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Abstract

Volatility clustering, with autocorrelations of the hyperbolic decay rate, is unquestionably
one of the most important stylized facts of financial time series. This paper presents a market
microstructure model, that is able to generate volatility clustering with hyperbolic autocorrela-
tions through traders with multiple trading frequencies using Bayesian information updating in
an incomplete market. The model illustrates that signal extraction, which is induced by multi-
ple trading frequency, can increase the persistence of the volatility of returns. Furthermore, we
show that the local temporal memory of the underlying time series of returns and their volatility
varies greatly varies with the number of traders in the market.
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Over the last five decades, a broader picture of the time series features of asset prices has emerged.
Among these features, the predictability of returns at high trading frequencies and persistence of
volatility received significant attention both theoretically and empirically. This latter feature is also
known as volatility clustering and is unquestionably one of the most important stylized facts of finan-
cial time series. Engle (1982, 2000) and Bollerslev (1986) have proposed (G)ARCH-family models,
which has been shown to be capable of capturing conditional volatility parsimoniously. In addition,
as documented by Mandelbrot (1963), the autocorrelations of volatility decay at a hyperbolic rate
rather than exponentially. A few, however, have investigated the reasons and mechanisms behind
such volatility persistence in market microstructure-type economic models, and have successfully
generated volatility clustering.1

The microstructure model proposed in this paper provides a framework for generating volatility
clustering of the returns with autocorrelations of hyperbolic decay. In addition, the proposed mech-
anism is capable of generating a linearly trending price and a negative correlation at the first lag
of returns. The formation of volatility clustering is due to the combined effects of rational traders
with multiple trading frequencies and their strategic interactions. It is natural to model traders
with multiple trading frequencies, because not all traders trade at every possible opportunity.2 The
assumption that traders trade strategically is also plausible, since large investors are aware that their
trades have an impact on the market price and take this effect into account. Note that no specific
assumptions need to be made regarding the informational structure; information can be available
either privately or publicly.

Specifically, we consider a discrete-time, multiperiod model in which traders trade a stock that
has a limited risk absorption capacity (i.e., an upward sloping supply curve).3 Traders are divided
into two groups according to their trading frequency, while group size is random to prevent perfect
signal extraction. Type A traders trade more frequently (trade every trading period) while type B
traders trade less frequently (trade every other period).4 In this model, traders may differ in the
following respects: First, they may have different beliefs about fundamentals either due to different
initial beliefs in the public signal environment or different realizations of signals in the private signal
environment. Second, traders differ in trading strategies due to their different trading frequencies.
Let the public signal environment with identical initial priors of fundamentals be a benchmark case.
In such a benchmark case, the aggregate demand of type A traders depends on the presence of type
B traders. Therefore, although there are no trades between groups, there will be an alternating
pattern in price due to the multiple trading frequencies.

1For example, Brock and LeBaron (1996), Cabrales and Hoshi (1996). Granger and Machina (2006) presents
general mechanisms of how a time-invariant system can exhibit volatility clustering, although they do not provide
microeconomic models that could lead to the system proposed in their paper.

2One example is the futures market, where typical traders are hedgers and speculators. The speculators in futures
market generally have shorter trading horizons. Another example is the comparison of intraday traders and mutual
fund managers, since mutual fund managers cannot conduct intraday trading due to regulatory restrictions.

3To allow for the strategic interaction between traders, we do not allow an infinite supply of the asset, such that
large orders would have no impact on price.

