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ABSTRACT 

This paper examines the empirical relationship between five European stock market indices 
and the US market in a smooth transition regression (STR) framework.  Due to globalization 
of economies the motivation is that the New York market has exerted substantial influence on 
international markets in post-October 1987 period. The results show that the US market plays 
indeed an important role and determines stock market asymmetric behaviour in Europe, 
though non-linearity is not particularly strong.  
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1. Introduction 
Recently, equity markets in various European countries have been more influenced by 

the US market. The US influence is well documented. The global stock market totals 

approximately Dollars 3,000bn. Slightly less than half of that total comes from US 

companies, and US GDP accounts for around 30 per cent of the world total. Of course 

country-specific factors such as GDP play a role, but domestic GDP is linked to the 

US since national markets and economies have become more internationalised. This 

study examines empirically the relationship between stock prices in five European 

markets (Germany, France, Italy, Sweden and Switzerland) and the US market. The 

technique employed is the smooth transition regression (STR) models, which 

investigate non-linearities1 in the underlying series. To exploit the above relationship, 

the univariate STAR specification is extended to allow for US stock prices as 

additional regressors. 

The motivation for using STR models is the following. In recent empirical 

studies investigating economic time series asymmetries, three classes of regime-

switching models, namely STAR SETAR and Markov-switching models, have been 

very prominent. The Markov-switching models assume that changes in regime are 

governed by the outcome of an unobserved Markov chain. A different approach is to 

allow the regime switch to be determined by an observable variable, as in SETAR and 

STAR models. The main advantage in favour of STAR models is that changes in 

economic aggregates are influenced by changes in the behaviour of many different 

agents and it is highly unlikely that all agents react simultaneously to a given 

economic signal. Further, investors may be prone to different degrees of institutional 

inertia (dependent, for example, on the efficiency of the stock markets in which they 

operate) and so adjust with different time lags. Markov-switching and SETAR models 

imply a sharp regime switch, and therefore a small number (usually two) of regimes. 

This assumption is too restrictive compared to the STAR models. Thus, when 

considering aggregate economic series, the time path of any structural change is liable 

to be better captured by a model whose dynamics undergo gradual, rather than 

instantaneous adjustment between regimes. The STAR models allow for exactly this 

                                                 
1 There are many empirical studies (see, for example, Scheinkman and LeBaron, 1989; Hsieh, 1991; 
Abhyankar, Copeland and Wong, 1997; Ryden, Teräsvirta and Asbrink, 1998; Brooks, 1998), which 
have uncovered non-linearities in stock prices. 
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kind of gradual change whilst being flexible enough that the conventional change 

arises as a special case. 

 So far, STAR models have been mainly applied to macroeconomic time series 

(Teräsvirta and Anderson, 1992; Granger and Teräsvirta, 1993; Öcal and Osborn, 

2000; Skalin and Teräsvirta, 1999) or exchange rates (Michael, Nobay and Peel, 1997; 

Taylor and Peel, 1999; Sarantis, 1999). However, there are only few applications in 

the stock prices literature. For example, Sarantis (2001) uses univariate STAR models 

to explore non-linearities in stock returns of the G-7 industrial countries (USA, Japan, 

Germany, UK, France, Italy and Canada). McMillan (2001) applies multivariate STR 

models to the US stock market and examines the non-linear relationship between 

stock returns and business cycle variables. 

Our work continues the theme on potential asymmetric behaviour in stock 

markets but takes a slightly different line by examining the influence the US stock 

market has on five European markets. The novel finding here is that the US market 

exerts a significant impact on European markets and appears to play an important role 

in determining stock market regimes in Europe. This reflects the strong 

interdependence between European and US markets.   

 

 

 

2. Definition of smooth transition regression models 
The STR model is defined as, 
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where ),0(~}{ 2σiidu t , ty  represents log-returns on the domestic market whereas 

tz  log-returns on the US market, and ),;( csF t γ  is the transition function bounded 

by zero and unity and ts  is the transition variable (determined in practice). The 

parameter c  is the threshold and gives the location of the transition function, while γ  

defines the slope of the transition function. In (1), ),,,,,( 321321 −−−−−− tttttt zzzyyy  is the 

vector of explanatory variables consisting of 3 lags on ty  and tz . In the STAR model 

as discussed in Teräsvirta (1994), the transition variable is assumed to be a lagged 

dependent variable. In the present work, however, the transition variable can be either 



