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ABSTRACT 

This paper models UK stock market returns in a smooth transition regression (STR) 
framework. A variety of financial and macroeconomic series are employed that are assumed 
to influence UK stock returns, namely GDP, interest rates, inflation, money supply and US 
stock prices. STR models are estimated where the linearity hypothesis is strongly rejected for 
at least one transition variable.  These non-linear models describe the in-sample movements 
of the stock returns series better than the corresponding linear model.  Moreover, the US stock 
market appears to play an important role in determining the UK stock market returns regime. 
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1. Introduction 
A natural approach to modelling economic time series with non-linear models seems 

to be to define different states of the world or regimes, and to allow for the possibility 

that the dynamic behaviour of economic variables depends on the regime that occurs 

at any given point in time. Roughly speaking, two main classes of statistical models 

have been proposed which formalize the idea of existence of different regimes. The 

popular Markov-switching models (Hamilton, 1989) assume that changes in regime 

are governed by the outcome of an unobserved Markov chain. This implies that one 

can never be certain that a particular regime has occurred at a particular point in time, 

but can only assign probabilities to the occurrence of the different regimes. Hamilton 

applies a 2-regime model to the US GNP growth and concludes that contractions are 

sharper and shorter than expansions. Therefore, the US business cycles are found to 

be asymmetric. These models have been explored and extended in detail in a number 

of papers (see for example Engel and Hamilton, 1990, Hamilton and Susmel, 1994, 

Filardo, 1994). 

A different approach is to allow the regime switch to be a function of a past 

value of the dependent variable. Teräsvirta and Anderson (1992), Granger and 

Teräsvirta (1993) and Teräsvirta (1994) promote a family of univariate business cycle 

models called smooth transition autoregressive (STAR) models. These models can be 

viewed as a combination of the self-exciting threshold autoregressive (SETAR) and 

the exponential autoregressive (EAR) models. Markov-switching models imply a 

sharp regime switch, and therefore a small number (usually two) of regimes. This 

assumption is too restrictive compared to the STAR models. Two interpretations of a 

STAR model are possible. On the one hand, the STAR model can be seen as a 

regime-switching model that allows for two regimes where the transition from one 

regime to the other is smooth. On the other hand, the STAR model can be said to 

allow for a continuum of states between the two extremes (Teräsvirta, 1998).  

The main advantage in favour of STAR models is that changes in economic 

aggregates are influenced by changes in the behaviour of many different agents and it 

is highly unlikely that all agents react simultaneously to a given economic signal. In 

financial markets, for example, with a large number of investors, each switching at 

different times (probably due to heterogeneous objectives), a smooth transition or a 

continuum of states between the extremes appears more realistic. According to Peters 
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(1994) heterogeneity in investors’ objectives arises from different investment 

horizons, geographical locations and various types of risk profiles. Further, investors 

may be prone to different degrees of institutional inertia (dependent, for example, on 

the efficiency of the stock markets in which they operate) and so adjust with different 

time lags. Thus, when considering aggregate economic series, the time path of any 

structural change is liable to be better captured by a model whose dynamics undergo 

gradual, rather than instantaneous adjustment between regimes. The STAR models 

allow for exactly this kind of gradual change whilst being flexible enough that the 

conventional change arises as a special case. 

So far, the STAR models have mainly been applied to macroeconomic time 

series. For example, Granger and Teräsvirta (1993) use then to analyse a non-linear 

relationship between US GNP growth and leading indicators. Öcal and Osborn (2000) 

employ STAR models to investigate non-linearities in UK consumption and industrial 

production. Skalin and Teräsvirta (1999) use this technique to examine Swedish 

business cycles. Applications in other areas such as finance is another challenging 

new area. To my best knowledge, there are not very many applications in the finance 

literature. McMillan (2001) applies multivariate STAR models to the US stock 

market. Particularly, he examines the non-linear relationship between stock returns 

and business cycle variables. Lundbergh and Teräsvirta (1998) introduce the 

univariate STAR-STGARCH model, which is a generalization of the STAR and 

GARCH type specifications. This model allows plenty of scope for explaining 

asymmetries in both conditional moments of the underlying process. The authors 

suggest this model for applications to high frequency financial data. Other 

applications of STAR models in the finance literature include Sarantis (1999, 2001) 

and Franses and van Dijk (2000). 

The organization of this paper is as follows: Section 2 describes the STAR-

type models and shows that they possess desirable features for modelling stock 

market returns. Section 3 discusses procedures used for specifying, estimating and 

evaluating such models. In Section 4, reports results of fitting multivariate STAR 

models to quarterly UK stock market data, interpretation of the estimated models, 

discussion of findings and comparisons of forecasts. Finally a few concluding remarks 

are stated in Section 5. 
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2. Definition of smooth transition (auto)regressive models 
The 2-regime STAR model of order p  is defined as, 

             ttttt ucsFy +′+′= ),;()( 10 γwφwφ ,        ),0(~}{ 2σiidu t   (1) 

where ),;( csF t γ  is the transition function bounded by zero and unity and ts  is the 

transition variable (determined in practice). The parameter c  is the threshold and 

gives the location of the transition function, while γ  defines the slope of the 

transition function. In (1), ),...,,1( 1 ′= −− pttt yyw  is the vector of explanatory variables 

consisting of an intercept and the first p  lags of ty , and ),...,( 0000 ′≡ pφφφ  and 

),...,,( 1101 ′≡ pφφφ  are 1)1( ×+p parameter vectors. In the empirical results in 

Section 4, twφ 0′  and twφ 1′  are labelled Part 1 and Part 2, respectively. It is 

straightforward to extend the model and allow for ‘exogenous’ variables as additional 

regressors. In this case, the model is called smooth transition regression (STR) model 

(Teräsvirta, 1998). In the STAR model as discussed in Teräsvirta (1994), the 

transition variable is assumed to be the lagged dependent variable. In this work, 

however, the transition variable is allowed to be either a past value of the dependent 

variable or of an exogenous variable. 

