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Abstract: 

This study proposes a new approach to utilize information from existing choice 

experiments to predict policy outcomes for a transfer setting.  Recognizing the difficulties 

from pooling raw data from experiments with different designs and sub-populations we 

first re-estimate all underlying Random Utility Models individually, and then combine 

them in a second stage process to form a weighted mixture density for the generation of 

policy-relevant welfare estimates.  Using data from recent choice experiments on 

farmland preservation we illustrate that our strategy is more robust to transfer 

inaccuracies than single-site approaches.  The specification of "intelligent" mixture 

weights will be a fruitful ground for future research in the area of Benefit Transfer.
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Introduction 

The potential of past Choice Experiments (CEs) to provide useful information for a yet 

unstudied policy site or context has received increasing recognition in recent years (e.g. 

Morrison and Bergland 2006; Johnston 2007).  By design, CEs can address a flexible mix 

of site or context attributes, which are likely to include the relevant set of attributes for 

the policy context for which a transfer of information or "benefits" is sought.  In addition, 

it is conceivably more feasible for researcher to calibrate CE designs to match past 

examples on similar topics and thus contribute to a "homogenization" of research 

instruments than it is to align survey questionnaires and data collection in a real-world, 

revealed preference setting.   

 The focus of this study is on benefit transfer (BT) based on combined information 

from multiple CEs.  In principle, there are two general approaches to build a candidate 

transfer function from several CE sources: (i) The aggregate approach, which uses the 

reported parameter estimates from original CE studies and combines them with attribute 

settings pertinent to the policy context, or (ii) The choice-level approach, which 

combines the raw choice data from source studies to generate a new set of estimates of 

transfer parameters.  The first approach is illustrated by Johnston, Duke, and Kulieka 

(2008), who generate and average point estimates of policy-relevant welfare measures, 

and by Kukielka, Johnston, and Duke (2008), who feed welfare estimates corresponding 

to different attribute settings and sources into a second-stage meta-regression model.  The 

second approach is implemented in Morrison and Bennett (2004), Johnston (2007), and 



3 

 

Johnston and Duke (2009) with varying numbers of source studies and degrees of pooling 

constraints. 

 The aggregate approach is attractive to the time-constrained policy maker in that 

it does not require "chasing after" original data.  However, it also has serious 

shortcomings.  Specifically, the averaging-over-point-estimates cannot utilize publicly 

available secondary information, such as geographical characteristics or community 

statistics, which could lead to a richer and thus more accurate transfer function.  

Furthermore, averaging over point estimates suppresses much of the underlying study-

specific heterogeneity in preferences and may result in a misleadingly tight estimated 

distribution of transferred benefits.  The meta-analytical variant, while able to incorporate 

secondary, community-level information, suffers from the usual pitfalls of unbalanced set 

of regressors across sources, and the dilemma of how to handle study-methodological 

attributes in the transfer function (see Moeltner, Boyle, and Paterson 2007).  In addition, 

neither aggregate variant preserves the link with a utility-theoretic framework. 

 The second approach, building on raw choice data from all original studies, 

naturally provides more flexibility in this latter respect:  The BT analyst has the option to 

adopt the utility-theoretic framework chosen by the original authors of each source study, 

or, alternatively, re-estimate the raw data under a different utility-theoretic umbrella.  

Other challenges, however, remain.  Most notably, it is not clear how to pool data from 

choice experiments that differ in their design matrix, i.e. in attributes or attribute settings.  

It is thus not surprising that all existing contributions that have taken the choice-level 

approach build on CE data from identical experiments administered at different locations.  
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 This study aims to capitalize on the strengths of both strategies.  We propose a 

flexible two-step approach that combines raw choice data from potentially heterogeneous 

CE experiments with community-level information to generate a predictive distribution 

of policy-relevant benefits.  Unlike existing contributions our approach does not impose 

any cross-study pooling constraints on underlying preference structures or parameters.  

