about the number of the stocks to participate to the 
portfolio, the structure of the portfolio and finally the portfolio’s future performance  
for different time horizons. This article is organized as follows.  In section 2 we 
present very briefly the mean variance portfolio management and in section 3 we 
present the temporal aggregation effects on a portfolio management of stocks of the 
Banking sector of the Athens Stocks Exchange Market. Section 4 introduces the 
design of the simulation procedure and section 5 provides the simulation results. The 
last section concludes. 

 

2.Mean Variance Frontier  
Suppose there are Ν > 1 stocks and that   NR∈μ is a vector with the expected returns: 

                                                 
1 Elton Edwin & Gruber Martin., (1977), Grinblatt M., Titman S., (1989) and Doumpos, M. 
and Zopounidis, C., (2002). 
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Where  jμ  1, 2,.....,j N= refers to the j expected returns. SupposeΣ is a NxN variance – 
covariance matrix with the variance-covariance matrix of the expected returns of the 

Nj ,...,2,1= stocks.  
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Where ijσ corresponds to the covariance of the i and j stock (Mutual Fund). If the portfolio 

is a vector NRw ∈ with the constraint: 

1

1
N

j
j

w
=

=∑         (3) 

Merton (1972) proved that a portfolio with weights w belongs to the   
mean variance frontier when: w g hE= +  for a level of expected 
returns   Ε, when g and h are vectors of   n dimensions and estimated as 
follows: 
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Where , ,A B C and  D  are constants defined as : 

μ1−ΤΣ=Α i                                   (6) 

μμ 1−ΤΣ=Β                                                                                                              (7) 

iiC 1−ΤΣ=                                                                                                                  (8) 

2ABCD −=                                                                                                             (9) 

, , , 0A B C D ≥                                                                                                          (10) 

And with NR∈ι a summation vector defined as : 
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with 1−Σ is the inverse of the matrix  Σ. 

3.Temporal Aggregation Effects on the Portfolio of Bank Stocks  
In order to study the effects of temporal aggregation we used daily data from the 
Athens Stock Exchange. The data cover the period 1995/1/1 – 2005/3/28.The data set 
concerns the returns of seven Banks of the Athens Stocks Exchange2, namely3:  
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National Bank, General Bank, Eurobank, Emporiki Bank, Alfa Bank, Bank of Attika 
and the Bank of Greece. A graphical presentation of the diachronic behavior of these 
stocks (with basis the 3/1/1995)  is given in Figure 1. 

  

 

Figure 1: Competitive  diachronic movement of the stock prices of the seven Banks  
of the Athens Stocks Exchange. 

                                                                                                                                
2 More about the characteristics of the Athens Stocks Exchange can be found in: Alexakis, P. 
and Petrakis, P., (1991),Apergis, N. and Eleptheriou, S., (2001), Barkoulas,     J.T. and 
Travlos, N.G., (1998), Barkoulas, J.T., Baum, C.F. and Travlos, N.G., (2000), Bletsas, A. 
(1983), Coutts, J.A., Kaplanidis, C. and Roberts, J., 2000, Demos, A. and Parissi, S., 1998, 
Karathanassis, G. and Philippas, N., (1993), Karathanassis, G. and Philippas, N., (1993), 
Kirikos, D., (1996), Koutmos, G., Negakis, C. and Theodossiou, Laopodis, N. (1997), 
Mertzanis, H. and Siriopoulos, C., (1999), Milionis, A.E., Moschos, D., and Xanthakis, M., 
(1998), Milonas, N.T., (2000), Niarchos, N. and Alexakis, C., (1998) ,Papachristou, G., 
(1999), Papaioannou, G.J., Travlos, N.G. and Tsangarakis, N.V., (2000)   
3 We choose these stocks due to data availability reasons. 
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 TABLE 1   Average   Total Returns of the Portfolio at Different Management 
Periods using the   Mean Variance Approach at 15 Different Levels of Temporal 
Aggregation. 