One form of transition function used in the literature is, the logistic function 

            ( ) 1))(exp(1),;( −−−+= cscsF ttL γγ ,       0>γ    (2) 

where (1) and (2) yield the logistic ST(A)R. The logistic function is monotonically 

increasing in ts , with 0),;( →csF tL γ  as −∞→− )( cs t  and 1),;( →csF tL γ  as 

+∞→− )( cs t . In this work, the idea that there are two distinct regimes in financial 

markets is explored, namely bull markets and bear markets. In stock market 

terminology, bull (bear) market corresponds to periods of generally increasing 

(decreasing) market prices. Thus, bull (bear) markets are associated with periods 

when the returns are positive (negative). The LST(A)R specification can describe a 

situation where the bear markets (values of ),;( csF tL γ  ‘close’ to zero) and the bull 

markets (values of  ),;( csF tL γ  ‘close’ to unity) phases of financial markets may 

have different dynamics. The slope parameter indicates how rapid the transition from 

0 to 1 is as a function of ts  and c  determines where the transition occurs. When 
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∞→γ , ),;( csF tL γ  becomes a step function and the transition between the regimes 

is abrupt. In that case, the model approaches a (SE)TAR model (Tong, 1990).  

Monotonic transition might not always be successful in applications. The 

second function proposed by Teräsvirta and his co-authors is, the exponential function 

            ))(exp(1),;( 2cscsF tE −−−= γγ ,       0>γ    (3)   

where (1) and (3) give rise to the exponential ST(A)R. The EST(A)R model may be 

interpreted as a generalization of the earlier EAR model of Haggan and Ozaki (1981), 

the more restrictive EAR case obtained under 010==φc , that restriction making the 

EST(A)R model location invariant. The transition function is symmetric around c  

which makes the local dynamics the same for high and low values of ts , whereas the 

mid-range behaviour is different. When ∞→γ , then 1),;( →csF tE γ  except a 

narrow range of values around the threshold. Thus for large values of γ  it is difficult 

to distinguish an EST(A)R model from a linear one. It is not immediately obvious that 

the ESTAR model can capture stock market characteristics, since it would imply the 

same response to both bull and bear markets. It may be more appropriate for capturing 

distinctive responses to periods of ‘extreme’ (bull or bear) markets versus periods of 

more ‘normal’ markets. 

 

 

3. Modelling procedure 
The modelling procedure is based on that proposed by Teräsvirta and his co-authors 

mentioned in the introduction but more systematically uses grid search procedures for 

the selection of the appropriate transition variable in the spirit of Öcal and Osborn 

(2000). Another difference is that this work relies heavily on estimation of a linearised 

version of the ST(A)R model in which the transition function is fixed. The use of the 

linearised model speeds model specification and it is found this procedure to work 

well in practice. The modelling procedure consists of the following stages. 

 

3.1 Specification of the linear model and linearity tests 

Testing linearity against ST(A)R constitutes the first step of the modelling procedure. 

In order to test for linearity a linear model is first selected. The starting model 

includes 8 lags on all variables. A general-to-specific procedure is applied where the 
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least significant (if non-significant) variable at any lag is dropped at each stage and 

the reduced linear model is re-estimated. Teräsvirta suggests that the lag order of the 

model could be determined by an order selection criterion such as the Akaike criterion 

(AIC). The selected linear model obtained by the general-to-specific procedure and 

based on the AIC is assumed to form the null hypothesis for testing linearity. 

The problem of testing linearity against ST(A)R alternatives was addressed in 

Luukkonen, Saikkonen and Teräsvirta (1988). The test, to be referred as the particular 

LST(A)R linearity test can be obtained from the following auxiliary regression, 
*3

3
2

210 ttttttttt usssy +′+′+′+′= wβwβwβwβ         (4) 

Saikkonen and Luukkonen (1988) suggest testing linearity against EST(A)R 

alternative by using the auxiliary regression, 
*2

210 ttttttt ussy +′+′+′= wβwβwβ         (5) 

where (5) is a restricted version of (4). This test is referred as the particular EST(A)R 

linearity test. 

Teräsvirta (1994) suggests that the above tests can also be used to select the 

appropriate transition variable. The statistic in (4) or (5) is computed for several 

candidate transition variables and the one for which the p-value of the test is smallest 

(strongest rejection of linearity) is selected as the true transition variable. Teräsvirta 

also provides a heuristic justification for using these tests (using a sequence of tests of 

nested hypotheses) to make the decision about the choice between LST(A)R and 

EST(A)R. In the present work, however, the decision about the transition variable is 

based more systematically on the grid search procedure explained in next part. 

Further, both logistic and exponential versions of the model are estimated and the 

choice between them is made at the evaluation stage. 

It is also assumed that the transition variable is unknown and the test is carried 

out as general linearity test in the spirit of Luukkonen et al (1988). However, the test 

presented here is a more parsimonious version of their economy version test and 

involves an auxiliary regression where the squared and cubed terms (not the cross 

products) of all explanatory variables are added and jointly tested for significance. 

This test referred as the LST test is reported together with Ramsey’s RESET test 

based on squared and cubed fitted values. 
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3.2 Initial estimates and non-linear estimation  

Once linearity is rejected against ST(A)R, the second stage in the modelling cycle is 

to select the appropriate transition variable and proceed to estimate the parameters of 

the model. For each candidate transition variable, a two-dimensional grid search is 

carried out using at least 250 values of γ  (1 to 250 with the range extended if the 

minimizing value of γ  is close to 250) and 40 equally spaced values of c  within the 

observed range of the transition variable. Essentially, the transition variable series is 

ordered by value, extremes are ignored by omitting the most extreme 10 values at 

each end and 40 values are specified over the range of the remaining values. This 

procedure attempts guarantee to that the values of the transition function contain 

enough sample variation for each choice of γ  and c . The model with the minimum 

RSS value from the grid search procedure is used to provide the γ , c  and ts  for an 

initial estimate of the transition function. Note that the grid search procedure is carried 

out for both LST(A)R and EST(A)R specifications. Following Teräsvirta (1994) the 

exponent of the transition function is standardised by the sample standard deviation 

(LST(A)R model) or the sample variance (EST(A)R model) of the transition variable. 