4For simplicity, we do not model the arrivals of traders endogenously, although our main results will apply with
endogenous arrivals.
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When traders of multiple trading frequency behave strategically, the volatility clustering can
be generated for two reasons. First, multiple trading frequencies lead to price fluctuations, which
generate a serial correlation in the magnitude of returns. The price fluctuations are partly due
to the absence of infrequent traders, which lower the size of the aggregate demand in every other
period. The price fluctuations are also partly due to the different strategies used by frequent traders
depending on the presence of infrequent traders. Intuitively, frequent traders may behave like
monopolists in the absence of infrequent traders and like oligopolists in their presence. We label this
source of volatility clustering the alternating effect. Secondly, in the private signal case, each group
of traders has its own set of signals. Given different trading frequencies, it is natural for traders in
one group to infer the other group’s signals from the price. Infrequent traders can infer the signals
from the price in the period when they are absent, because the prices are entirely determined by
the demands of frequent traders. Therefore, the past prices provide information that determines the
current price. This feedback mechanism facilitates the formation of the volatility clustering (see,
e.g., Brock and LeBaron (1996)). We label this source of volatility clustering the signal extraction
effect.5

When there is strategic interaction between traders, then the group size of traders, i.e., the mean
arrival of traders, has an impact on the optimal strategy of traders. The strategic competition is
more intense with larger group sizes. At the limit, the strategic interaction among large groups of
traders converges to the competitive outcome. This decreases the persistence of the magnitude of
returns significantly. These results show that when group sizes are large, the volatility clustering
becomes negligible. Thus, the strategic behavior is necessary for the presence and the persistence of
volatility clustering in this model.

There are two additional stylized facts that could be generated in addition to volatility clustering,
namely, linearly trending prices and a negative correlation at the first lag of returns. The former
is mainly due to the optimal trading strategy used by the traders in equilibrium. There are two
ways for traders to make a profit in our model. First, traders who hold shares of the stock receive
the payoff on the terminal trading date. Traders adjust their optimal holdings according to the
realization of their own signals and to the other group’s signals that they have extracted. Second,
traders will harvest capital gains if they can correctly anticipate the price movement. Because
traders are informationally large in this model, they can strategically adjust their holdings across
the remaining trading dates in order to take the advantage of their own impact on prices, which
leads to trending prices.6 The negative first-order autocorrelation of returns is consistent with the
noisy rational expectation equilibrium (see e.g., Makarov and Rytchkov (2007)). The correlation
between realized and expected returns can be shown to depend partly on the correlation between

5This mechanism can generate volatility clustering even in the public signal case where signal extraction is absent.
On the other hand, we find that signal extraction without multiple trading frequencies cannot generate volatility
clustering.

6For example, if they believe that the stock is undervalued in the current period, they may adjust their holdings
over several periods instead of just increasing their current period holding which may could drive the price up sharply
and diminish the future capital gains.
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exogenous supply and the current price, which is supposed to be negative.
This model generates a number of interesting and testable implications that are absent from

standard models of asset pricing with uniform trading frequency. For instance, the traders with
more precise signals have a marginal effect on the evolution of the equilibrium. This seemingly
counterintuitive result can be explained by the fact that traders strategically adjust their optimal
holdings over all trading dates. Perhaps the most novel feature of the model is that traders with
different trading frequencies have different levels of impact on equilibrium prices and returns, with
infrequent traders having a larger effect. This naturally results from the fact that infrequent traders
have fewer trading dates to smooth their adjustment of optimal holdings.7 Furthermore, we show
that signal extraction not only helps traders to infer the fundamentals more precisely but also pro-
vides them with more accurate guesses as to the behavior of the other type of traders. This leads to
greater persistence in the magnitude of returns. Naturally, this provides both a feedback mechanism
and a forward mechanism, both of which contribute to the formation of volatility clustering.

Overall, the main contributions of this paper are as follows. First, rational traders with multiple
trading frequencies behaving strategically can generate volatility clustering, and this mechanism is
robust with respect to different specifications of informational structure. The qualitative statistical
properties of equilibrium including prices, returns and the magnitude of returns, are similar in the
public and the private signal settings, with or without the same initial beliefs about fundamentals.
Second, multiple trading frequency in the private signal environment can induce signal extraction,
which contributes to the formation of volatility clustering and leads to hierarchical information.
Hence, multiple trading frequencies within the private information environment provides theoretical
justification for the existence of hierarchical information, where the infinite regress problem collapses
(see, e.g., Townsend (1983), McNulty and Huffman (1996) and Bomfim (2001)). Third, return
predictability is generated and is robust with respect to different informational structures.

