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I. Introduction 

In their seminal work, Lo and MacKinlay (1990) document a lead-lag relation between 

weekly returns of size-sorted portfolios for the US market. Using the cross-autocorrelation test 

statistic, they demonstrate that returns of portfolios consisting of large-capitalisation stocks 

(‘large-firm’ portfolios) lead (i.e. are positively cross-autocorrelated with lagged) returns of 

portfolios consisting of small-capitalisation stocks (‘small-firm’ portfolios), but not vice-versa.1 

This relation indicates a complex mechanism of information transmission between small- and 

large-firms portfolio returns [Merton (1987), Badrinath, Kale and Noe (1995)]. Specifically, Lo 

and MacKinlay (1990) argue that this relation may be evidence of a lagged adjustment of small-

firm portfolio prices, namely that information shocks are transmitted first to large and then to 

small firms.2 An important implication that emerges from Lo and MacKinlay’s findings refers to 

the short-run predictability of portfolio returns, namely that returns of large-firm portfolios can be 

used to reliably predict returns of small-firm portfolios in the short-run.3 

This paper contributes to the literature on the lead-lag effect in several ways. We develop 

a formal framework illustrating how the lead-lag effect in returns is compatible with cointegration 

between the contemporaneous price of the small-firm portfolio and the lagged price of the large-

firm portfolio. We show that a lead-lag effect in returns is a necessary (but not sufficient) 

condition for cointegration between the contemporaneous small-firm portfolio price and the 

lagged large-firm portfolio price. Cointegration between the current small-firm portfolio price and 

the lagged large-firm portfolio price can be interpreted as evidence of a long-run lead-lag relation 

among prices of size-sorted portfolios. Thus, we seek to extend Lo and MacKinlay’s (1990) 

                                                           
1 Previous research on stock return predictability includes Conrad and Kaul (1988, 1989), Conrad, Hameed 
a d Niden (1994), and Lo and MacKinlay (1988). n
2 Badrinath, Kale and Noe (1995) have argued that a lead-lag effect may be related to the level of 
institutional ownership of firms. Another factor which is highly correlated with firm size and is consistent 
with lagged information transmission between large and small firms is the information set-up cost [Merton 
(1987)].  
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short-run approach, based on cross-correlations of returns over relatively short (weekly) return 

horizons, to the long-run as investors might have long holding periods.4 Another important 

feature of cointegration in this context is that it carries important implications for the short-run 

predictability of the small-firm portfolio returns, namely that we can employ an error correction 

model to obtain more accurate short-run predictions. We employ the Autoregressive Distributed 

Lag (ARDL) approach, recently advanced by Pesaran and Shin (1998), to estimate the long-run 

parameters of the cointegrating relation between small- and large-firm portfolio prices, and also 

obtain the error correction model for predicting small-firm portfolio returns. The ARDL-based 

estimators of the long-run coefficients have the advantage of being super-consistent, and valid 

inferences on long-term parameters can be made using standard normal asymptotic theory. 

Furthermore, recent Monte Carlo evidence by Gerrard and Godfrey (1998) has indicated that 

diagnostic tests of the specification of the ECM can be sensitive to the method used to estimate 

the long-run coefficients that yield the ECM. These authors have concluded that the ARDL 

approach should be preferred in estimating the long-run coefficients of the cointegrating relation.  

A new data-set for the UK equity market is used, containing three sets of equity 

portfolios, with each set consisting of ten portfolios. The first set contains equal-number-divided 

and value-weighted size-sorted (decile) portfolios. The portfolios contain approximately equal 

numbers of stocks, and within a portfolio returns are value-weighted. The second set contains 

equal-number-divided and equally weighted size-sorted portfolios. The portfolios contain 

approximately equal numbers of stocks, and within a portfolio returns are equally weighted.5 The 

main feature of these two sets is that, in each set, portfolios have different capitalisation sizes, i.e. 

they are size-sorted. We therefore have two alternative weighting schemes for constructing size-

                                                                                                                                                                             
3 Studies which have addressed the issue of short-term stock returns predictability based on their past 
history include Conrad and Kaul (1988, 1989), Chan (1988), Jegadeesh (1990), Lehmann (1990), 
Jegadeesh and Titman (1993, 1995), Levich and Thomas (1993), and Lo and MacKinlay (1990). 
4 Kasa (1992) argues that the correlation of stock returns  over short run holding periods may be misleading 
for investors who have long holding periods. Moreover, Gallagher (1995) contends that correlation is a 
‘static’ test applicable to short-run holding horizons.  

 2



sorted portfolios, namely a scheme yielding equally weighted and a scheme yielding value-

weighted portfolios. The third set contains equal-value-divided and value-weighted portfolios. 

The portfolios are approximately equal in terms of the aggregated value of their stocks, and 

within a portfolio returns are value-weighted. Thus, in contrast to the two first sets, this set 

contains portfolios of approximately equal capitalisation sizes. The portfolios in all three sets are 

rebalanced at the end of each year.  We wish to compare the test results for these three portfolio 

sets, and draw conclusions as to whether a long-run lead-lag effect arises in all three sets or not. If 

the lead-lag effect exists in the first two sets and not in the third then one could conclude that the 

lead-lag effect is driven by the capitalisation size. We also address the question of whether the 

existence of a lead-lag effect is determined by the particular weighting scheme, namely an 

equally-weighting and a value-weighting scheme, employed in the construction of the first two 

sets of  portfolios.  

Evidence of cointegration between contemporaneous small-firm portfolio prices and 

lagged large-firm portfolio prices is found only for size-sorted portfolios and not for equal-size 

portfolios, thereby indicating the importance of size in driving a long-run lead-lag effect. This 

result echoes the findings of Banz (1981) and Fama and French (1992) regarding the role of size 

in explaining asset returns. For size-sorted portfolios,  the large-firm portfolio price appears to be 

the ‘long-run forcing variable’ for the explanation of the small-firm portfolio prices. It is 

important to note that, small-firm portfolio prices cannot be treated as ‘long-run forcing variables’ 

for the explanation of large-firm portfolio prices. These results suggest a long run lead-lag 

relation between the small- and large-firm portfolio prices, according to which small-firm 

portfolio returns lag large-firm portfolio returns and not vice-versa. This result holds for both sets 

of size-sorted portfolios, thereby indicating that the weighting scheme does not affect the 

existence of the lead-lag effect. We next compare out-of-sample forecasts of small-firm portfolio 

returns obtained from an ARDL-based ECM against an alternative model, namely a model 

                                                                                                                                                                             
5 Chen et al. (1986) also, used this weighting scheme. 
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without the error correction term.  Our results indicate that the forecasts from the ECM models 

outperform the forecasts from the other two models, on the basis of the Root Mean Square Error 

(RMSE) criterion. Thus, we document that cointegration between the price of small-firm 

portfolios and the lagged price of large-firm portfolios may be utilised to improve on forecasts for 

small-firm portfolio returns. Overall, our results should be of interest to technical analysts, 

institutional investors and portfolio managers who seek to identify profitable portfolio strategies 

on the basis of past returns, as well as to ‘producers’ of asset-pricing models, who seek to identify 

relevant variables capable of explaining asset returns. 

 The structure of the paper is as follows. Section 2 develops a framework illustrating the 

relevance of cointegration in testing for a long-run lead-lag relation, and discusses the ARDL 

approach to cointegration. Section 3 describes the data set used in this study. Section 4 discusses 

the empirical findings. Finally section 5 concludes.   

 

II. Cointegration and prices of size-sorted portfolios 

A. Cointegration and lead-lag effect 

Bossaerts (1988) conducted an early study of cointegration and asset prices.6 Bossaerts 

assumed a Lucas-type, one-good pure exchange economy with a representative consumer, where 

dividends are all consumed, and showed that cointegration between contemporaneous asset prices 

may arise because of the approximate separation properties of this economy with a risk-averse 

representative consumer. In the present paper, we focus on Lo and MacKinlay’s (1990) approach, 

and discuss how cointegration between the lagged large-firm portfolio price and the 

contemporaneous small-firm portfolio price is compatible with the lead-lag effect. 