This standardisation makes γ  scale-free and helps in determining a useful set of grid 

values for this parameter. 

Reducing the order of the model in the non-linear least squares (NLS) 

framework is obviously a computationally heavy procedure. However, there is 

another practical strategy one can follow. Note that giving fixed values to the 

parameters of the transition function makes the ST(A)R model linear in the remaining 

coefficients. The grid search mentioned above is used to obtain sensible initial values. 

Conditional on this transition function, the parameters of the ST(A)R model can be 

estimated by OLS and this model is called the linearised version of the ST(A)R 

model. To determine the order of the linear ST(A)R a general-to-specific procedure is 

followed and the selected model is based on the AIC criterion. The estimated 

coefficients from the linear ST(A)R along with the transition function parameters 

from the grid search are used as initial values in the non-linear estimation in the next 

stage. The preferred model is re-estimated (including the transition function 

parameters) by NLS in GAUSS using the Newton-Raphson algorithm and in RATS 

using the BHHH algorithm. However, the BHHH algorithm seems to be preferable in 
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practice1. After estimating the parameters of the ST(A)R, these are compared with 

those obtained from the linearised version since the latter is used for model 

specification. 

 

3.3 Evaluation of ST(A)R models  

The validity of the assumptions underlying the estimation must be investigated once 

the parameters of the STR models have been estimated. The Lagrange multiplier 

(LM) tests of Eitrheim and Teräsvirta (1996) are employed. As usual, the assumption 

of no error autocorrelation should be tested. Further, it is useful to find out whether or 

not there are non-linearities left in the process after fitting a STR model. That 

possibility is investigated by testing the hypothesis of no additive non-linearity 

against the alternative hypothesis that there is an additional STR component. Finally, 

the constancy of the parameters is tested against the hypothesis that the parameters 

change monotonically and smoothly over time. All the tests are carried out by 

auxiliary regressions. For details see Eitrheim and Teräsvirta (1996). Model 

evaluation also includes checking whether the estimates seem reasonable, and of 

course, checking the residuals for ARCH and normality. 

 

3.4 Forecasting 

Comparison of the forecasts from a ST(A)R model with those from a benchmark 

linear model determines the added value of the non-linear features of the model. In 

this study, one-step-ahead forecasts are considered over the 1990:Q1-1999:Q3 and 

1997:Q1-1999:Q3 periods, with the latter being a true out-of-sample comparison. The 

forecasts are generated as follows. After generating a first one-step ahead forecast for 

the first period, one observation is added, the estimates of the equation are updated 

and a second one-step ahead forecast for the second period is produced, and this is 

continued until the end of the sample. 

The forecasts are evaluated according to three criteria, namely the Root Mean 

Square Error (RMSE), the Mean Absolute Error (MAE) values and the Direction-of-

Change criterion. Simply comparing the values of RMSE or MAE does not give us 

                                                           
1 The GAUSS program produces extremely small standard errors for the estimated parameters, which 
yields enormous t-ratios. On the other hand, the standard errors obtained from RATS are reasonable 
and close to those obtained from the linear estimation of ST(A)R. For this reason, only the RATS 
results are presented. 
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any idea of the significance of the difference. Therefore, the Diebold and Mariano 

(1995) (DM) predictive accuracy tests are reported, based on the squared prediction 

errors. In both cases, the null hypothesis is that there is no significant difference in the 

accuracy of the competing linear and ST(A)R models. The RMSE and MAE values 

for the competing models conditioning on being in a particular regime are also 

presented. That is, the forecasts are grouped depending on whether the transition 

function of the ST(A)R model is larger (bull markets) or smaller (bear markets) than 

0.5. The direction of change results reports the number of times where positive or 

negative stock returns are correctly indicated by the forecast (Total), along with the 

number of times positive and negative returns, separately are correctly indicated by 

the models (y>0 and y≤0, respectively). The conditional forecasts and the directional 

change criterion are of particular interest since recent empirical studies have indicated 

that the forecast performance of regime-switching models depends on the regime in 

which the forecast is made (see for example, Pesaran and Potter, 1997 and Clements 

and Smith, 1999). Further, the directional change criterion can be particularly relevant 

for asset returns as investors may be more interested in accurate forecasts of the 

direction in which the stock market is moving than in the exact magnitude of the 

change. For this purpose, the Pesaran and Timmermann (1992) (PT) nonparametric 

test for a comparison between the direction of change results is reported, with the null 

hypothesis that each set of forecasts and the actual values are independently 

distributed2. 

 

 

4. Empirical results 
This section presents three empirical applications of STR models and provides 

evidence on modelling UK stock prices non-linearities in a multivariate framework. 

Many recent studies conclude that stock returns can be predicted by time series data 

on economic variables; see Fama (1981, 1990), Campbell (1987), Schwert (1990), 

Black and Fraser (1995), Clare and Thomas (1992) and Pesaran and Timmermann 

(1995, 2000) among others. Further, in the Ph.D. thesis of the author it is also argued 

that financial and macroeconomic variables can characterize the evolution of UK 

                                                           
2 Because of the small forecast sample size in 1997-1999, the Diebold-Mariano, Pesaran-Timmermann 
tests as well as the conditional forecasts are computed only for the 1990-1999 period. 
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stock market returns. For example, the US Standard & Poor’s 500 (S&P-500) index 

appears to be the most significant among various economic variables considered. We 

also find a role for the UK economic activity, interest rates, inflation and money 

supply in predicting UK stock prices. 