Several papers have examined the role of multiple trading frequencies in different environments.
For example, Christian and Jia (2005) try to determine the optimal trading frequency using a
technical trading rule. Hauser et al. (2001) shows that the higher the aggregate trading frequency,
the more efficient the price discovery in a non-dealer market. To our knowledge, however, no paper
which links the multiple trading frequencies to volatility clustering and hierarchical information.
Unlike Hauser et al. (2001), who focus on the trading frequency determined by the institution at
the aggregate level, this study examines trading frequency at the microstructure level.

There are a number of ways to generate volatility clustering. For instance, Brock and LeBaron
(1996) studied asymmetric information, the adaptive beliefs model of stock price and volume, in
which volatility clustering is generated from traders experimenting with different belief updating
systems, where experimenting is based on the past profits and expected future profits. Cabrales and
Hoshi (1996) built a heterogeneous beliefs asset pricing model in which the persistence of distribution

7As stated earlier, the proposed mechanism can generate similar stylized facts in various informational settings
which may lead to identification problems. This issue can be easily solved by examining the impulse responses of
traders with different trading frequencies.
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of wealth can lead to volatility clustering. The approach in Haan and Spear (1998) was to develop
a heterogeneous agent, incomplete market model of interest rates, in which persistence of financial
frictions leads to volatility clustering. de Fontnouvelle (2000) investigated a costly information
model of asset trading, in which agents need to pay to acquire information, which leads to volatility
clustering in price. Timmermann (2001) studied an imperfect information model of asset pricing, in
which Bayesian updating of parameter estimates leads to volatility clustering.

Unlike Brock and LeBaron (1996), our model does not rely on the experimentation between
different belief updating systems. Although the feedback mechanism, i.e., the signal extraction,
can contribute to the formation of volatility clustering of returns in our model, it is not essential.
In this model, volatility clustering is generated even in the public signal environment where signal
extraction is absent. Unlike Timmermann (2001), Bayesian information updating is not sufficient to
generate volatility clustering in our model. Our findings show that without strategic behavior, the
volatility clustering is absent even with Bayesian information updating.

This paper is organized as follows. Section I describes the basic setting used in the paper. Section
II starts with the benchmark environment of the public signal case. In this case, although the setting
is simplistic in that all signals are assumed to be publicly available, the model can generate the three
stylized facts: First, prices display long memory and an upward sloping trend. Second, returns are
stationary and display a negative first-order correlation. Third, the variance of returns (or the
magnitude of returns) displays volatility clustering with hyperbolic decay rate. Section III considers
the different information structure of the private signal case, which yields additional interesting
results. The private signal case possesses all the features of the public signal case. In addition,
multiple trading frequencies lead to signal extraction behavior, which adds to the temporal memory
of the volatility and generates an information hierarchy. In Section IV, Monte Carlo simulations are
carried out to illustrate the stylized facts, which are consistent with the theoretical results. Section
V considers two extensions: First, in addition to improving the understanding of fundamentals,
signal extraction can also help traders to predict the behaviors of the other group; we label this
sophisticated signal extraction. Hence, signal extraction not only provides a feedback mechanism
but also a forward-looking mechanism that links the prices to future prices. The other extension is
to allow heterogeneous priors, which is shown to have negligible effects on the main findings. We
conclude afterwards.