 

                                                           
6 Other studies include those by Granger (1986), who equated tests of cointegration between asset prices as 
tests for market efficiency,  Campbell and Shiller (1988), who discuss the links between cointegration and 
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Lo and MacKinlay (1990) argue that the lead effect from large-firm portfolio returns to small-

firm portfolio returns may be the result of information affecting first the prices of large market 

value securities and then the prices of  small market value securities. In this section, we illustrate 

that lagged price adjustment to common factor shocks is compatible with cointegration between 

the lagged large-firm portfolio price and the contemporaneous small-firm portfolio price. 

Consider the returns of a large-firm portfolio, denoted by , and the returns of a small-firm 

portfolio, denoted by . Lo and MacKinlay (1990) employ a single factor and assume that 

lagged factor shocks affect the current returns of small-firm portfolios; the smaller the market 

value of a security, the longer the lag in the price adjustment. For convenience, we assume here 

that information shocks may affect small-firm portfolio returns only up to one lag, with the 

importance of the lagged shock to portfolio’s returns declining as the market value of the 

portfolio increases. According to Lo and MacKinlay’s model, the returns for the large-firm 

portfolio are given by: 

LtR

StR

                                        LttLLLt fR εβµ ++= 1                                           (1) 

and the returns for a small-firm portfolio with a lagged adjustment to information shocks are: 

                           SttStSSiSt ffR εββµ +++= −121                                       (2) 

where Rit is the return for security i at time t (i = S, L), ft is a white noise factor shock at time t, εt 

is a stationary idiosyncratic error term. To illustrate the role of the lagged adjustment of the 

small-firm portfolio price in entailing cointegration between small- and large-firm portfolio 

prices, let us for the moment assume that no lagged price adjustment occurs and thus, the returns 

of a small-firm portfolio are given by (2)’, namely: 

                               SttSSiSt fR εβµ ++= 1                                                    (2)’ 

                                                                                                                                                                             
both dividend valuation models and term structure of interest rates, and Brenner and Kroner (1992), who 
discuss the relation between cointegration and no arbitrage pricing. 
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Summing to get prices, we obtain equations (3) and (4) which give the price for the large-firm 

portfolio and the price of the small-firm portfolio without lagged price adjustment respectively: 

                                                                        (3) ∑
=

−++=
t

j
jtLtLLLt Ftp

0
,1 εβµ

                                                                         (4) ∑
=

−++=
t

j
jtStSSSt Ftp

0
,1 εβµ

where Ft  is the sum of factor shocks from time 0 to (t). Solving equation (3) for Ft and 

substituting Ft into (3) yields: 

                                        tLtst vbpatp ++=                                                   (5) 

where ])/([ 11 LLSsa µββµ −= , b )/( 11 LS ββ= , and =tv   . ∑ ∑
= =

−− −
t

j

t

j
jtLjtS b

0 0
,, εε

In the absence of a lagged price adjustment, equation (5) implies a regression between the 

contemporaneous prices of the two portfolios, with an idiosyncratic nonstationary error term vt. 

This non-systematic error term implies that the residuals of regression (5) will be nonstationary 

and thus there will be no cointegration between the two portfolio prices.  

Assume now that there is a lagged adjustment in the price of the small-firm portfolio 

given by equation (2). Summing to get the price of this portfolio yields equation (6) : 

                                            (6) ∑
=

−− ++++=
t

j
jtStStSSSSt fFtp

0
,1121 ][ εβββµ

where Ft-1  is the sum of factor shocks from time 0 to (t-1). Next, consider the price of the large-

firm portfolio with 1 lag, given by equation (7): 

                                                                  (7) ∑
−

=
−−− ++−=

1

0
,111, )1(

t

j
jtLtLLtL Ftp εβµ

Solving for Ft-1 yields: 

                                 ∑
−

=
−−− −+−=

1

0
,1,

1
1 ][1 t

j
jtLLLtL

L
t tpF εµµ

β
                                    (8) 
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Substituting (8) into (6) yields 

ttStLLSLtS wfptp +++−+= − 11,, )( βγγµµγµ    ⇒                           

                             ttLLSLtS eptp ++−+= −1,, )( γγµµγµ                                 (9) 

where ]/)[( 121 LSS βββγ +=

∑ ∑
=

−

=
−− −

t

j

t

j
tLjtS

0

1

0
,, εγε

, wt is an idiosycratic error term, wt = ∑ , and 

e

∑
=

−

=
−− −

t

j

t

j
jtLjtS

0

1

0
,, εγε

t = β1Sft + .  j

As shown in equation (9), a lead-lag effect from the large-portfolio returns to small-portfolio 

returns (i.e. a lagged adjustment of the price of the small-firm portfolio) implies a regression of 

the small-firm portfolio price on the lagged price of the large-firm portfolio, a trend, and the 

white noise common factor ft. Under a lagged small-portfolio price adjustment, the existence of 

cointegration (i.e. the stationarity of the residuals et) depends on the relative importance of the 

white noise common factor ft and the idiosyncratic nonstationary term wt. In other words, lagged 

price adjustment entails including a white noise factor ft in equation (9), which introduces a 

stationary component in the residuals of equation (9). Without lagged price adjustment, ft does 

not enter equation (9) and therefore, there is no such component in  the residuals  (and thus, there 

is no tendency towards cointegration). Consequently, Lo and MacKinlay’s (1990) model has two 

conflicting time-series features: the lagged small-firm portfolio price adjustment to information 

shock, which entails a cointegrating relation between the small-firm portfolio price and the lagged 

large-firm portfolio price, and an idiosyncratic error term which obscures this link. If this 

idiosyncratic error term is not ‘corrected’, it will cause the prices of small- and large-firm 

portfolios to diverge. Thus, a lead-lag effect in portfolio returns may entail cointegration in 

portfolio prices if the idiosyncratic term is ‘sufficiently’ small, and may not entail cointegration if 

it is ‘sufficiently’ large. If cointegration is indeed found, then we could conclude that this 
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idiosyncratic term may be sufficiently small, and that there is a lead-lag effect in the long-run.7 

Evidence of cointegration in portfolio prices can be interpreted as a long-run lead-lag effect.  

In the empirical analysis, we test for cointegration between the prices of size-sorted 

portfolios using the well-known Phillips and Hansen (PH) (1990) Fully Modified-OLS procedure. 

This method has the advantage of being valid under a wide range of different distributional 

assumptions regarding the error terms (Moore and Copeland, 1995). We consider pairs of 

different size portfolios, and test for bivariate (pairwise) cointegration in the prices of a ‘small’- 

and a ‘large’-firm portfolio in order to be consistent with Lo and MacKinlay’s (1990) approach of 

considering two portfolios at a time. Subject to establishing cointegration, we proceed to 

estimating the coefficients of the cointegrating vector, i.e. the long-run coefficients, and error 

correction models using the recently developed ARDL approach.   

 

B. The Auroregressive Distributed Lag (ARDL) Cointegration Approach 

In this section, we outline the ARDL approach to estimating a cointegrating relation, and 

discuss its advantages compared to other approaches. According to Pesaran and Shin (1998), the 

general ARDL(p,q) model is given by the following equation: 

                                                     (10) ∑∑
−

=
−

=
− +∆++++=

1

0

*''

1
10

q

i
titit

p

i
itt uxxβyty βφαα ι

                             tststtt xPxPxPx ε+∆++∆+∆=∆ −−− ...2211  

where xt is the k-dimensional I(1) ‘forcing’ variables which are not cointegrated among 

themselves, ut and εt are serially uncorrelated disturbances with zero means and constant 

variance-covariances, and Pi are k x k coefficient matrices such that the vector autoregressive 

process in ∆xt is stable. In the case of bivariate cointegration, we set  k = 1. By setting k = 1, we 

                                                           
7 Bossaerts (1988) considers a class of economies that also generate cointegrated asset prices. However, 
these economies are Lucas-type one-good pure exchange economies in which all dividend payments are 
assumed to be consumed. In our paper, we depart from Bossaerts assumption of a Lucas-type economy, and 
assume in the empirical analysis that dividends are reinvested as opposed to consumed.  
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avoid the problem of cointegration among  the ‘forcing’ variables xt, and are consistent with Lo 

and MacKinlay’s (1990) pairwise approach to the lead-lag relation. In the above formulation, 

=− φβββαα ,,...,,, *
1

*
110 q ),...( 1 pφφ are the short-run parameters which are important in 

estimating the long-run coefficients defined by the ratios )1(/1 φαδ = , and )1(/φβθ = , where 

. The ARDL approach also assumes that there is a stable long-run relation 

between the two variables, y and x. In the case where  u

∑
=

−=
p

i
i

1
1)1( φφ

t and εt are correlated, the above ARDL 

specification is augmented with an adequate number of lagged changes in the regressors. The 

degree of augmentation required depends on whether q>s+1 or not.  The augmented model is 

given by: 

                                                      (11) ∑∑
−

=
−

=
− +∆++++=

1

0

*'

1
10

m

i
titit

p

i
itt nxxβyty πφαα ι

where m = max(q, s+1), πi = , d is a 1 x 1 vector containing the contemporaneous 

correlation between u

dPii
'* −β

t and εt. Thus, the ARDL approach requires inserting enough lags of the 

‘forcing’ variables in order to endogenise yt. By doing this, the problem of endogenous regressors 

and serial autocorrelation  can be simultaneously corrected for (Pesaran and Shin, 1998, page 16). 