To represent the UK stock market, the Financial Times (FT) Actuaries All 

Share Index is considered. For parsimony, two explanatory variables are initially 

employed. On the one hand, Gross Domestic Product represents UK economic 

activity, whereas on the other hand, S&P-500 is representative of the US stock 

market. Next the logistic specification is extended to include UK short-term interest 

rates, inflation and broad money supply. In detail, the series considered are the 

nominal Financial Times (FT) Actuaries All Share Index (10 April 1962=100), 

seasonally adjusted GDP in constant prices, nominal Treasury Bills 3-month yield 

(TBY), Retail Price Index: All Items (1985=100) (RPI), seasonally adjusted Money 

Stock M4 (M4) and nominal US S&P-500 Composite Price Index (SP). The data, 

obtained from Office of National Statistics and Datastream, are quarterly since it is 

such medium term movements that may best reflect the impact of underlying 

economic and financial factors on the stock market.  All variables employed are used 

in the form of first differences of the logarithms, except GDP and M4, which are 

transformed to D4DLnGDP (difference over 4 quarters of DLnGDP) and D6DLnM4 

(difference over 6 quarters of DLnM4), respectively; these transformations are 

strongly supported by the data. The FT series is shown in Graph 1. In general, mid 

1970s has been more turbulent than the remaining parts of the series. An exception to 

this rule is the stock market crash in October 1987. We use the series up to 1996:Q4 

for estimation and testing and allow for a maximum of 8max=p  lagged first 

differences, such that effective estimation sample runs from 1967:Q2 until 1996:Q4 

(119 observations). 

 

4.1 Specification and estimation results 

The starting point is a fully parameterized linear model allowing for a maximum order 

of 8 lags on DLnFT, D4DLnGDP and DLnSP. The selected AIC model obtained by 

the general-to-specific methodology is reported in the first column of Table 3. The 

diagnostics suggest the absence of ARCH components and serial correlation. It is not 

straightforward to interpret the estimated coefficients. In particular, the model implies 
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negative endogenous effect after five and six quarters, positive after eight quarters, 

but negative overall. Next, the relationship of DLnFT with D4DLnGDP is of 

particular interest. It is seen that the nature of the effects of D4DLnGDP depends on 

the specific lag. Economic activity has positive effect after two and three quarters, but 

negative after a year. An expected result is that the DLnSP_1 variable, which is the 

most significant, is positively associated with DLnFT. The model is estimated to have 

a positive intercept, 022.0ˆ
00=φ , and is able to explain 37% of the variation in the 

dependent variable. 

The next stage is to test linearity against general and particular non-linearity. 

The linearity tests are displayed in Table 1, while Table 2 reports the grid search 

results. Note that the p-value (0.016) of the LST test indicates that linearity can be 

rejected. In particular linearity tests, the null is rejected in five out of eight cases. The 

strongest evidence of LSTR non-linearity occurs when D4DLnGDP_5 is used as the 

transition variable, while the lowest ESTR non-linearity p-values correspond to 

D4DLnGDP_5 or DLnFT_6. Admittedly, the statistical evidence of non-linearity is 

quite strong. 

Based on the decision rule of the procedure of Teräsvirta (1994), the linearity 

tests suggest that D4DLnGDP_5 is the most appropriate of all potential transition 

variables in the case of LSTR. The grid search results, however, show that RSS is 

minimized when DLnSP_1 is considered as the switching variable. This finding 

contradicts the particular linearity test (p-value is 0.246). On the other hand, the 

inference about DLnFT_6 suggested by the particular ESTR non-linearity test is 

consistent with that implied by the grid search procedure. 

The 2-regime AIC STR models are presented in the second and third columns 

of Table 3, while the corresponding linear STR specifications are shown in Table I in 

the Appendix. It turns out that the estimated parameters are close to those obtained 

from the grid search and the linear estimation of STR. Here, however, it should be 

said that the estimation of the slope parameter Lγ  causes a lot of problems. In 

particular, joint estimation of all parameters does not work. To facilitate the 

estimation, the initial value of Lγ  is lowered down to 40, but convergence is still not 

reached. In such a case, the recommendation of Eitrheim and Teräsvirta (1996) is 

followed by fixing Lγ  at a sufficient large value to get a step-shape transition 

function and estimate the remaining parameters of the model. 
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Both the LSTR and ESTR equations contain restrictions of the form 

jj 10 φφ −= , which are strongly suggested by the data. This means that the 

corresponding variables operate only when 0=F  or in the transition between the 

extremes. There are a few insignificant variables, but removing them has an adverse 

effect on the fit. According to the diagnostics, the STR models form statistically 

adequate representations of the data since there is no sign of model inadequacy. A 

comparison between the two versions of the model shows that the LSTR can account 

for the leptokurtosis more adequately than the ESTR and is preferable according to 

the 2R  value. However, as measured by the σ, AIC and SBC values, the ESTR model 

represents better the dynamics of the underlying series. 

Graphs 2-3 display the transition functions. The estimated slope parameter 

values for each model imply very different dynamics around the threshold parameters. 

According to the first model, the large value of the slope parameter implies almost 

instantaneous switch and consequently, the LSTR approaches very well a TAR 

model. This can also be seen in the second panel of Graph 2, where the transition 

function fluctuates only between zero and one; there are no intermediate values. The 

value of 003.0ˆ −=Lc  indicates approximately halfway point between the extremes. 

Thus, two UK stock market regimes can be identified, which are associated with 

negative and positive values of DLnSP_1. 

Different patterns are evident from the ESTR model where the small value of 

the switching parameter 668.1ˆ =Eγ  implies that the “inner” regime and its associated 

coefficients apply over a relatively wide range of values. Actually, this can also be 

seen in the graph of the exponential function over time where a lot of the sample lies 

within the intermediate transition phase implying a smooth switch from one regime to 

other. Notice also that with few observations far beyond and to the left of the location 

parameter, we may have a situation where only the right side of EF  matters 

(Teräsvirta, 1994, Öcal and Osborn, 2000). Thus, in practice, this ESTR model 

behaves very similar to an LSTR one and a smooth transition from one regime to the 

other occurs for values of DLnFT_6 around zero. In such a case, EF  around zero can 

be associated with bear markets, and EF  close to one the bull market regime. In other 

words, EF  is effectively operating as one-sided exponential function.  
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From the information shown in Table 3 it can be seen that the STR 

specifications make a contribution in explaining FT returns over the linear model. The 