 4 

a past value of the dependent variable (domestic market) or of an “exogenous” 

variable (US market). One form of transition function used in the literature is, the 

logistic function 

            ( ) 1))(exp(1),;( −−−+= cscsF tt γγ ,       0>γ    (2) 

The logistic function is monotonically increasing in ts , with 0),;( →csF t γ  as 

−∞→− )( cs t  and 1),;( →csF t γ  as +∞→− )( cs t . In this work, the idea that there 

are two distinct regimes (or a continuum of states between the two extremes) in 

financial markets is explored, namely bull markets and bear markets. The slope 

parameter indicates how rapid the transition from 0 to 1 is as a function of ts  and c  

determines where the transition occurs. When ∞→γ , ),;( csF t γ  becomes a step 

function and the transition between the regimes is abrupt. In that case, the model 

approaches a TAR model (Tong, 1990).  

 

 

 

3. Modelling procedure 
The modelling procedure for building STR models is based on the procedure 

proposed by Teräsvirta and Anderson (1992), Granger and Teräsvirta (1993) and 

Eitrheim and Teräsvirta (1996), and consists of the following stages: 

3.1 Specification of the linear model and linearity tests 

Testing linearity against STR constitutes the first step of the modelling procedure. In 

order to test for linearity a linear model is first selected. The starting model includes 3 

lags on both variables. We perform the linearity test in the spirit of Luukkonen, 

Saikkonen and Teräsvirta (1988). To select the switching variable, the test is carried 

out for all six regressors. In cases where linearity is rejected for more than one 

regressor, the decision rule is to choose the transition variable for which the p-value of 

the test is smallest, that is, strongest rejection of linearity (Teräsvirta, 1994). 

3.2 Initial estimates and non-linear estimation  

To find initial values, a two-dimensional grid search is carried out using at least 150 

values of γ and 40 equally spaced values of c  within the observed range of the 

transition variable. Essentially, the transition variable series is ordered by value, 

extremes are ignored by omitting the most extreme 15 values at each end and 40 
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values are specified over the range of the remaining values. This procedure attempts 

to guarantee that the values of the transition function contain enough sample variation 

for each choice of γ  and c . The model with the minimum RSS value from the grid 

search procedure is used to provide the γ  and c  for an initial estimate of the 

transition function. Following Teräsvirta (1994) the exponent of the transition 

function is standardised by the sample standard deviation. This standardisation makes 

γ  scale-free and helps in determining a useful set of grid values for this parameter. 

Reducing the order of the model in the non-linear least squares (NLS) 

framework is obviously a computationally heavy procedure. However, there is 

another practical strategy one can follow. Note that giving fixed values to the 

parameters of the transition function makes the STR model linear in the remaining 

coefficients. The grid search mentioned above is used to obtain sensible initial values. 

Conditional on this transition function, the parameters of the STR model can be 

estimated by OLS and this model is called the linearised version of the STR model. 

To determine the order of the linear STR a general-to-specific procedure is applied 

where the least significant (if non-significant) variable at any lag is dropped at each 

stage and the reduced model is re-estimated. The selected model is based on the 

minimization AIC criterion. The estimated coefficients from the linear STR along 

with the transition function parameters from the grid search are used as initial values 

in the non-linear estimation in the next stage. The preferred model is re-estimated 

(including the transition function parameters) by NLS in RATS using the BHHH 

algorithm. After estimating the parameters of the STR, these are compared with those 

obtained from the linearised version since the latter is used for model specification. 

3.3 Evaluation of ST(A)R models 

The validity of the assumptions underlying the estimation must be investigated once 

the parameters of the STR models have been estimated. The Lagrange multiplier 

(LM) tests of Eitrheim and Teräsvirta (1996) are employed. As usual, the assumption 

of no error autocorrelation should be tested. Further, it is useful to find out whether or 

not there are non-linearities left in the process after fitting a STR model. That 

possibility is investigated by testing the hypothesis of no additive non-linearity 

against the alternative hypothesis that there is an additional STR component. Finally, 

the constancy of the parameters is tested against the hypothesis that the parameters 

change monotonically, non-monotonically but symmetrically and non-monotonically 
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non-symmetrically over time. All the tests are carried out by auxiliary regressions. For 

details see Eitrheim and Teräsvirta (1996). Model evaluation also includes checking 

whether the estimates seem reasonable, and of course, checking the residuals for 

ARCH and normality.  

