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1. Introduction 

Microfinance has become a prominent element of development strategies. Over the last 

two decades microcredit1 programs have expanded rapidly, firstly in Bangladesh and 

then around the developing world. Most development practitioners and policy makers 

believe that microfinance can help the poor to break out of poverty. The academic world 

has also shown increased interest in microfinance. A great deal has been written on 

microfinance theory (see, for example, Chowdhury 2005 and the reference therein).2

Much of this literature has focused on joint liability group lending and its implications 

for reducing information asymmetries. In spite of the abundance of theoretical literature, 

empirical work on the impact of microfinance is relatively sparse compared to the 

worldwide scale of the operation of these programs (Armendáriz de Aghion and 

Morduch 2005, Herms and Lensink 2007).  

Bangladesh’s microfinance sector is remarkable for the speed with which it grew to its 

present size and prominence. This paper evaluates the impact of microcredit 

participation on household consumption using a large, nationally representative and 

unique cross-section data set from Bangladesh. The data comes from a survey conducted 

by the Bangladesh Institute of Development Studies (BIDS) for the Palli Karma-

Sahayak Foundation (PKSF, Rural Employment Support Foundation) specifically for 

the purposes of evaluating microfinance programs in Bangladesh.3 The survey 

encompasses a wide variety of information at the household, village and organization 

level. It includes 3026 households comprising households in the program and control 

groups, covering 91 villages spread over 23 thanas (sub-districts). This is the largest 

survey of microfinance households ever conducted in Bangladesh, and possibly in the 

world. 

The existing evidence on the impact of the microcredit program in Bangladesh is 

ambiguous. Different identification strategies have yielded different conclusions. The 

best-known impact evaluation study of microfinance by Pitt and Khandker (1998) (PK 

from here on) finds that access to microfinance significantly increases consumption and 

1  In this paper the terms ‘microcredit’ and ‘microfinance’ are used interchangeably.  
2 The reader can consult the “Group lending” special issues of the Journal of Development Economics, 
1999, vol. 60(1), pp.1-269, and Economic Journal, 2007, vol. 117(517), pp. F1-F133.  
3 The data collection and preliminary analysis were supported by the World Bank. PKSF, established in 
May 1990, works as an organization for MFIs. The micro-lending community regards it as a regulatory 
agency and it exercises its authority over the MFIs.  
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reduces poverty. However, Morduch (1998), using PK’s dataset but different estimation 

methodology, finds that access to microfinance has an insignificant, or even negative, 

effect on the household welfare. More recently Madajewicz (2003), using the same 

dataset but again a different estimation methodology, finds results similar to those 

obtained by Morduch (1998).4

Using panel data from Bangladesh, Khandker (2005) finds a significantly weaker effect 

of microfinance participation than found in earlier cross-sectional studies (undertaken by 

the same author). The results also cast doubt on the optimistic 5 percent drop in 

poverty by the PK study. In the case of Thailand, Coleman (1999) finds that the 

average program impact is insignificant on physical assets, savings, and expenditure on 

education and health care. Kaboski and Townsend (2005) find institutions with good 

policies can promote asset growth, consumption smoothing and decrease the reliance on 

moneylenders in Thailand. However, they find no measurable impacts of the joint 

liability or repayment frequency. Karlan and Zinman (2008) examine the impact of 

expanding access to consumer credit using data gathered from a field experiment in 

South Africa. Their results indicate significant and positive effects on income, food 

consumption, and job retention.

We estimate both the effect of participating in microfinance programs (the treatment on 

the treated effect) and the effect of being offered the chance to participate in a 

microfinance program (the intention-to-treat effect). The intention-to-treat (ITT) effect 

suggests a smaller positive effect of assignment (eligibility). A good number of eligible 

households in the treatment village did not participate while some non-eligible (non-

encouraged) households participated in the program. In our case, assignment (an 

eligibility criterion) is merely an encouragement to take treatment and there is non-

compliance among those encouraged. So we use two different techniques to address the 

issue of selection bias, and to link ITT effects to treatment effects. We first use an IV 

4 PK use an instrumental variable (IV) approach considering the choice based sampling, and employ the 
weighted exogenous sampling maximum likelihood (WESML) estimator of Manski and Lerman (1977). 
PK’s IV approach is parallel to the use of limited information maximum likelihood (LIML) and village 
fixed effects (FE), and thus called their estimate  LIML-WESML-FE. Morduch (1998), on the other hand, 
applies a simple difference-in-difference (DD) approach. Madajewicz (2003) uses an IV method which is 
very similar to that of PK’s method, but she estimates the impact of lending programs on business profits 
of borrowers by poverty status. According to Greene (2000), “WESML and choice based sampling method 
are not the free  lunch they may appear to be. In fact, what the biased sampling does, the weighting 
undoes”, p.823. Armendáriz de Aghion and Morduch (2005) argues that despite PK use heavier statistical 
artillery than other microfinance studies it does not mean that they deliver results that are more reliable or 
rigorous than others. 
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approach, where the instruments are generated by village level program placement and 

by an eligibility rule for receiving microfinance. We also exploit the variation in the 

amount of credit borrowed across households of different villages - a feature that has not 

yet been utilized - based on the exposure to the program. The second approach uses the 

propensity score matching (PSM) method of Rosenbaum and Rubin (1983). Here treated 

are compared with matched untreated (based on propensity scores), while controlling for 

the characteristics used by the MFIs to select the households and other observable 

household characteristics that are potential determinants of participation in 

microfinance. We find a substantially lower effect on consumption applying matching 

methods than implied by the IV approach.  

Improving economic well-being is the main objective of microfinance programs. Food 

consumption expenditure accounts for more than 70 percent of total household spending 

among the poor in the rural areas of Bangladesh.5 Overall, the results suggest that the 

effects of microfinance loans on food consumption expenditure are not robust across all 

groups of poor household borrowers. We find evidence against the “common effect” 

assumption using the analysis on subgroups. The results overwhelmingly support the 

fact that the poorest of the poor benefit most from participating in microfinance. The 

impacts are lower, or sometimes even negative, for those households marginal to the 

participation decision. The effects of participation are, in general, stronger for male 

borrowers. The empirical findings hold across different specifications and methods, and 

when corrected for various sources of selection bias including possible spillover effects.

2. The Program, the Data and the Descriptives 

2.1 The Program and the Context 

The microfinance sector of Bangladesh is one of the largest and oldest programs of the 

world.6 The growth in the MFI sector, in terms of the number of MFIs as well as total 

membership, was phenomenal during the 1990s and is continuing. The PKSF was 

established with a view to monitor the activities of these large numbers of MFI, and to 

lend out donor and other funds to its partner organisations (POs) for microcredit. In 

5 Poor households’ savings in rural areas of Bangladesh is very negligible. Our hypothesis is that if 
household income increases significantly to affect their permanent income level, households’ consumption 
expenditure will increase. Moreover, difficulties with collecting income data are well-known, especially from 
the developing countries. 
6 Around one quarter of the world’s micro-credit customers are in Bangladesh with a further quarter in 
India (State of the microcredit summit campaign report 2006). 



4

2004 PKSF funds made up about 17% of the total microfinance industry in Bangladesh, 

which was 24% in 1998.7

Previous studies on microfinance in Bangladesh have primarily focused on GB (PK; 

Morduch 1998, 1999). However, expansion, competition and funding constraints have 

greatly changed the recent dynamics of microfinance in Bangladesh. For example, the 

Association for Social Advancement (ASA), which started its microfinance operations in 

1991, has now become a dominant MFI in terms of number of beneficiaries and loan 

disbursement. Similarly, Proshikha has been able to increase its outreach remarkably 

during the 1990s reaching about 2.8 million borrowers by 2001. During that period the 

number of medium and small MFIs has grown from a very small base to more than a 

thousand institutions. In view of the growing importance of the non-GB MFIs in 

Bangladesh, in this study, we use a completely different set of data from thirteen MFIs 

of PKSF. The organizations investigated here are different from those studied 

previously, but include organisations that are very large in terms of loan disbursements 

and area of coverage, most notably the ASA and Proshikha. ASA provides both credit 

and savings services on a remarkably large scale. Proshika is the fourth largest 

microcredit program in Bangladesh. Notable other MFIs which we study here include 

the Society for Social sServices (SSS) and Thengamar Mohila Sabuj Sangha (TMSS). As 

of December 2004, SSS is the tenth largest MFI in Bangladesh in terms of cumulative 

disbursements and outstanding borrowers. TMSS is one of the top fifty MFIs in 

Bangladesh. The other MFIs are relatively small and have similar types of program 

activities. All of these MFIs follow the GB-style lending procedure and typically give 

access to microfinance to households having less than 50 decimals of land. Credit is 

given mainly to groups of people who are jointly liable for repayment of the loan, and 

there is no collateral requirement. Loans are primarily advanced for any profitable and 

socially acceptable income generating activity. The amount of a loan usually lies within 

the range US$40 - $160. However, members may take larger loans after repaying their 

first loan.

2.2 The Data and Survey Design 

The data was collected initially to monitor and assess the impact of microfinance 

programs undertaken by MFIs of the PKSF. BIDS was responsible for the collection of 

data on behalf of PKSF. The survey includes 13 MFIs, each from a different district, 

7 See <http://www.bwtp.org>. 
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covering 91 villages spread over 23 thanas. Following a census of all households in the 91 

villages during October 1997, the survey was administered in early 1998. Besides 

collecting detailed information at the household level, separate modules were 

administered at the village and institution level.  

