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Abstract 
 
     This paper studies the problem of a company which expands its stochastic 

production capacity in irreversible investments by purchasing capital and faces both 

fixed and proportional costs. The objective of the company is to find optimal 

production decisions to maximize its expected total net profit in an infinite horizon. 

We solve this problem explicitly by applying the theory of stochastic impulse 

controls. 
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1. Introduction 
 
     This paper examines the problem of a company that aims to expand its stochastic 

production capacity. Investments in capital for expanding capacity are irreversible in 

the sense that the company cannot recover the investment by reducing capacity. The 

company faces fixed and proportional costs for purchasing capital and aims to 

maximize its expected discounted profits over an infinite horizon.  

     Dixit and Pindick (1994) provide a review of similar investment problems. Davis 

et al. (1987) where among the first ones to address the issue of optimally determining 

the timing and size of capacity increases that can be associated with the operation of 

an investment project in the presence of random economic fluctuations. Kobila (1993) 

analyzed a model with deterministic capacity in an uncertain market without 

transaction costs on buying capital. Chiarolla and Haussmann (2003) studied an 

irreversible investment model in a finite horizon and obtained an explicit solution for 

a power type production function. Other important contributions include Oksendal 

(2000), Wang (2003) and Bank (2005). Capacity expansion models in which the 

installed capacity level can be reduced as well as increased, that is reversible capacity 

expansion models have been examined by Abel and Eberly (1996) and Guo and Pham 

(2005).   

     The presence of fixed costs for purchasing capital requires stochastic impulse 

control techniques for solving the problem. Here, we adopt the methodological 

framework presented in Cadenillas and Zapatero (1999), which characterizes the 

value function as a solution to a system of quasi-variational inequalities (see also 

Cadenillas, 1999, Suzuki and Pliska, 2004, Cadenillas et al., 2006). Alternatively the 

problem could have been approached via combining stochastic calculus with standard 

nonlinear programming techniques as in Alvarez and Virtanen (2004) (see also 
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Alvarez 2004, Dayanik and Egami, 2004). Pham (2005) solved the problem by 

assuming only proportional costs for purchasing capital and thus relying on singular 

stochastic control methods. The optimal strategy in that model involves doing 

infinitesimal small transactions to avoid that the capacity production process leaves a 

no transaction region. However, transactions in the real world involve not only 

proportional but also fixed costs. In the presence of fixed investment costs, these 

strategies would lead to ruin.  

     We formulate the impulse control problem in section 2. Section 3 displays some 

preliminary results for the value function and the admissible expansion strategies. We 

characterize the value function as the solution to a system of quasi-variational 

inequalities and solve that system in section 4. The fifth section contains a numerical 

illustration that depicts how the impulse control band shrinks to the singular control 

boundary (derived in Pham, 2005) for vanishing fixed cost. Moreover we show that 

the optimal control actions depend strongly in the discount rate. 

 

 
2. Problem formulation 
 
     Let (Ω, F, P) be a complete probability space endowed with a filtration (Ft), which 

is the P-augmentation of the filtration generated by a one-dimensional Brownian 

motion W. We consider a firm producing some output from stochastic capacity 

production Kt and possibly also from other inputs. The firm can buy capital at any 

time t but faces constant and proportional costs denoted by C and c respectively. 

Given an initial capital  the firm’s capacity production evolves according to the 

following generalized Ito equation: 

0≥k

{ }∫ ∑∫
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=
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0 10

ξγδ τ ,              (2.1) 
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where 0≥δ  is the depreciation rate of the capacity production, γ> 0 represents its 

volatility and ξn is the (positive) amount of the nth capital purchase. We observe that 

in the particular case in which there is no control the value of the indicator function is 

zero, so K is just a geometric Brownian motion.  

     The instantaneous operating profit of the firm is a function ( tK )Π  of capacity 

production. In general the production profit function Π is assumed to be continuous in 

, nondecreasing, concave and C+ℜ 1 on ( )∞,0 , with ( ) 00 =Π  and satisfying the 

Inada conditions 

 ( ) ( ) ∞=Π′=Π′
↓

+ k
k 0
lim:0  and  ( ) ( ) 0lim: =Π′=∞Π′

∞→
k

k
.            (2.2) 

A typical example arising from the Cobb-Douglas production function leads to a 

profit function in the form: 

 ,  with ( ) akk λ=Π 10,0 <<> αλ .              (2.3) 

In our subsequent steps we adopt this choice for the production function similar to 

Pham (2005) and Merhi and Zervos (2005). 