Specifically, we first re-estimate each original CE model separately in a Random Utility 

(RUM) framework, allowing for a maximum degree of unobserved individual 

heterogeneity in preferences for CE attributes.  Each source model yields a predictive 

distribution of policy-relevant benefits.  In the second stage we then generate a mixture 

distribution of benefits by combining these individual densities with discrete model 

weights, composed of spatial and community-level characteristics.  Since these weights 

are functionally independent of underlying preferences, the analyst has considerable 

flexibility in their construction.   

 For the dual reasons of computational convenience and intuitive interpretation of 

predictive constructs we use a Bayesian estimation framework for the first analytical step.  

However, the entire analysis could also be implemented in a classical estimation setting 

with a slightly different interpretation of predictive densities.  Our key finding is that 

predicted benefit distributions flowing from our proposed mixture model have 

substantially better overlap with directly estimated benefits based on actual data than the 

worst-case transferred benefits building on a single source study.  At the same time, we 

find that our empirical weights based on spatial and community statistics have only 

limited ability to improve over perfectly uniform weights.  However, we believe that 
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further gains in BT accuracy are possible with richer community-level data.  This will be 

a fruitful subject for future research. 

 

Modeling Framework 

Random Utility Model 

Our empirical application is based on eight existing farmland preservation studies that 

use a CE format to elicit implicit prices and welfare measures for different bundles of 

farmland attributes.  A set of four studies each use identical CE formats.  All eight CE 

designs have choice menus with three mutually exclusive options: Preservation of parcel 

one, preservation of parcel two, or non-preservation of either.  An interesting feature in 

all eight studies is that one of the stipulated attributes of a hypothetical parcel is the 

probable time horizon of development if the land is left unpreserved.  This attribute was 

treated as a direct argument in the indirect utility function in the original studies.  We 

propose an arguably more intuitive strategy to introduce these development probabilities 

into a RUM framework.  This also illustrates the above-mentioned utility-theoretic 

flexibility afforded to the BT analyst when working with raw choice data. 

 Let the non-stochastic component of annual indirect utility to a respondent from 

the presence of jQ  acres of a specific type of farmland in her community be given as  

( ) ( ) ( )*
j jjU Q M Pδ′ ′= + + −j jL β A γ   (1) 

where jL is a vector of indicators summing to one for land use (food production, idle, 

orchard, etc), jA is a vector of indicators summing to one for the level of public 
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accessibility (none, walking, hunting, etc.), M is annual income, and jP is the stipulated 

annual preservation cost to the respondent. We use the notation ( )j to distinguish the 

utility associated with an individual parcel from the utility flowing from a selected choice 

option (see below). 1    

 Each of the two proposed parcels is associated with a development probability 

, 1,j j 2π = .  When contemplating the three options the individual will have to weigh the 

expected benefits of preservation against the certain costs.  Specifically, if she chooses 

option j, she will preserve parcel j for the coming year at cost jP , but there is also a 

probability that parcel k(1 k jπ ≠− ) j≠ remains undeveloped in the coming year as well.2  

Thus, the choice of either option results in the following expected indirect utility: 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) { }

* 1

1 1 , ,

j j k k j

j k k j k k j

U Q Q M P

Q Q Q Q M P j k

π δ

π π δ

′ ′ ′ ′= + + − + + − =

′ ′+ − + + − + − ∈ ≠

j L j A k L k A

j k L j k A

L γ A γ L γ A γ

L L γ A A γ 1,2 , k j
 (2) 

 Similarly, a decision to protect neither parcel results in 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) { }

*
3 1 1

1 1 1 1 , , 1,2 ,

j j k k

j j k k j j k k

U Q Q M

Q Q Q Q M j k

π π δ

π π π π δ

′ ′ ′ ′= − + + − + + =

′ ′− + − + − + − + ∈

j L j A k L k A

j k L j k A

L γ A γ L γ A γ

L L γ A A γ k j≠
(3) 

Thus, rather than following the customary procedure of setting the non-stochastic 

component of the "opt-out" utility to zero, we propose a more realistic version that 

affords to the respondent positive expected benefits at zero cost unless 1j kπ π= = , which 

does not apply to our case.   