The survey was conducted to obtain a nationally representative dataset for the 

evaluation of microfinance programs in Bangladesh. The selection of MFIs was intended 

to capture the various areas of operation and coverage. Since MFIs were not operating 

in all thana, selection of thana within the district of each MFI was made followed by 

village selection. The geographic coverage of the survey was spread evenly over 

Bangladesh, and the thana level comparisons revealed that selected thanas were not 

different from the average (Mahmud 2003). Within a MFI area, the selection of villages 

involved visiting the MFI local offices and interviewing some key informants to prepare 

a list of all villages in the area and compile village specific information regarding: type of 

MFI-activities; number of MFI groups; number of borrowers; infrastructure condition; 

and existence of other MFIs. Upon obtaining the information, a sample of villages under 

each of the selected MFI was drawn through stratified random sampling. The 

stratification was based on the presence or absence of microfinance activity. The non-

program villages were selected among neighbouring villages. 

Of the 13 selected MFIs, two were deliberately chosen from the large category (e.g., 

Proshika and ASA).  Secondly, thanas were selected when more than one thana was 

covered by the MFIs. Then, two control villages and six programme villages were chosen 

from each of the MFI areas. However, since non-program villages could not be found 

under some of the MFIs, only 11 non-program villages could be included. So six to eight 

villages from each MFI were selected depending on the availability of control villages. In 

selecting the survey households, the universe of households in program villages, drawn 

from the census, was grouped according to their eligibility status. A household is said to 

be eligible if it owns 50 decimals (half-acre) or less of cultivable land. Participation was 

defined in terms of current membership as reported in the census in 1997. From the 

village census list, 34 households were drawn from each program and non-program 

village. Because the census found a good number of ineligible households in program 

villages the sample was drawn so as to maintain the proportion of eligible and ineligible 

households at about 12:5. The sample size within program and control villages was 
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determined accordingly.8 A total of 3026 households were drawn from program and 

control villages including 1740 participants. Of the 1286 non-participants, 277 were from 

control villages and 1009 were from program villages. Because of the absence of 

appropriate control villages, more non-participants were drawn from program villages.9

The samples from control villages (the control group) include those households whose 

heads expressed their willingness to participate (during census) in MFI programs, if 

available. Among the total surveyed households 2051 are eligible representing 67.7 

percent of all households. The same proportion is also surveyed in the program village: 

1835 are eligible out of 2735 households. Of the total number of 1740 borrowers 207 are 

men.

2.3 Descriptive Statistics 

Table 1 contains the descriptive statistics for different village level characteristics. It 

shows that there are no systematic differences in terms of education and health 

characteristics. Among transport and communication facilities, there are differences in 

terms of the presence of  (brick-built) roads in the village (35 percent in program 

villages as opposed to 11 percent in the control villages) and the distance of the village 

from the nearest thana (the program villages are relatively closer to the thana). Also the 

program village has better electricity facilities than the control village. There are no 

statistically significant differences between program and control villages in terms of 

bazaar (market place for grocery), post office and telephone office. However, there is a 

relatively higher presence of money-lenders in the program villages. In terms of 

irrigation facilities, no statistically significant differences were found, though in all cases 

program villages have better facilities as indicated by the higher average 

number/proportion of facilities per village. Overall we see that program villages are 

more developed in terms of infrastructure and other related facilities.  

Table 2 provides key descriptive statistics for the household level variables.  It shows 

that the average landholding for the non-treated households is significantly higher than 

the treated households. For household size, both Kolmogorov-Smirnov ( - ) and -tests

suggest that it is different between treatment and comparison households. There are also 

some differences between many household characteristics of treatment and comparison 

8 The sample size and its ratio between participating and non-participating households are different in a 
few villages because of the absence of the required number of appropriate households in each group. 
9 Khandker (2005) also highlights the limitation of getting the control villages in Bangladesh. He finds that 
the villages that were controls in 1991-92 in his survey, all became program villages by 1997-98.
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groups as indicated by -values and -  tests, but these differences are minimal when 

we consider only the eligible group of households (households owning less than half acre 

of land). In fact, many of the characteristics are also very similar for samples of 

households with up to one acre of land (not shown here). Overall the findings here are 

that the differences between treatment and comparison households are not systematic; 

however, the treated group has a higher average household size, more children and its 

members tend to be less educated.  

Table 3 presents summary statistics of food consumption and credit variables. 

Consumption expenditure data include expenditures of food consumed in the reference 

period. The information covers a wide range and types (e.g. food purchased, home 

produced) of food consumption, and is as good as the standard LSMS food consumption 

module.  Table 3 suggests that there are no statistically significant differences between 

treated and non-treated groups of households in terms of food consumption, though non-

treated groups have a little more household and per-capita consumption levels than the 

treated group. However, when we consider consumption expenditure by household 

landownership, total household monthly consumption expenditure is higher for treated 

households having two acres or less land (Figure 1a). Household consumption 

expenditures for both groups are a monotonically increasing function of household’s land 

ownership. On a -  basis, non-treated households have higher consumption 

expenditure than the treated group (Figure 1b). Household level monthly food 

consumption expenditures between program and control villages show that they are not 

different (Table 3). However, when we consider -  monthly consumption 

expenditure, households in control villages have slightly higher consumption than those 

in program villages. Table 3 also shows that villages with male borrowers borrowed 

more than their female counterparts. Households with male participants also have, on 

average, a higher number of members in microfinance and have more exposure (length of 

membership in microfinance) to the program. They also have higher consumption at 

both the household and - levels, and the differences between these consumption 

measures for female borrowers are statistically significant.10

10 A treated household consists of either male or female member but not both in our sample. Groups are 
never mixed by genders. A MFI selects the gender of the treatment group, and households do not have a 
choice of whether male or female will participate. 
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3. Empirical Strategy 

There are a number of different potential sources of bias that need to be accounted for 

to examine the effect of participation in microfinance. First, participants are likely to 

differ from non-participants in the distribution of observed characteristics, leading to a 

“selection-on-observables” bias. There are also problems due to “selection-on-

unobservables”–programs may be placed in a non-random sample of villages, and 

households may self-select into the program (and subsequently decide on how much to 

borrow). For example, the program village might be poorer than the control village. 

Microfinance programs are targeted to poor households. A prospective member decides 

that he/she wants to participate in the microfinance program. The potential participant 

also has to be approved by officials of MFI. Households are therefore self-selected into 

the program. Thus there are likely to be observable and unobservable differences in 

characteristics between participants and non-participants.  

However, it is likely that the MFIs choose the program village based on some observable 

characteristics. There are many MFIs working in Bangladesh. If local officials of one 

MFI use some information then other MFIs would try to use the same and so it should 

be known to researchers interacting both with officials and borrowers. Discussions with 

program officials at the local-office levels indicate that programs are designed by the 

head office. It also appears that local branch managers and officials of MFIs are not 

from the same area where the program is located. This is also discouraged by PKSF, the 

supervising body of the MFIs we are studying, since it may induce loan selection to the 

employees’ relatives or acquaintances. There are also specific guidelines from the head-

office to select the program villages. Given the size of the microfinance program and the 

number of MFIs working in Bangladesh, it is reasonable to assume that village level 

program placement is a problem of “selection-on-observables”.11 We use a wide range of 

village-level controls to address the village level selection. We also use MFI level fixed 

effects to deal with the problem of unobserved heterogeneity across different MFIs. 

These MFI level-fixed effects also partially control for unobserved factors across different 

geographic areas. With controls for village and fixed effects, we assume that there are no 

contemporaneous village level unobservables that are correlated with microfinance 

program placement in a village and household’s consumption expenditure. 

11 Gauri and Fruttero (2003) find that NGO programs in Bangladesh are not targeted at the poor villages, 
and NGOs do not respond to local community needs. Their findings indicate that non-random selection of 
villages by NGOs (which mainly include MFIs) is not an important issue in Bangladesh. 
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However, identification also requires controlling for the endogeneity that arises from 

household self-selection into the program. So, even conditional on a set of observed 

covariates, X, there could be some unobservable factors that may determine a 

household’s decision to join a microfinance program. This could be entrepreneurial 

ability, information advantage, attitudes, traditions, customs or family culture, etc. In 

order to understand the difficulties inherent in estimating the treatment effect of 

participation or credit, assume that the consumption of household in village  can be 

described as: 

(1) = 1 + 1 1 + 2 2 +

where X1  is a vector of household specific variables, and X2  is a vector of village-specific 

characteristics. =1 if household  is a member of microfinance and = 0 if  is not. 

(Alternatively, for identifying the effect of credit,  is the amount of microcredit 

borrowed by household in village ). Selection into microfinance programs on the basis 

of unobserved characteristics, , by households may generate a non-zero correlation 

between  and . Therefore treatment effect estimated using OLS may not reflect the 

program’s causal effect on household consumption. 

To solve the problem of endogeneity we consider IV estimation techniques. We utilize 

the program eligibility criterion set by the MFIs, and use it as an instrument for 

participation. The eligibility rule is not completely followed so the treatment does not 

change from zero to one at the threshold of eligibility. If treatment was deterministic 

with respect to the eligibility rule, we could compare outcomes of households clustered 

just below the cut-off line to those just above, and apply the regression discontinuity 

(RD) design directly. Figure 2a shows that the participation rate falls sharply once 

households cross the threshold level of half-acre land, but it does not fall from one to 

zero. The eligibility rule could not be applied for many practical considerations, some of 

which are mentioned below. It therefore raises concern that there could be some 

variables observed by the loan officer but unobserved by the evaluator. So, we apply an 

approach which can be seen as an  application of (fuzzy) RD design (see Van 

der Klaauw 2002). Unlike sharp RD design, selection into microfinance program in fuzzy 

design is based on both observables and unobservables. We implement RD approach 

using IV approach such as those used by Angrist and Lavy (1999). 
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Figure 2a illustrates that eligible households residing in a program village have higher 

chances to join in a microcredit program (70 percent participants are eligible). It 

therefore seems reasonable to think of eligibility status in a program village as an 

instrument for program participation. Formally, define V  as the presence of a program 

in a village  and is a variable which takes the value of 1 if the household is eligible 

i.e. owns less than half acre of land, and zero otherwise. So our instrument is Z =V ×E ,

where Z  = 1 if the household lives in the program village and is eligible. The eligibility 

criterion and program placement are exogenous to the household and hence our 

instrument is ‘as good as randomly assigned’. 