I. Basic Setting

We model a hypothetical financial market in which there is a single trading asset. Assume that
there are two groups of traders on the market, namely Type A and Type B traders. Type A traders
come to the market every period (speculators), while Type B traders come every other period
(fundamentalists). Figure 1 illustrates this multiple trading frequency market structure. During
a trading period, traders receive a signal about the value of the underlying asset. For analytical
tractability, we make two simplifying assumptions: trading dates are finite and traders maximize
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Figure 1: A flowchart for multiple trading frequency. Type A traders (speculators) come to the market
every trading date while type B traders (fundamentalists) come to the market every second trading date.

per period profit. The first assumption is innocuous. The myopic preference assumption may cause
dissatisfaction, but it helps to avoid the large state variables problem which is endemic in the
“forecasting the forecasts of others” literature. However, it turns out that it is not a serious problem
to ignore hedging demand when the agent’s maximization problem has a quadratic form and the
signals are normally distributed.8

There is a single traded asset in the economy, with T + 1 trading dates: t = 0, 1, . . ., T . The
asset pays f̃ at t = T , where f̃ is a normally distributed random variable.9 The supply function of
outstanding shares is Qs = p − α, where Qs is aggregate liquidity supply and α captures the fixed
cost of providing outstanding shares.10 The supply function takes on a simplest form, because the
supply side is not the main focus of this paper.

Two groups of traders, type A and type B, maximize a per-period objective function E(W ),
taking into account their own influences on the equilibrium prices,11 where W is the wealth of the
trader. The type A traders come to the market at every date, but type B traders only come at t = 0,
t = 2, . . . , t = T − 1 if T is odd, or t = 1, t = 3, . . . , t = T − 1 if T is even.

The arrivals of traders from both groups are assumed to be random. Random arrivals make it
difficulty for traders to distinguish signals from the prices. The effective numbers of traders, nA

t and
nB

t for type A and type B, are governed by an identical and independent (iid) normal distribution,12

N (n, ω).
When t = 0, the two groups’ prior beliefs about f̃ are normally distributed, denoted by N (f̂A

0 , 1
τ0

)

and N (f̂B
0 , 1

τ0
) where f̂A

0 and f̂B
0 can be different. Since we focus on the effect of trading frequency,

the same prior beliefs are assumed, i.e., f̂A
0 = f̂B

0 = f̂0. At t = 1,2, . . . , T − 1, each trader type
receives one signal: SA

t = f̃ + εA
t and SB

t = f̃ + εB
t for t = 1,2, . . . , T − 1, where εA

t , εB
t are iid

normally distributed N (0, 1
τε

), where τε is the precision of the signal.13

8We borrow the notation of Hong et al. (2006), who investigate the role of overconfidence in generating speculative
bubbles.

9The payoff f̃ can be interpreted as the liquidation value of the firm, and may be negative in the case of bankruptcy
(considering the opportunity cost).

10The supply side is not modeled explicitly. The liquidity supply may come from noise traders or long term investors.
11Myopic preferences are adopted to avoid dynamic hedging problem and to obtain an analytically tractable solution.
12The arrival process of traders is independent of the economic variables. To avoid negative arrivals, we put a lower

bound on the actual arrivals in the simulation study presented in Section IV.
13The inverse of the variance of the signal can be interpreted as the precision of the signal. If the variance of the
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We start with the public signal case. Figure 2 illustrates the mechanism of price formation in
the public signal case.

II. Public Signals

A. Equilibrium

We first solve for the beliefs of the two types of traders at time t. Using standard Bayesian
updating formulas, these beliefs are easily characterized by the following proposition.

Proposition 1 The beliefs of the two groups of traders at t are normally distributed as N (fA
t , 1

τt
)

and N (fB
t , 1

τt
), where the precision is given by

τt = τt−1 + 2τε (1)

and the means are given by

f̂A
t = f̂A

t−1 +
τε

τt
(SA

t + SB
t − 2f̂A

t−1)

f̂B
t = f̂B

t−1 +
τε

τt
(SB

t + SA
t − 2f̂B

t−1). (2)

If the traders are with identical priors, i.e. f̂A
0 = f̂B

0 , then their beliefs remain the same over all
the trading period, i.e., f̂A

t = f̂B
t = f̂t for t = 1,2, . . . , T − 1. Without a loss of generality, we solve

the model when T is even. Given beliefs as in Proposition 1, we can solve for the equilibrium asset
holdings xA