 Adding an i.i.d. error term with zero mean to each equation yields the following 

decision rule for the choice of option j : 
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( ) ( ) ( ) ( )
( ) ( )3

0 a

0

j j k k k j j k

j j j j

Q Q P P

Q P

π π δ ε ε

π δ ε ε

′ ′ ′ ′+ − + + − + − >

′ ′+ − + − >

j L j A k L k A

j L j A

L γ A γ L γ A γ

L γ A γ

nd
 (4) 

This is intuitively sound. The first equation states that, under equal attributes and prices 

and holding errors at zero, the respondent chooses the parcel that is at a higher risk of 

development.  In addition, as expressed by the second equation, the expected loss in 

utility from developing the parcel has to exceed the preservation price.  Naturally, this 

also implies that if development is generally preferred (i.e. 0, 1,2j′ ′+ < =j jL β A γ ), the 

respondent will always opt out of preserving either parcel. 

 

Econometric Model 

As in most modern CE applications, each respondent 1 si N= L  in our 1s S= L source 

studies receives 1 st = LT sequential, design-independent choice menus.  Thus, there are 

sJxT observations per respondents in the data set corresponding to study s.  Allowing for 

the possibility that all land use and access level indicators may be associated with 

unobserved heterogeneity in individual preferences, our econometric model can be 

expressed at the panel level as 

( ) (~ , , ~ ,
sJxTn= + +*

i i ri i i i iU X β X α ε ε 0 I α 0 Σ)n   (5) 

where * * *
11 21 si i iJTU U U ′⎡= ⎣

*
iU L ⎤⎦

]

,  includes all regressors in iX (2) and (3), is a 

subset of  that captures all regressors that are paired with random parameters, and 

riX

iX

[ δ ′′ ′= L Aβ γ γ .   Since we have no ex ante priors regarding the sign of attribute 

coefficients, we model all random parameters to follow a joint normal density, as 
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indicated in the second line of (5). Furthermore, as shown in the first line, we set the i.i.d. 

error variance for all equations to one and all covariances to zero.3  In essence, this yields 

the random parameters multinomial probit (MNP) model of Hausman and Wise (1978).  

A Bayesian version of this model is presented in Layton and Levine (2003 and 2005) . 

 A given respondent will exhibit an observed choice sequence of 

 if 1 2 sTk k k⎡ ⎤= ⎣ ⎦iy L

{ }{ } { }{ } { }{ }{ }* * *
1 , 1 2 , 21 1

max ,max , ,max
J J J

ij i k ij i k ijT i kTj j j
U U U U U U

= = =
= = L ,1

=  

As illustrated in Layton and Levine (2003) this can be efficiently modeled by subtracting 

all other utilities from the winning utility within an individual menu via an appropriate 

( )( ) ( )* 1 *T J x T J− differencing matrix .  Letting , an individual's 

contribution to the likelihood function can then be written as 

iD = *
i iU D Ui

′( ) ( ) ( )| , , , ; ,p f d′= Φ = +∫ s

ri

i i i i i i i i i ri ri JxT
α

y X β Σ 0 D V D R α α V X ΣX I  (6) 

where (with slight abuse of notation) Φ (.) denotes the cdf of the truncated multivariate 

normal density with mean 0 , variance matrix ′i i iD V D , and truncation region . This 

region will always be bounded by -  on the left and infinity on the right.   

iR

i iD X β

 This model would be cumbersome to estimate in a classical framework. We thus 

opt for a Bayesian approach that stipulates prior densities for all parameters and that, via 

a Gibbs Sampler (GS), consecutively and repeatedly draws form the following 

conditional densities: 

( ) ( ) ( ) ( )| , , , | , , , , 1 , | , and  | , , , , 1s sp p i N p p i= =i i i i i i iβ Σ U X α β Σ U X Σ α U β Σ y XL LN  (7) 
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where , and ⎡ ⎤= ⎣ ⎦s1 2 NX X X XL ⎡ ⎤= ⎣ ⎦s1 2 NU U U UL .  After an appropriate 

number of discarded draws ("burn-ins") this posterior sampler will converge to the joint 

posterior density of the main model parameters   and , i.e. β Σ ( ), | ,p β Σ y X .4   