The order of the distributed lag function on yt and the forcing variable xt are selected using the 

Akaike Information Criterion (AIC) or the Schwartz Bayesian Criterion (SC).8 Setting the 

maximum orders of p and q equal to 12 (for monthly data), we compare the maximised values of 

the log-likelihood functions of the (m+1)k+1 = (m+1)2 different ARDL models. We select the final 

model by finding those p and q which maximise the above mentioned selection criteria. Once the 

model has been selected, it is estimated using OLS to obtain the short-run parameters. Next, we 

estimate the long-run coefficients of the cointegrating relation ttt vxtay +++= θδ  by  

                                                           
8 Monte Carlo evidence by Pesaran and Smith (1998) indicates that the Schwartz Bayesian Criterion tends 
to be preferred to the AIC. 
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                                                  ,                                                (12a) )]ˆ...ˆ1/(ˆ[ˆ 10 paa φφ −−−=

                                                ,                                                  (12b) )]ˆ...ˆ1/(ˆ[ˆ
11 pa φφδ −−−=

                                                                           (12c) )]ˆ...ˆ1/()ˆ...ˆˆ[(ˆ
110 pq φφβββθ −−−++=

As shown by (12a)-(12c), the long-run coefficients ( , as calculated from equations 12a, 

12b, and 12c) reflect the short-run parameters, namely the coefficients of the lags of the 

dependent and independent variables in the ARDL(p,q) model 

(  in equation 11). Thus, the long-run coefficients capture the 

effects of the lagged variables in the cointegrating relation. Pesaran and Shin (1998) show that 

these ARDL-based estimators of the long-run coefficients are super-consistent and, more 

importantly, valid inferences on these estimators can be made using standard normal asymptotic 

theory. The standard errors of the estimates of the long-run coefficients can in principle be 

obtained by the so-called ‘delta’ method.

θδ ˆ,ˆ,â

ppaa φφβββδδ ˆ...,ˆˆ,...,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 1,101010

9   

The use of the ARDL estimation procedure is directly comparable to the semi-parametric, 

Phillips-Hansen Fully Modified-OLS approach to estimation of cointegrating relations. Monte 

Carlo evidence by Pesaran and Shin (1998) indicates that the ARDL approach using the SC 

selection criterion and combined with the delta method of computing standard errors generally 

dominates the PH approach, especially with regard to the size-power performance of the tests on 

the long-run parameters. Moreover, the ARDL estimators are ‘substantially less biased’ than the 

PH estimators. Finally, recent Monte Carlo evidence by Gerrard and Godfrey (1998) indicates 

that the ARDL approach is preferable to other methods of estimating the long-run coefficients of 

the cointegrating relation, in the light of the sensitivity of the diagnostic tests of the specification 

of the ECM to alternative estimation methods.  

                                                           
9 Another approach to obtaining standard errors is  Bewely’s (1979) regression approach. As Pesaran and 
Shin (1998) argue, both methods yield identical results and a choice between them is only a matter of 
computational convenience. In the present paper, we used the delta method. 
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III. The data-set 

A data-set for the UK stock market is constructed to test for cointegration in the prices of 

size-sorted equity portfolios. We use the London Business School Share Price Database (LSPD) 

to obtain monthly stock return data covering the period from January 1955 to December 1994. 

The LSPD tapes contain the returns series for approximately 6000 companies, comprising several 

different samples: (i) a complete coverage of stocks after 1974 of every UK listed stock, and (ii) a 

fully comprehensive coverage of stocks over the 1955-1974 period based on a random sample of 

one-third of existing issues and new flotations. The data consists of 480 observations of monthly 

total returns, including reinvested dividends and capitalisation changes where appropriate, i.e. 

each return is calculated as ]/)[(log 1−+ ttte PDP , where is the stock price at time t, and  is 

the dividend at time t. We effectively assume that all dividends are reinvested, in line with Lo and 

MacKinlay (1990) who employed total returns to explain autocorrelation and cross-correlation 

patterns.   We next use these cum-dividend returns to compute stock prices.  

tP tD

The stock price series computed from the LSPD cum-dividend returns series are used to 

create a data-set of UK stock market data, namely three sets of ten portfolios in each set. The first 

set comprising equal-number-divided and value-weighted size portfolios is referred to as NV 

portfolios. The second set  comprising equal-number-divided and equally-weighted size 

portfolios is referred to as NE portfolios. The third set comprising equal-value-divided and value-

weighted size portfolios is referred to as VV portfolios. Note that Lo and MacKinlay’s (1990) 

results were based on equally-weighted size-sorted portfolios. Under each scheme, ‘Portfolio 1’ 

contains the smallest firms, ‘Portfolio 2’ the next smallest, and so on up to ‘Portfolio 10’ which 

contains the largest firms.  

As both the cointegration tests and the ARDL approach require that the variables 

involved be I(1), we test for a unit root in each of the ten portfolios price series in each set. We 
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employ the Kwiatkowski et al. (1992) (KPSS) test.10 The null hypothesis of this test is that the 

series is stationary against the alternative hypothesis of nonstationarity. The 5% critical value for 

the test with trend is 0.146.  Results are reported in Table 1.  As shown in this Table, the test 

statistic for all portfolio prices is higher than 0.146, thereby rejecting the null of stationarity. In 

contrast, the test statistic for all returns series is lower than the critical value, thereby failing to 

reject the null of stationarity. Therefore, we conclude that all ten portfolios’ prices are I(1).11 

Thus, we proceed to test for cointegration and, subject to establishing cointegration, we estimate 

the long-run coefficients and the error correction models using the ARDL approach. 

 

IV. Empirical findings 

A. Cointegration results 

We showed in Section 2 that the lead-lag effect in returns is compatible with 

cointegration between the contemporaneous price of small-firm portfolios and the lagged price of 

large-firm portfolios. In this section, we test for pairwise cointegration between the current price 

of a small-firm portfolio and the lagged price of a large-firm portfolio for all possible 

combinations of portfolio pairs in each portfolio set.  All cointegration tests refer to the period 

from January 1955 to December 1993, leaving the period of the last year (1994) for out-of-sample 

forecasting. The well-known Phillips and Hansen (1990) cointegration test was employed. The 

                                                           
10 The KPSS unit  root test is based on the assumption that a time series yt is the sum of a deterministic 
trend t, a random walk rt and a stationary error εt: 
                                 yt  = ξt + rt + εt.                                           
The random walk is rt = rt-1 +ut where ut are iid (0, σu

2). In this framework, for the null hypothesis that yt  is 
trend stationary to be true, the variance of the random walk component, σu

2, should be equal to zero. 
Testing of the null hypothesis that yt is stationary around a level, is carried out by omitting the time trend. 
The test statistic is defined as 
                                 n = T-2∑t=1

TS2
t  / s2(l)                                          

where  T is the sample size, St  is the sum of the residuals when the series is regressed on an intercept and a 
time trend, and s2(l) is a consistent non-parametric estimate of the long-run variance of the error term. 
Critical values for the KPSS test, n, without a trend (nµ) or with a trend (nτ) are found in Kwiatkowski et al. 
(1992). We calculate the KPSS test statistics using a number of 8 lags, l,  in the estimation of the long-run 
variance of residuals, on the basis of the Kwiatkowski et al. (1992, page 174) criterion of choosing l  at the 
value at which the test statistic settles down. 
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null hypothesis is no cointegration. The null is rejected if the computed test statistic is smaller 

than -20.4935, the 5% critical value (Phillips and Ouliaris, 1990, Table Ib). The results are 

reported in Table 2, Panels A, B, and C for the NE, NV, and VV portfolios respectively.12 All 

cointegration tests are based on the contemporaneous price of Portfolio i and the lagged price of 