Therefore our identifying assumption is that household ’s participation, or the amount 

of credit borrowed, D , in microfinance is governed by: 

(2)   = 1 + 3 1 + 4 2 +

where X1 and X2 are the same as in equation (1) and is the household-specific error 

term embodying the unobserved influences on . We assume that  and  are 

exogenous with respect to and . We also examine whether there is a differential 

effect of credit borrowed by male and female borrowers.  

Are we using a valid Instrument?   

Identification requires that land ownership is exogenous conditional on program 

participation. The exogeneity of land ownership is a plausible assumption. The validity 

of the land-based eligibility criterion as an instrument is also defended at length by PK, 

and Pitt (1999) in response to Morduch’s (1998) critique. Morduch (1998) argues that 

PK data show a great deal of turnover in the land market. However, our data confirm 

very low turnover in the land market: only 12.8 percent of households purchased land 

and 9.5 percent of households sold land in the five year period prior to the survey. This 

turnover rate does not differ between program and control villages. So, the land market 

is not active in our survey area. We do not find evidence that households endogenously 

sort themselves out in response to the half-acre eligibility rule. Since credit is extended 

mainly for -  (self-employment activities) households having 

more land are exogenously ruled out. However, there are some participating households 

that own more than half an acre of land. Those households are currently not actively 

engaged in agriculture or the land is not fertile for cultivation, or sometimes there is 



11

mistargeting, as perfect monitoring is not possible. The eligibility rule is set to simply 

identify the poverty status of the household.  Since land price and quality also vary 

between different regions, a household having more than half an acre of land is also 

considered to be poor in some regions. So, sometimes the loan officer or branch manager 

made their own judgement over the poverty status of the households upon their field 

visit. Note that, in general, richer households get credit at a softer term from formal 

markets, or through other means. Also there are social norms that bar them from 

becoming members of a microcredit organization. Rich people in rural areas still hesitate 

to become members of MFI, because they consider MFI as an organization for the poor. 

Thus the use of program eligibility criterion as an instrument for treatment in 

microfinance is well justified here. Moreover, in order to allow Yi  to vary with the level 

of the landholding status, in our regression specification in equation (1), we also use the 

amount of land by household as an explanatory variable. So Z is likely to satisfy the 

exclusion restriction.12 For Z to be a valid instrument the vector X2 should include all 

the village level characteristics that the MFI may use to decide program placement. We 

do so by exploiting the rich information collected at the village level and so the vector 

X2 includes variables such as education, health, electricity, irrigation, prices, labour 

market conditions and infrastructure in the village.13

We check whether the eligibility criterion does satisfy the properties of an instrument. 

First, we need a strong first-stage to ensure that we are not using a weak instrument. 

We estimate a probit model of participation in the first stage using equation (2). There 

is a strong first stage here though the relationship between participation and eligibility 

is not deterministic (see Figure 2b). The coefficient estimate is positive and also 

economically significant — implying that eligibility is significantly related to the 

participation. We then check whether eligibility affects consumption expenditure only 

12 The key identifying assumption that underlies estimation using  as an instrument is that any effects of 
eligibility on consumption are adequately controlled by the household land ownership included in 1 in 
equation (1) and partialled out of Z by the inclusion of land ownership in 1 in equation (2).
13 It may be argued that MFIs base their selections on the unobserved characteristics of the target 
population in each village, rather than on the entire population of the village. In that case, our estimations 
would be inconsistent. So, we also experimented with PK’s method of using separate fixed effects for target 
and non-target populations in each village (estimates involve more than 300 fixed effects). Our conclusions 
do not change with this specification (the results are available upon request). However, as we argued 
before, non-random selection of village is less important in our sample as most of the villages in the sub-
districts we surveyed were under the microfinance program. Moreover, the largest sample of non-
participants in our survey comes from program villages. So, we argue the concern regarding non-random 
program placement is not an important issue in our case once we control for village level observed 
covariates and fixed effects. 
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through the credit program participation. We estimate a semi-reduced form equation, in 

which participation is instrumented but eligibility enters the second stage regression 

directly (and naturally in the first stage regression). The results do not indicate any 

significant effect of eligibility in any of the specifications. We also estimate a reduced 

form regression regressing consumption expenditure on eligibility status, and we do not 

find any significant effect. Finally, we consider if there is a discontinuity in the 

conditional mean of consumption expenditure at the cut-off of eligibility. If we look at 

the Figure 1, we observe no discontinuity. We also check the possible discontinuity in 

outcomes in treatment villages but not in control villages and we do not find any such. 

This is expected since the relationship between land ownership and consumption 

expenditure is not obvious, and microcredit is provided to either landless households or 

households who are not much active in land cultivation.  

4. Estimation Results 

4.1 Differences-in-Differences Estimates 

In the following, we evaluate the impact of microfinance on household total monthly 

food consumption expenditure and per-capita monthly food consumption expenditure. 

The dependent variable in the regression is the log of each expenditure measure. Based 

on household eligibility for the microfinance program, we first specify the following 

functional form: 

(3) = + + + Z  + 7 1 + 8 2 +

where Y  is the log of consumption expenditure of household  in village . With this 

specification, ( + ) measures the difference in the conditional expectation between 

eligible households in the program village and that of eligible households in the control 

village. Similarly, 3 is the difference-in-difference (DD) of mean log consumption 

expenditure. It captures the difference in conditional consumption expenditure between 

eligible and non-eligible in program villages that is over and above the difference in 

control villages. 

Reduced form estimates of equation (3) using OLS are reported in Table 4. The 

covariates included in X1 and X2 are presented in the Appendix (see the list of 

variables). The top panel of Table 4 shows the coefficient estimates of the impact on the 

log of household total consumption expenditure by male and female households, and by 
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land ownership. The estimated coefficient 3 is always positive, indicating that the 

eligible households in the program village are better off due to the presence of the 

program. The results are similar for the coefficient estimates of the effect on per-capita 

consumption expenditures as shown in the bottom panel of Table 4. The coefficient is

also known as the ITT effect. The estimates in Table 4 indicate that the average ITT 

effect is approximately 4-8 percent. The results imply that eligible households in 

program villages are positively impacted by the presence of the program.14 It also shows 

that simple difference estimates with just the eligible in program and control villages 

would have understated the effect of eligibility by neglecting ineligible groups in both 

villages.  

The advantage of using eligibility, rather than receiving the treatment, is that we have 

effectively eliminated the problem of non-compliance. There is no reason to believe that 

non-compliance would occur in the process of assigning households into the eligible 

group. The estimated impact on the corresponding participant is, however, likely to be 

biased downward since not all program eligibles in the treatment village received the 

treatment. Thus we cannot interpret the estimate as average effect per participant or 

TOT. Our DD estimates are thus diluted due to imperfect take-up rates. However, the 

estimation of the effect of eligibility is one of the most important parameters to 

estimate, and the estimation of ITT requires less restrictive assumptions than that of 

TOT. ITT thus likely provides a lower bound of the size of the TOT. 

4.2 Instrumental Variable Estimates 

We estimate the TOT effect using ITT as an instrument for treatment. Indeed, policy 

makers or practitioners are probably more interested in the TOT parameter. We 

consider two measures for : (i) an indicator of whether the household is a current 

member of microfinance (binary treatment indicator); and (ii) the cumulative amount of 

credit borrowed (continuous treatment measure).  

14 Most of the coefficients are statistically insignificant, but are sizeable in economic terms. This issue 
reappears throughout the study. We suspect this result is due to sampling error. However, this problem is 
common even with using U.S. CPS data. For example, Card (1992) encountered the same problem in his 
analysis of California’s 1988 minimum-wage hike. See also Hamermesh and Trejo (2000) who also 
encountered similar problem to analyse the effect of overtime penalty on hours work. For more details on 
this issue, see McCloskey and Ziliak (1996) who suggest looking at economic significance of the results 
instead of its statistical significance. Note also that there need not be any relationship between weak 
reduced form and significance for IV estimates. So the statistical significance of the IV estimates of the 
effects of microfinance is independent of the reduced form estimates presented here. 
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We first consider a special case of an IV estimate –the Wald estimator, which is the 

ratio of the two ITTs: the effect of Z on Y divided by the effect of Z on D. Table 5 

displays the results of the Wald estimates. The first panel reports the estimated 

treatment effect corresponding to the log of total consumption expenditure. In the first 

row we present estimates of the program impact using a binary treatment indicator. The 

coefficient estimates are negative and statistically significant for the whole sample and 

for the male and female samples individually. All the coefficient estimates are positive 

when we restrict each group to the eligible sample. The results are similar when we 

change the participation measure. Table 5 shows a statistically significant positive 

treatment effect for the eligible sub-sample of men and women groups when we consider 

per-capita consumption expenditure (second panel). The point estimate is stronger for 

eligible female borrowers compared to their male counterparts if we look at total 

consumption expenditure. However, the stronger positive effect is observed for the 

eligible male sub-sample when we consider the impact on per capita consumption.  

The Wald estimator is based on the assumption that nothing other than the differences 

in the probability of participation is responsible for differences in consumption 

expenditure. A more efficient estimate would exploit all the available information that 

both accounts for the households’ decision to participate in microfinance and for the 

outcomes of interest. Below we estimate treatment effects using equations (1) and (2) 

for various sub-samples of households based on their land ownership.  