 

Posterior predictive densities 

In the first step of our analysis we estimate a separate hierarchical MNP model for each 

of our S underlying source studies and corresponding data sets.  We are primarily 

interested in the posterior predictive density (PPD) of the annual compensating surplus 

for a prototypical resident from sub-population s for a farmland with attributes 

, relative to a "full development" scenario with *pQ ′′ ′⎡= ⎣p px L A ⎤⎦p 0 0Q = .  The settings 

for Qp,  and  are chosen to reflect the farmland attributes at the policy site, i.e. the 

BT "target".  Under an “identical error” assumption (i.e. 

pL pA

0 pε ε= ) and price invariance 

(i.e. 0 pP P= , see Morey and Rossmann 2008) this welfare metric takes the following 

form, conditional on model parameters and a given draw of random deviations α : 

( ) ( )1
,| |s sp s PC C δ −

−′ ′= = − +p s s p s prx α,β α,β x β x α   (8) 

where comprises the random regressors in .  It is important to note that the true, 

unknown error scale drops out of this expression, which enables us to directly compare 

the welfare measures flowing from the S studies without further adjustments for 

differences in scale.  The PPD for 

prx px

spC , conditioned only on observed choices and the CE 

design matrix for study s is then given as 
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( ) ( ) ( ) ( )| , | , | | ,sp sp sp C C f d pδ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫

s

s s s s s s s s
θ α

y X α,β α Σ α θ y X θd  (9) 

where vector  comprises all elements of  and .  Given, say, R draws of  from the 

original Gibbs Sampler it is straightforward to obtain draws form this PPD.  The details 

of this process are available upon request.  

sθ sβ sΣ sθ

 

Weighted mixture distribution 

In the second step of our analysis we combine the informational content of all S welfare 

distributions in a finite mixture framework.  Specifically we stipulate that the true, 

unknown, distribution of compensating surplus at the policy site follows a weighted 

mixture distributions with the S PPDs from step one as its continuous components, i.e.: 

( ) ( )
1 1

| , with 1
S S

pp s sp s
s s

p C p Cψ ψ
= =

= =∑ ∑s sy X   (10) 

Setting 1 /s Sψ = would allocate equal weight across source studies.  However, ideally we 

would like to assign relatively larger weights to sources that are "more similar" to the 

target site.  The quest for such "intelligent" weights is the focus of the second step of our 

analysis, as described in the next section. 

 

Empirical Application 

Data 

Our eight source studies flow from two separate research projects: (i) A CE on farmland 

preservation administered in the Delaware Communities of Georgetown (GT) and 

Smyrna (SM), and the Connecticut towns of Mansfield (MF) and Preston (PR) in 2005 
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and 2006, and (ii) a similar, but not identical, CE implemented between 2005 and 2007 in 

the Connecticut communities of Brooklyn (BR), Pomfret (PO), Thompson (TH) and 

Woodstock (WO).  We will henceforth refer to these two clusters of communities as "set 

1" and "set 2".  Details on the first project can be found e.g. in Johnston and Duke (2009).  

The second project is described in Johnston, Duke, and Kulieka (2008).  Respondents 

received three menus for set 1 and four menus for set 2.  After eliminating observations 

with missing demographic information we retain 1066 individuals (9594 observations) 

for set 1and 707 individuals (8484 observations) for set 2.  Within each set, these 

observation counts are distributed approximately evenly across communities.  

 

Step One Estimation 

 For set 1, the farmland attribute vector jL includes indicators for "nursery", "food 

crop", "dairy or livestock", and "forest".  The access vector jA includes indicators for 

"walking" and "hunting".  The jL - components in set 2 are "food / field crop", "dairy or 

livestock", and "tree farm, nursery, or orchard", and jA  represents a single indicator for 

"access for passive recreation ".  For both sets we also include a constant term in jL to 

capture the per-acre effect of the implicit baseline category "idle" and "no access".  In all 

cases the parcel sizes include 20, 60, 100, and 200 acres, and preservation costs range 

from $5 to $200 in six increments. 