Temporal 

Aggregat
ion 

Level 

100 Days 
Manage

ment  
Average 

Return 

% 

100 Days 
Managem

ent 
Standard 

Deviation 

200 Days 
Managem

ent 

Average 

Return 

% 

200 Days 
Managem

ent 

Standard 

Deviation 

300 Days 
Managem

ent 

Average 

Return 

% 

300 Days 
Managem

ent 
Standard 

Deviation 

1 -4,26989 0,248706 -1,73558 0,353866 -1,72507 0,441777 
2 -3,76852 0,123603 -5,69069 0,180081 -4,81034 0,222945 
3 -4,92971 0,03674 -6,99234 0,075287 -7,89973 0,110262 
4 -3,6876 0,030984 -7,71721 0,033234 -9,27713 0,054897 
5 -3,10115 0,023949 -6,18948 0,026599 -9,3336 0,028414 
6 -1,61094 0,028352 -4,30539 0,028829 -7,02999 0,024573 
7 -0,79912 0,032448 -2,19834 0,044801 -4,47001 0,043109 
8 0,432031 0,030337 -0,58951 0,051161 -2,10361 0,05917 
9 0,829176 0,027156 1,106782 0,045342 0,35224 0,062143 

10 1,836383 0,031708 2,287912 0,044318 2,383864 0,062926 
11 1,453018 0,025538 3,0804 0,03124 3,483179 0,044637 
12 2,263866 0,021709 3,654791 0,025067 5,195121 0,036878 
13 1,669787 0,017852 3,891006 0,019047 5,145972 0,023846 
14 1,518146 0,018364 2,835893 0,016107 4,277454 0,017439 
15 0,949198 0,017395 2,512184 0,017781 4,021305 0,02098 

Source: Our Estimates 

On the Table 1 we present the results of applying the  Markowitz4  Mean Variance    
portfolio management on the seven stocks of the Banking Sector ,at 15 different  
levels of temporal aggregation, three portfolio management periods of  100, 200 and 
300 days and for different dates of starting the portfolio management5. These  average 

                                                 
4 Markowitz, H. M. (1959). 
5 In order to make our results more representative the date of starting the portfolio 
management was selected randomly using 3000 experiments with random the starting 
day of the portfolio management. The mean returns refer to the 3000 experiments. 
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total   returns are the means of the distributions of the 3000  iterations   with random 
characteristic the date of starting the portfolio management. According to the results 
of Table 1  we observe   a strong differentiation of our results regarding    the average 
returns of the portfolio and the associated portfolio risk , at different levels of 
temporal aggregation(disaggregation). More specifically we observe an increase to 
the average  total returns of the portfolio. Simultaneously we observe and  a decrease 
to the average  risk of the portfolio as the risk is measured from its  standard 
deviation. Figures 2,3 and 4  presents the analogous distributions of average  total 
returns at 15 different levels of temporal aggregation  of a portfolio management with 
100,200 and  300 days, respectively. 

 

Figure 2. Average Returns Distributions at Different Levels of Temporal aggregation  
(100 Days Portfolio Management)  
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Figure 3. Average Returns Distributions at Different Levels of Temporal aggregation 
(200 Days Portfolio Management)  
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Figure 4. Average Returns Distributions at Different Levels of Temporal aggregation 
(300 Days Portfolio Management)  

Finally in Figures  5 and 6 we present the average structure6 of the portfolio of the 
seven stocks at different levels of temporal aggregation. It is obvious the 
differentiation   of the average structure of the portfolio due the temporal aggregation 
effects. 

 

                                                 
6 If  the structure   w   of the portfolio  of  the  7..,2,1=j   stocks at a level of temporal 
aggregation  A ,   on the 3000,...,2,1=i   experiment  is :                                        

ij
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=
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Figure 5. Average Structural of the Portfolio at Different Levels of Temporal 
Aggregation. 
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Figure 6. Average Structural of the Portfolio at Different Levels of Temporal 
Aggregation.  

According to our empirical results the effects of temporal aggregation seems to be 
serious on the future returns of the portfolio, the structure and the number of the 
stocks to participate to the portfolio7.  

In the next section we use Monte Carlo experiments in order to generalize our results. 