Portfolio j, i, j = 1…10, j > i. To illustrate, consider Panel A. The PH test statistic for the null of 

no cointegration between the lagged price of Portfolio 2 (j = 2) and the current price of Portfolio 

1 (i = 1) is –0.63. Similarly, the test statistic for the null of no cointegration between the lagged 

price of Portfolio 10 (j = 10) and the current price of Portfolio 1 (i = 1) is –24.20. As shown in 

Panel A (NE Portfolios), there is evidence of cointegration between Portfolio 1 (the smallest-firm 

Portfolio) and Portfolios 10, 9, 8 and 7; between Portfolio 2 and Portfolios 9, 8 and 7; between 

Portfolio 3 and Portfolios 4, 5, 6,7,8,9, 10, between Portfolios 4 and 5; Portfolios 6 and 9; and 

Portfolios 8 and 9. Results from Panel B (NV Portfolios) are similar to those for the NE 

Portfolios. Specifically the current price of Portfolio 1 is cointegrated with the lagged price of 

Portfolios 7, 8, 9, and 10; the current price of portfolio 2 with the lagged price of Portfolios 8, 9, 

and 10; and the current price of Portfolio 3 with the lagged price of Portfolios 4, 5, …10.  For NV 

Portfolios, there is no evidence of cointegration between Portfolios 4 and 5; 6 and 9; and 8 and 9. 

Despite these slight differences, the overall results for the NE and NV portfolios are quite similar 

and indicate that lagged large-firm portfolio prices cointegrate with current prices of small-firm 

portfolios. The similarity of the results for NE and NV portfolios indicates that the finding of 

cointegration is not dependent on the method of portfolio construction (i.e. value-weighting vs 

equally-weighting schemes). 

 

                                                                                                                                                                             
11 We also applied the augmented Dickey Fuller (ADF) test, and found similar results. These results are not 
reported here, but are available upon request. 
12 To save space, we only report the trace test statistics. The maximal eigenvalue statistics yield similar 
results, and are available upon request. 
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We next turn to the cointegration results for the VV portfolios which represent value-

weighted portfolios. These results are reported in Panel C of Table 2. As shown in this Panel, 

there is hardly any evidence of cointegration between portfolio prices. The null hypothesis of no 

cointegration can be rejected only in two cases, namely for the pairs of Portfolios 6 and 7, and 

Portfolios 8 and 9. Compared with the results from Panels A and B, we could argue that the 

existence of cointegration between portfolios is driven by differences in portfolio capitalisation 

size. VV portfolios represent equal aggregated value of stocks the number of which varies 

considerably among the ten portfolios. Thus, Portfolio 1, although composed of relatively small-

firms, represents equal aggregated market value to that of Portfolio 10, which contains a different 

(smaller) number of large-firms. Lack of cointegration between prices of equal-size portfolios is 

compatible with  no lagged information transmission adjustment, shown in equations (1), (2)’, 

(3), (4) and (5). Finally, this finding is also in line with the lagged price adjustment hypothesis of 

Lo and MacKinlay (1990)13.  

The next step of our analysis is the estimation of the coefficients of the cointegrating 

vector for the cases where cointegration was found in Table 2. These coefficients are for the  

cointegrating relation ttt vxtay +++= θδ , and not for the ttt vxtay +′+′+′= −1θδ , because, 

according to the ARDL approach,  one needs to capture the long-run coefficients of the 

cointegrating vextor (namely, α,δ, θ), and not the short-run coefficients (namely, α', δ', θ'). The 

long-run coefficients incorporate any effects of the short-run parameters of the lagged effects of 

the variables in the ARDL (p,q) model of equation (11), as they are calculated using formulae 

(12a) –(12c) which are repeated here for convenience.14 

 ,                                                 )]ˆ...ˆ1/(ˆ[ˆ 10 paa φφ −−−=

                                                           
13 By construction, VV portfolios are not as well diversified as NE and NV portfolios. As the level of 
portfolio diversification is reflected upon the variance and not the price of the portfolios, and given that we 
test for cointegration among the prices of different portfolios, one would expect that the relatively low 
degree of diversification of VV portfolios does not influence the cointegration results.  
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 ,                                                   )]ˆ...ˆ1/(ˆ[ˆ
11 pa φφδ −−−=

                                                                               )]ˆ...ˆ1/()ˆ...ˆˆ[(ˆ
110 pq φφβββθ −−−++=

Panels A and B of Table 3 report the results of the estimated long-run coefficients  for the NE 

and NV portfolios respectively.

θ̂

15 The empty cells are for the pairs of portfolios for which no 

cointegration was found in Table 2. The upper diagonal for each Panel reports the long-run 

coefficients  for cointegration relations in which the ‘large’-firm portfolio is the independent 

(right-hand-side) variable in the cointegrating relation. The lower diagonal reports the  

coefficients   for cointegrating relations in which the ‘small’-firm portfolio is the independent 

variable. Asymptotic t-statistics are also reported underneath the estimated coefficient. Finally, 

the order of the ARDL(p,q) model, upon which the estimated long-run coefficients were based, is 

also reported for each portfolio pair

θ̂

θ̂

16. For instance in Panel A, the long-run coefficient in the 

cointegrating relation where the independent variable is Portfolio 10 and the dependent variable is 

Portfolio 1 is 1.80, with an asymptotic t-statistic of 5.33. The order of the ARDL model on the 

basis of which this long-run coefficient was derived is ARDL(3,2). As shown in Panel A, the 

long-run coefficient of the large-firm portfolio is statistically significant in every cointegrating 

relation between a large-firm and a small-firm portfolio. Therefore, the large-firm portfolio prices 

are long-run ‘forcing’ variables for small-firm portfolio prices in all cases where cointegration 

was found.  This finding is compatible with Lo and MacKinlay’s (1990) arguments that the lead-

lag effect is from large- to small-firm portfolios. We next examine whether the small-firm 

portfolio prices can also be regarded as long-run forcing variables for the large-firm portfolio 

                                                                                                                                                                             
14 The estimated short-run parameters of the ARDL(p,q) model are not reported here, as they are not of 
direct relevance, and are available upon request. 
15 To save space, we do not report the other long-run coefficients, namely coefficients ,α̂ and . These 

are available on request.  

δ̂

16 The order of the estimated ARDL models was based on the BIC, hence the difference in the order across 
the different ARDL models. We also estimated the models using the AIC. In some cases, the AIC-based 
order was different from that under the BIC, but the results are qualitatively similar.  
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prices, by placing the small-firm portfolio price on the right-hand-side of the cointegrating 

relation and the large-firm portfolio as the dependent variable. The results of the estimated long-

run coefficients   are now reported in the lower diagonal part of Panel A. As shown in the lower 

diagonal, when Portfolio 1 is the independent variable, the long-run estimated coefficient is not 

statistically significant. This implies that the price of Portfolio 1 is not a long-run forcing variable 

for the prices of Portfolios 7, 8, 9, and 10, whereas, as found above, each of these Portfolios is a 

long-run forcing variable for Portfolio 1. The same conclusion applies to Portfolio 2. For 

Portfolio 3, we find that the long-run coefficient is not statistically significant if the dependent 

variable is Portfolio 10, 9, 8 or 7, which are relatively large-firm portfolios. As mentioned above, 

however, each of these Portfolios is a long-run forcing variable for Portfolio 3. Therefore, we can 

argue that for the largest-firm portfolios (7, 8, 9, and 10), portfolios 1, 2, and 3 are not long-run 

forcing variables, whereas the largest-firm portfolios are long-run forcing variables of the 

smallest-firms portfolios. In the cointegrating relations where the dependent variable is Portfolio 

6, 5, or 4 and the independent is Portfolio 3, the long-run coefficient is statistically significant. 

This may be due to the fact that the size difference between these portfolios is relatively small

θ̂

17. 

Similar results hold for the NV portfolios. Larger-firm Portfolios 10, 9, 8, and 7, and Portfolios 

10, 9, and 8 are long-run forcing variables of smaller-firm Portfolios 1 and 2, respectively, 

whereas Portfolios 1 and 2 are not long-run forcing variables of the larger-firm portfolios. This is 

in line with Lo and MacKinlay’s (1990) finding that there is only a lead effect and no lag effect 

from small- to large-firm portfolio prices. 