4.2.1 How Participation Impacts consumption 

We present the estimated treatment effect using a binary treatment measure in the first 

row in each panel of Table 6-7. In the top panel of each Table we consider the samples 

of both men and women together. The middle panel reports results for female borrowers, 

and the bottom panel presents the same for the male group of borrowers. Consider panel 

1 in Table 6 where we present IV estimates of program impact of participation of men 

and women on (the log of) total household monthly consumption expenditure.15 The 

estimated treatment effects are all positive when we limit our samples of households 

15 The sample used here is choice-based: program participants were oversampled relative to the population. 
So we use weighted IV estimates (Hirano, Imbens and Rider 2003) where each program group member 
receives a weight of 1, and each comparison group member receives a weight of /(1- ), where is the 
propensity score.  The propensity score adjustment does not alter the qualitative conclusion, which holds 
whether we weight or not. So we report the unweighted results here (the weighted results are available on 
request). 
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with land ownership of less than or equal to 2 acres. The results show that participation 

in microfinance increases household consumption expenditure by about 5 percent for all 

households who own 2 acres or less land. For women, the treatment effects 

monotonically increase as the amount of land a household owns decreases. When we 

consider the full sample, the estimated impact on the log of total monthly consumption 

expenditure is negative. The corresponding estimates are positive, and are larger in the 

case of male group households for samples of  2 acres and 1 acre of land ownership, but 

then it gets weaker compared to the female group. 

The mean impacts of participation on the log of monthly per-capita consumption 

expenditure are given in Table 7. The results are similar to the effects on total 

household consumption expenditure. For example, limiting the samples to households 

owning two acres or less of land, households’ participation in microfinance increases the 

log of per-capita consumption expenditure by .037. The overall results indicate that 

treatment effects are positive when the samples are restricted to two acres of land. But 

for the male group, the positive impact is observed from 5 acres of land. Again we 

observe monotonically increasing effects of treatment for women borrowers as their land-

holdings decrease. The treatment effects vary with land ownership and gender of 

participant, and they are typically higher for the male group. It should, however, be 

noted that male borrowers have higher averages of credit borrowed through 

microfinance. They also have more members, as participants in microfinance per 

household and the average length of participation in microfinance is also higher. The IV 

estimates suggest that effects of participation on eligible households are larger than the 

corresponding reduced-form estimates for all households having two acres or less land. 

The estimated coefficients are less precisely estimated as the sample size increasingly 

shrinks.16

4.2.2 How Credit Impacts Consumption 

A weakness of the binary treatment approach above is that it classifies all treated 

beneficiaries in the same way, despite the fact that some households have received 

significantly larger amounts of credit than others. Since the extent of the treatment 

varies greatly among treated households, we report results using the amount of credit 

16 Combining the regression by adding dummy variables for the sex of the borrowers, or by interacting 
dummies for different groups of land ownership with treatment status reduce the standard errors slightly, 
but not significantly. We prefer separate estimation for each group of land ownership and sex of the 
borrowers, as it allows us to compare IV estimates with those of PSM estimates (see next section). 
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borrowed as the treatment variable. The first stage involves estimating the credit 

demand equation using a Tobit model. The coefficient of the excluded instrument 

(eligibility) in the first stage is highly significant both statistically and economically. 

The second stage results, using the same specification as above, are reported in the 

second row of each panel of Table 6-7.. The estimates are positive for samples of 

households having less than or equal to two acres of land, and for males it is positive 

from the 5 acres of land ownership. The average value of credit borrowed by the 

households of 2 acres or less of land is tk. 3849.5.17 So the estimate in row two in the top 

panel of Table 6 implies an increase in household total monthly consumption 

expenditure by about tk. 160, or 6.9 percentage points for both gender groups together. 

Similarly when the samples are restricted to only eligible group members, participating 

households enjoy an increase of about 13.3 percent of total consumption expenditures. 

The estimated effects are higher for male borrowers. 

The effects of credit on household per-capita monthly food consumption are presented in 

row two of each panel of Table 7. The coefficients are positive from samples that include 

households of less than or equal to two acres of land. For male samples, the estimates 

are all positive except in column 1. In terms of magnitude, all eligible participants 

benefit from an increase in consumption expenditure of 13.6 percent. Using the binary 

treatment measure, we see that the estimated increase in consumption is 168 taka which 

corresponds to a percentage impact of 7.2. The corresponding increase in per-capita 

consumption is 8.2 percent when we consider all households of two acres or less land. 

We obtain different program effects when we consider men and women groups 

separately; we see the positive effects on men and women but the size of the effects 

differs widely between men and women borrowers. The effects of participation or credit 

are negative when we consider the entire sample of participants. In general, we find 

slightly larger coefficient estimates (especially for men) using continuous rather than the 

binary treatment measures. 

4.2.3 Treatment Intensity as the Instrument 

Households living in different villages borrowed varying amounts. It appears that there 

is wide variation in the amount of credit borrowed by participants across different 

villages (Figure 3). Thus, the IV method can be improved upon by recognizing that 

17 In 1998, 35 taka =1US$ (approx.) 
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some villages have participated in the programs longer than others.18 So we can exploit 

the across-village variation in the intensity of treatment to capture the variation in the 

amount of loan borrowed across households in different villages. Explicitly, the 

instrument is:  

Z= V × E ×

where ‘treatment intensity’ is measured by the number of years of microfinance program 

placement in a particular village. We also use interactions with ‘year of program 

placement dummies’ as instruments. In particular, we use the following instrument:  

t
tVillyearEVZ

where ‘Villyear’ is the year dummy variable for the introduction of program in different 

villages. We report results on the effect of the log of per-capita food consumption 

expenditure in Table 8. The first panel shows the coefficient estimates of the impact of 

microcredit using a single instrument - ‘years of program placement in a village’ - 

interacted with the indicator of eligibility status in a program village. We observe the 

positive program effect in all cases starting from the households owning two acres of 

land and less. The impacts typically vary between 8 and 14 percent depending on the 

gender of participant and samples of different land group. The effects are higher on the 

male borrower group than the female group. We present the corresponding 2SLS 

estimates using multiple instruments in the second panel of Table 8. The estimates 

constructed using larger instrument sets differ little from those using a single instrument 

(in the top panel).  We find statistically significant positive effects of microfinance on all 

borrowers owning one acre or lower amounts of land. In the case of the landless, the 

coefficients are statistically significant for both groups, individually and jointly. All 

households, having one acre or less land, enjoy an increase in food consumption of 13 

percent for participating in a microcredit program. If we consider just the landless 

households, they gain more (25 percent). So our results indicate that over-identified 

estimates computed using the multiple instrument set are more precisely estimated than 

the just-identified estimates. However, the resulting efficiency gains are not dramatic: 

the standard error of estimates falls slightly with similar coefficient estimates. The p-

values of the F-statistics (for both men and women group samples) of the 

overidentifying restrictions test are shown in square brackets in the bottom panel of 

18 82% of the participants in our sample are members of a MFI for more than a year. 
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Table 8. The p-values indicate that over-identifying restrictions cannot be rejected at 

any reasonable level for any sample of households.  

4.3 Interpreting the IV Estimates

As mentioned previously non-compliance exists — it is not the case that all eligible 

households in the treatment villages participate in the microfinance program. On the 

other hand, some ineligible (non-encouraged) households end up receiving the treatment. 

So we characterize the households affected by the IV approach. The relationship 

between microfinance program participation (D ) and its effect on food consumption 

expenditure ( ) can be analysed only for the subpopulation that is affected by the 

instrument. Imbens and Angrist (1994), and Angrist, Imbens and Rubin (1996) (AIR 

from here on), identify this subgroup of units as ‘compliers’, and the resulting estimate 

is called local average treatment effect (LATE). In our case, when using the binary 

treatment indicator, LATE is the average program effect on food consumption 

expenditure for those households who choose to participate in microfinance only because 

they are eligible to borrow. Similarly, the IV estimator exploiting more than one 

instrument is the average of the various single instrument LATE estimators that we 

would obtain using each instrument separately. In this case the weights are proportional 

to the effect of each instrument on the treatment variable: the bigger the impact of the 

instrument on the regressor, the more weight it receives in the IV estimation (Angrist 

and Imbens 1995).19

The LATE-IV is based on the two assumptions: the conditional independence 

assumption (CIA) and the monotonocity assumption.  The monotonocity assumption 

implies that anyone in the population who would take microcredit in the absence of 

eligibility would also take credit if they became eligible. The assumption requires that 

eligibility can make participation in microfinance more likely, not less, and that there is 

no one in the eligible households who actually was denied the credit (i.e., D =1|Z =1

D =1|Z =0 or D =0|Z =1  D =0|Z =0 for all ). The assumption assures that there are 

no  and that  exist. Since credit is offered for non-agricultural purposes, 

there is no reason to think that households choose not to participate in microcredit 

19 The interpretation of LATE also applies in the case of non-binary IVs and non-binary endogenous 
regressors (see Angrist and Kruger 1999; Frolich 2007). In our case when  is the amount of credit 
borrowed, the compliance intensity can differ among units. Hence a change in Z induces a variety of 
different reactions in , which cannot be disentangled. Only a weighted average of these effects can be 
identified. For more on this issue see Frolich (2007) 
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when they have little land while they would participate when they possess more land. 