 

The firm’s objective can now be formulated as follows 

 

Problem 2.1 The firm aims to maximize discounted profits minus expansion costs 

over lifetime. In particular, the firm aims to select a pair (T, ξ) that maximizes the 

functional J defined by 

            (2.4) ( ) ( ) ( ) { }( { }⎥
⎦

⎤
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with r representing the discount rate and C1=1+c. 
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3. Auxiliary results 
 
Admissible strategies 

     Since we want to maximize the functional J in problem 2.1 we should consider 

only those strategies for which J is well defined and finite. In order that 

( ) { }⎥
⎦

⎤
⎢
⎣

⎡
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−∑ n

n ICCeE
n
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k τ
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1
1                           (3.1)           

be well defined and finite, we need that  

  and .                                 (3.2) { } ∞<⎥
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To obtain the inequality on the left-hand-side, we need that 

 [ ) { } 0lim:,0 =≤∞∈∀
∞→

TPT nn
τ .                          (3.3) 

To obtain the inequality on the right-hand-side, we need that 

 ( )[ ] 0lim =+−

∞→
TKeE rT

T
                  (3.4) 

and 
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The last two conditions are implied from the formula of integration by parts (see, for 

instance, section VI.38 of Rogers and Williams (1987)) which postulates that for 

every , ∞<≤< ts0
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          (3.6) 

Note also that in order that  it suffices that (3.5) holds.  ( )∫
∞

− ∞<Π
0

dtKeE t
rt

k
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DEFINITION 3.1 [Admissible controls]. We shall say that an impulse control is 

admissible if the conditions (3.3)-(3.5) are satisfied. We shall denote by A(k) the class 

of admissible impulse controls. 

 

Bounds for the Value Function 

     Let us denote by V the value function. That is, for every ( )∞∈ ,0k , 

 ( ) ( ){ })(,;,;sup:)( 1 kTTkJkV Α∈= ξξ .              (3.7) 

The following lemma provides bounds for the value function which will be used in 

the next section. 

 

Lemma 3.1 The value function V is finite and satisfies: for any [ ]1,0 Cq∈ , 

 ( )( ) 0,
~

)(0 ≥+
+Π

≤≤ kkq
r

qrkV δ              (3.8) 

where under the Inada conditions  

 ( ) ( )[ ] 0,sup:~
0

≥∀∞<−Π=Π
≥

zkzkz
k

              (3.9) 

defines the Fenchel-Legendre transform of Π. 

Proof. For the left part of the inequality one has just to notice that since the value of 

not performing any capacity expansion is greater than zero, the value function is 

valued in [ . The right part of the inequality holds for the singular stochastic 

control problem (Lemma 1.3.2 in Pham, 2005) and since we can regard the set of 

impulse controls as a subset of the set of singular stochastic controls

]

                                                

∞,0

1 we have 

 
1 The relationship between impulse and singular stochastic control problems is explored in Menaldi 
and Robin (1983), Menaldi and Rofman  (1983) and Oksendal (1999); Alvarez and Virtanen (2004) 
showed for a class of problems that is similar to ours an inequality analogous to (3.10) holds for the 
marginal values of the considered stochastic control problems as well. 
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                  (3.10) ( ) ( )kVkV s≤

where  is the value function of the singular stochastic control problem.  ( )kVs

 
 
 
4. The solution of the QVI 
 
     For a function [ ) ℜ→∞,0:φ we define the maximum utility operator M by 

( ) ( ){ }∞∈∞∈−−+= ,0,,0:)(sup:)( 1 kCCkkM ξξξφφ .                                    (4.1) 

MV(k) represents the value of the strategy that consists in choosing the best immediate 

capacity expansion and then selecting optimally the times and the amounts of the 

future control actions. Let us consider the differential operator ℑ  defined by 

 )()()(
2
1:)( 2

2
22 kr

dk
kdk

dk
kdkk ψψδψγψ −−=ℑ .                                           (4.2)   

Now we intend to find the value function and an associated optimal strategy. 

     Suppose there exists an optimal strategy for each initial point. Then, if the process 

starts at k and follows the optimal strategy, the expected utility associated with this 

optimal strategy is V(k). On the other hand, if the process starts at k, makes 

immediately the best immediate intervention, and then follows an optimal strategy, 

then the expected utility associated with this strategy is MV(k). Since the first strategy 

is optimal, its associated expected utility is greater or equal than the expected utility 

associated with the second strategy. Furthermore, when these two expected utilities 

are equal, it is optimal to intervene. Hence, , with equality when it is 

optimal to intervene. In the continuation region, that is, when there are not 

interventions, we must have 

)()( kMVkV ≥

0)( =ℑ kV  (this is an heuristic application of the 

dynamic programming principle to the problem we are considering). These intuitive 
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observations can be applied to give a characterization of the value function. We 

formalize this intuition in the next two definitions and theorem. 