AIC and SBC values decrease while in terms of 2R  and σ the improvement is 14% 

and 11 percentage points, respectively. In the LSTR model, the implication of the 

estimated coefficients is that US bear markets are associated with an intercept, 

053.0ˆ
00=φ , while US bull markets imply an intercept 009.0ˆˆ

1000 −=+φφ  (effectively 

zero) for FT returns. At the extremes, the LSTR model implies, when 1=LF : 

DLnFT = - 0.009 - 0.095DLnFT_5 - 0.128DLnFT_6 + 0.198DLnFT_8+ 

0.791DLnSP_1 - 1.644D4DLnGDP_5 + u   

and when 0=LF : 

DLnFT = 0.053 - 0.095DLnFT_5 - 0.128DLnFT_6 + 0.791DLnSP_1 + 

1.456D4DLnGDP_2 + 2.938D4DLnGDP_3 - 1.955D4DLnGDP_7 + u   

It is seen that for increases in SP_1, the model implies negative D4DLnGDP effect on 

DLnFT whereas decreases in SP_1 lead to a different model with positive and richer 

overall D4DLnGDP effects. As anticipated, the (invariant) coefficient on DLnSP_1 is 

positive. 

On the other hand, at the extremes the ESTR model implies, when 1=EF : 

DLnFT = 0.011 - 0.190DLnFT_5 + 0.139DLnFT_8 + 0.454DLnSP_1 + u  

and when 0=LF : 

DLnFT = 0.049 - 0.190DLnFT_5 + 0.139DLnFT_8 + 0.454DLnSP_1 + 

3.604D4DLnGDP_2 + 2.575D4DLnGDP_3 – 2.174D4DLnGDP_5 - 

3.245D4DLnGDP_7 + u 

Asymmetry is implied by the ‘low’ phase (decreases in FT_6), which is associated 

with richer GDP dynamics than those of the ‘upper’ phase; the D4DLnGDP variables 

come into effect only when 0=EF  and between the extremes. This means that when 

the UK market falls, economic activity comes into play and contributes to rises in the 

stock market. 

Next, an interesting LSTR model is presented, which has richer explanatory 

dynamics than those considered previously. It can be seen as an extension of the 

LSTR model. Basically, the logistic specification is of particular interest since it is 
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found that the US stock market drives FT regimes. In the ESTR model, on the other 

hand, the regimes are associated with endogenous dynamics. The starting LSTR 

equation includes the following variables in both parts of the model: DLnFT_2, 

DLnFT_3, D4DLnGDP_3, DLnTBY_1, DLnSP_1, DLnRPI_2 and D6DLnM4_1. 

These variables and their particular lags are chosen on the base of the accumulated 

evidence found in preliminary work based to general-to-specific procedure outlined 

before. 

Table 4 reports the final model selected by the minimized AIC value3. The 

OLS based model is reported in Table II in the Appendix. Although, not supported by 

the grid search results (D6DLnM4_1 appears as the most appropriate transition 

variable), we assume in advance that DLnSP_1 acts as the switching variable. This 

way is followed to connect the extended LSTR (labelled LSTR2) model with the 

previous LSTR specification. The estimated model appears quite representative of the 

data as suggested by the diagnostic tests. There are, however, some hints of additional 

non-linearity associated with DLnFT_2, but it is not very strong and given the number 

of tests it does not cause much concern. 

The estimated transition function implied for the model is plotted in Graph 4. 

Interestingly, the transition function has almost the same estimated location parameter 

( 006.0ˆ −=Lc ) as the LSTR specification in Table 3. It is effectively centered at zero, 

hence implying that increases and decreases in SP_1 might have asymmetric effects 

on FT returns. As to the estimated slope parameter value, this is greatly affected from 

the re-specification of the model. The switch from one FT regime to the other is less 

steep compared with the previous model (i.e. 82.12ˆ =Lγ ). 

The novel finding here is that increases and decreases in the New York market 

have distinct impacts on the London stock exchange. In particular, the interaction 

term between the transition function and DLnSP_1 has a positive coefficient of 0.389, 

implying that increases in SP_1 have an effect of greater magnitude than decreases. 

Another implication is that D4DLnGDP_3 and D6DLnM4_1 provide information 

only when 0=LF  and in the transition period between the extremes. In other words, 

when the New York market rises, this dominates other effects and pulls up the 

London market in its wake, with this operating almost irrespective of what is 

                                                           
3 To economise on space I do not report results for the corresponding linear model and linearity tests. 
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happening within the UK economy; note that DLnRPI_2 has an effect when 1=LF . 

However, when the New York market falls, domestic factors come into play and the 

effect of movements in New York is muted. In this latter case, acceleration of UK 

output or money contribute to rises in the stock market, while increases in interest 

rates point towards falls in stock market prices.  

It is also interesting to notice that in general the sign of the coefficients of the 

explanatory variables is consistent with findings in the literature. Particularly, 

DLnTBY_1 and DLnRPI_2 enter with negative coefficients and this supports Fama 

(1981), Breen, Glosten and Jagannathan (1989) and Pesaran and Timmermann (1995, 

2000). We also find a positive effect for D4DLnGDP_3. This result is consistent with 

the belief that changes in output, which affect expected future cash flows, have a 

positive effect on stock prices (Fama, 1990). As to the money supply, Pesaran and 

Timmermann (2000) find a negative association between UK money supply and stock 

prices. However, monetary growth may provide a stimulus to economic growth, 

which is likely to increase stock prices. Thus, the positive effect of D6DLnM4_1 is 

expected. 