The data also find little use of loan - only 18 percent of the respondents mentioned a 

fraction of the loan was used for land cultivation purpose. Moreover, we do not find a 

significant difference between eligible and ineligible groups among those who use the 

loan for main agricultural activities. The CIA is based on the two requirements: ( )

comparison between outcomes for the households exposed to different values of Z

identifies the causal impact of the instrument; and ( ) the instrument does not directly 

affect the outcomes. The first requirement is satisfied since eligibility status is assigned 

by the MFI and thus exogenous to the households. The second requirement is un-

testable but we have seen previously that our instrument plausibly satisfies the 

exclusion restriction.20

The LATE has very appealing properties in terms of a policy perspective and it is a 

well-defined economic parameter. Although our estimates capture the treatment effect 

only for a particular subset of participants, this subset is of great interest from the 

program perspective. Most of the households in our samples, and the microfinance 

program in Bangladesh, in general, are compliers.21 Microfinance programs are generally 

designed for the poor landless (or marginal landholding) households to whom our 

estimates apply. The IV/2SLS allows causal effects among a very particular subset of 

household: those affected by eligibility criterion. Therefore, the results reported above 

need not generalize to the households of all participants. In a world of heterogeneous 

program impacts, LATE and TOT are likely to differ and the differences can be a 

matter for policy purposes.  

5. Evaluation using an Alternative Approach 

5.1 Propensity Score Matching (PSM) Method 

Below we estimate the treatment effect using the PSM method of Rosenbaum and 

Rubin (1983). PSM estimators permit us to estimate the impact of a treatment on the 

treated, and to check the consistency of the results under different assumptions about 

specification and identification. The main purpose of using PSM is to examine whether 

20 AIR show that the stronger the first-stage, the less sensitive the IV estimand to the violations of the 
monotonicity and CIA assumptions. They also show that the smaller the proportions of defiers, the smaller 
the bias will be from violations of monotonicity assumption. Also if the causal effects of treatment on 
outcome are identical for defiers and compliers, violations of the monotonicity assumption generate no bias. 
21 Following Angrist and Chen (2007) the proportion of households that are compliers is P[ i1-

i0| i=1]=P[ =1]{P[ i1- i0=1/P[ =1]}, where =1 whether household is eligible, and P stands for 
probability. For the whole sample, this calculation is .677*(.506/.575)=.596.  
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our basic results hold across different evaluation methods. PSM also provides us a 

different parameter of interest (TOT) as opposed to IV estimates (LATE).22

In order to identify the TOT parameter by the PSM technique, our identifying 

assumption is that outcomes in the untreated state are independent of  conditional on 

a set of observable village and household level characteristics. Rubin (1978) refers to the 

treatment status that is independent of potential outcomes as an  treatment 

assignment. Although claims for ignorable are usually implausible in a non-experimental 

setting, it is more plausible in our context that microcredit program status among the 

program village is ignorable conditional on land holdings and a vector of other 

covariates. Households in program villages that have less land and non-land assets are 

likely to participate more. MFI selects households on the basis of eligibility and 

characteristics that can be observed by a loan officer and a branch manager. It is 

unlikely that a loan officer, who is unfamiliar to the villagers, could observe an 

applicant’s entrepreneurial ability and drive. However, some treated households are not 

eligible and that all eligible households do not participate in the program introduces a 

potential selection bias. The sources of bias could be the differences in observable 

variables in terms of household size, sex ratio, schooling, age, family composition, and 

other household characteristics. The survey contains information on most of the 

characteristics (including the reasons for participation or not participation in the 

program) that are potential determinants of households’ participation in microfinance. 

Given the richness of data available, we may be willing to assume conditional 

independence, i.e. selection bias can be eliminated using matching on the covariates. 23 In 

that case, identification is based on the claim that after conditioning on all observed 

characteristics that are known to affect participant status, participants and non-

participants are comparable. 

We move to a step further to alleviate concern regarding selection bias. In particular, we 

use the regression-adjusted matching estimator developed by Heckman, Ichimura, and 

Todd (1997). The research by Heckman and his co-authors, Hahn (1998) and many 

22 If the selection on observable assumption does not hold the PSM estimates can be interpreted as ITT 
rather than TOT. 
23 The work by Heckman, his co-authors and others (Dehejia and Wahba 1999, 2002; Michalopoulos, Bloom 
and Hill 2004) points out that matching estimators perform well when (1) the same questionnaires are used 
for participants and non-participants; (2) participants and non-participants reside in the same geographic 
area; and (3) the data contain a rich set of variables relevant to modelling the program-participation 
decision.  Our data meet all these criteria. 
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others suggest that regression adjustment improves the precision of matching estimate 

more than by conditioning on propensity score alone. In the regression-adjusted version 

the residual from the regression of Y0j on a vector of exogenous covariates replaces Y0j as 

the dependent variable in the matching. Formally, assume a conventional linear model 

for outcomes in the matched comparison group Y = X +U  (the regression is only run 

on the matched comparison group so it is not contaminated by program participation). 

Using partial regression methods applied to the comparison group sample, estimate the 

components of E[Y0|X,D=0]=X 0+E[U0|X,D=0] imposing any desired exclusion 

restriction. We first use local linear regression (LLR) weight and use a bi-weight kernel 

in estimating local linear matching.24 We then use Nearest Neighbour Matching (NNM). 

In our empirical work we use the five nearest neighbours. Each of these neighbours 

receives an equal weight in constructing the counterfactual means. We use matching 

with replacement where a given non-participant is allowed to match to more than one 

participant.  

Our sample is choice-based, with program participants oversampled relative to their 

frequency in the population. Therefore, we use matching on the estimate of the odds 

ratio. We impose the common support restriction based on the method of trimming that 

was suggested by Heckman, Ichimura, and Todd (1997). In addition, we exclude the two 

percent of the remaining treatment observations that show the lowest odds-ratio of the 

non-treated observations. We follow Heckman, Ichimura, and Todd (1997), Behrman, 

Cheng, and Todd (2004), and Rubin and Thomas (2000) for variable selection to 

estimate the propensity score and regression adjustment. We include all the variables 

that may affect both program participation and outcomes. The estimates produced by 

matching can be quite sensitive to the choice of covariates used to construct propensity 

score (see Heckman, Ichimura, Smith and Todd 1998; Heckman and Navarro-Lozano 

2004). So we use two different specifications to estimate the propensity score. First we 

use a covariate specification similar to the IV specification. Then we use a more 

generous specification that includes the detailed household demographic and socio-

economic variable and village level characteristics. The list of the full controls is chosen 

from a set of larger controls, and we chose those that were most often significant in both 

outcome equation and estimation of propensity score. The final list of variables included 

24 The LLR is analogous to running a weighted regression for each program household on only a constant 
term using all the non-participant data. It is a nonparametric regression technique that improves upon 
kernel matching. It avoids the boundary points bias associated with kernel, and it can also adapt better to 
different data densities. 
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in the matching estimates is reported in the Appendix. Since the list of observed 

covariates is rich, and additionally we are using regression adjustment, we may claim 

that we are able to reach sufficiently plausible conclusion using a matching technique.   

5.2 PSM Results 

We estimate a standard logit model of participation to estimate propensity scores. The 

results, not reported for brevity, indicate that program participants are more likely to be 

eligible households. The empirical distribution of the estimated odds-ratio of participants 

and non-participants are shown in Figure 4 using the coarser set of covariates. It can be 

seen that there are very few regions of non-overlapping support. For our estimation we 

exclude non-participants in the non-overlap region, if there is any. Observations with 

very low or high logs of odds-ratio values are also eliminated as they may indicate a true 

value of zero or one. However, as is seen in Figure 4, we need to discard only very few 

observations of the treatment group.25

In Table 9 we present estimates of the treatment parameters using two different 

matching estimators. The dependent variable is the level of consumption expenditure, as 

opposed to its logarithm, since many of the coefficient estimates are very small in 

percentage terms. The average difference in food consumption expenditure between 

treated households and their non-treated counterparts provides the basis for the 

estimation of the TOT parameter. The first panel of Table 9 shows the results of both 

male and female groups together using two covariate specifications of the propensity 

score. The left side of the Table reports the results based on a coarser set of covariates 

and the right side presents the results using the same covariate specification used in the 

IV estimation. The second and third panels represent the corresponding results for 

female and male groups of borrowers, respectively. All the results are based on the 

regression-adjusted covariates. Each column of Table 9 represents estimates based on 

the matched sample of households of different groups of land ownership.  

The results for mean impact indicate that the effect of participation on total household 

consumption is negative for the whole sample. All the results point out that the 

treatment effect is positive for those households who own less land (  one acre of land). 

Both the LLR and NNM matching estimates give us similar results in both specifications 

25 It appears that the imposition of common support is not critical in our application using different sets of 
covariates for estimating propensity scores.  
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of the propensity score estimates. We observe similar results for the female group of 

borrowers. However, all TOT coefficients are positive for male groups. The results are 

also similar to those obtained from two different matching estimators. The impact 

estimate is higher for male than for female borrowers. Adding controls for estimating 

propensity score and regression adjustment does not affect the point estimates much.  

Table 10 provides the coefficients of the estimated mean impact on monthly per-capita 

food consumption expenditure using the same matching estimators. Since the results are 

not affected by the choice of propensity score estimation we report results based on a 

broader set of specifications. The results are similar to that of impact on total monthly 

consumption. All the estimated coefficients are positive starting from the samples of 

households with one acre of land, and for male groups the treatment effects are always 

positive. The size of the estimated impact varies with respect to matching estimates and 

the different groups of land holding households. Overall we find here a stronger 

coefficient for men than women.  