T−1 for type A and xB
T−1 for type B traders, and the prices pT−1 at T − 1. With risk

neutral preferences, we can write the utility maximization problem faced by the ith type A trader
as

max
xA

T−1,i

E[f̃ − (α +
nA

T−1∑

j=1

xA
T−1,j +

nB
T−1∑

j=1

xB
T−1,j)]x

A
T−1,i

where the first-order condition is

f̂T−1 − α − (n − 1)xA
T−1,j − nxB

T−1,j − 2xA
T−1,i = 0.

Invoking symmetry, we have xA
T−1,i = xB

T−1,j for all i,j in equilibrium, which leads to

xA
T−1 =

f̂T−1 − α

2n + 1
.

Hence, the Bayesian Nash equilibrium at T − 1 can be characterized by

xA
T−1 = xB

T−1 = xT−1 =
f̂T−1 − α

2n + 1

signal increases, the precision of the signal decreases.
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pT−1 = α + (nA
T−1 + nB

T−1)xT−1 = α + (nA
T−1 + nB

T−1)
f̂T−1 − α

2n + 1
(3)

Given the equilibrium price at T − 1, we can use backward induction to derive the equilibrium
holdings and price for t = T − 2, t = T − 3, . . . , t = 1. If t is even, only type A traders arrive at
market. Using an argument similar to the T − 1 case, the optimal demand for the ith trader of type
A is

Etpt+1 − α

n + 1

where Etpt+1 = E[pt+1|It], which is the conditional expectation of the next period price at time t

given the information set It available at t, i.e., It = {pt−1, pt−2, pt−3, . . . ,p1, p0}. Note that in
period t, in order to determine the optimal holdings, traders need to forecast the next period price,
pt+1, and the optimal holdings of other traders.14 If t is odd, both type A traders and type B traders
come to the market. Using a similar argument as above, the optimal demand for the type A trader
is

Etpt+1 − α

2n + 1
.

The equilibrium at t = 0, 1, 2, . . . , T − 2 differs from that at t = T − 1 due to the myopic
preference assumption. When t = 0, 1, 2, . . ., T − 2, traders only care about the price of the asset
one period ahead because of their per period profit orientation. The optimal holding is determined
by the forecast of the price in the next period which can be solved by backward induction and the
expected holdings of other traders.

Proposition 2 The Bayesian Nash equilibrium at t can be characterized by
if t is odd

xA
t = xB

t = xt =
2(T−t−1)/2n(T−t−1)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂t − α)

pt = α + (nA
t + nB

t )
2(T−t−1)/2n(T−t−1)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂t − α) (3)

if t is even

xA
t =

2(T−t)/2n(T−t−1)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂t − α)

pt = α + (nA
t )

2(T−t)/2n(T−t−1)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂t − α). (3)

Based on Proposition 1, Proposition 2 characterizes the Bayesian Nash equilibrium for all trading
dates. The equilibrium price is a function of the remaining trading horizon and beliefs, which implies
that the price dynamics are governed jointly by the trading horizon and the beliefs of traders.

14pt is not determined when traders make their decisions at time t. The joint decisions of all market participants
lead to the equilibrium price pt.
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B. The Properties of the Equilibrium

The previous section characterized the Bayesian Nash equilibrium in the public signal case.
To examine how the mechanism proposed in the paper, namely, traders with the multiple trading
frequencies behaving strategically, can generate the claimed stylized facts, including return pre-
dictability and volatility clustering, we need to study the properties of the equilibrium. The main
properties of the equilibrium described are

1. Price series possess a linear trend and are linearly dependent.

2. Return series are stationary, and there is a negative autocorrelation of returns at first lag.

3. Return series display volatility clustering with hyperbolic decay autocorrelations.

Before elaborating on each of these properties, we will describe the equilibrium behavior of beliefs
where the equilibrium price is a function of beliefs.

