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Optimal portfolio rules are derived under uncertainty aversion by formulating

the portfolio choice problem as a robust control problem. Using a power utility

function of the form C with 0 <  < 1; we present the solution of the robust

portfolio choice problem in the cases of one and two risky assets. In particular,

for two risky assets and one risk-free asset case, we con�rm our earlier theoretical

result [30], that under uncertainty aversion the total holdings of risky assets as

a proportion of the investor�s wealth could increase as compared to the holdings

under the Merton rule, which is the standard risk aversion case.
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1. INTRODUCTION

In �nance uncertainty has been used to describe the realization of an

event for which the true probability distribution is known and thus the

expected utility maximization criterion can be used as a methodological

framework. Pure uncertainty, where the state space of outcomes is known

but the decision maker is unable to assign probabilities, has largely been

ignored.

Two main approaches have emerged recently for analyzing the problem

of choice when the decision maker faces pure uncertainty in the Knightian

sense (or ambiguity) and whose preference relationship is characterized by

uncertainty aversion (Gilboa and Schmeidler [12]). In the �rst, the mul-

tiple priors model, the decision maker may formulate his/her objective by

attaching a probability, say e; to a baseline prior and a probability (1� e)

to the in�mum of a family of the disturbed priors around the baseline one.

This is the so-called e-contamination approach (Epstein and Wang [9]),

which is consistent with uncertainty or ambiguity aversion.2 The other, the

robust dynamic control approach, models decision making in the presence

of model misspeci�cation. In this approach the decision maker is unsure

about his/her model, in the sense that there is a group of approximate

models that are also considered as possibly true given a set of �nite data,

2Chen and Epstein [7] introduce ambiguity aversion to recursive multiple-prior models

of utility by considering � � Ignorance which is a concept that allows di¤erentiation

between ambiguous and pure risk cases.
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or to put it di¤erently the agent is unsure about what probability measure

to use in order to form mathematical expectations. These approximate

models are obtained by disturbing a benchmark model, and the admissible

disturbances re�ect the set of possible probability measures that the deci-

sion maker is willing to accept, or to put it di¤erently, how far from the

initial �reference�model the agent is willing to depart. The objective of the

robust control approach is to choose a rule that will work well under a va-

riety of model speci�cations. This methodology provides another tractable

way to incorporate uncertainty aversion (e.g. Hansen and Sargent, [19],

[20], [21], [23], Hansen et al. [24]).

Portfolio choice theory has been a prominent area of application of

the above approaches3 (e.g. Dow and Werlang [5], Epstein and Wang

[9], Chen and Epstein [7], Epstein and Miao [8], Uppal and Wang [29],

Maenhout [25], Pathak [26], Liu [13], [14]). The idea behind the use of

robust control methods in optimal portfolio choice is that the investor has

doubts about the benchmark model and suspects that it is misspeci�ed

regarding the assets� price processes. Thus, although the available data

3Monetary policy can be regarded as the initial area of application of these ap-

proaches (e.g., Brainard, [1] Hansen and Sargent [23], Onatski and Stock [17], Onatski

and Williams [18], Soderstrom [28]). See also Brock and Durlauf [2], Brock, Durlauf and

West [3] for similar approaches to policy design and policy evaluation under uncertainty.

Another area of interest is environmental and resource management where uncertainty

aversion can be used to formulate the concept of the Precautionary Principle (Brock and

Xepapadeas [4], Roseta-Palma and Xepapadeas [27])
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used to estimate the probability law characterizing the evolution of asset

prices allow for the estimation of a benchmark model, there is a set of

alternative models describing the evolution of asset prices which is also

consistent with the data and could be regarded as possibly true. In this

set-up, the investor tries to �nd a portfolio rule that will work well, in the

sense of maximizing utility, under a range of di¤erent model speci�cations

of the assets�price equations. When there is no preference for robustness,

or to put it di¤erently, there is no concern for model misspeci�cation, then

the so-called robustness parameter � !1:4 ; 5

A central result underlying the recent robust control literature in the

portfolio selection context (Maenhout [25], Uppal and Wang [29]) suggests

that model uncertainty implies cautiousness in the sense that the investor,

4The robustness parameter � can be interpreted as the Lagrangian multiplier associ-

ated with an entropy constraint, which determines the maximum speci�cation error in

the asset price equation that the investor is willing to accept (Hansen and Sargent [21]).