5.3 Spillover Effects 

Our identification strategy is based on the implicit assumption that there is no spill-over 

effect. Formally we make the stable unit treatment value assumption (SUTVA) which 

assumes that ( ) the household’s potential outcomes depend on its own participation 

only and not on the treatment status of other households; and ( ) the microfinance 

program only affects the outcome of those who participate, and that there is no 

externality from participant to non-participant. Thus it rules out peer and general 

equilibrium effects. So, in order to interpret our estimates as TOT effect, the SUTVA 

must hold. We examine ( ) by estimating the spillover effects. Accordingly, we check 

whether program affects consumption of non-treated households who live in the 

treatment villages. The difference in the unconditional mean household monthly food 

consumption expenditure between non-treated in program and control villages is less 

than 1 percent of their household monthly consumption expenditure. The difference, 

though in favour of households in the program village, is not statistically significant. 

There is also no difference in unconditional food consumption expenditure between 

eligible non-participants in program and control villages. To increase the precision of 

estimates we add a set of conditioning variables and run OLS regressions for all non-

treated households where the parameter of interest is an indicator variable of whether 

the household lives in a treatment village. The estimated coefficient is very small and 
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negative for the full sample of non-participants, while it is also very small but positive 

for the eligible sub-sample (results not reported here). We then use regression adjusted 

matching estimates to ensure that we are comparing similar non-participants, and find 

no support in favour of spillover. We also compare eligible non-treated households who 

have the same probability of participation, were the program available, and also find no 

indication of spillover effects. Thus there is no strong evidence in favour of a positive 

spillover effect.26

6.1 IV versus Matching Estimates 

We now compare the main results from IV and matching estimates. We see that the 

results are similar in terms of the sign of the coefficient estimate. Both estimation results 

suggest that the effects are positive for a subset of borrowers; those having less land. In 

terms of the magnitude of the coefficients, the matching estimates are substantially 

smaller than the IV estimates.27 The estimated standard errors are larger in case of 

matching than the IV estimates. Therefore, unlike IV estimates that show modest 

positive effects on the consumption of eligible or other poorer participants, matching 

estimates leads to smaller positive and statistically insignificant effects on consumption. 

The lack of statistical significance in the coefficient estimates is partially the results of 

the smaller sample size (see also footnote 14). The divergence between IV and PSM 

estimates in terms of standard error is probably best explained by differences in the 

heterogeneity among households. The matching estimator combines propensity score 

weighting schemes to estimate the TOT. Households most likely to participate get the 

highest weights in matching estimates. On the other hand, IV produces covariate-

specific variance weighted average effects. The two weighting schemes are likely to cause 

different estimates (Angrist and Krueger 1999).28 Moreover, our matching estimates only 

consider extensive margin (where all treated households are classified in the same way) 

but not intensive margin (intensity of the treatment). Treating differently treated 

26  However, to the extent that the change in behaviour and therefore the resulting program impacts among 
the treated influence their peers within the group, we are not correct in claiming that there are no spillover 
effects. In the presence of violation of SUTVA, our estimates are the lower bound to the true effects.  
27Since IV estimates are all in terms of logarithms we multiply IV estimates by household total 
consumption expenditures in order to compare the IV with the matching estimates. 
28See Heckman and Navarro-Lozano (2004) for more details for comparisons between matching and IV 
based on treatment parameters. 
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households as the same, as a binary approach would do, thus seems likely to understate 

the potential effect of full treatment of microcredit.29,30

The two estimates produce results for two different subgroups of borrowers. The IV 

estimate applies to a smaller treatment group than the matching estimates. The larger 

coefficient estimates by IV rather than matching implies that the impacts of 

microfinance for the ‘compliers’ are higher than ‘always-takers’. This result might be 

counterintuitive in the sense that the treatment effect for the marginal group (poorer 

households) should be smaller than the average treatment effect on the treated. 

However, this need not be the case here because IV estimates the impact of the program 

for those households that are more credit constrained and/or have greater immediate 

need to improve their consumption. They are also more likely to participate in a 

microcredit program. So, it is possible that gains from participation are higher for them. 

While IV is a standard technique for non-experimental impact estimates, recent evidence 

in favour of matching is compelling. However, there is no guarantee that selection on 

observables will eliminate the total bias (unless they go in the same direction). So, 

matching estimates may still be biased if there are any latent factors correlated with 

participation decision and counterfactual outcomes.31 The IV method can overcome these 

problems: Under IV assumptions and the assumed functional form, IV estimation 

identifies the causal effect robustly to unobserved heterogeneity. However, the IV 

estimates are valid for the group of compliers and may not be informative for the other 

group (always-takers).32

29PSM techniques are generally confined to binary treatment scenarios. However, some possible extensions 
have been suggested. For example, Hirano and Imbens (2004) develop a generalized propensity score 
method when treatment is defined as a continuous variable. 
30 Angrist (1998) finds larger standard error of estimates in covariate matching than the estimates obtained 
using IV. Zhao (2006) compares the performance of PSM and covariate matching estimators, and finds 
that PSM estimators have larger standard errors. So our results are consistent with both Angrist and Zhao. 
31Blundell, Dearden and Sianesi (2005) argue that the plausibility of the selection on observable assumption 
of PSM method should always be discussed on a case-by-case basis. In our case, the assumption seems 
reasonable due to informational richness of the data, and the simple mechanism (land-based eligibility 
criterion) for participation into the program. However, there are some complexities as well since a number 
of households from the ineligible group received treatment and some eligibles did not take up the program. 
So, the divergence between IV and PSM could also be due to unobserved heterogeneity in the selection 
process. See Attanasio and Vera-Hernandez (2004) for a related issue in the context of evaluation of a large 
nutrition program in Columbia.
32Our results indicate that the concern regarding selection bias in non-experimental data can be less 
problematic if the researcher establishes good interactions with borrowers and providers before evaluating 
the program. In particular, one needs to know how MFI selects villages and households, and why 
households enter programs. It is, however, to be noted that we do not rely on (regression-adjusted) 
matching results to conclude our findings since the possibility of selection based on observables could still 
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6.2 Summary and Conclusion 

Using different non-experimental impact evaluation techniques we find similar results 

concerning the impact of microfinance. We use different instruments and our results are 

robust to the use of instruments. Overall, the results indicate that they do not entirely 

depend on different specification and identifying assumptions. We also estimate the 

heterogeneous treatment effect by estimating the sub-group specific mean treatment 

effect where the groups are categorized based on the targeting criterion. Our approach is 

novel in the sense that we do not estimate treatment effects based on an outcome 

variable, such as quantile treatment effects which suffers from the strong assumption of 

rank preservation (Bitler, Gelbach and Hoynes 2006). The results indicate that there is 

substantial heterogeneity in the causal impact of participation in microfinance.  

The overall results suggest that the effect of microfinance on household consumption 

expenditure does not seem to be strong. It raises the doubt of whether microfinance can 

be a first-track poverty reduction program. The IV estimates indicate an increase of 6 to 

14 percent in the consumption expenditure of the relatively poor participating 

households. Overall, results signify that, conditional on positive impacts, stronger 

coefficient estimates are observed for men participants. However, men participants 

borrow more, so larger treatment impact could be the results of increasing returns in 

household enterprises. The results for men are based on a very small sample size, and 

should be interpreted with caution. Note that these results are not directly comparable 

with PK’s study since we are considering different set of MFIs, and there is no overlap 

in the households/MFIs evaluated by these two studies.  

In general, we find an inverse relationship between household land ownership and the 

benefits from participation in microcredit program: the lower the amount of land a 

household has the stronger is the effect of participation in microfinance. The benefits are 

lower, or sometimes even negative, for those households marginal to the participation 

decision. The results indicate that the effects of microfinance loans are not strong across 

all groups of poor households. Rather, those among the poorest of poor participants are 

be questionable (see, for example, Angelucci and Attanasio (2006) who argue against standard matching 
approach for non-random assignment of the program, and non-random participation into the program. 
They propose semi-parametric estimator by combining matching and IV approach). We do not use 
standard PSM estimate, and we think that the PSM results are at least indicative. 
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most likely to benefit from participating.33 The results also imply that microcredit loans 

may not be effective for land-rich households. Moreover, they are not the focus of the 

microcredit loans as these groups are not officially eligible. They are also less likely to 

participate in a microfinance program. The findings indicate that the simple targeting 

mechanism of microfinance program in Bangladesh based on household land ownership 

is effective. Hence the efficiency of the microfinance program can be enhanced by 

allocating credit to those, namely the poorest marginal landholding households, for 

which the impact is the greatest.  

33 The results may have different interpretations. For example, credit may induce poorer households to 
increase their consumption while it may not have any sizeable effect on consumption of a relatively less 
poor because they might invest their money on a long-term project. However, MFI requires that loans to 
invested and be repaid within a year with payment start about four weeks later upon receiving the loan. It 
may still be possible that the poorer households use their loan more to augment consumption. My field 
visits do not support the claim. Also the survey data regarding the use of loans indicate that more than 90 
percent of all treated households use loan for productive investment and that there is no difference between 
poorer and less poor households in this respect. Moreover, MFIs monitor the use of loan, and because of 
the repayment concern (unlike cash transfer program like Progressa) almost in each week, households 
cannot sustain their higher level consumption without investing money.  
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Table 1- Village Level Descriptive Statistics 

Variable 
Control 

village (I) 
Program 

village (II) 
Difference 
III=(II-I) t-stat 

Education Facilities: 
Primary school 90.91 86.25 -4.66 0.42 
Secondary school 27.27 31.25 3.98 0.26 
Maktab/ Madrasa (Religious School) 81.82 90.00 8.18 0.80 

Health Facilities: 
Union health centre 10 17.5 7.5 -0.59 
Allopathic doctor 50 42.5 -7.5 0.45 
Homeopath doctor 40 38.75 -1.25 0.08 
Allopathic medicine store 80 45 -35 2.12 

Transport, Communication and Infrastructure: 
Electricity connection  17 26 9 3.2 
Presence of pucca road 10.6 34.8 24.2 8.4 