 

 

 

 

                                                           
17 This result may be related to the finding of cointegration between Portfolio 3, and Portfolio 4, Portfolio 
5, and Portfolio 6 in Tables 2A and 2B.  
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B. Out-of-sample predictions of small-firm portfolio returns: Error correction models based on 

ARDL approach  
For the cases where cointegration was found, and after estimating the long-run 

coefficients of the cointegrating vector, we proceed to obtain the error correction representation 

of the selected ARDL(p,q) model for portfolio returns. This model is used to obtain out-of-sample 

forecasts for the returns of small-firm portfolios for the period January 1994 – December 1994. 

The error correction model is the selected ARDL(p,q) model expanded by the error correction 

term, which is calculated using the ARDL-based long-run coefficients estimated during the 1955-

1993 period18. The error correction representation of the selected ARDL(p,q) model is given by 

equation (13): 

                            ∆                            (13) ∑∑
=

−−
=

− ++∆+∆++=
m

i
ttiti

p

i
itt nectxgydty

1

'
1

1
10 γδδ ι

where m = max(q, s+1), ∆yt is the portfolio returns, and ectt-1 is the lagged error correction term 

estimated using the ARDL approach. The coefficient of the ectt-1, γ, is expected to be negative 

and statistically significant. The error correction models are estimated for the period January 1955 

to December 1993. The results from estimating the error correction models are reported in Table 

4, Panels A and B for the NE and NV portfolios respectively. As shown in both Panels, in all 

models the lagged error correction term enters with a negative sign and is statistically significant, 

thereby justifying the relevance of error correction models in out-of-sample forecasting.  

We next proceed to obtain out-of-sample forecasts for the returns of portfolios for the 

period January 1994 to December 1994, using the estimated coefficients of the error correction 

models. For comparison purposes, we also obtain out-of-sample forecasts from same order 

ARDL(p,q) competing models which do not include the error correction term.  The latter models 

can be regarded as missing the long-run forcing effect of the large-firm portfolios on the returns 

                                                           
18 The order of the estimated error correction models is based on the BIC, hence the difference in the order 
across the different models.  
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of the small-firm portfolios documented in the previous section. The accuracy of the forecasts of 

the two competing models is measured using the Root Mean Squared Error (RMSE). The RMSEs 

of the foreacsts from the two competing models are reported in Table 5, Panels A and B for the 

NE and NV portfolios respectively. As shown in both Panels, the RMSE of the model with the 

error correction term is always smaller than the RMSE from the model without the error 

correction term. To test the statistical significance of the difference of the two RMSEs, we 

employ the nonparametric exact finite-sample Wilcoxon’s signed-rank test,  recommended by 

Diebold and Mariano (1995). The H0 is that the mean-squared-errors of the error correction 

model is equal to that of its rival model, i.e. the RMSEs of the two models are the same. The last 

columns of Table 5, Panels A and B,  show that the null hypothesis is rejected at the 5% 

significance level in each case, which implies that the RMSE of the error correction model is 

significantly smaller than that of the model without the error correction term. Consequently, the 

out-of-sample forecasts of small-firm portfolio returns from the models incorporating the long-

run forcing effect of the large-firm portfolios are statistically more accurate than the forecasts 

from the models which do not include this long-run forcing effect. 

 

E. Conclusions 

Lo and MacKinlay's (1990) finding of a lead-lag effect in the returns of size-sorted 

portfolios was attributed to lagged information transmission to small-firm portfolio returns. We 

have developed a formal framework which illustrates how lagged information transmission may 

entail cointegration between the current price of small-firm portfolios and the lagged price of 

large-firm portfolios. If there were no lagged information transmission, then cointegration would 

not arise. We have shown that Lo and MacKinlay's (1990) lead-lag effect is a necessary condition 

for cointegration between the lagged price of large-firm portfolios and the contemporaneous price 

of the small-firm portfolios. We tested for cointegration between the current price of a small-firm 

portfolio and the lagged price of a large-firm portfolio using UK stock market data. Two sets of 

 18



size-sorted portfolios and a set of equal-size UK equity portfolios have been constructed. One set 

of size –sorted portfolios comprises equally-weighted portfolios, while the other set comprises 

value-weighted portfolios. 

The results from the cointegration tests indicated that for the two sets of size-sorted 

portfolios, there is substantial evidence of cointegration. Furthermore, using the recently 

advanced ARDL approach to cointegration, we conclude that large-firm portfolio prices are long-

run forcing variables for small-firm portfolio prices and not vice versa. This result is in line with 

Lo and MacKinlay's (1990) finding that there is a lead effect from the large- to the small-firm 

portfolio returns  and not vice-versa. For equal-size portfolios, we fail to find evidence of 

cointegration. This finding is not incompatible with Lo and MacKinlay's (1990) results, as the 

lead-lag effect should arise for portfolios which have different market capitalisations. Thus, we 

conclude that the capitalisation size drives the long-run lead-lag effect between small- and large-

firm portfolio prices. This lead-lag effect is not affected by the weighting scheme (i.e. value-

weighting vs equal-weighting) used to construct size-sorted portfolios. 

 For the portfolios for which cointegration was found, we estimated error correction 

models using the ARDL approach, and obtained out-of-sample forecasts of the returns of small-

firm portfolios. An alternative model without the error correction term was also considered for 

comparing the accuracy of these forecasts. On the basis of the RMSE statistic, we found that the 

error correction models have significantly superior forecasting performance, thereby highlighting 

the relevance of cointegration between the lagged large-firm portfolio price and the current small-

firm portfolio price in predicting small-firm portfolio returns. These results are of interest to 

technical analysts, portfolio managers and 'producers' of asset pricing models in seeking to 

identify relevant variables which explain asset returns and for forecasting.    
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Table 1: KPSS stationarity tests 
 

 NE portfolios NV portfolios VV portfolios 
 Prices Returns Prices Returns Prices Returns 

Portfolio 
 1 

1.28 * 0.06 1.35 * 0.07 0.64 * 0.05 

Portfolio 
 2 

0.61 * 0.07 0.57 * 0.07 1.02 * 0.04 

Portfolio 
 3 

0.70 * 0.07 0.67 * 0.07 1.24 * 0.02 

Portfolio 
 4 

0.49 * 0.06 0.46 * 0.06 1.25 * 0.04 

Portfolio 
 5 

0.49 * 0.06 0.50 * 0.06 1.37 * 0.03 

Portfolio 
 6 

0.53 * 0.05 0.54 * 0.05 1.70 * 0.02 

Portfolio 
 7 

0.77 * 0.05 0.76 * 0.04 1.70 * 0.03 

Portfolio 
 8 

0.90 * 0.04 0.94 * 0.04 1.21 * 0.02 

Portfolio 
 9 

0.99 * 0.04 0.99 * 0.04 1.74 * 0.02 

Portfolio 
 10 

1.51 * 0.03 1.67 * 0.03 1.58 * 0.05 

 
Notes: 
1. The KPSS stationarity test statistic is defined as 
                                 n = T-2∑t=1

TS2
t  / s2(l)                                         

where  T is the sample size, St  is the sum of the residuals when the series is regressed on 
an intercept and a time trend, and s2(l) is a consistent non-parametric estimate of the long-
run variance of the error term. The null hypothesis is stationarity against the alternative of 
nonstationarity. We choose a number of 8 lags, l,  in the estimation of the long-run 
variance of residuals, on the basis of the Kwiatkowski et al. (1992, page 174) criterion of 
choosing l  at the value at which the test statistic settles down. 
 
1. The 5% critical value of the KPSS test with a trend is 0.146, and is obtained from  
Kwiatkowski et al. (1992). If the test statistic is higher than 0.146, then reject the null of 
stationarity. 
 
3.  * indicates that the null of stationarity is rejected. 
 
. 
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Table 2 . Phillips-Hansen tests for cointegration: 1955-1993 
Cointegrating relation: 1,10, −+= tjti PbbP , i,j = 1, …10, j>i. 