 

DEFINITION 4.1 (QVI) We say that a function ( ) ℜ→∞,0:v satisfies the quasi-

variational inequalities for Problem 2.1 if for every [ )∞∈ ,0k : 

 ,                          (4.3)   0)()( ≤Π+ℑ kkv

  ,                           (4.4) )()( kMvkv ≥

 ( )( 0)()()()( ) =Π+ℑ− kkvkMvkv .                 (4.5) 

Quasi-variational inequalities have been studied, for instance, in Bensoussan and 

Lions (1984), Perthame (1984a, 1984b) and Baccarin (2004) but the theory developed 

in those references cannot be applied directly to the above QVI.  

     A solution v of the QVI separates the interval ( )∞,0  into two disjoint regions: a 

continuation region  

 ( ){ }0)()()()(:,0: =Π+ℑ>∞∈= kkvandkMvkvkC             

and an intervention region 

 ( ){ }0)()()()(:,0: <Π+ℑ=∞∈=Σ kkvandkMvkvk . 

From a solution to the QVI it is possible to construct the following stochastic impulse 

control.  

 

DEFINITION 4.2 Let v be a solution of the QVI. The following stochastic impulse 

control  

 ( ) ( ),......,,,...;,...,,, 2121
v
n

vvv
n

vvvvT ξξξτττξ =  

is called the QVI-control associated with v (if it exists): 
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( ) ( ){ }
( ){ }+ℜ∈+ℜ+∈−−+=

=≥=

ξτξξξτξ

τ

)(,:)(suparg:

)()(:0inf:

1111

1
vvvvv

vvv

kCCkv

tkMvtkvt
 

and, for every : 2≥n

( ) ( ){ }
( ){ }+ℜ∈+ℜ+∈−−+=

=≥= −

ξτξξξτξ

ττ

)(,:)(suparg:

)()(:inf:

1

1
v
n

vv
n

vv
n

vvv
n

v
n

kCCkv

tkMvtkvt
 

where . 0:0: 00 == vv and ξτ

This means that the capacity expansions occur whenever v and Mv coincide and their 

size solve the optimization problem corresponding to Mv(k).  

     Korn (1997, Theorem 3.2) has developed a general sufficient condition of 

optimality for stochastic impulse control problems, and applied it to some examples. 

In each example, he shows that an admissible control satisfies that sufficient 

condition, and is therefore optimal. Cadenillas and Zapatero (1999) and Cadenillas et 

al (2006) developed suitable (for their problems) versions of Theorem 3.2 of Korn 

(1997). The following version is suitable for the application that we consider in this 

paper; its proof is straightforward by following the arguments in Cadenillas and 

Zapatero (1999) or Cadenillas et al. (2006). 

 

THEOREM 3.1 Let ( ) ( )( ∞∞∈ ,0;,01Cv ) )

)

 be a solution of the QVI and let  be 

such that . Suppose there exists 

( ∞∈ ,0b

[ ) { }( +ℜ−∞∈ ;,02 bCv ∞<< L0 such that v is linear 

in (0,L). Then, for every : ( )∞∈ ,0k

 .         )()( kvkV ≤

Furthermore, if the QVI-control ( )vvT ξ,  corresponding to v is admissible, then it is an 

optimal stochastic impulse control and for every ( )∞∈ ,0k : 

 ( )vvTkJkvkV ξ,;)()( == . 
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     We conjecture that there exists an optimal solution ( )ξ,T  characterized by 

parameters L, l with ∞<<< lL0  such that the optimal strategy is to stay in [  

and jump to l when reaching the left boundary. That is we conjecture that for every 

)∞,L

Ν∈i : 

 ( ){ }∞∉>= − ,:inf 1 LKt tii ττ               (4.6) 

and 

 ( )LXi iii
IlKK ==+=

+ τ
ξττ .                         (4.7) 

Thus, the value function would satisfy 

 ( ] ( )ylCClvyVLy −−−=∈∀ 1)()(:,0 .                                  (4.8) 