 

4.2 Forecasting comparisons 

The forecasting results are reported in Table 5. The post-sample period forecasts 

suggest that the best model is the LSTR in terms of RMSE and MAE. In terms of 

directional changes the LSTR, LSTR2 and linear equations deliver similar accuracy 

forecasts, correctly predicting the sign of FT returns in 10 out of 11 quarters. It is 

perhaps striking the bad performance of the LSTR2 model in terms of RMSE and 

MAE criteria (more than 30% larger than those obtained from the LSTR model). On 

the other hand, according to the 1990:Q1-1999:Q3 forecast period results, the linear 

model beats all corresponding non-linear versions. The linear model provides the 

smallest RMSE and MAE values, with approximately 21 percentage points gain over 

the ESTR specification (the worst model). However, the p-value of the DM test 

suggests that there is no significant difference between the forecasting ability of STR 

models and the linear model. In terms of directional changes, the best models are the 

linear and the LSTR2 specifications. As to the PS test the null hypothesis that the 

forecasts and actual values are independent is rejected, which implies good predictive 
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performance for all models4. As to the conditional forecasts, Table 5 shows that the 

linear model (surprisingly perhaps) appears statistically more adequate than the STR 

models with the latter performing particularly bad during bear markets (for example, 

the RMSE and MAE values of ESTR are more than 40% higher than those obtained 

from the linear model). Overall, the forecasting results are not in agreement with the 

statistical adequacy of the non-linear models shown in the previous part. In the 

financial literature, this finding can be compared and contrasted with the mixed 

results in McMillan (2001) or the evidence of forecast gains from STAR models 

found in Sarantis (2001). 

 

 

5. Conclusions 

The empirical results of this paper can be summarized as follows: Acceptable STR 

models for UK stock market returns are estimated where the linearity hypothesis is 

strongly rejected. The STR models describe the in-sample movements of the FT series 

better than the linear model. Nevertheless, the STR cannot improve over the linear 

model in terms of forecasting. It, thus, remains an avenue of further research to see if 

more sophisticated STR models or applications in other series can provide a better 

forecasting performance. The estimates of the slope parameters indicate that the speed 

of the transition from one regime to the other is rather smooth, except the LSTR case. 

This is in contrast to the simple threshold models, which assume a sharp switch. The 

US stock market appears to play an important role in determining FT regimes, which 

reflects strong interdependence between UK and US stock markets. Overall this study 

has shown that there are financial and macroeconomic variables, which contain 

predictive information for stock returns in a non-linear framework. This complements 

the results in McMillan (2001) who provide evidence of STR predictability of stock 

returns by using mainly interest rates. Some other extensions that could build on the 

results of this study are given below.  

 First, the ST(A)R-(ST)GARCH models, which model both conditional 

moments, form promising specifications in modelling mainly high frequency series. 

Therefore, more research and applications are needed to investigate the properties of 

such models.  

                                                           
4 Note that for the linear and LSTR2 models the rejections are strong. 
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 Second, the STR models considered in study are single-equation models. In 

principle, the idea of smooth transition can be extended to systems of equations. To 

our knowledge, there is yet rather little empirical experience available of vector STR 

models (see van Dijk, Teräsvirta and Franses (2000) and references within). We 

believe that developing vector STR specifications is a very important area of further 

research. 

 Finally, extensions to allow for the transition variable to be a function of 

explanatory variables and applications in other series also seem interesting areas of 

future research. 
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Graph 1: Quarterly observations on the log-level (upper panel) and returns (lower panel) of the UK 
FT series, 1963:Q2-1999:Q3. 
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Graph 2: Logistic function of LSTR model versus DLnSP_1 (upper panel) and over time (lower 
panel).  
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Graph 3: Exponential function of ESTR model versus DLnFT_6 (upper panel) and over time (lower 
panel).  
 
 
 

-.2 -.15 -.1 -.05 0 .05 .1 .15 .2

.5

1

1970 1975 1980 1985 1990 1995

.5

1

 
 
Graph 4 Logistic function of extended LSTR2 model versus DLnSP_1 (upper panel) and over time 
(lower panel).  
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         Table 1: Linearity tests: Linear model versus STR models.  
 
General linearity 
tests 

   

 RESET        0.393  
 LST        0.016  
   
Particular  linearity 
tests 

  

 Transition variable           LSTR non-linearity                              ESTR non-linearity                     
 DLnFT_5                   0.185                 0.141 
 DLnFT_6                   0.062                 0.006 
 DLnFT_8                   0.011                 0.095 
 DLnSP_1                   0.246                 0.184 
 D4DLnGDP_2                   0.028*                 0.028 
 D4DLnGDP_3                   0.013*                 0.013 
 D4DLnGDP_5                   0.006*                 0.006 
 D4DLnGDP_7                   0.039*                 0.039 
   

Notes: p-values of the F-variants of the LM-tests for STR type non-linearity using the preferred linear 
specification as a base model; the selection of the linear model is made using the AIC criterion; the transition 
variable in the particular non-linearity tests is assumed known; the asterisk (*) indicates that in these tests, the 
cubed terms are omitted from the regressors of the auxiliary regressions since they are very small and create 
near singularity of the moment matrix, omitting them does not affect the properties of the test statistics. 

 
 
 
 
 
 

           Table 2: Grid search results for the specification of the 2-regime STR models.  
 
                         LSTR                         ESTR 

    ts        γ        c       RSS      γ        c      RSS 

 
 DLnFT_5 
 DLnFT_6 
 DLnFT_8 
 DLnSP_1 
 D4DLnGDP_2 
 D4DLnGDP_3 
 D4DLnGDP_5 
 D4DLnGDP_7 
 

 
    950 
     63 
     50 
    950 
       1 
    950 
       8 
    950 
   

 
   -0.065 
   -0.005 
   -0.070 
   -0.004 
   -0.015 
    0.019 
   -0.015 
   -0.015 
  

 
    0.4772 
    0.5039 
    0.5147 
    0.4742 
    0.4977 
    0.4916 
    0.4749 
    0.5245 
    

 
       8 
       2 
       5 
       4 
       1 
       1 
       1 
    100 
   

 
   -0.098 
   -0.049 
   -0.081 
   -0.069 
    0.019 
   -0.015 
   -0.004 
   -0.007 
  

 
   0.4997 
   0.4813 
   0.4887 
   0.4925 
   0.5372 
   0.5341 
   0.5433 
   0.5142 
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           Table 3: Linear and 2-regime STR models.  
 