Panel A: NE portfolios. 
 Portf lio o

1 
Portf lio o

2 
Portf lio o

3 
Portf lio o

4 
Portfolio 

5 
Portfolio 

6 
Portfolio 

7 
Portfolio 

8 
Portfolio 

9 
Portfolio

10 
Portfolio 

1 
 
 

-0.63 
 

 

-4.09 
 

-3.83 
 

 

-5.40 
 

-8.37 
 

-20.67 * 
 

-21.15 *    -21.61 * 
 

-24.20 * 
 

 
Portfolio 

2 

  -9.50 -11.80 -13.29 -13.19 -14.95 -21.20 * 
 

-20.71 * 
 

-12.46  
 

 
Portf lio o

3 

   -20.88 * 
 

  -20.99 * 
 

-20.73 * 
 

-21.88 * 
 

-23.06 * 
 

-25.24 * 
 

-24.36 * 
 

 
Portfolio 

4 

    -33.57 * 
 

-16.84 -14.11 -13.24 -17.49 -8.77 
 

 
Portfolio 

5 

     -14.27 -11.51 -9.33 -13.81 -6.96 

 
Portf lio o

6 

      -12.11 -10.13 -23.31 * 
 

-7.19 

 
Portfolio 

7 

       -8.22 -13.00 -6.49 

 
Portfolio 

8 

        -20.60 * 
 

-7.84 

 
Portfolio 

9 

         -1.50 

Portfo  lio
10 

          

Notes:  
1. The Table reports the modified augmented Dickey-Fuller Z(a) test statistics calculated on 

the residuals of the corresponding cointegration regression estimated using the Phillips-
Hansen fully modified ordinary least squares method. 

2. The null hypothesis is of no cointegration. The 5% critical value is –20.4935 [Phillips and 
Ouliaris (1990), Table Ib]. 

3.  * denotes that the null is rejected at the 5% level.   Bolded test statistics indicate portfolio 
pairs for which there is cointegration. 
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Table 2 (continued) 
Panel B:  NV portfolios 

 
 Portfolio 

1 
 

Portfolio 
2 

Portfolio 
3 

Portfolio 
4 

Portfolio 
5 

Portfolio 
6 

Portfolio 
7 

Portfolio 
8 

Portfolio 
9 

Portfolio
10 

 
Portf lio o

1 

 
 

-0.43 
 

 

-5.03 
 

-4.24 
 

 

-3.61 
 

-7.77 
 

-20.87 * 
 

-21.23 *    -26.30 * 
 

-22.40 * 
 

 
Portfolio 

2 

 
_____ 

 -9.47 -12.01 -13.65 -12.89 -13.87 -22.12 * 
 

-21.51 * 
 

-21.06 * 
 

 
Portf lio o

3 

 
_____ 

  -20.61 * 
 

  -20.51 * 
 

-20.53 * 
 

-21.76 * 
 

-22.87 * 
 

-23.98 * 
 

-14.23  
 

 
Portfolio 

4 

 
_____ 

   -13.23 
 

-14.11 -14.01 -14.25 -16.81 -8.76 
 

 
Portfolio 

5 

 
_____ 

    -14.29 -11.01 -9.78 -13.65 -6.90 

 
Portf lio o

6 

 
_____ 

     -14.11 -10.25 -19.31  
 

-7.96 

 
Portfolio 

7 

 
_____ 

      -8.37 -13.31 -6.65 

 
Portfolio 

8 

 
_____ 

       -20.00 
 

-7.92 

 
Portfolio 

9 

 
_____ 

        -1.30 

 
Portfolio 

10 

 
_____ 

         

 
Notes: 
1. See notes in Table 2, Panel A. 
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Table 2 (continued) 
 

Panel C: VV Portfolios 
 Portfolio 

1 
 

Portfolio 
2 

Portfolio 
3 

Portfolio 
4 

Portfolio 
5 

Portfolio 
6 

Portfolio 
7 

Portfolio 
8 

Portfolio 
9 

Portfolio
10 

 
Portfolio 

1 

 -2.73 
 

 

-4.90 
 

-3.99 
 

 

-6.32 
 

-8.07 
 

-10.65 
 

-9.98    -12.01 
 

-14.30  
 

 
Portf lio o

2 

  -12.91 -10.76 -12.98 -11.98 -16.95 -11.54 
 

-12.91 
 

-15.91  
 

 
Portfolio 

3 

   -10.09 
 

  -14.54 
 

-15.32 
 

-12.14 
 

-13.98 
 

-16.98 
 

-12.90 
 

 
Portfolio 

4 

    -12.45 
 

-15.98 -12.21 -10.87 -17.91 -18.07 
 

 
Portf lio o

5 

     -11.23 -19.67 -9.65 -13.00 -6.41 

 
Portfolio 

6 

      -22.11 * -10.55 -12.25 
 

-7.91 

 
Portfolio 

7 

       -10.22  -11.64 -15.90 

 
Portfolio 

8 

        -20.90 * 
 

-17.40 

 
Portfolio 

9 

         -7.40 

 
Portfolio 

10 

          

 
Notes: 
1. See notes in Table 2, Panel A. 
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Table 3. Estimation of the long-run coefficients of the 
cointegrating relations using the ARDL approach:1955-1993 

Panel A: NE Portfolios 
Independent 
Variable in 
regression 

____________ 
Dependent 

Variable  In 
Regression 

Port 
folio 

1 

Port 
folio 

2 

Port 
folio 

3 

Port 
folio 

4 

Port 
folio 

5 

Port 
folio 

6 

Port 
folio 

7 

Port 
folio 

8 

Port 
Folio 

9 

Port 
folio 
10 

Portfolio 
1 

 
 

 
 

____ 

 
 

____ 

 
 

____ 

 
 

____ 

 
 

____ 

2.14 * 
(2.18) 

ARDL: 
(3,1) 

1.97 * 
(4.24) 

ARDL: 
(3,1) 

2.17 * 
(3.77) 

ARDL:
(3,2) 

1.80 * 
(5.33) 

ARDL:
(3,2) 

Portfolio 
2 

 
____ 

  
 

____ 

 
 

____ 

 
 

____ 

 
 

____ 

 
 

____ 

1.40* 
(4.20) 

ARDL: 
(3,1) 

1.46 * 
(4.82) 

ARDL:
(3,1) 

 
_____ 

 
 

Portfolio 
3 

 
____ 

  1.28* 
(11.70) 
ARDL: 

(3,1) 

1.45* 
(9.08) 

ARDL: 
(1,3) 

1.30* 
(10.56) 
ARDL: 

(3,1) 

1.27* 
(11.26) 
ARDL: 

(3,1) 

1.35 * 
(8.70) 

ARDL: 
(3,1) 

1.43 * 
(8.72) 

ARDL:
(3,1) 

1.45 * 
(3.25) 

ARDL:
(3,2) 

Portfolio 
4 

 
____ 

 
____ 

0.70 * 
(8.80) 

ARDL: 
(1,1) 

 1.04 * 
(42.35) 
ARDL: 

(2,1) 

 
 

____ 

 
 

____ 

 
 

____ 

 
 

____ 

 
 

____ 

Portfolio 
5 

 
____ 

 
____ 

0.64 * 
(8.50) 

ARDL: 
(1,1) 

0.93 * 
(40.5) 

ARDL: 
(1,1) 

    
____ 

     
  ____ 

     
  ____ 

    
_____ 

      
  ____ 

 
 

Portfolio 
6 

 
____ 

 
____ 

0.68 * 
(7.40) 

ARDL: 
(1,3) 

 
____ 

 
____ 

  
____ 

 
____ 

1.27 * 
(5.37) 

ARDL:
(3,1) 

 
____ 

Portfolio 
7 

0.15 
(0.67) 

ARDL: 
(2,2) 

 
____ 

0.67  
(1.50) 

ARDL: 
(3,2) 

 
____ 

 
____ 

 
____ 

  
  _____ 

1.11 * 
(27.03) 
ARDL:

(2,1) 

 
  _____

Portfolio 
8 
 
 

0.25 
(1.75) 

ARDL: 
(2,2) 

0.48 
(1.82) 

ARDL: 
(2,2) 

0.58 
(1.81) 

ARDL: 
(3,2) 

 
____ 

 
____ 

 
____ 

 
____ 

    
_____ 
 

    
_____ 

 

Portfolio 
9 

0.20 
(1.26) 

ARDL: 
(1,2) 

0.45 
(1.90) 

ARDL: 
(2,2) 

0.52 
(1.32) 

ARDL: 
(1,3) 

 
____ 

 
____ 

0.55 * 
(2.90) 

ARDL: 
(1,3) 

 
____ 

0.90 * 
(23.80) 
ARDL: 

(1,2) 

  
____ 

 
 

Portfolio 
10 

0.27 
(1.72) 

ARDL: 
(2,1) 

 
____ 

 

0.21 
(0.60) 

ARDL: 
(2,2) 

 
____ 

 
____ 

 
____ 

 
____ 

 
____ 

 
____ 
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Notes: 
1. The reported coefficients are the long-run coefficients of the cointegration vectors for 

the pairs of portfolios for which cointegration is found in Table 2. In each cell, the 
order of the selected ARDL model is also reported. The selected model is based on 
the Schwartz Bayesian Criterion. 