4.The Monte Carlo Experiments  

 In our simulation   experiments we used two Data Generating Process(DGP). In the 
first process (A) we assume ARCH characteristics8 and autoregressions9  of the 
simulated returns:  

                                                 
7 More information about the participation number of the stocks to the portfolio 
structure is available on request. 
8 More sophisticated models were used in the simulation leading to similar results. 
More are available from the authors on request. 
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ttot udaad ++= −11                                                                                                (12) 

)2.01( 2
1−+= ttt uvu                                                                                               (13) 

)1,0(NIDvt ≈                                                                                                           (14) 

In the second process (B) we assume that the returns   follow a pure random behavior 
with ARCH characteristics: 

tt ud += 027656.0                                                                                              (15) 

)2.01( 2
1−+= ttt uvu                                                                                               (16) 

)1,0(NIDvt ≈                                                                                                           (17) 

where jtd : the simulated  returns of the   j  stock  for 12...,2,1=j  

tu : disturbances  with  ARCH characteristics. 

tv :disturbances. 

In our experiments we used 20 different level of temporal aggregation.  For each 
temporal aggregation level we estimate the aggregate returns using the relation: 

t
jkA

T dCd ==                                                                                                          (18) 

Where A
Td  is the time aggregated series, 20,....,3,2,1=j refers to the time 

aggregation level and  C  is a time aggregation matrix of the form:  

                                                                                                                                
  
9 In the simulations the parameters  1aandao   of  (12)  were specified as 
follows: 06.0=oa    )8,.2(.1 onDistributiUniforma =  
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The following steps used in the application of the Monte Carlo experiment: Using the 
relations  (12)-(14)   και (15)-(18)  we simulate the returns of the seven stocks at the 
highest level of temporal disaggregation. )1( =j  . We aggregate with the  temporal 
aggregation matrix jC  with  20,....2,1=j  the returns   ( ),....,, 1221 ttt ddd at the 
different  temporal aggregation levels and apply the Markowitz approach. We repeat 
this procedure (NITERS=4000) 4000 times. 

The Average  total returns for the three period of portfolio management and the 20 
temporal aggregation levels were estimated using the following relations:  

Weights based on the mean variance management approach. 

ij
Aw ,                                                                                                                          (20) 

With: j = 1,2,..,NEQ (Number of stocks)  , A=1,2,.,20 (Temporal aggregation Levels), 
i =1,2,,..NITERS (Number of iterations)    

Portfolio Returns. 

jt
NEQ

j ij
A

NITERSit
A dwr ∑ =

= =
1 ,...2,1,                                                                                (21) 

tNEQtt ddd )(21 ,....,,  : Simulated returns.    
Total   Returns 

jt
NEQ

j ij
AQ

tNITERSi
AQ dwTR ∑∑ ==
= =

1 ,1,....2,1                                                              (22) 

100,200,300Q = days, for the three periods of  portfolio management. 
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Average Total Returns. 

NITERSdwturnsTotalMean jt
NEQ

j ij
AQ

t
/)(Re

1 ,1 ∑∑ ==
=                                 (23) 

The number of participants of the  NEQj ,..,3,2,1=    stocks in the portfolio   for the 
NITERS is defined as follows: 

_ _ 1, 0A A A
j j jN PARTICIP N PARTICIP if w= + ≠                                             (24)                  

_ _ 0, 0A A A
j j jN PARTICIP N PARTICIP if w= + =                                            (24) 

for NEQj ,....,2,1= and )(20,...,2,1 LevelsnAggregatioTempotalA =  

The average  portfolio structure   is defined as follows: 

j
APARTICIPN

i
A

ij
A

j PARTICIPNwmw j
A

_/)( _

1 ,∑ =
=                                                (25) 

NEQj ,..,3,2,1=  
 

15. The Monte Carlo results  
In this part of the paper we present the Monte Carlo results of the temporal 
aggregation(disaggregation) effects on the mean variance portfolio management 
approach. 4000 simulated observations (NITERS=4000) , for each of the 12 stocks 
simulated  returns (NEQ=12) were obtained  using the data generating process (A) and 
(B). In the portfolio management only 1600 observations  were used to apply the mean 
variance approach and the whole number of iterations approaches the number 4000. In 
each of these iterations we applied the mean variance approach to obtain the number of 
the stocks and their optimal weights of the stocks of the portfolio  at 20 different 
temporal aggregation levels. These stocks with their weights were then used for     
portfolio management with horizon of 100,200 and 300 days. 