 

 

 

4. Empirical results 
The data used are monthly seasonally unadjusted. The stock price indices are as 

follows: Germany: DAX 100 (1988:m1-2001:m8); France: France DS market 

(1988:m1-2001:m8); Sweden: Sweden DS market (1988:m1-2001:m8); USA: S&P 

500 (1988:m1-2001:m8); Switzerland: Swiss market (1988:m7-2001:m8); Italy: 

Milan MIBTEL (1993:m7-2001:m8). Unfortunately, Switzerland and especially Italy 

do not have long time series on their stock price indices. Note that the sample period 

is chosen to start after the stock market crash in autumn 1987 and to end just before 

the events of September the 11th in 2001. Estimation is carried out in GAUSS 

software. 

The starting point is a fully parameterized linear model allowing for a 

maximum order of 3 lags on both variables2. Table 1 reports the estimated equations. 

The most striking result is that, with the exception of Switzerland, the only significant 

variable is dlnSP_1(positive effect), while the endogenous dynamics seem to be 

insignificant. This finding confirms the common belief that the US stock market is the 

driving force in international markets. As to the diagnostics, the models appear to pass 

the misspecification tests3.  

The next stage is to test linearity against STR-type non-linearity. The linearity 

tests are displayed in Table 2. Note that the null hypothesis of linearity is rejected at 

10% level, but not very strong4. Further, in Germany, France and Italy linearity is 

rejected in one out of six cases, in Switzerland there are two rejections, while in 

Sweden three. Admittedly, the statistical evidence of non-linearity is not quite strong5. 

                                                 
2 We extended the lag length up to 6 in both variables, but found that lags 4-6 appear insignificant.  
3 Since it is a well established empirical phenomenon that the distribution of stock returns is highly leptokurtic, it 
comes as no surprise that the residuals from the German, French and Swiss markets are non-normal.  
4 In the Swedish case though, the rejection associated with dlnSP_3 is very strong. 
5 This is finding is perhaps not unexpected since it is found that the variability of economic time series 
has declined during the last decade compared to 1970s and early 1980s (van Dijk and Sensier, 2001). 
This perhaps also explains the absence of ARCH in the linear models. 
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Based on the decision rule of the procedure of Teräsvirta (1994), the linearity tests 

suggest that dlnSP_1 is the most appropriate of all potential transition variables 

considered in the cases of Germany, France, Switzerland and Italy, while dlnSP_3 is 

chosen for the Swedish market. Therefore, the US stock market appears to play an 

important role in determining European market regimes. This evidence is in line with 

Aslanidis (2002) who finds dlnSP_1 as switching variable in the London market using 

again STR models. 

Next, the estimated STR models selected by the AIC are presented in Table 3. 

It turns out6that the estimated parameters are close to those obtained from the grid 

search and the linear estimation of STR. Note that all thresholds get extreme negative 

values implying that the non-linearity applies for only few negative observations. This 

is best seen from the graph of the transition functions (Figure). Most of the time, there 

exists some linear structure in the processes and only sufficiently large negative 

shocks in the US market cause a non-linear response in the domestic markets. In the 

second panel of the graphs where the transition functions are plotted over time, it is 

seen that the functions are normally one (or close to one); they move away from unity 

mainly for a few periods in early and late 1990s and early 2000s7. Note also that each 

lag regressor in the first part of the model has a corresponding lag regressor of the 

same (approximately) magnitude but opposite sign in the second part implying a 

behaviour close to random walk in the range where 1=F . In this range only dlnSP is 

informative, mostly after a month. Further, there are no endogenous effects in the 

French and Swiss stock markets in any range. More specifically, at the extremes the 

models imply, 

 

Germany 
tttttt uzzyyy +−+++= −−−− 2131 309.2092.0396.1728.0010.0 , when 0=F  

ttt uzy ++= −1092.0010.0 ,                when 1=F  
France 

tttt uzzy +−+= −− 21 319.1553.2209.0 ,    when 0=F  

ttt uzy += −1404.0 ,      when 1=F  
Sweden 

ttttt uzzyy +++−= −−− 312 223.1670.0821.0009.0 ,   when 0=F  

ttt uzy ++= −1670.0009.0 ,      when 1=F  

                                                 
6 These results are not reported, but are available from the author upon request. 
7 These were turbulent periods due to the US recession in 1990-1991, Asia financial crisis in 1997 and 
the 1998 Russian financial crisis.    
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Switzerland 
ttt uzy ++= −1405.2175.0 ,     when 0=F  