 For set 1 the time horizons for probably development are given as "<10 years", 

"10-30 years", and "not likely in 30 years".  Assuming that respondents envision a 
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uniform distribution of development probabilities over these time horizons we set jπ to 

1/10 and 1/20, for the first two cases, respectively, and to zero for the third development 

scenario.  The second set uses only an indicator for "development likely in less than 10 

years", which we also translate into a development probability of 1/10.   

 We model all regression coefficients other than the one for price as random.  

Given data limitations and to conserve on parameters we set all hierarchical covariances 

to zero. While this breaks the cross-equation links within a given panel it preserves the 

notion of unobserved heterogeneity for farmland attributes. We implement our Gibbs 

Sampler with standard vague but proper priors for all parameters, i.e. ( )~ ,10*nβ 0 I  and 

( )1 1
2 2~ ,jj igΣ  where ( ),ig a b  denotes inverse-gamma density with shape parameter a and 

scale parameter b.  All models are estimated using 10000 burn-in draws and 10000 

retained draws flowing from the Gibbs Sampler.  The decision on the appropriate amount 

of burn-ins was guided by Geweke's (1992) convergence diagnostic. 

 Tables 1 and 2 capture first-step estimation results. Clearly, all eight communities 

exhibit pronounced within-sample heterogeneity with respect to most farmland attributes, 

which lends support to our hierarchical modeling choice.  Furthermore, the degree of 

heterogeneity in preferences varies across communities, supporting a case-by-case 

estimation approach.   For most attributes and communities random parameter means lie 

in the negative domain, indicating a general preference for development as opposed to 

preservation for the prototypical respondent.  Given the largely rural settings for most of 

these towns this is not all that surprising.   
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 To illustrate our approach to BT we stipulate a single policy scenario, i.e. the 

preservation of one acre of idle farmland with access for passive recreation.  The 

corresponding PPDs from all eight models are depicted in figure 1.  As can be seen from 

the figure all eight densities exhibit reasonably good distributional overlap.  It is clear 

from the graph that some community pairs, such as Pomfret and Thompson would be 

very well suited for cross-community transfers, but other single-study matches, such as 

Smyrna and Woodstock, would result in seriously misleading inferences. 

 

Step two estimation 

To assess the accuracy of our proposed methodology we use, in sequence, each of the 

eight cases as the target site with a presumably unknown welfare distribution, and the 

remaining seven densities to feed into the mixture model given in (10).  As an indicator 

for transfer accuracy we propose a novel metric,  the "overlap in highest posterior density 

intervals (HPDIs) to full range of HPDIs", in short "OLR".  The HPDI is the Bayesian 

analog to the classical confidence interval .  A 95% HPDI, for example, delivers a lower 

and upper bound such that the resulting interval is the smallest possible to contain 95% of 

the density mass of a given distribution.  Formally, the OLR between two distributions s  

and z is derived as  

( ) ( )( ) ( ) ( )( )min , max , / max , min ,sz s z s z s z s zOLR u u l l u u l l= − −  (11) 

where l and u denote the lower and upper limits of the respective 95% HPDIs. The first 

half of table 5 shows this metric for all possible pairs of community-specific densities.  
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As was evident from figure 1 Pomfret and Thompson exhibit close-to-perfect overlap, 

while the OLR drops to 51% for Smyrna and Woodstock.   