If V were differentiable in { , then from (3.15) we would get }lL,

                                        (4.9) ( ) 1CLV =′

and 

  .                                      (4.10) ( ) 1ClV =′

We also conjecture that the continuation region is the interval ( )∞,L , so  

 [ ) 0)()()()(
2
1)(:, 2

2
22 =Π+−−=ℑ∞∈∀ kkrv

dk
kdvk

dk
kvdkkvLk δγ .        (4.11) 

Applying standard methods of ordinary equations, we see that the general solution to 

(3.18) for Π as in (2.3) is given by 

 ( )kVBkAkkv aa
0

~)( 21 ++=               (4.12) 

where A, B are unknown constants and 
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( )

( ) 0
2

8442

1
2

8442

2

2/124222

2

2

2/124222

1

<
++−−+

=

>
++−++

=

γ
γγδγδγδ

γ
γγδγδγδ

ra

ra
,           (4.13) 

 ,              (4.14) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Π= ∫

∞
− dtKeEkV t

rt

0
0

~~

where tK~  represents the uncontrolled geometric Brownian motion process (2.1). 

     For Π as in (2.3) we have 

r
kBkAkkv

a
aa

μ
λ

++= 21)( ,                                    (4.15) 

with  

 ( )r4224 222 −−−= αγδαγαμ .             (4.16) 

At this point we should observe that if A>0 then (3.10) cannot be true2 (see theorem 

1.5.3 in Pham, 2005 for the form of the value function of the associated singular 

control problem). Moreover for A<0, −∞→′ )(kv  as ∞→k  which is also not 

acceptable, thus A=0 should hold. 

     In summary, we conjecture that the solution is described by (4.6)-(4. 7) and the 

three unknowns L, l, B are a solution to a system of four nonlinear equations 

 ( )LlCClhLh −−−= 1)()(                          (4.17) 

                                        (4.18) ( ) 1CLh =′

  .                                      (4.19) ( ) 1Clh =′

                                                 
2 Dixit (1991) noted that in stochastic impulse control problems that prevent the state process from 
going too low, but there is no reason to stop it from rising too high (as in our case), then some 
economic argument such as convergence must be invoked to provide a (necessary for the identification 
of the value function) boundary condition for the differential equation (4.15) as K goes to infinity. In 
this article, to identify the value function for the impulse control problem we use its boundedness from 
above from the value function of the associated singular control problem. In stochastic impulse control 
problems of optimal harvesting/consumption/dividend allocation that just prevent the state process 
from going too high, researchers required that the value function is zero at a low benchmark level (see 
Cadenillas, 1999, Cadenillas et al. 2006).  
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where 

 
r

xBxxh
a

a

μ
λ

+= 2)( .                                                (4.20) 

The above are proved rigorously in the following theorem. 

 

THEOREM 4.2 Let L, l with ∞<< lL  be a solution of the system of equations 

(4.17)-(4.19). Let us define the function ( ) ℜ→∞,0:V by 

 .                             (4.21) ( )⎩
⎨
⎧

<−−−
≤

=
LkifklCCkh
kLifkh

kV
1)(

)(
:)(

If for every k<L 

          ( )[ ] )()( 11 kklCClhrkC Π+−−−−− δ <0                    (4.22) 

then v is the value function of problem 2.1. That is  

 ( ) ( ){ })(,;,;sup)()( 1 kTTkJkVkv Α∈== ξξ  

and the optimal strategy is given by (4.6), (4.7). 

Proof. We observe that if V were a solution to the QVI then, according to theorem 4.1, 

V would be the value function and the optimal strategy would be given by (4.6)-(4.7). 

Indeed, V is twice continuously differentiable in ( ) ( )∞∪ ,,0 LL  and once continuously 

differentiable in L. Furthermore, V is linear in ( )L,0 . In addition, the QVI-control 

associated with V is admissible, because the trajectory K generated by the QVI-

control associated with V behaves like a geometric Brownian motion in each random 

interval ( 1, +nn )ττ  and satisfies ( ) [ ){ } 1,:,0 =∞∈∞∈∀ LktP t . Thus, the conditions 

(3.3)-(3.5) would be satisfied, and the QVI-control associated to V would be 

admissible. Hence it only remains to verify that V is a solution to the QVI.      