ttt uzy ++−= −1609.0008.0 ,     when 1=F  
Italy 

tttttt uzzzyy ++−++= −−−− 3212 207.0012.1893.3956.0272.0 , when 0=F  

tttt uzzy ++= −− 31 207.0361.0 ,     when 1=F  
 

Thus, most of the time the processes support the weak form market efficiency and 

only very large negative shocks in the US market imply evidence against efficient 

markets in the weak and semi-strong forms. This pattern of results can be probably 

explained by the existence of a lower barrier, which causes non-linearity but then the 

underlying processes are mean reverting back to their (almost) random walk 

behaviour. Chappell et al. (1996) also find quite a similar behaviour for the French 

franc/Deutshmark exchange rate using univariate SETAR models. Their results imply 

an AR process in the range where the exchange rate rises (depreciation of the franc) 

more than 1.55% above its central parity, while a random walk model otherwise8. 

The estimates of γ  suggest an abrupt switch between the extremes in the 

Swedish and Italian markets. On the other hand, the relatively small value of γ  in the 

German, French and Swiss markets suggest a smooth transition from one extreme to 

the other, contrary to the Markov-switching and the TAR models which assume a 

sharp switch.  Almost all equations contain restrictions of the form ii 10 φφ −= , 

ii 10 δδ −=  which are strongly suggested by the data. The models are able to explain 

between 14.59% (Germany) and 26.65% (Italy) of the variation in the underlying 

series. According to the diagnostics the STR models form statistically adequate 

representations of the data since there is no sign of model inadequacy. In particular, 

there is no evidence of autocorrelation. The additive non-linearity test results imply 

that the models capture all non-linearities. Further, the models pass the parameter 

constancy tests. Tests of no dynamic heteroskedasticity do not indicate any problem 

either.  

 

 

 

                                                 
8 It should be pointed out, however, that SETAR non-linearity in this study is found to be quite strong 
since the threshold applies for a large range of values. 
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5. Conclusions 
This study adopts the smooth transition regression models to examine the empirical 

relationship between five European stock market indices and the US market. Due to 

globalization of financial markets and economies our motivation is that the New York 

market has exerted substantial influence on International markets in the post-October 

1987 period.  

 The first important result is that the US market can be used to forecast all five 

European markets. Particularly, in the linear models it appears as the most significant 

variable while national markets provide almost no information. We further find that 

the US market initiates non-linearities and asymmetries in the national markets as it 

acts as switching variable for no-linear processes. The other worthy result is that non-

linearity is found to be mild, which is supported by both linearity tests and STR 

models estimated afterwards. Most of the time, there exists some linear structure in 

the processes and only large negative shocks in the US market cause a non-linear 

response in European markets. In addition, in the latter range there is evidence against 

efficient markets in the weak and semi-strong forms.   

An extension that could build on the results of this study is the following. The 

STR models considered in this work are single-equation models. In principle, the idea 

of smooth transition can be extended to systems of equations. To date, there is yet 

rather little empirical experience available of vector STR models (see van Dijk, 

Teräsvirta and Franses (2000) and references within). In the vector STR framework, it 

would be interesting to examine relationships between European and US markets, but 

also among Latin American and US markets. We believe that developing vector STR 

specifications is a very important area of further research. 
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Figure: Transition functions versus transition variables (upper panel) and over time (lower panel).  
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           Table 1: Linear models 
 

Coefficients   Germany     France     Sweden   Switzerland      Italy 

  0α       0.004 
   [0.994] 

     0.006 
    [1.396] 

      0.002 
     [0.266] 

      0.005 
     [1.227] 

      0.001 
    [0.165] 

  1φ      -0.008 
   [-0.094] 

    -0.006 
   [-0.064] 

      0.060 
     [0.682] 

     -0.110 
    [-1.213] 

    -0.089 
   [-0.820] 

  2φ      -0.126 
   [-1.415] 

    -0.105 
   [-1.175] 

     -0.050 
    [-0.568] 

     -0.212 
    [-2.359] 

    -0.115 
   [-1.066] 

  3φ       0.058 
    [0.672] 

     0.097 
    [1.176] 

      0.106 
     [1.299] 

     -0.029 
    [-0.340] 

     0.066 
    [0.628] 

  1δ       0.289 
    [2.530] 

     0.356 
    [3.247] 