As such it is a �xed parameter and characterizes preferences consistent with Gilboa and

Schmeidler�s axiomatization of uncertainty aversion. When � ! 1 there is no concern

about model misspeci�cation and we are in the usual risk aversion framework.
5 In recent attempts to study the dynamic portfolio rules using robust control method-

ology, (Maenhout [25], and Uppal and Wang [29]) use certain transformations to elim-

inate � from the portfolio rule. As shown by Pathak [26] these transformations break

down the consistency of preferences with Gilboa and Schmeidler�s axiomatization of

uncertainty aversion. It seems that since the exogeneity of � is required in order for

the problem to be consistent with uncertainty aversion, robust portfolios are parame-

trized by �: To estimate � in order to fully characterize the robust portfolio, Hansen and

Sargent [19] suggest the use of detection error probabilities.
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under uncertainty aversion, will invest a smaller share of his/her wealth in

the risky assets relative to the share implied by the standard Merton rule

under risk aversion. In more general terms, model uncertainty seems to

have been associated in the earlier literature with some kind of cautious or

conservative behavior,6 although more recent results in the area of mone-

tary policy analysis under uncertainty seem to provide mixed �ndings, that

is aggressiveness or robustness depending on the structure of the model.7

The present paper attempts to derive optimal portfolio rules under un-

certainty aversion by following Hansen and Sargent�s approach and formu-

lating the portfolio choice problem as a robust control problem. Using a

power utility function C with 0 <  < 1; we explicitly derive portfolio

rules for the cases of one and two risky assets, allowing for uncertainty

aversion, or preference for robustness, with respect to the joint distribu-

tion of the assets. Our portfolio rules are parametrized by the robustness

parameter � and show that as � ! 1 the robust portfolio rule tends to

Merton�s rule in accordance with Maenhout�s results.

We present initially the solution of the robust portfolio choice problem

for the case of one risky asset case. In this case the robust portfolio rule

never leads to an increase in the fraction of our wealth invested in the risky

asset relative to the standard risk aversion case, associated with � !1:We
6For example Brainard�s [1] results suggest caution in the face of model uncertainty

in a Bayesian framework.
7See for example Onatski and Williams [18] and the papers cited by them.
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provide numerical calculations for the cases where  = 0:5 and  = 0:75.

Then we derive the optimal robust portfolio rule for the case of two risky

assets and present numerical solutions when  = 0:5; depicting how the

fraction of invested wealth in each risky asset and how the overall holdings

of risky assets and the optimal consumption rate evolve as a function of

the robustness parameter �.

These solutions con�rm our earlier theoretical results [30], where under

uncertainty aversion, the associated robust portfolio rule indicates that the

total holdings of risky assets as a proportion of the investor�s wealth is not

always smaller as compared to the holdings under the Merton rule (which is

the risk aversion case) and which is equivalent to no concerns about model

misspeci�cation and � !1:

This result seems to depart from the belief that uncertainty, or ambi-

guity aversion, and the associated robust control methods might result in

more cautiousness or conservatism regarding portfolio choices, in the sense

that holdings of the "risky - ambiguous" assets are reduced relative to the

pure risk case.