2. Asymptotic t-statistics are reported in parentheses underneath the corresponding long-
run coefficient. 

3. Statistical inference on the long run coefficients is based on standard normal 
asymptotic theory. 

4. * denotes statistical significance at the 5% level of significance. 
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Table 3 (continued) 
Panel B: NV portfolios 

Independent 
Variable 

  _________ 
Dependent 
Variable 

Port 
folio 

1 

Port 
folio 

2 

Port 
folio 

3 

Port 
Folio 

4 

Port 
Folio 

5 

Port 
folio 

6 

Port 
folio 

7 

Port 
folio 

8 

Port 
folio 

9 

Port 
folio 
10 

 
Portfolio 

1 

 
 

 
____ 

 

 
_____ 

 
_____ 

 
____ 

 
____ 

2.35 * 
(2.34) 

ARDL: 
(3,1) 

1.97 * 
(5.05) 

ARDL: 
(3,1) 

2.21 * 
(4.64) 

ARDL: 
(3,2) 

1.84 * 
(5.82) 

ARDL: 
(3,2) 

 
Portfolio 

2 

 
____ 

  
_____ 

 
_____ 

 
____ 

 
____ 

 
____ 

1.27 * 
(4.23) 

ARDL: 
(3,1) 

1.46 * 
(4.92) 

ARDL: 
(3,1) 

1.32 * 
(2.15) 

ARDL: 
(2,1) 

 
Portfolio 

3 

 
____ 

 
____ 

 1.28 * 
(11.82) 
ARDL: 

(3,1) 

1.42 * 
(9.5) 

ARDL: 
(1,3) 

1.26 * 
(10.72) 
ARDL: 

(3,1) 

1.28 * 
(11.08) 
ARDL: 

(3,1) 

1.35 * 
(8.27) 

ARDL: 
(3,1) 

1.45 * 
(8.55) 

ARDL: 
(3,1) 

 
____ 

 
Portfolio 

4 
 

 
____ 

 
____ 

0.71 * 
(9.11) 

ARDL: 
(1,1) 

  
_____ 

 
_____ 

 
____ 

 
____ 

 
____ 

 
____ 

 
Portfolio 

5 
 

 
____ 

 
____ 

0.61 * 
(5.81) 

ARDL: 
(3,1) 

 
____ 

  
_____ 

 
____ 

 
____ 

 
____ 

 
____ 

 
Portfolio 

6 
 

 
____ 

 
____ 

0.69 * 
(7.31) 

ARDL: 
(3,1) 

 
____ 

 
____ 

  
____ 

 
____ 

 
____ 

 
____ 

 
Portfolio 

7 

0.18 
(0.97) 

ARDL: 
(2,2) 

 
____ 

0.67 * 
(6.41) 

ARDL: 
(3,2) 

 
____ 

 
____ 

 
____ 

  
____ 

 
____ 

 
____ 

 
Portfolio 

8 

0.31 
(1.89) 

ARDL: 
(1,2) 

0.49 
(1.89) 

ARDL: 
(2,2) 

0.57 * 
(4.31) 

ARDL: 
(3,2) 

 
____ 

 
____ 

 
____ 

 
____ 

  
____ 

 
____ 

 
Portfolio 

9 

0.25 
(1.89) 

ARDL: 
(1,2) 

0.43 
(1.86) 

ARDL: 
(2,2) 

0.50  
(1.86) 

ARDL: 
(1,3) 

 
____ 

 
____ 

 
____ 

 
____ 

 
____ 

  
____ 

 
Portfolio 

10 

0.28 
(1.79) 

ARDL: 
(1,2) 

-0.03 
(-0.06) 
ARDL: 

(1,2) 

 
____ 

 
____ 

 
____ 

 
____ 

 
____ 

 
____ 

 
____ 

 

Notes: 
See notes of Table 3, Panel A. 
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Table 4 
Error Correction Models based on the ARDL approach: 

1955-1993 
Panel A: NE portfolios 

          
Model 

 

Dependent 
Variable (∆yt) 

Independent 
Variable(∆xt) 

Model  
order 

 
 
Cons
tant 

 
 

Trend 

 
 

ECTt-1 

    
 

Coefficient of 
∆yt-1            ∆yt-2    

 
 

Coefficient of  
∆xt-1             ∆xt-2  

Portfolio 1 Portfolio 10 
 

(2,1) 0.34 * 
(7.47) 

0.11 
(1.04) 

-0.02 * 
(-3.28) 

0.34 *           0.12 *    
(7.47)           (2.54) 

     0.11*          __   
     (3.55) 

 Portfolio 9 
 

(2,1) -0.34  
(-0.2) 

-0.20 
(-0.20) 

-0.012 * 
(-2.46) 

0.32 *           0.12 *    
(6.99)           (3.05) 

    0.10*          __    
     (3.20) 

 Portfolio 8 
 

(2,0) 0.24  
(0.05) 

0.27 
(0.28) 

-0.014 * 
(-2.66) 

0.37 *           0.09 *    
(10.05)         (2.53) 

     ___              __ 

 Portfolio 7 
 

(2,0) 0.002 
(0.51) 

0.57 
(0.63) 

-0.009 * 
(-1.96) 

0.33 *           0.097 *   
(9.53)           (2.79) 

     ___              __ 

Portfolio 2 Portfolio 9 
 

(2,0) 0.99 
(0.25) 

-0.71 
(-0.9) 

-0.016 * 
(-2.71) 

0.33 *           0.077 *   
(10.95)           (2.60) 

     ___              __ 

 Portfolio 8 
 

(2,0) 0.003 
(0.80) 

0.11 
(0.17) 

-0.013 * 
(-2.20) 

0.27 *           0.08 *    
(9.88)           (2.92) 

    ___                __ 
 

 Portfolio 7 
 

(2,0) 0.003 
(0.85) 

0.26 
(0.41) 

-0.013 * 
(-2.11) 

0.22 *           0.068 *   
(8.68)           (2.70) 

     ___               __

Portfolio 3 Portfolio 10 
 

(2,1) 0.005 
(1.16) 

-0.26 
(-0.36) 

-0.009 * 
(-1.96) 

0.33 *           0.097 *   
(9.53)           (2.79) 

    0.90*           __ 
   (3.10) 

 Portfolio 9 
 

(2,0) 0.99 
(0.25) 

-0.71 
(-0.9) 

-0.012* 
(-1.96) 

0.22 *           0.14 *    
(4.97)           (4.24) 

    0.08*            __ 
  (2.62)                    

 Portfolio 8 
 

(2,0) 0.002 
(0.50) 

-0.38 
(-0.72) 

-0.026 * 
(-3.24) 

0.18 *           0.10 *    
(7.77)           (4.35) 

    ___              __ 
 

 Portfolio 7 
 

(2,0) 0.001 
(0.46) 

0.15 
(0.03) 

-0.031* 
(-3.55) 

0.12 *           0.084 *   
(5.54)           (3.85) 

    ____             __ 
                         

 Portfolio 6 
 

(2,0) -0.002 
(-0.4) 

-0.28 
(-0.65) 

-0.026 * 
(-3.12) 

0.10 *           0.71 *    
(5.04)           (3.74) 

    ___               __ 
 

 Portfolio 5 
 

(0,2) -0.005 
(-1.8) 

-0.11* 
(-2.77) 

-0.022* 
(-3.02) 

___               ____     0.05*        0.05* 
   (2.98)        (3.45)

 Portfolio 4 
 

(2,0) -0.003 
(-1.5) 

-0.11 
(-2.64) 

-0.026 * 
(-2.98) 

0.03            0.54 *    
(1.53)           (3.26) 

    ___            __ 
 

Portfolio 4 Portfolio 5 
 

(1,0) -0.003 
(1.30) 

0.001 
(0.80) 

-0.082* 
(-4.82) 

0.04 *           ____    
(3.03)            