      0.581 
     [3.958] 

      0.447 
     [4.101] 

     0.463 
    [2.669] 

  2δ       0.098 
    [0.833] 

     0.077 
    [0.660] 

      0.108 
     [0.689] 

      0.175 
     [1.487] 

     0.219 
    [1.216] 

  3δ       0.107 
    [0.933] 

    -0.032 
   [-0.286] 

      0.113 
    [0.745] 

      0.156 
     [1.367] 

     0.302 
    [1.704] 

  
 (AIC) (SBC) 
 R-sq  
 Diagnostics 
 Skewness   
 Ex kurtosis 
 Normality  
 Autocorr(1)  
 Autocorr(3) 
 Autocorr(6) 
 ML(1) 
 ML(3) 
 ML(6) 
 ARCH(1) 
 ARCH(3) 
 ARCH(6) 
  

 
(-5.897) (-5.762)  
     0.0627  
 
     -0.714  
      2.141 
      0.000  
      0.837 
      0.987 
      0.708 
      0.332 
      0.667 
      0.429 
      0.338 
      0.680 
      0.469 
 

 
(-5.995) (-5.860) 
      0.0919 
 
      -0.612 
       2.760 
       0.000 
       0.983 
       0.984 
       0.954 
       0.754 
       0.893 
       0.825 
       0.757 
       0.904 
       0.867 

 
(-5.372) (-5.237) 
      0.1355 
 
      -0.261 
       0.068 
       0.398 
       0.994 
       0.999 
       0.999 
       0.220 
       0.119 
       0.432 
       0.227 
       0.158 
       0.488 

 
(-5.994) (-5.858) 
      0.1305 
 
      -0.537 
       2.266 
       0.000 
       0.849 
       0.996 
       0.049 
       0.737 
       0.981 
       0.589 
       0.741 
       0.981 
       0.663 
 

 
(-5.325) (-5.137) 
     0.1097 
 
      0.183 
     -0.084 
      0.755 
      0.802 
      0.989 
      0.859 
      0.094 
      0.007 
      0.062 
      0.101 
      0.033 
      0.198 

Notes: t-ratios in parentheses below coefficient estimates; diagnostic tests are presented as p-values; AIC and SBC are 
the Akaike and Schwarz Information Criteria values based on RSS; R-sq is the usual coefficient of determination; 
skewness and ex. kurtosis are measured by conventional test statistics; normality refers to the test of Jarque and Bera 
(1980); autocorr(.) is the LM test of residual autocorrelation of Godfrey (1978); ARCH(.) is the LM test of Engle (1982); 
ML(.) is the test of McLeod and Li (1983). 

 
 
 
 
Table 2: Linearity tests: Linear model versus STR model 
 

   Transition  
    Variable 

  Germany     France    Sweden Switzerland      Italy 

     y_1      0.166       0.200      0.134      0.069      0.518 
     y_2      0.241        0.149      0.945      0.608      0.427 
     y_3      0.481       0.749      0.068      0.465      0.203 
     z_1      0.075       0.072      0.078      0.033      0.026 
     z_2      0.327       0.170      0.764      0.371      0.266 
     z_3     0.129       0.173      0.005      0.271      0.394 
      

Notes: p-values of the F-variants of the LM-tests for STR type non-linearity using the preferred linear specification as a 
base model. 
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Table 3: Smooth transition regression (STR) models 
 

        Coefficients            Germany             France            Sweden         Switzerland             Italy 

   0α              1α            0.010 
  [2.386] 

   0.209             -0.209 
  [1.734]          [-1.734] 

   0.009 
  [1.740] 

   0.175             -0.183 
  [1.942]          [-1.823] 

   0.272             -0.272 
  [3.381]          [-3.381] 

   01φ              11φ     0.728             -0.728 
  [2.153]          [-2.153] 

    

   02φ             12φ      -0.821              0.821 
 [-3.779]           [3.779] 

    0.956             -0.956 
  [1.772]          [-1.772] 

   03φ             13φ     1.396            -1.396 
  [1.450]          [-1.450] 

    

   01δ             11δ     0.092 
  [0.820] 

   2.553            -2.149 
  [2.488]         [-2.068] 

   0.670 
  [5.266] 

   2.405            -1.796 
  [3.002]          [-2.352] 

   3.893             -3.532 
  [4.066]          [-3.655] 

   02δ             12δ    -2.309             2.309 
 [-1.132]          [1.132] 