Finally it should be noted that by parametrizing our robust portfolio

rules using the exogenous parameter �; and not eliminating it as Maenhout

[25] and Uppal and Wang [29] do, we preserve the consistency of preferences

with Gilboa and Schmeidler�s axiomatization of uncertainty aversion.
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2. ROBUST PORTFOLIO CHOICES WITH ONE RISKY ASSET

We consider a market which consists of one riskless asset whose price

evolves accordingly to:

dS(t) = rS(t)dt S(0) = S0; t � 0;

where r denotes the risk-free rate of return, and one risky asset. Denoting

by �1 the drift rate, or mean rate of return, and by �1 the volatility rate,

the evolution of the prices P1 of the risky asset is given by the standard

geometric Brownian motion:

dP (t) = �1P (t)dt+ �1P (t)dB1(t) t � 0; (1)

P (0) = P0;

where fB1(t) : t � 0g denotes a standard Brownian motion on an underly-

ing probability space (
;F ;P): Supposing that w1; w2 are the fractions of

the wealth, W , invested in the risky and riskless asset, then:

w1 + w2 = 1: (2)

Therefore the equation for wealth dynamics becomes:

dW = w1(�1 � r)Wdt+ (rW � C)dt+W�1w1dB1; (3)

where in the above equation C is the consumption rate. Merton�s solution

([15], [16]) of the optimal portfolio allocation problem for an in�nite time

horizon and one risky asset, determines the optimal portfolio weight, w1;
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that is the fraction of the investor�s total wealth W allocated to the risky

asset as:

U 0(C) = VW ; (4)

w1 =
(r � �1)
�2W

VW
VWW

; (5)

VW
VWW

=
U 0(C)

U 00(C) @C@W
: (6)

Following Hansen and Sargent [23], Hansen et al. [24], the above model

is regarded as a benchmark model. If the consumer-investor was sure about

the benchmark model then there would be no concerns about robustness

to model misspeci�cation. Otherwise, concerns for robustness to model

misspesi�cation can be re�ected by a family of stochastic perturbations,

so that the probabilities implied by (1) are distorted. The measure P

is replaced by another probability measure Q. The perturbed model is

constructed by replacing B1(t) in (1) with

B1(t) = B̂1(t) +

Z t

0

h(s)ds; (7)

where fB̂1(t) : t � 0g is a Brownian motion and fh(t) : t � 0g is a

measurable drift distortion. Therefore using equation (7) the corresponding

equation (3), for wealth dynamics, becomes:

dW = w1(�1 � r + �1h)Wdt+ (rW � C)dt+W�1w1dB̂1 (8)

As shown in Hansen et al. [24] the discrepancy between the distribution P

and Q is measured as the relative entropy
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R(Q) =
Z 1

0

e��uEQ
�
h2

2

�
du (9)

and if R(Q) is �nite then

Q
�Z 1

0

h2du <1
�
= 1 (10)

and Q is locally absolutely continuous with respect to P. Under model

misspeci�cation, a multiplier robust control problem can be associated with

the problem of maximizing the present value of lifetime expected utility;

or:

max
w1;C

E0
Z 1

0

e��tU(C)dt (11)

In this case the multiplier robust control problem becomes:

J(�) = sup
w1;C

inf
h
EQ
Z 1

0

e��t
�
U(C) + �

h2

2

�
dt (12)

subject to (8).

In the above equation � denotes the so-called robustness parameter

which takes values greater than or equal to zero. As shown by Hansen and

Sargent [22], � is the Lagrangian multiplier at the optimum, associated with

the entropy constraint Q (�) = fQ 2 Q : Rt(Q k P) � � 8tg : A value of

� =1 indicates that we are absolutely sure about the measure P, with no

preference for robustness. This case can be regarded as the risk aversion

case and the problem is reduced to the standard Merton problem with the

objective function given by (11). Lower values for � indicate preference for

robustness under model misspeci�cation, or uncertainty aversion, where a

value of � = 0 indicates that we have no knowledge about the measure P.