 In Table 2  and in figures 7-9, we present the Mean Total Returns of three different 
portfolio management periods of 100,200 and 300 days, using the mean variance 
approach at 20 different temporal aggregation(disaggregation) levels  using the data 
generating process (12)-(14). These results  are similar with the analogous results of 
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Table 1 with regard  the mean portfolio risk10. As   temporal aggregation increases    
we observe an analogous decrease on the mean portfolio risk using actual and 
simulated data. What is more interesting is the   average number of participation and 
the average  weight of each stock in the portfolio. In the three dimensions figures 10  
and 11 we present the behavior of the number of participation  and the average weigh 
of each stock at different level of temporal aggregation(20 levels of temporal 
aggregation). As the temporal aggregation increase we observe a decrease in the 
number of the participations of the  stocks in the portfolio with a simultaneous 
increase on the weigh with which each stock   participates in the portfolio. The 
results of Table 3 are completely different compared  with the previous case , 
indicating no serious effects  of temporal aggregation on the portfolio management 
using the mean variance approach, in the case the stocks of the portfolio exhibits 
random characteristics.   

TABLE  2. Mean  Total  Returns at different  portfolio management periods applying  
the   Markowitz  Mean Variance Approach at  20  different levels of Temporal 

Aggregation based on the DGP: ttot udaad ++= −11 , )2.01( 2
1−+= ttt uvu  and  

)1,0(NIDvt ≈ Number of stochastic simulations 4000 

Temporal 

Aggregat
ion 

Level 

100 Days 
Manage

ment  
Average 

Return 

% 

100 Days 
Managem

ent 
Standard 

Deviation 

200 Days 
Managem

ent 

Average 

Return 

% 

200 Days 
Managem

ent 

Standard 

Deviation 

300 Days 
Managem

ent 

Average 

Return 

% 

300 Days 
Managem

ent 
Standard 

Deviation 

1 9,877491 4,404032 19,95309 6,449186 30,2264 9,877491 
2 4,859673 2,187426 9,809902 3,172157 14,86547 4,859673 
3 3,182101 1,444495 6,412295 2,095391 9,820026 3,182101 
4 2,39523 1,088696 4,822328 1,572933 7,305912 2,39523 
5 1,900838 0,873127 3,83324 1,260072 5,81606 1,900838 
6 1,521763 0,718703 3,154493 1,045153 4,828034 1,521763 
7 1,319368 0,618039 2,662349 0,894258 4,030283 1,319368 
8 1,132461 0,542542 2,369774 0,793258 3,540171 1,132461 
9 1,033757 0,497729 2,084912 0,710868 3,155198 1,033757 

                                                 
10 The behavior of the mean total returns is  not compatible as it depends on the 
characteristics  of the actual  stocks returns and the parameters of the simulated 
model. 
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TABLE 2 continues  

Temporal 

Aggregat
ion 

Level 

100 Days 
Manage

ment  
Average 

Return 

% 

100 Days 
Managem

ent 
Standard 

Deviation 

200 Days 
Managem

ent 

Average 

Return 

% 

200 Days 
Managem

ent 

Standard 

Deviation 

300 Days 
Managem

ent 

Average 

Return 

% 

300 Days 
Managem

ent 
Standard 

Deviation 

10 0,938586 0,45213 1,891106 0,643665 2,863833 0,938586 
11 0,845479 0,408212 1,696622 0,586485 2,564885 0,845479 
12 0,747025 0,371393 1,508219 0,522958 2,373769 0,747025 
13 0,654751 0,337094 1,407556 0,496214 2,178103 0,654751 
14 0,657437 0,326758 1,318006 0,464761 1,986809 0,657437 
15 0,55969 0,292005 1,218082 0,431829 1,885809 0,55969 

Source: Our Estimates 
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Figure7. Mean Returns Distributions at Different Levels of Temporal Aggregation 
(100 Days Portfolio Management)  

 

 
 

Figure 8. Mean Returns Distributions at Different Levels of Temporal Aggregation 
(200 Days Portfolio Management)  
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Figure 9. Mean Returns Distributions at Different Levels of Temporal Aggregation 
(300 Days Portfolio Management)  
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Figure 10.Percetage of participation of each stock in the portfolio at different level of 
temporal aggregation (Disaggregation). 