 We employ three different sets of mixture weights.  The first two are, 

respectively, a set of uniform weights, i.e. ( )1/ 1 0.143,s Sψ s= − = ∀ , and (ii) a set of 

weights based on inverse distances, i.e. 
1

1

1
/

S
1

s sp sp
s

D Dψ
−

− −

=

= ∑ , where spD is the distance, in 

miles, between study s and the target site p.  The third approach requires an additional 

estimation round.  Specifically, we regress each of the 
1

21
2

S −⎛ ⎞
=⎜ ⎟

⎝ ⎠
 pair-wise OLR 

measures against distance and differences in aggregate community characteristics, i.e. 

population per acre and the share of urban households in the empirical sample.  Since the 

OLR is naturally bounded by zero and one we estimate this auxiliary model in truncated 

regression framework via MLE.5  Table 3 depicts community characteristics and relative 

distances.  Specification details for the regression models and corresponding estimation 

results are available upon request.  We then combine the estimated parameters from this 

approach with the relative difference in community settings between each of the study 

sites and the target site and use the resulting S-1 predicted values of spOLR to compute the 

mixture weights, i.e. 
1^ ^

1
/

S

sp ss
s

OLR OLRψ
−

=

= ∑ p .   

 The resulting weights from all three approaches are shown in table 4 for some 

selected sites.  We generally find that the regression-based weights, ranging between 0.13 

and 0.16 for most cases, do not differ by much from uniform weights, while then inverse-

distance weights, with ranges between 0.01 to 0.3 exhibit much stronger deviation from 
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uniformity.  However, the inverse distance approach is an imprecise tool as it does not 

categorically assign higher weights to sites that have a better OLR with the target.  For 

example, it is clear from figure 1 that Georgetown and Brooklyn have reasonably good 

overlap despite being almost 300 miles apart (table 3).  In contrast, Georgetown and 

Smyrna are virtually neighbors, but exhibit a relatively poor OLR. 

 The second half of table 5 shows the OLR values for predictions from all three 

mixture models with respect to all eight individual target sites.  The key result captured in 

the table is that any of the three mixture models generates BT distributions that fit any of 

the target sites substantially better than the worst-case single-site transfer.  Thus, at least 

for our application, the mixture model strategy is clearly a safer approach than a single-

site transfer.  Figure 2 depicts transfer results from the mixture models in graphical form.  

As can be seen from the figure, all three mixture distributions fit the target density 

reasonably well to extremely well for most target sites.  However, there are cases (e.g. 

Woodstock) that leave room for predictive improvements.  Within our proposed 

framework such improvements will require a more careful specification of mixture 

weights.  This will be the subject of the next stage in this broader research project. 

 

Conclusion 

We propose a novel approach to BT from multiple CE experiments that allows for a full 

recognition of heterogeneity in sub-population preferences and experimental designs, 

maximum flexibility in utility-theoretic modeling, and the use of secondary socio-

demographic and geo-spatial information to refine BT functions.   Our analysis can be 
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extended in several dimensions.  The critical next step, subject to future research,  will be 

the identification of more pertinent community characteristics to further refine the step 

two mixture weights.  Also, in a different policy context a different metric of transfer fit 

than the OLR may be required, such as the mean or median of welfare distributions.  This 

can be easily incorporated in our methodological framework.  Finally, it would be 

interesting to see this approach applied to a cluster of CEs with different resource focus 

and design heterogeneities.  
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Notes

1  For ease of exposition we choose the same simple linear-in-acres-and-income 

utility-theoretic framework for all eight sources.  This is without loss in generality as our 

approach could easily accommodate different RUM models for different sets of source 

studies, including models with non-linear components. 

2  In actuality, respondents were implicitly asked to commit to an open-ended 

stream of annual payments to preserve a parcel.  Thus, a more complete theoretical model 

would contrast the discounted net present value of expected benefits to discounted costs, 

perhaps with development weights following some type of survival function.  However, 

this would considerably complicate our analysis and require the stipulation of arbitrary 

discount rates and survival parameters.  Generally, though, the question of how to deal 

with development risks in CE applications on land preservation posts a strong invitation 

for future research. 

3  Our error specification is based on the recognition that since options within menus 

and menus within and across respondents change randomly by design, there is no 

rationale to allow for different error variances across equations. Since at least one 

variance has to be normalized in any case, we set all of them to one.  By the same token 

there is no conceptual basis for specifying covariance terms.   