    ____          __ 
                         

Portfolio 6 Portfolio 9 
 

(2,0) -0.002 
(-0.5) 

-0.83 
(-1.92) 

-0.015 * 
(-2.11) 

0.17 *           0.06 *    
(10.5)           (3.33) 

    ___              __ 
 

Portfolio 8 Portfolio 9 
 

(1,0) -0.04* 
(-2.3) 

-0.9* 
(-3.27) 

-0.05 * 
(-3.90) 

0.08*             ____   
(8.16)            

    ___              __ 
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Table 4 (continued) 
Panel B: NV Portfolios 

          
Model 

 

Dependent 
Variable (∆yt) 

Independent 
Variable(∆xt) 

Model  
order 

 
 
Cons
tant 

 
 

Trend 

 
 

ECTt-1 

    
 

Coefficient of 
∆yt-1            ∆yt-2    

 
 

Coefficient of  
∆xt-1             ∆xt-2  

Portfolio 1 Portfolio 10 
 

(2,1) 0.003 
(0.60) 

0.62 
(0.66) 

-0.02 * 
(-3.34) 

0.33 *           0.11 *    
(7.27)           (2.80) 

    0.10*          __    
     (3.07) 

 Portfolio 9 
 

(2,1) -0.04  
(-0.9) 

-0.73 
(-0.82) 

-0.015 * 
(-2.76) 

0.30 *           0.11 *    
(6.51)           (3.08) 

    0.09*          __    
     (2.62) 

 Portfolio 8 
 

(2,0) -0.01  
(-0.4) 

-0.18 
(-0.21) 

-0.015 * 
(-2.86) 

0.32 *           0.09 *    
(9.45)         (2.83) 

     ___              __ 

 Portfolio 7 
 

(2,0) 0.15 
(0.03) 

-0.33 
(-0.43) 

-0.008 * 
(-1.96) 

0.29 *           0.10 *    
(8.83)           (3.13) 

     ___              __ 

Portfolio 2 Portfolio 9 
 

(2,0) 0.49 
(0.12) 

-0.89 
(-0.12) 

-0.02 * 
(-2.78) 

0.33 *           0.079 *   
(10.85)           (2.63) 

     ___              __ 

 Portfolio 8 
 

(2,0) 0.003 
(0.90) 

0.13 
(0.19) 

-0.014 * 
(-2.20) 

0.27 *           0.081 *   
(9.83)           (2.72) 

    ___               __ 
 

 Portfolio 7 
 

(2,0) 0.002 
(0.77) 

0.28 
(0.43) 

-0.013 * 
(-2.13) 

0.22 *           0.068 *   
(8.60)           (2.69) 

     ___              __ 

Portfolio 3 Portfolio 10 
 

(2,1) 0.006 
(1.40) 

-0.12 
(-0.16) 

-0.009 * 
(-1.96) 

0.23 *           0.13 *    
(5.17)           (3.87) 

     0.094*         __ 
     (2.93) 

 Portfolio 9 
 

(2,0) -0.01 
(-0.3) 

-0.09 
(-1.54) 

-0.028* 
(-3.71) 

0.25 *           0.095 *   
(9.35)           (3.98) 

     ___              __ 

 Portfolio 8 
 

(2,0) 0.002 
(0.77) 

-0.41 
(-0.78) 

-0.024 * 
(-3.13) 

0.19 *           0.10 *    
(7.87)           (4.44) 

    ___               __ 
 

 Portfolio 7 
 

(2,0) 0.001 
(0.36) 

-0.22 
(-0.04) 

-0.03* 
(-3.50) 

0.12 *           0.084 *   
(5.50)           (3.95) 

    ____             __ 
                         

 Portfolio 6 
 

(2,0) -0.67 
(-0.3) 

-0.23 
(-0.55) 

-0.025 * 
(-3.11) 

0.10 *           0.71 *    
(5.03)           (3.80) 

    ___               __ 
 

 Portfolio 5 
 

(0,2) -0.004 
(-1.8) 

-0.11* 
(-2.76) 

-0.024* 
(-3.06) 

___               ____     0.05*        0.05* 
   (3.02)        (3.55)

 Portfolio 4 
 

(2,0) -0.004 
(-1.7) 

-0.11 
(-2.84) 

-0.026 * 
(-3.05) 

0.02            0.53 *    
(1.43)           (3.26) 

    ___             __ 

Portfolio 4 Portfolio 5 
 

(1,0) 0.18 
(0.09) 

0.91* 
(2.21) 

-0.078* 
(-4.66) 

0.04 *           ____    
(3.21)            

    ____           __ 
                         

Portfolio 6 Portfolio 9 
 

(2,0) -0.002 
(-0.7) 

-0.92* 
(-2.05) 

-0.016 * 
(-2.26) 

0.18 *           0.06 *    
(10.1)           (3.53) 

    ___              __ 
 

Portfolio 8 Portfolio 9 
 

(1,0) -0.06* 
(-2.3) 

-0.11* 
(-3.63) 

-0.06 * 
(-4.33) 

0.08*             ____   
(8.04)            

    ___              __ 
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Table 5: Out-of-sample forecasting of 'small-firm' portfolio 
returns: January 1994 - December 1994 

Panel A: NE Portfolios 
Model 

Dependent 
Variable 

Independent 
Variable 

RMSE from 
model with 

the ECT 

RMSE from 
model without 

the ECT 

Wilcoxon's signed rank test  of 
statistically significant difference 

of the two RMSEs. 
H0: the two RMSEs are equal 

H1: the two RMSEs are not equal
Portfolio 1 Portfolio 10 

 
0.048 0.32 3.061 [0.00] 

 Portfolio 9 
 

0.041 0.65 4.612 [0.00] 

 Portfolio 8 
 

0.042 0.62 4.423 [0.00] 

 Portfolio 7 
 

0.040 0.65 4.324 [0.00] 

Portfolio 2 Portfolio 9 
 

0.020 0.14 3.123 [0.00] 

 Portfolio 8 
 

0.020 0.17 3.452 [0.00] 

 Portfolio 7 
 

0.017 0.13 3.062 [0.00] 

Portfolio 3 Portfolio 10 
 

0.031 0.32 4.001 [0.00] 

 Portfolio 9 
 

0.019 0.07 2.790 [0.00] 

 Portfolio 8 
 

0.018 0.10 2.589 [0.00] 

 Portfolio 7 
 

0.017 0.06 2.470 [0.00] 

 Portfolio 6 
 

0.016 0.011 1.001 [0.49] 

 Portfolio 5 
 

0.014 0.087 2.567 [0.00] 

 Portfolio 4 
 

0.014 0.100 2.698 [0.00] 

Portfolio 4 Portfolio 5 
 

0.013 0.021 1.021 [0.49] 

Portfolio 6 Portfolio 9 0.011 
 

0.080 2.542 [0.00] 

Portfolio 8 Portfolio 9 0.008 
 

0.034 1.000 [0.49] 
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Table 5 (continued) 

Panel B: NV Portfolios 
Model 

Dependent 
Variable 

Independent 
Variable 

RMSE from 
model with 

the ECT 

RMSE from 
model without 

the ECT 

Wilcoxon's signed rank test  of 
statistically significant difference 

of the two RMSEs. 
H0: the two RMSEs are equal 

H1: the two RMSEs are not equal
Portfolio 1 Portfolio 10 

 
0.050 0.321 2.864 [0.00] 

 Portfolio 9 
 

0.042 0.672 4.424 [0.00] 

 Portfolio 8 
 

0.042 0.625 4.123 [0.00] 

 Portfolio 7 
 

0.040 0.675 4.465 [0.00] 

Portfolio 2 Portfolio 10 
 

0.033 0.371 3.523 [0.00] 

 Portfolio 9 
 

0.021 0.142 2.652 [0.00] 

 Portfolio 8 
 

0.020 0.181 2.426 [0.00] 

Portfolio 3 Portfolio 10 
 

0.032 0.331 3.501 [0.00] 

 Portfolio 9 
 

0.019 0.094 2.790 [0.00] 

 Portfolio 8 
 

0.018 0.129 2.209 [0.02] 

 Portfolio 7 
 

0.018 0.081 2.170 [0.03] 

 Portfolio 6 
 

0.016 0.018 0.801 [0.45] 

 Portfolio 5 
 

0.013 0.077 1.567 [0.10] 

 Portfolio 4 
 

0.014 0.086 1.998 [0.04] 
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