 Distance to nearest Thana (in km) 11.91 7.14 -4.77 -2.07 
 Presence of grocery market 18.2 22.5 4.3 0.33 
 Presence or absence of frequent haat (big market) 27.3 32.5 5.2 0.35 
 Presence of bus stand 9.1 15 5.9 0.59 
 Presence of post office 18.2 20 1.8 0.14
 Presence of telephone office 9.1 6.3 -2.8 -0.3 
 Presence of Union Parishad (local Government) office 18.2 13.8 -4.4 -0.35 

Irrigation Equipment: 
 Number of low lift pump 0.27 0.44 0.16 0.23 
 Number of shallow tube-well 11.82 12.13 0.31 0.05 
 Number of hand tube-well for drinking water 68 78.04 10.04 0.39 

Credit related options: 
 Percentage of crop received by land owner in sharecropping 49.55 47.53 -2.02 0.96 
 Number of money lenders from this village 3.73 7.91 4.19 2.4 
 Number of people who provides advances against crops 2.73 3.85 1.12 0.79 
  Number of small credit/savings groups 0.91 0.76 -0.15 -0.39 

Notes: The first column of the Table presents the mean of each variable for the control villages, and the second 
presents the same for the treatment villages. The third column presents the difference between the two, and the 
fourth provides the t-statistics for the mean difference of participating and non-participating households.
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Table 3- Summary Statistics of Consumption and Credit Variables

Variable 
Men  
(I) 

Women
(II) 

Difference 
(I-II) 

P-
value K-S 

Total of Amount Credit 
(Taka) 

4650.9 3799.4 851.6 0.000 0.015 
(3961.7) (2115.2) (176.1)   

Total Length of  
Membership (in years) 

4.1 3.3 0.8 0.000 0.001 
(3.4) (2.7) (0.2)   

Number of Borrowers  
per Household 

1.4 1.1 0.3 0.000 0 
(0.6) (0.3) (0.0)

Household Total 
Monthly Consumption 

2783.6 2365.0 418.5 0.001 0.003 
(2192.3) (1723.2) (130.4)   

Household Per-capita 
Consumption  

497.6 436.5 61.1 0.013 0.002 
(394.0) (325.4) (24.3)   

Number of Observation 213 1565      

 Participant 
Non-

participant Difference 
P-

value K-S  

Household monthly Food  
Consumption (tk.) 

2415.1 2456.6 41.5 0.730 0 
(1801.1) (1890.9) (67.7)   

Household monthly Per-capita  
Food Consumption (tk) 

443.3 467.7 24.4 0.049 0.022 
(336.1) (337.4) (12.4)   

Household monthly Food  
Consumption in program village (tk.) 

2417.8 2461.8 44.1 0.550 0.112 
(1806.9) (1942.7) (73.6)   

Per-capita monthly Food  
Consumption in program Village (tk)  

444.3 477.8 33.5 0.014 0.028 
(337.0) (358.3) (13.7)   

Notes: The top panel represents the descriptive statistics of the selected variables for men and women 
participants in microfinance. The bottom panel gives the descriptive statistics of the treatment and 
comparison households. Reported p-values are the two-tailed tests of the null hypothesis that column II and I 
are equal. (K-S) based on Kolmogorov-Smirnov test of equality of distribution, Standard errors are in 
parenthesis 

         Table 4- Difference-in-difference Estimates: The Impacts of Eligibility 
Dependent Variable: Household Log of Total Monthly Food Consumption Expenditure 
Estimated 
Coefficient 

Household Land Ownership

All sample Land 500 Land 200 Land 100 Land 50 Landless
1 -0.015 -0.021 -0.051 -0.027 0.038 0.051 

(0.046) (0.047) (0.054) (0.077) (0.034) (0.040)

2 -0.104 -0.0983 -0.0788 -0.0361   
(.0520)** (.0549)+ (.0644) (.0866)

3 0.0471 0.0532 0.0826 0.0628   
 (.0523) (.0531) (.0588) (.0799)   

1+ 3 0.0321 0.0322 0.0316 0.0358 0.038 0.051 
Dependent Variable: Log of Per Capita Monthly Food Consumption Expenditure 

1 -0.023 -0.026 -0.048 -0.025 0.039 0.048 
(0.046) (0.047) (0.054) (0.077) (0.035) (0.041)

2 -0.104 -0.092 -0.068 -0.0337 
 (.0522)** (.0550)+ (.0647) (.0872)   

3 0.0541 0.057 0.0794 0.0592 
(.0525) (.0532) (.0591) (.0804)

1+ 3 0.0311 0.031 0.0314 0.0342 0.039 0.048 
Notes: Clustered standard errors are reported in parentheses, + significant at 10%; ** significant at 5%; * significant 
at 1%. Coefficients are those from estimation of reduced form equation (4). Regressions also include household and 
village level characteristics and MFI fixed effects. 
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Table 5- Wald Estimates of Impacts of Microfinance 
Dependent Variable: Household Log of Total Monthly Food Consumption Expenditure 

Treatment Variable All All eligible Women Eligible Women Men Eligible  Men  

Whether treated 
or not  

-1.345 0.249 -1.313 0.219 -1.434 0.102 
(0.146)* (0.292) (0.148)* (0.295) (0.146)* (0.342) 

Total amount of credit1 -0.8746 0.1616 -0.8430 0.1381 -0.8864 0.0631 
 (0.0605)* (0.1183) (0.0620)* (0.11589) (0.0896)* (0.1385) 
Dependent Variable: Log of Per Capita Monthly Food Consumption Expenditure 

Participation Variable All All eligible Women Eligible Women Men Eligible  Men  

Whether treated 
or not 

-0.621 0.312 -0.633 0.273 -0.552 0.386 
(0.121)* (0.258) (0.122)* (0.260) (0.190)* (0.264) 

Total amount of credit1 -0.4042 0.2024 -0.4080 0.1722 -0.3419 0.2392 
 (0.0522)* (0.1020)** (0.0535)* (0.0997)+ (0.0752)* (0.1173)** 

Notes: Each cell in the Table corresponds to a separate regression. The first row in each panel represents regression 
of log of consumption expenditure on a dummy for treatment status using eligibility status as instrument for 
treatment. The second row of each panel reports the corresponding estimated coefficients using continuous treatment 
measure (the amount of credit borrowed).  Regressions do not include any other covariate. Clustered standard errors 
are reported in parentheses, + significant at 10%; ** significant at 5%; * significant at 1%. 1 Coefficient estimates 
and the corresponding standard errors are multiplied by the average amount of credit borrowed by households of the 
respective group of land ownership (assuming constant marginal benefit from the credit).  

Table 6- IV Estimates of Impact of Microfinance on Household Consumption 
(Dependent variable: Household Log of Total Monthly Food Consumption Expenditure) 

Both Men and Women
Treatment Variable

Household Land Ownership (in decimal) 

All sample 
Land
500

Land 
200

Land
100

Land 
50 Landless 

Adjusted 
R2

Whether treated  
or not 

-0.216 -0.131 0.049 0.128 0.126 0.156 (0.46-0.49) 
(0.102)** (0.113) (0.129) (0.140) (0.164) (0.193)  

Amount of credit1 -0.1282 -0.0660 0.0692 0.1173 0.1335 0.1745 (0.46-0.49) 
 (0.0660)+ (0.0738) (0.0885) (0.0984) (0.1186) (0.1374)  
Mean Consumption (Tk.) 2432.7 2384.3 2319.1 2228.9 2126.3 2082.8  
Observations 3026 2960 2780 2462 2034 1471  

Women               

Whether treated 
or not 

-0.21 -0.157 0.027 0.109 0.149 0.218 (0.46-0.49) 
(0.107)+ (0.116) (0.132) (0.144) (0.167) (0.197)  

Amount of credit1 -0.1308 -0.0978 0.0357 0.0830 0.1160 0.1886 (0.46-0.49) 
 (0.0688)+ (0.0754) (0.0880) (0.0976) (0.1191) (0.1387)  
Mean Consumption (Tk.) 2406.1 2359.5 2302.8 2216.5 2108.0 2067.3  
Observations 2813 2755 2591 2299 1904 1377  

Men               

Whether treated 
or not 

-0.151 -0.013 0.146 0.21 0.051 0.124 (0.52-0.55) 
(0.154) (0.168) (0.190) (0.210) (0.248) (0.299)  

Amount of credit1 -0.0360 0.0849 0.2602 0.2898 0.2299 0.2520 (0.52-0.55) 
 (0.122) (0.1340) (0.1500)+ (0.1548)+ (0.1753) (0.2159)  
Mean Consumption (Tk.) 2505.2 2436.8 2350.0 2215.4 2120.8 2085.2  
Observations 1461 1420 1305 1127 922 673   

Notes: Each cell in the Table corresponds to a separate regression. The first row in each panel represents a separate 
regression of log of total household monthly consumption expenditure on a dummy for treatment status, controlling 
for household and village level characteristics and MFI fixed effects, and using eligibility status of household as 
instrument for treatment indicator. The second row of each panel reports the corresponding estimated coefficients 
using continuous treatment measure (the amount of credit borrowed). Clustered standard errors are reported in 
parentheses, + significant at 10%; ** significant at 5%; * significant at 1%. 1 Coefficient estimates and the corresponding 
standard errors are multiplied by the average amount of credit borrowed by households of the respective group of land ownership
(assuming constant marginal benefit from the credit).
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Table 7- IV Estimates of Impact of Microfinance on Per-capita Consumption 
(Dependent Variable: Log of Per-capita Monthly Food Consumption Expenditure)

 Notes: Each cell in the Table corresponds to a separate regression.  The first row in each panel represents a separate 
regression of log of per-capita monthly consumption expenditure on a dummy for treatment status, controlling for 
household and village level characteristics and MFI fixed effects, and using eligibility status as instrument for 
treatment. The second row of each panel reports the corresponding estimated coefficients using continuous treatment 
measure (the amount of credit borrowed). Clustered standard errors are reported in parentheses, + significant at 10%; 
** significant at 5%; * significant at 1%. 1 Coefficient estimates and the corresponding standard errors are multiplied 
by the average amount of credit borrowed by households of the respective group of land ownership (assuming constant 
marginal benefit from the credit).  