     We observe that  
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  ( )[ ]⎩
⎨
⎧

>Π+−−−−−
≤Π+ℑ

=Π+ℑ
kLifkklCClhrkC

kLifkkh
kkV

)()(
)()(

)()(
11δ

Thus,  

  )()( kkV Π+ℑ

is equal to zero in [ )∞,L  and is negative in (0,L) because of condition (4.22). Hence 

inequality (4.3) is satisfied. We also note that 

  ( )⎩
⎨
⎧

≤−−−
<−

=
LkiflkCClh

kLifCkh
kMV

1)(
)(

)(

and observe that  

[ ) 0)()(:, >=−∞∈∀ CkMvkvLk .  

and   

( ) ( )klCClhkhkMvkvLk −−+−=−∈∀ 1)()()()(,0: ,  

Thus v-Mv is equal to zero in the intervention region ( )L,0  and positive in the 

continuation region [ , so inequalities (4.3)-(4.5) are satisfied. Hence v is a 

solution of the QVI and this proves the theorem.  

)∞,L

 
 
 
5. Numerical illustration 
 
     In this section, we provide numerical solutions to the nonlinear system (4.15)-

(4.17) and conduct sensitivity analysis with respect to the fixed costs and the discount 

rate via applying the Newton-Raphson algorithm. It should be noted that the system is 

complex and convergence of the numerical scheme is sensitive to the initial values. 

Hence, we first found the solutions to a baseline experiment and then, for each 

perturbation of the parameters, we plugged in as starting values the outcomes of the 

previous run. MATLAB codes are available upon request from the authors. 
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First note that according to Pham (2005) the control boundary kb of the associated 

singular stochastic control problem is given by the following relation: 

 
( )
( )

1
1

2

21 1 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
a

b aaa
aCk

θ
                 (5.1) 

with 

 
( )aaar −++

=
1

2

1
2γδ

θ .                (5.2) 

Now consider the following data: 

 3.03.01.012.01.11 ====== arC γδλ              

and observe that kb=1.3602 for these values. Table 1 and figure 1 depict the evolution 

of the control band (L, l) for varying levels of the fixed costs parameter C. We 

observe that the boundaries of the impulse control band tend to approach the 

boundary of the singular stochastic control problem. A perfect fitting regression line 

(R2=1) for the width l-L of the control band as a function of fixed costs is formulated 

as: 

               (5.3) ( ) 321.3 6.124.4822.6 CCCLl ⋅+⋅−⋅=−

where the exponent in (5.3) is found via a Box-Cox procedure.  

     Next, we keep C fixed and equal to 0.5 and solve (4.15)-(4.17) for r varying from 

0.05 to 0.2. Table 2 and figure 2 depict that the both l and L decrease for increasing r 

and the same holds for the width l-L of the control band. In this case, a perfect fitting 

regression line (R2=1) for the width l-L of the control band is formulated as follows: 

  ( ) 321.2 19.3003.938.00033.0 rrrLl ⋅+⋅+⋅−=− −
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Table 1. Control bands for varying levels of fixed costs. 
 

C  L  l  B  
0.7 0.3460 1.8079 0.0151 

0.6 0.3913 1.8036 0.0213 

0.5 0.4443 1.7972 0.0301 

0.4 0.5075 1.7878 0.0428 

0.3 0.5851 1.7731 0.0618 

0.2 0.6858 1.7486 0.0913 

0.1 0.8326 1.7005 0.1420 

0.05 0.9491 1.6506 0.1852 

0.01 1.1297 1.5483 0.2466 

0.005 1.1800 1.5136 0.2602 

0.001 1.2576 1.4536 0.2762 

0.0005 1.2795 1.4351 0.2794 

0.0001 1.3136 1.4048 0.2830 

0.00005 1.3234 1.3957 0.2837 

0.00001 1.3388 1.3811 0.2845 

0.000005 1.3433 1.3768 0.2846 

0.000001 1.3503 1.37 0.2848 
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Table 2. Control bands for varying levels of the discount rate. 
 

r  L  l  B  
0.2 0.4443 1.7972 0.0301 

0.19 0.5045 1.9456 0.0489 

0.18 0.5753 2.1157 0.0798 

0.17 0.6594 2.3124 0.1311 

0.16 0.7602 2.5418 0.2169 

0.15 0.8826 2.8125 0.3623 

0.14 1.033 3.1357 0.6122 

0.13 1.2208 3.5275 1.0501 

0.12 1.4599 4.0107 1.8355 

0.11 1.7711 4.6196 3.2866 

0.1 2.1876 5.4071 6.0713 

0.09 2.7651 6.4597 11.6893 

0.08 3.6033 7.9285 23.8134 

0.07 4.897 10.1005 52.5682 

0.06 7.0769 13.5903 130.9941 

0.05 11.2807 19.9644 398.7536 
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