9



Using the results of Fleming and Souganidis [10] regarding the existence

of a recursive solution to the multiplier problem, Hansen et al. [24] show

that problem (12) can be transformed into a stochastic in�nite horizon

two-player game between the investor and Nature. Nature plays the role

of a "mean agent" and chooses a reduction h in the mean return of assets

to reduce the investor�s life time utility. The Bellman-Isaacs conditions

for this game imply that the value function V (W; �) satis�es the following

equation:

�V = max
w1;C

min
h

n
U(C) + �

h2

2
+
�
w1(�1 � r + �1h)W + rW � C

�
VW

+
1

2
W 2�21w

2
1VWW

o
: (13)

The solution of the above problem is given by the following equations:

U 0(C) = VW ; (14)

h = ��VWWw
�
1

�
; (15)

w�1 =
(r � �1)
�2W

VW
VWW

1�
1� V 2

W

�VWW

� ; (16)

VW
VWW

=
U 0(C)

U 00(C) @C@W
;

where w�1 denotes the fraction of the wealth invested in the risky asset when

there are concerns about model misspeci�cation and the decision maker

tries to �nd robust decision rules. Furthermore, if we compare w1; w�1

given by (5) and (16); respectively,

w1
w�1

= 1� V 2W
�VWW

> 1: (17)
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Thus independently of the utility function and the value of the robustness

parameter, concerns for model misspeci�cation decrease the fraction of the

wealth invested in the risky asset relative to the standard Merton case.

Moreover as � �! 1 the robust portfolio weight tends to Merton�s opti-

mal weight and the utility maximizer acts as if he/she knows the initial

benchmark model with certainty.

2.1. Power utility function

In order to understand how a preference for robustness in�uences opti-

mal choices, this section presents the case of robust portfolio rules with a

power utility function C with 0 <  < 1: Substituting (14); (15); (16) into

(13) and restricting our attention to the class of value functions of the form

V (W; �) = Q W  ; we show that the parameter Q satis�es the following

equation:

� = Q
1

�1 � 1
�

(r � �1)2
�21

�


 � 1

�2
Q3W 

 
1

1� 

�1
1
�Q

2W 

!2
(18)

+(r �Q
1

�1 )� (r � �1)
2

�21

�


 � 1

�
Q

 
1

1� 

�1
1
�Q

2W 

!

+
1

2

(r � �1)2
�21



 � 1Q
 

1

1� 

�1
1
�Q

2W 

!2

For various parameter constellations we are able to calculate, from the

above equation, the value of the parameter Q and, in the sequence us-

ing equation (16); to derive the corresponding value of the optimal robust
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portfolio weight w�1 : More speci�cally for

� = 0:05 �1 = 0:05 �1 = 0:5 r = 0:03 W = 100

the �rst six �gures correspond to the solution for  = 0:5 and  = 0:75:

Particularly they depict the value of the parameter Q, the optimal robust

weight w�1 and the optimal consumption rate C� as � varies from 0:1 to

200: From these pictures we conclude that an uncertainty averse investor in

the �rst case prefers to invest more in the risky asset and to consume less

than in the case where the value of  is greater. Moreover as the value of �

increases, which means that the preference for robustness is declining, the

optimal consumption rate decreases and the value of the optimal portfolio

weight goes up, in both cases. This implies that as uncertainty aversion is

declining the investor increases the holding of the risky asset.

[Figure1]

[Figure2]

[Figure3]

[Figure4]

[Figure5]

[Figure6]
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3. TWO RISKY ASSETS

In this section we will assume that the market consists of one risk free

asset and two correlated risky assets, where � denotes the correlation co-

e¢ cient at the benchmark model. In this case B = [B1; B2]
T is a vector

of independent Brownian processes de�ned on an underlying probability

space (
;F), with measure P = P1 
 P2. Because of E(dB1dB̂2) = �dt,

where E denotes expected value and dB1; dB̂2 are correlated Brownian mo-

tions on P1;P2 respectively, the evolution of the prices of the assets can be

written as :8

dP1(t) = �1P1(t)dt+ �1P1(t)dB1(t) t � 0 (19)

dP2(t) = �2P2(t)dt+ �2P2(t)�dB1(t) + �2P2(t)
p
1� �2dB2(t)(20)