       Linear                  LSTR              ESTR 
 Variable            Part 1              Part 2                Part 1               Part 2 

 Con 
 
 DLnFT_5    
         
 DLnFT_6 
 
 DLnFT_8 
 
 DLnSP_1 
 
 D4DLnGDP_2 
 
 D4DLnGDP_3 
 
 D4DLnGDP_5 
 
 D4DLnGDP_7 
 

       0.022 
      (2.748)         
      -0.202 
     (-2.490) 
      -0.178 
     (-2.166) 
       0.169 
      (2.117) 
       0.497 
      (5.030) 
       0.935 
      (1.879) 
       1.823 
      (3.178)  
      -1.026 
     (-2.069) 
      -0.958 
     (-1.751) 
 

      0.053              -0.062        
    [ 3.948]           [-2.826]    
     -0.095              
    [-1.285] 
     -0.128                
    [-1.734]             
                              0.198 
                             [2.117] 
      0.791                                          
     [4.522]                    
      1.456              -1.456      
     [2.244]            [-2.244] 
      2.938              -2.938                
     [2.880]           [-2.880] 
                             -1.644 
                            [-2.892] 
     -1.955               1.955 
    [-2.432]            [2.432] 
 

     0.049              -0.038 
    [3.079]            [-1.919] 
    -0.190 
   [-2.609] 
 
 
     0.139 
    [1.922] 
     0.454 
    [4.969] 
     3.604              -3.604 
    [3.606]           [-3.606] 
     2.575              -2.575 
    [2.527]           [-2.527] 
    -2.174              2.174 
   [-2.789]           [2.789] 
    -3.245              3.245 
   [-3.010]           [3.010] 

 ts   /  γ   /  c     DLnSP_1 / 40 / -0.003 
                         [-0.043] 

DLnFT_6 /  1.668   /  -0.057 
                  [1.861]  [-4.246] 
          

 AIC / SBC 
 R-sq / σ 
 Diagnostics 
 Skewness   
 Ex kurtosis 
 Normality  
 ARCH(4) 
 Autocorrelation(4) 
 Non-linearity 
  DLnFT_5   
  DLnFT_6  
  DLnFT_8  
  DLnSP_1  
  D4DLnGDP_2   
  D4DLnGDP_3  
  D4DLnGDP_5  
  D4DLnGDP_7  
 Constancy 
  All  
  Intercept 
  Both intercepts 
  

 -5.085 / -4.875  
0.3688 / 0.0759 
 
     -0.220  
      1.584 
      0.001  
      0.220 
      0.779 
 
 
 
 
 
 
 
 
 
 
      0.670  
      0.796 

           -5.289 / -5.009 
          0.5107 / 0.0677 
 
                -0.256  
                 1.181 
                 0.017  
                 0.762 
                 0.881 
 
                 0.615  
                 0.286  
                 0.288  
                 0.725  
                 0.092  
                 0.079  
                 0.547  
                 0.780   
            
                 0.167 
                 0.417 
                 0.648 

           -5.305 / -5.048 
          0.5099 / 0.0675 
 
                 -0.812  
                  2.008 
                  0.000  
                  0.919 
                  0.985 
 
                  0.885  
                  0.713  
                  0.202  
                  0.812  
                  0.119  
                  0.186   
                  0.570  
                  0.756  
                               
                  0.179  
                  0.674 
                  0.731 

Notes: Estimation period 1967:Q2-1996:Q4; the STR models are estimated by BHHH RATS algorithm; values in 
parentheses are t-ratios; diagnostic test results are presented as p-values; AIC and SBC are the Akaike and Schwarz 
Information Criteria values based on RSS; R-sq is the usual coefficient of determination; σ is the estimate of the residual 
standard deviation adjusted for degrees of freedom; skewness and ex. kurtosis are measured by conventional test statistics; 
normality refers to the test of Jarque and Bera (1980) for linear models, and to that of Lomnicki (1961) and Jarque and Bera 
(1980) for non-linear models; ARCH(4) is the LM test of Engle (1982) and considers ARCH effects of order 4; 
autocorrelation(4) is the LM test of residual autocorrelation of Godfrey (1978) and of Eitrheim and Teräsvirta (1996) for 
linear and non-linear models, respectively; non-linearity (not ignoring “holes”) and constancy tests are the LM tests of 
Eitrheim and Teräsvirta (1996), the alternative to constancy is that the parameters change monotonically; the LSTR model 
has been estimated using a fixed value of γ̂ =40 because the algorithm does not converge otherwise; see text for details; in 
this model the misspecification tests have been computed by omitting the partial derivatives with respect to the transition 
function parameters from the auxiliary regressions since they render the moment matrix near-singular; see Eitrheim and 
Teräsvirta (1996) for details. 
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         Table 4: Extended 2-regime LSTR model. 
 

                      LSTR2 
 Variable           Part 1                     Part 2      

 Con 
 
 DLnFT_2    
         
 DLnFT_3 
 
 D4DLnGDP_3 
 
 DLnTBY_1 
 
 DLnSP_1 
 
 DLnRPI_2 
 
 D6DLnM4_1 
 
 

          0.027 
         [2.230] 
         -0.179 
        [-2.325] 
 
 
          3.926                      -3.926 

[5.725]                   [-5.725] 
-0.105 

        [-2.138] 
          0.293                      0.389 

          [1.558]                    [1.358] 
                                        -1.408 
                                       [-2.281] 
          2.214                      -2.214 
         [2.245]                   [-2.245] 

 ts   /  γ   /  c           DLnSP_1 / 12.82 / -0.006 
                         [0.892] [-0.661] 

 
 AIC / SBC 
 R-sq / σ 
 Diagnostics 
 Skewness  
 Ex kurtosis 
 Normality  
 ARCH(4) 
 Autocorelation(4) 
 Non-linearity 
  DLnFT_2   
  DLnFT_3  
  D4DLnGDP_3   
  DLnTBY_1  
  DLnSP_1  
  DLnRPI_2  
  D6DLnM4_1   
 Constancy 
  All  
  Intercept 

                   -5.220 / -4.986 
                  0.4574 / 0.0707 
 
                        -0.173  
                         1.277 
                         0.013  
                         0.430 
                         0.890 
 
                         0.019 
                         0.062 
                         0.462 
                         0.972 
                         0.447 
                         0.674 
                         0.658    
 
                         0.306 
                         0.240 
 

Notes: Estimation period 1967:Q2-1996:Q4; the model is estimated by BHHH RATS 
algorithm; see notes of Table 3 for information about the statistics reported in table. 
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Table 5: Forecast performance.  
 