4  We opt for a classical estimation approach for this step as the truncated regression 

model would be extremely cumbersome to handle in a Bayesian framework, and the 
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option to use informed priors does not present itself in this case.   
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Table 1: First-step estimation results, Set 1 
 

  Georgetown Mansfield Preston  Smyrna 

  mean std nse  mean std nse mean std nse  mean std nse 

                

fixed                

cost($10s)  -0.09 0.01 0.00  -0.06 0.01 0.00 -0.07 0.01 0.00  -0.07 0.01 0.00

                

random means                

acres (10s)  -1.41 0.56 0.04  -0.39 0.30 0.01 -0.86 0.43 0.02  -0.70 0.35 0.01

nursery*acres  -0.74 0.55 0.01  -0.51 0.40 0.01 -0.47 0.61 0.05  -0.46 0.59 0.04

food*acres  -0.32 0.56 0.02  0.22 0.40 0.01 -0.64 0.63 0.06  -0.07 0.66 0.04

dairy*acres  -0.52 0.59 0.03  0.01 0.38 0.01 -0.10 0.49 0.02  0.27 0.46 0.02

forest*acres  -0.60 0.75 0.06  0.16 0.49 0.02 0.07 0.46 0.01  -0.15 0.47 0.02

walking*acres  1.48 0.65 0.05  1.35 0.37 0.02 0.91 0.52 0.02  1.43 0.47 0.02

hunting*acres  1.29 0.57 0.02  0.16 0.38 0.01 0.29 0.49 0.03  0.47 0.40 0.01

                

random stds                

acres (10s)  2.73 0.61 0.06  2.34 0.37 0.04 2.76 0.50 0.05  1.85 0.46 0.04

nursery*acres  0.94 0.44 0.05  1.05 0.56 0.08 1.87 1.13 0.23  1.94 1.00 0.13

food*acres  1.22 0.77 0.12  1.55 0.82 0.18 2.02 1.09 0.18  3.34 1.65 0.27

dairy*acres  1.27 0.69 0.09  1.54 0.68 0.10 1.42 0.80 0.14  1.23 0.65 0.08

forest*acres  1.91 1.10 0.22  2.89 1.28 0.23 1.01 0.47 0.06  1.57 0.90 0.11

walking*acres  2.54 1.46 0.22  1.00 0.50 0.09 2.49 1.14 0.17  1.50 0.84 0.11

hunting*acres  1.47 0.96 0.14  1.23 0.64 0.10 1.95 0.90 0.11  1.08 0.52 0.06

*nse = numerical standard error 
**stds = standard deviations 
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Table 2: First-step estimation results, Set 2 
 

  Brooklyn  Pomfret Thompson  Woodstock 

    mean std nse   mean std nse  mean std nse   mean std nse 

                

fixed                

cost($10s)  -0.07 0.01 0.00  -0.06 0.01 0.00 -0.06 0.01 0.00  -0.04 0.01 0.00

                

random means                

acres (10s)  -0.74 1.62 0.02  -0.10 1.60 0.02 -1.12 1.60 0.02  -0.20 1.59 0.02

trees*acres  -0.13 1.62 0.02  -0.26 1.60 0.02 -0.46 1.60 0.02  -0.19 1.59 0.02

food*acres  -0.26 1.63 0.02  0.09 1.59 0.02 -0.21 1.59 0.02  -0.02 1.60 0.02

dairy*acres  -0.31 1.63 0.02  -0.04 1.59 0.02 -0.53 1.61 0.02  0.00 1.60 0.02

walking*acres  1.78 0.40 0.02  0.98 0.28 0.01 1.92 0.41 0.02  1.18 0.31 0.01

                

random stds                

acres (10s)  2.08 0.46 0.03  1.82 0.33 0.02 2.84 1.36 0.08  1.69 0.37 0.02

trees*acres  1.28 0.56 0.05  1.01 0.43 0.05 0.94 0.80 0.06  0.81 0.31 0.03

food*acres  1.33 0.56 0.06  0.92 0.37 0.04 0.82 0.72 0.06  0.85 0.35 0.04

dairy*acres  1.24 0.69 0.08  0.78 0.27 0.03 1.60 1.78 0.26  1.07 0.49 0.05

walking*acres  1.26 0.57 0.07  1.28 0.45 0.04 3.27 2.41 0.20  1.26 0.46 0.04

*nse = numerical standard error 
**stds = standard deviations 



21 

 