Merton�s solution for the maximization problem (11) in the two risky assets

case is:

w1W =
A(�1 � r)�22
�21�

2
2(1� �212)

� A(�2 � r)�12
�21�

2
2(1� �212)

(21)

w2W = �A(�1 � r)�12
�21�

2
2(1� �212)

+
A(�2 � r)�22
�21�

2
2(1� �212)

(22)

A = � VW
VWW

= � U 0(C)

U 00(C) @C@W
(23)

Perturbing each Brownian motion separately,9 the initial measure P is

replaced by another probability measure Q = Q1 
 Q2: At this stage we
8We have that for independent Brownian motions B1; B2: E(dB1dB2) = 0,

E(dB1dB1) = dt so we write dB̂2 = �dB1 +
p
1� �2dB2:

9For this reason use the speci�c form of equations (19); (20):
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consider distortions to the joint distribution of assets so we impose an

overall entropy constraint for the two assets. Based on Corollary C3:3 of

Dupuis and Ellis [6], the entropy constraint becomes:

R(Q k P) =
2X
i=1

R(Qi k Pi) =
2X
i=1

Z 1

0

e��uEQ
�
h2i
2

�
du: (24)

The above equation allows us to consider two separate distortion terms, one

for each asset. However in order to reduce the complexity of the model,

we assume symmetric distorted measures Qi, and examine the case with

the same distortion terms hi. In this speci�c case, the equation for wealth

dynamics becomes:

dW = w1(�1 � r + �1h)Wdt+ w2
�
�2 � r + �2(�h+ h

p
1� �2)

�
Wdt

+(rW � C)dt+W�1w1dB̂1 +W�2�w2dB̂1 +

�2
p
1� �2w2dB̂2: (25)

In this speci�c case the Bellman equation for problem (12) subject to (25)

is:

�V = max
wi;C

min
h

n
U(C) +

�
w1(�1 � r + �1h)W + (rW � c) + �2

h2

2
+

w2(�2 � r + �2(�+
p
1� �2)h)W

�
VW +

1

2
VWW

2X
i=1

2X
j=1

wiwj�ijW
2
o
; (26)

where �2 = 2� and � this time refers to the robustness parameter in the

two assets case. The �rst order conditions which describe the solution of
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the above two-player game are:

U 0(C) = VW (27)

h = �
VWW

�
�1w

�
1 + �2(�+

p
1� �2)w�2

�
�2

(28)

2X
j=1

w�jW�1j = A(�1 � r) +A�1h (29)

2X
j=1

w�jW�2j = A(�2 � r) +A�2(�+
p
1� �2)h (30)

A = � VW
VWW

= � U 0(C)

U 00(C) @C@W
: (31)

Using matrix notation the solution of the above problem can be described

by the following equation:

�
w�1W w�2W

�
� =

�
A(�1 � r) A(�2 � r)

�
(32)

where:

� =

2664 �11(1� V 2
W

�2VWW
) �12

�
1� V 2

W

�2VWW

�+
p
1��2
�

�
�12
�
1� V 2

W

�2VWW

�+
p
1��2
�

�
�22
�
1� V 2

W

�2VWW
(1 + 2�

p
1� �2)

�
3775 :
(33)

If � denotes the diagonal matrix with elements �1, �2 then:

� = �

2664 (1� V 2
W

�2VWW
)

�
�� V 2

W

�2VWW
(�+

p
1� �2)

�
�
�� V 2

W

�2VWW
(�+

p
1� �2)

� �
1� V 2

W

�2VWW
(1 + 2�

p
1� �2)

�
3775�:
(34)
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Solving the above system we determine the fraction of the wealth invested

in the �rst and second asset under robust portfolio choices as:

�
w�1W w�2W

�
=

1

(1� �2)
�
1� 2 V 2

W

�2VWW
)

�
A(�1 � r) A(�2 � r)

�

��1

2664
�
1� V 2

W

�2VWW
(1 + 2�

p
1� �2) ��+ V 2

W

�2VWW
(�+

p
1� �2)

��+ V 2
W

�2VWW
(�+

p
1� �2) (1� V 2

W

�2VWW

�
3775��1(35)

In the above equation as � �! 1 we obtain Merton�s solution (21); (22)

which corresponds to the standard risk aversion case.