Measurements      Linear                 LSTR               LSTR2              ESTR           
     
Forecast period: 1997:Q1-1999:Q3     
 RMSE       0.0340          0.0309      0.0442    0.0355 
 MAE       0.0266        0.0245      0.0358    0.0278 
 Direction-of-Change 
  Total 
  y > 0 
  y ≤ 0  

        
       10/11 
         8/8 
         2/3 

 
        10/11 
          8/8 
          2/3 

 
      10/11 
        8/8 
        2/3 

 
     9/11 
      8/8 
      1/3 

     
Forecast period: 1990:Q1-1999:Q3     
Unconditional     
 RMSE       0.0405          0.0487      0.0454    0.0511 
 MAE       0.0322        0.0365      0.0343    0.0385 
 DM          0.412         0.413     0.395 
 Direction-of-Change 
  Total 
  y > 0 
  y ≤ 0  

        
       31/39 
       27/28 
        4/11 

 
        30/39 
        26/28 
         4/11 

 
     31/39               
     27/28  
      4/11 

 
    29/39 
    26/28 
     3/11 

 PT        0.003         0.011      0.003        0.043 
     
Forecast period: 1990:Q1-1999:Q3     
Conditional 1: LSTR vs Linear       LSTR       Linear   
 Bull markets F>0.5 (29 obs)     
 RMSE       0.0417         0.0379     
 MAE       0.0320         0.0304     
 Bear markets F<0.5 (10 obs)     
 RMSE       0.0649         0.0471     
 MAE       0.0493         0.0372     
     
Forecast period: 1990:Q1-1999:Q3     
Conditional 2: LSTR2 vs Linear       LSTR2       Linear   
 Bull markets F>0.5 (32 obs)     
 RMSE       0.0419         0.0395     
 MAE       0.0326         0.0322     
 Bear markets F<0.5 (7 obs)     
 RMSE       0.0588         0.0445     
 MAE       0.0421         0.0322     
     
Forecast period: 1990:Q1-1999:Q3     
Conditional 3: ESTR vs Linear       ESTR       Linear   
 Bull markets F>0.5 (27 obs)     
 RMSE       0.0417         0.0414     
 MAE       0.0308         0.0310     
 Bear markets F<0.5 (12 obs)     
 RMSE       0.0676         0.0384     
 MAE       0.0558         0.0347     

Notes: Forecast evaluation of linear, LSTR, LSTR2 and ESTR models; one-step ahead forecasts; RMSE = Root 
mean square error; MAE = mean absolute error; the row headed DM contains the p-value of the statistic of Diebold 
and Mariano (1995) test; this test is based on the squared prediction errors of STR vs linear model; the p-value of 
the DM statistic comes from the standard normal distribution; the row headed PT contains the p-value of the 
statistic of Pesaran and Timmermann (1992) test; this statistic is asymptotically normal; in the directional forecasts 
the first value gives the number of correct forecasts whereas the second value gives the number of observations; 
bull (bear) markets relate to forecasts for the which the value of the transition function in each STR is larger 
(smaller) than 0.5 at the forecast origin. 
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                                     APPENDIX 
  
 

        Linear LSTR        Linear ESTR 
 Variable        Part 1         Part 2        Part 1         Part 2 

 Con 
 
 DLnFT_5    
         
 DLnFT_6 
 
 DLnFT_8 
 
 DLnSP_1 
 
 D4DLnGDP_2 
 
 D4DLnGDP_3 
 
 D4DLnGDP_5 
 
 D4DLnGDP_7 
 
 

       0.053        -0.057 
      (4.030)     (-2.802) 
      -0.120 
     (-1.618) 
      -0.136         
     (-1.779)      
                         0.202 
                        (2.075) 
       0.722 
      (5.294)                  
       1.538        -1.294 
      (2.535)      (-1.501) 
       2.272        -2.116 
      (2.824)      (-2.090) 
                        -1.669 
                       (-2.958) 
      -2.050         1.998 
     (-2.635)      (1.972) 

       0.049        -0.036  
      (3.111)     (-1.823) 
      -0.186          
     (-2.556)      
                    
                    
       0.131                       
      (1.770)       
       0.453        
      (4.832)     
       4.064        -4.571  
      (4.100)     (-3.666) 
       2.640        -2.686  
      (2.563)     (-1.976) 
      -2.260         2.259 
     (-2.858)      (2.069) 
      -3.172         2.890 
     (-2.933)      (2.137) 

 ts / γ  / c  DLnSP_1 / 950 / -0.004 
 
                

    DLnFT_6 / 2 / -0.049      
                

 
 
 

              Linear LSTR2 
 Variable              Part 1              Part 2   

 Con 
 
 DLnFT_2    
         
 DLnFT_3 
 
 D4DLnGDP_3 
 
 DLnTBY_1 
 
 DLnSP_1 
 
 DLnRPI_2 
 
 D6DLnM4_1 
 

             0.026 
            (2.271) 
            -0.191 
           (-2.475) 
                                
 
             3.938              -4.577  
           (5.973)           (-4.846) 
           -0.101     
           (-2.055) 
             0.284              0.423 
           (1.527)            (1.487) 
                                   -1.507 
                                  (-2.410) 

2.233 -1.817 
           (2.334)           (-1.598) 
                     

 ts / γ  / c         DLnSP_1 / 10 / -0.004 
 
                

 
Table I & II: 2-regime linear STR models; the models are estimated by OLS; estimation 
period 1967:Q2-1996:Q4; values in parentheses are t-ratios.  

 
 
 
 