  -1.319             1.319 
 [-1.105]          [1.105] 

    -1.012             1.012 
 [-1.734]          [1.734] 

  03δ        13δ       1.223             -1.223 
  [4.173]          [-4.173] 

    0.207 
  [1.389] 

    ( ts ) (γ )  ( c )   (z_1) (2.694) (-0.071) 
           [1.355] [-2.371] 

 (z_1) (2.736) (-0.062) 
          [1.608] [-2.422] 

 (z_3) (95*) (-0.040) 
                    [-15.23] 

 (z_1) (2.613) (-0.045) 
          [1.332] [-2.586]  

  (z_1) (19.67) (-0.047) 
           [0.440] [-17.60] 
 

  
  (AIC) (SBC) (R-sq)  
 Diagnostics 
  (Skewness) (Ex kurtosis) 
  Normality  
  Autocorr(1) (3) (6)  
  Non-linearity  
   (y_1) (y_2) (y_3) 
   (z_1) (z_2 ) (z_3)  
  Constancy 
   All  
   Intercept 
   Both intercepts 
  ML(1) (3) (6) 
  ARCH(1) (3) (6) 
 

 
(-5.990) (-5.856) (0.1459)  
 
     (-0.907) (3.141) 
             (0.000) 
  (0.341) (0.684) (0.532)  
 
  (0.689) (0.698) (0.735) 
  (0.750) (0.744) (0.041) 
 
  (0.836) (0.914) (0.511) 
  (0.942) (0.996) (0.076) 
 
  (0.876) (0.885) (0.509) 
  (0.878) (0.887) (0.554) 
 

 
(-6.086) (-5.970) (0.1604)  
 
     (-0.776) (2.986) 
             (0.000) 
  (0.801) (0.965) (0.834)  
 
  (0.966) (0.390) (0.716) 
  (0.769) (0.555) (0.096) 
 
  (0.846) (0.626) (0.208) 
  (0.989) (0.885) (0.013) 
  (0.999) (0.969) (0.078) 
  (0.307) (0.727) (0.575) 
  (0.315) (0.736) (0.706) 
  

 
(-5.478) (-5.363) (0.2132)  
 
      (-0.140) (-0.094) 
              (0.749) 
  (0.737) (0.402) (0.726)  
 
  (0.361) (0.897) (0.266) 
  (0.158) (0.871) (0.148) 
 
  (0.850) (0.931) (0.873) 
  (0.492) (0.775) (0.434) 
  
  (0.172) (0.016) (0.051) 
  (0.177) (0.015) (0.036) 
  

 
 (-6.072) (-5.955) (0.1854) 
 
       (-0.386) (2.623) 
               (0.000) 
  (0.220) (0.527) (0.058) 
 
  (0.466) (0.486) (0.259) 
  (0.437) (0.566) (0.148) 
 
  (0.850) (0.437) (0.632) 
  (0.962) (0.122) (0.158) 
  (0.954) (0.370) (0.488) 
  (0.509) (0.676) (0.023) 
  (0.516) (0.698) (0.071) 

 
 (-5.498) (-5.283) (0.2665) 
 
      (0.053) (0.228) 
             (0.882) 
  (0.250) (0.282) (0.563) 
 
  (0.824) (0.402) (0.525) 
  (0.759) (0.594) (0.387) 
 
  (0.707) (0.557) (0.667) 
  (0.495) (0.430) (0.207) 
  (0.384) (0.317) (0.288) 
  (0.283) (0.640) (0.820) 
  (0.295) (0.638) (0.886) 

Notes: The models are estimated in RATS by BHHH algorithm; t-ratios in parentheses below coefficient estimates; * the model has been estimated using a fixed value of γ̂ =95 because the 

algorithm does not converge otherwise, estimation tends to be problematic when γ̂  is large (see Teräsvirta, 1994); diagnostic tests are the LM tests of Eitrheim and Teräsvirta (1996) and 
presented as p-values; non-linearity (not ignoring “holes”) are the p-values for no remaining STR-type non-linearity assuming each regressor as potential switching variable in the second STR 
component; autocorr(.) is the LM test of residual autocorrelation; the parameter constancy tests against monotonic change(1st figure), non-monotonic symmetrical change(2nd figure) and non-
monotonic non-symmetrical change(3rd figure); see Eitrheim and Teräsvirta (1996) for full details; see notes of Table 1 for information about the other statistics reported in table. 