Substituting (35); (28) into (26) and giving initial values to the para-

meters appearing in equation (26); we are able to determine the value of

Q and afterwards to obtain the optimal robust portfolio weights using the

above matrices equation. Assuming that:

� = 0:05 �1 = 0:05 �1 = 0:5 r = 0:03

�2 = 0:08 �2 = 0:5 � = 0:7 W = 100

the next four �gures present the solution for  = 0:5: Figure 7 refers to the

optimal portfolio weight invested in the �rst risky asset, w�1 ; where the neg-

ative sign corresponds to the short selling assumption which is consistent

with Merton�s model. The next �gure corresponds to the second risky asset

where we see that as the preference for robustness declines, that is we tend

to be satis�ed by the benchmark model, the fraction of the wealth, w�2 , in-

vested in the risky asset increases. Then we show how the overall holdings
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of risky assets w�1 + w
�
2 change as the value of the robustness parameter

increases and afterwards we give the evolution of the optimal consumption

C� as a function of �: In this speci�c case we are able to conclude from �g-

ure 9, that as the the value of � increases, which is equivalent with the fact

that our con�dence about the reference models increases, the total fraction

invested in the risky assets increases as well.

[Figure7]

[Figure8]

[Figure9]

[Figure10]

In the sequence we repeat the same calculations considering now the

following values for our parameters:

� = 0:05 �1 = 0:04 �1 = 0:43 r = 0:03

�2 = 0:05 �2 = 0:87 � = 0:93 W = 100

In this speci�c case we see that uncertainty aversion induces an increase

in the holdings of the one risky asset as compared to risk aversion. When

this happens the holding of the other asset is reduced. Moreover we see

that the total fraction of the portfolio invested in the two risky assets

decreases as the value of the robustness parameter increases, which means

that reduction of the ambiguity of our initial benchmark model implies
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a reduction in the total holdings of risky assets, a result that is nit in

line with the previous examples and the general belief under which model

uncertainty has been associated with some kind of conservative behavior.

10

[Figure11]

[Figure12]

[Figure13]

[Figure14]

Finally in the last picture considering the following parameter constel-

lation:

� = 0:05 �1 = 0:05 �1 = 0:5 r = 0:03

�2 = 0:08 �2 = 0:8 W = 100  = 0:5

we show how the fraction of the wealth allocated to the risky assets changes,

as a function both of the correlation coe¢ cient and the value of the robust-

ness parameter �:

[Figure15]

10 In our previous work [30], we have proved that this happens whenever the following

equation is satis�ed:

�̂(��
p
1� �2 � 1

�
) > �(1� 2�

p
1� �2)� (��

p
1� �2)

with �̂ =
a2 � r
a1 � r

; � =
�2

�1
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4. CONCLUDING REMARKS

Using a power utility function we explicitly derive robust portfolio rules

parametrized by the robustness parameter �; which is not endogenized in

order to keep the model consistent with the Gilboa Schmeilder axiomati-

zation of uncertainty aversion.11 Our solutions con�rm the fact that under

the robust portfolio rule, the total holdings of risky assets may increase un-

der uncertainty aversion relative to the risk aversion case, which is a result

that can be contrasted to results suggesting that robust portfolio choices

imply a reduction in the total holdings of risky assets. The fact that changes

could go either way depending on the structure of the model parameters

suggests that uncertainty aversion and adoption of robust portfolio rules

should not be associated with smaller holdings of risky assets.

11Thus the full characterization of the robust portfolio rule requires estimation of �,

using for example detection probabilities [23].
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