 

Table 3: Community Characteristics and Distances 

Community Characteristics 
 pop. / homes / fraction fraction average average 

  acre acre urban HHs  rental HHs HH size yrs. of residence 

       

Georgetown 0.194 0.066 0.099 0.109 2.560 18.660 

Mansfield 0.709 0.188 0.085 0.091 2.510 20.110 

Preston 0.231 0.094 0.025 0.065 2.690 20.170 

Smyrna 0.224 0.080 0.179 0.046 2.750 15.750 

Brooklyn 0.387 0.146 0.362 0.106 2.820 19.950 

Pomfret 0.147 0.058 0.139 0.073 2.790 19.800 

Thompson 0.284 0.119 0.409 0.042 2.691 22.150 

Woodstock 0.183 0.077 0.155 0.066 2.730 19.630 

 
Distances in Miles 

  Georgetown Mansfield Preston Smyrna Brooklyn Pomfret Thompson 

        

Mansfield 270 - - - - - - 

Preston 265 27 - - - - - 

Smyrna 44 244 241 - - - - 

Brooklyn 281 22 21 258 - - - 

Pomfret 286 20 28 262 6 - - 

Thompson 292 30 36 269 17 12 - 

Woodstock 288 25 39 264 17 13 10 
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Table 4: Second-stage Weights for Benefit-Transfer Distributions for Selected Sites 

Target = GT  Target = MF 

 regression distance   regression distance 

MF 0.151 0.084  GT 0.136 0.017 

PR 0.136 0.085  PR 0.145 0.173 

SM 0.158 0.516  SM 0.133 0.019 

BR 0.143 0.080  BR 0.144 0.213 

PO 0.140 0.079  PO 0.150 0.234 

TH 0.138 0.077  TH 0.143 0.156 

WO 0.135 0.078  WO 0.148 0.187 

       

Target = PO  Target = WO 

 regression distance   regression distance 

GT 0.131 0.008  GT 0.129 0.011 

MF 0.146 0.119  MF 0.152 0.130 

PR 0.141 0.085  PR 0.133 0.083 

SM 0.132 0.009  SM 0.137 0.012 

BR 0.151 0.397  BR 0.148 0.191 

TH 0.147 0.198  PO 0.154 0.249 

WO 0.151 0.183  TH 0.147 0.324 

 



23 

 

 

Table 4: Posterior Predictive Fit of Compensating Surplus Distribution,  
Original Models and Benefit Transfer Models 
 

HPDI Relative Overlap: Original Models 
  GT MF PR SM BR PO TH 

        

MF 0.83 - - - - - - 

PR 0.80 0.83 - - - - - 

SM 0.79 0.77 0.63 - - - - 

BR 0.84 0.89 0.73 0.86 - - - 

PO 0.84 0.96 0.79 0.80 0.93 - - 

TH 0.88 0.94 0.80 0.79 0.92 0.95 - 

WO 0.64 0.66 0.80 0.51 0.59 0.63 0.64 

        

HPDI Relative Overlap: Transfer Models 
  regression   distance   uniform     

        

GT 0.89  0.91  0.88   

MF 0.90  0.88  0.92   

PR 0.86  0.87  0.86   

SM 0.69  0.71  0.70   

BR 0.80  0.81  0.81   

PO 0.89  0.87  0.87   

TH 0.88  0.82  0.89   

WO 0.66  0.65  0.66   

 



24 

 

 

Figure 1: Posterior distribution of compensating surplus, individual models 

Vertical lines indicate means 
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Figure 2: Posterior distribution of compensating surplus, original vs. benefit transfer 
models 
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Legend: solid line:   original model 
  dashed:   BT via empirical weights 
  dashed-dotted:  BT via distance weights 
  dotted:   BT via uniform weights
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