Both Men and Women
Treatment Variable

Household Land Ownership(in decimal) Adjusted 
 R2All sample Land 500 Land 200 Land 100 Land 50 Landless 

Whether treated 
or not 

-0.203 -0.119 0.037 0.080 0.072 0.086 (0.26-0.28) 
(0.103)** (0.113) (0.129) (0.141) (0.165) (0.197)  

Amount of credit1 -0.1071 -0.0437 0.0826 0.1109 0.1361 0.1670 (0.26-0.28) 
 (0.0677) (0.0756) (0.0885) (0.0977) (0.1196) (0.1415)  
Per-capita Consumption (Tk.) 453.7 449.9 444.4 435.2 423.6 415.1  
Observations 3026 2960 2780 2462 2034 1471   

Women               

Whether  treated 
or not 

-0.177 -0.14 0.019 0.066 0.104 0.151 (0.25-0.28) 
(0.108) (0.116) (0.133) (0.145) (0.168) (0.201)  

Amount of credit1 -0.098) -0.0734 0.0494 0.0784 0.1234 0.1809 (0.25-0.28) 
 (0.0690) (0.0756) (0.0884) (0.0983) (0.1199) (0.1412)  
Per-capita Consumption (Tk.) 450.5 446.8 442.4 433.2 420.1 413.1  
Observations 2813 2755 2591 2299 1904 1377  

Men               

Whether  treated 
or not 

-0.143 0.014 0.171 0.188 0.038 0.099 (0.30-0.33) 
(0.156) (0.170) (0.192) (0.213) (0.252) (0.309)  

Amount of credit1 -0.0142 0.1256 0.3015 0.2992 0.2443 0.2470 (0.30-0.33) 
 (0.1230) (0.1352) (0.1515)** (0.1571)+ (0.1782) (0.2229)  
Per-capita Consumption (Tk.) 472.8 466.1 459.2 444.7 437.5 427.2  
Observations 1461 1420 1305 1127 922 673   
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Table 8- 2SLS Estimates of Impact of Participation in Microfinance 
(Dependent Variable: Household Log of Per-Capita monthly Food Consumption Expenditure) 
Instrument: ×E ×the number of years in microfinance in program village 

Household Land Ownership(in decimal) 
All sample Land 500 Land 200 Land 100 Land 50 Landless Adjusted R2

All -0.0645 -0.0080 0.0812 0.1183 0.0579 0.1360 (0.26-0.28) 
 (0.0671) (0.07160 (0.0785) (0.0838) (0.0956) (0.1118)  
Women -0.0491 -0.0186 0.0674 0.1039 0.0583 0.1440 (0.26-0.28) 
 (0.0702) (0.0741) (0.0813) (0.0866) (0.0988) (0.1156)  
Men -0.0481 0.0684 0.2044 0.1883 0.1357 0.3045 (0.31-0.33) 
 (0.1234) (0.1319) (0.1431) (0.1447) (0.1572) (0.1959)  

Instrument: ×E × separate dummies for each year in microfinance in program village  
 All sample Land 500 Land 200 Land 100 Land 50 Landless Adjusted R2

All -0.0323 0.0187 0.1040 0.1304 0.1127 0.2467 (0.26-0.28) 
 -.0581 -.0625 .0689 (.07.33)+ -.0813 (.0952)*  
F-test [p= 0.008] [p= 0.004] [p= 0.000] [p= 0.000] [p= 0.000] [p= 0.000]  
Women -0.0241 .0001 0.0813 0.1094 0.0969 0.2446 (0.26-0.28) 
  (0.0588) (0.0624) (0.0690) (0.0740) (0.0823)** (0.0962)**   
Men -0.0252 0.07257 0.1834 0.1677 0.1428 0.3014 (0.31-0.33) 
 (0.1053) (0.1129) (0.1222) (0.1221) (0.1279) (0.158012)+  
Notes: Each cell in the Table corresponds to a separate regression of log of per-capita monthly consumption 
expenditure on amount of credit borrowed as treatment variable, controlling for household and village level 
characteristics and MFI fixed effects. Clustered standard errors are reported in parentheses, + significant at 10%; ** 
significant at 5%; * significant at 1%. All the Coefficient estimates and the corresponding standard errors are 
multiplied by the average amount of credit borrowed by households of the respective group of land ownership 
(assuming constant marginal benefit from the credit). The F-test is for whether the coefficients on the excluded 
instruments are jointly equal to zero, conditional on all other controls. 
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Table 10- Matching Estimates of the Impact of Participation in Microfinance  
(Dependent Variable: Household Monthly Per-capita Food Consumption Expenditure (in Taka)) 

Regression Adjusted 
Estimates of  

(Estimation based on full set of covariates) 
All sample Land 500 Land 200 Land 100 Land 50 Landless 

 Both Women and Men 

Local Linear -1.26 0.70 -1.34 7.10 8.08 5.79 
 (14.67) (14.52) (15.08) (15.86) (16.20) (19.12) 
       

Nearest  
5-neighbour 

-10.53 7.29 0.77 7.23 10.66 7.36 
(15.40) (15.31) (16.04) (16.68) (16.73) (20.21) 

Women 

Local Linear -4.56 -1.49 1.38 10.44 8.15 9.39 
 (15.23) (15.03) (15.72) (16.54) (16.65) (20.35) 
       

Nearest  
5-neighbour 

-2.66 -1.20 1.76 13.28 6.67 6.52 
(16.40) (15.96) (16.38) (16.72) (16.27) (19.79) 

Men

Local Linear 10.11 14.35 12.43 27.22 59.91 26.58 
 33.43 32.83 32.98 42.93 63.56 43.14 
       

Nearest  
5-neighbour  

15.81 14.60 5.23 7.68 27.75 18.20 
(31.60) (33.60) (33.90) (34.06) (41.14) (49.05) 

Notes:  Bootstrapped standard errors are shown (in parentheses) for local linear estimator. They are based on 100 
replications with 100% sampling. Standard errors for the nearest neighbour estimator are based on Abadie and Imbens 
(2006). In the estimation of LLR matching the densities were estimated using a bi-weight kernel and a fixed 
bandwidth of 0.06.The full set of covariates includes a coarser set of specifications listed in the Appendix. All the 
coefficients estimation is carried out using regression-adjusted version of the corresponding matching estimator.  
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Figure 1a: Household consumption expenditure by land ownership

Notes: Figure shows regression un-adjusted household monthly consumption expenditure (in taka) by land ownership. 
Land  50 implies household who own less than or equal to 50 decimal (half-acre) land, and so on.  

Figure 1b: Per-capita consumption expenditure by land ownership 

Notes: Figure shows regression un-adjusted per-capita consumption expenditure (in taka) by land ownership. Land 
50 implies household who own less than or equal to 50 decimal (half-acre) land, and so on.   
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Figure 2a: Participant Rate by Household Land Holding 

Notes: Figure shows lowess locally weighted regression of the amount of land owned by households on their probability 
of participation in microfinance (using quartic kernel with bandwidth of 0.8 ). Regression-adjusted probability of 
participation is obtanied by conditioing on household and village level characteristics, MFI fixed effects, and 
instrument (eligibility status of household in program village) 
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Figure 2: Participation probability by land ownership
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Figure 2b: The Distribution of Per-capita Food Consumption Expenditure 
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Figure 3:  Years of Microfinance Program in a Village and Credit Borrowed by Households

Notes: Average credit per household in a village is the amount of credit borrwed (in taka) by all households divided by 
the number of participating households in a program village. Number of years a MFI is available in a village is the 
period from which microfinance is first avilable in a program village. 
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Figure 4: The Empirical density of the log of odds-ratio
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Appendix 

List of Variables:  

Variables used in IV estimation and Program Participation Model 

Household Level variables: 

Age of household head, Square of the age of household head, Sex of household head, Marital status of 
household head, Education level of household head and spouse (illiterate, can sign only, can read only, can 
read and write), Whether household head has spouse, Highest grade achieved by a member in the 
household, total arable land owned by household, Number of children age below 6 years, age 6-15, 
Dependency ratio, Number of 15-60 years old male and female member, Type of family (joint family or 
semi-nuclear, nuclear ), Dummies for occupation of the household head (farmer, agricultural labour, non-
agricultural labour, self-employed or businessman, professional or salaried job holder, any other job), 
Electricity connection, Number of living room (beside bathroom/kitchen), If cement or brick used in any 
of the living room, Whether condition of house is good, liveable, or dirty, Whether household has separate 
kitchen, toilet facility.  

Village level Variable:  

Presence or absence of primary school, secondary school or college, health facility, Adult male wage in the 
village, presence of brick-built road, regular market, post office, local government office, youth 
organization, Distance to nearest thana, Number of money lenders, large farmers/traders who provides 
advances against crops in the village, Number of small credit/savings groups in the village, Price of Rice, 
wheat, oil, potato. 

Additional Variables used in estimating the Propensity Score: 

Additional covariates used in the PSM estimator are household demographic and socio-economic variables 
decomposed into various categories (e.g., age is divided into different groups), additional household level 
variable (e.g., number of daughter, son) additional village level characteristics (e.g., average male, female 
daily wage). This is a larger set of variables and interactions that are selected to maximize the percentage 
of observation classified under the model.