 

Temporal 
Aggregation  
Levels Stocks 

Mean Percentage of Stocks Participation in the Portfolio   
at Different Levels of Temporal  Aggregation 



 20 

Figure 11. Mean Stock Weights   at different level of temporal  aggregation  
(Disaggregation). 
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 TABLE  3.  Average  Total  Returns at different  Management periods applying  the   Markowitz
Mean Variance at  20  different levels of Temporal Aggregation based on the DGP:

tt ud += 027656.0 , )2.01( 2
1−+= ttt uvu  and )1,0(NIDvt ≈  Number of stochastic

simulations 4000 

Temporal 

Aggregat
ion 

Level 

100 Days 
Manage

ment  
Average 

Return 

% 

100 Days 
Managem

ent 
Standard 

Deviation 

200 Days 
Managem

ent 

Average 

Return 

% 

200 Days 
Managem

ent 

Standard 

Deviation 

300 Days 
Managem

ent 

Average 

Return 

% 

300 Days 
Management 

Standard 

Deviation 

1 29,96946 1,411991 60,01385 1,963478 99,96048 2,538399 
2 29,95714 1,55704 60,00749 2,173367 99,95497 2,769195 
3 29,94403 1,725282 60,00138 2,400607 99,93769 3,034335 
4 29,9456 1,878832 60,01538 2,616035 99,94721 3,283664 
5 29,95962 2,031148 60,03782 2,837422 99,96961 3,544813 
6 29,95003 2,177938 60,04175 3,041662 99,97051 3,808691 
7 29,97418 2,29858 60,05984 3,216882 99,97872 4,029769 
8 29,95898 2,419763 60,05824 3,375905 99,97938 4,228155 
9 29,97588 2,533694 60,08823 3,582397 100,0244 4,477729 

10 29,97907 2,646102 60,08217 3,714452 100,0341 4,651665 
11 29,98784 2,734067 60,08085 3,848902 100,0187 4,819371 
12 29,97169 2,831648 60,08964 3,999841 100,0228 4,958048 
13 29,97793 2,908079 60,09445 4,113783 100,0389 5,124506 
14 29,99946 2,9943 60,10229 4,240489 100,0362 5,320245 
15 29,99261 3,08865 60,09851 4,369803 100,0487 5,487046 
16 29,99401 3,148463 60,08641 4,466462 100,0515 5,605604 
17 30,00599 3,228907 60,11446 4,600073 100,0555 5,74897 
18 30,01007 3,318959 60,12062 4,727127 100,0468 5,948275 
19 29,99432 3,394803 60,11317 4,798886 100,0434 6,017908 
20 30,00813 3,466233 60,12032 4,925773 100,0412 6,22934 

Source: Our Estimates  
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Figure 12.Average Returns Distributions at Different Levels of Temporal 
Aggregation (100 Days Portfolio Management)  
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Figure13. Average Returns Distributions at Different Levels of Temporal 
Aggregation (200 Days Portfolio Management)  
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Figure14. Average Returns Distributions at Different Levels of Temporal 
Aggregation (300 Days Portfolio Management)  

5. Conclusions 
I this paper we analyze the effects of temporal aggregation on the efficient 
management of a portfolio of stocks using the Markowitz Mean Variance approach. 
Using real data of the Athens Stocks Exchange and simulation techniques  we end up 
with the conclusions  that efficient portfolio management is closely related with the 
appropriate level  of  temporal aggregation the returns are selected. The effects of 
temporal aggregation on the portfolio performance are very serious usually leading in 
different results related with the temporal aggregation level the data are used. The 
different results of    temporal aggregation effects are related with the number each 
stock is participating in the portfolio, its weights in the portfolio and finally the future 
performance of the portfolio. 
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