Beliefs

First, beliefs exhibit long memory as shown in Lemma 3.

Lemma 3

Cov(f̂t, f̂t−j) =
1

τt−j
− 1

τt
, (4)

where τt−j is the precision of beliefs at t − j for j = 1, 2, 3, . . ., t − 1.

Remarks:

1. Lemma 3 shows that beliefs have long memory and that the autocovariance function is a
hyperbolic function of lags. To illustrate the nature of long memory and hyperbolic decay in
beliefs, consider an impulse response experiment. For simplicity, assume that there is only one
positive innovation at t = 1 and zero at other trading dates. Using Proposition 1, we know
that the beliefs for traders at t = 1, 2, . . . , T − 1 are

f̂t = f̂0 +
τε

τt
(2tε0 +

t∑

i=1

εA
i +

t∑

i=1

εB
i ) (5)

where ε0 = f̃ − f̂0. Given the innovation at t = 1, the belief f̂1 is updated and the effect of the
innovation on the belief at t = 1 is τε/τ1. Then, the effect of the innovation on the belief at
t+1, f̂t+1 is τε/τt+1 and the effect of the innovation on the belief at t+ j is τε/τt+j . Note that
τt+j = τ0 + 2(t + j)τε; this leads to the persistence of beliefs, and the decay rate is hyperbolic.

2. Lemma 3 also characterizes the limiting behavior of the beliefs, which converge to the true
value of the underlying asset f̃ as t → ∞. As t → ∞, τε/τt → 0, and 2tτε/τt → 1, Equation 5
is reduced to f̂t = f̂0 + ε0 = f̂0 + f̃ − f̂0 = f̃ . This implies that the beliefs of traders converge
asymptotically to the true value of the underlying asset.
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Prices

For simplicity, we assume that α = 0 so that we can work with the logarithm of price series,15

logpt = At +
t

2
B + log f̂t for t is odd

logpt = Ct +
t

2
B + log f̂t for t is even (6)

where At = log(nA
t +nB

t )+ T−1
2 log 2+(T −1) log n− T+1

2 log(2n+1)− T−1
2 log(n+1), B = [log(2n+

1)+ log(n+1)− log 2−2 log n], Ct = log(nA
t )+ T

2 log 2+(T −1) log n− T
2 log(2n+1)− T

2 log(n+1).

Remarks:

1. From Equation 6, price series contain three components: At and Ct, t
2
B and log f̂t. At and Ct

are exogenous random variables that are determined by the iid arrival process. B is a positive
constant that acts as a drift parameter. Therefore, logpt has a deterministic linear upward
sloping trend. As shown in Equation 4, f̂t is a long memory process. Therefore the price
process also has a long memory which arises from the hyperbolic decay of the beliefs.

2. Intuitively, prices have long memory because of the embedded belief process. Price is a linear
function of beliefs and preserves the linear dependence structure of beliefs. As a result, price
series display long memory.

3. The deterministic trend originates from the strategic behaviors of traders. Traders will face
a trade-off in deciding whether to increase their holdings. On the one hand, increasing their
holdings today means that they can sell more at a higher price tomorrow. On the other hand,
increasing their holdings will increase the cost of acquiring shares today. Without strategic
behavior,16 traders are not aware of their own impact on equilibrium price. They will therefore
adjust their holdings until the price difference is zero, which leads to zero expected profit for
every trading date. With strategic behavior, traders will exploit their monopolistic powers
to prevent the increase of prices in the current period to order to make profits. When the
remaining trading horizon is longer, the strategic behavior of traders has a larger cumulative
impact on price, which implies that the prices increase over time.

15Monte Carlo simulations suggest that the results are not sensitive when α is nonzero.
16With the beliefs characterized in Proposition 1, we can solve for the equilibrium asset holdings xA

T−1 for type A

and xB
T−1 for type B traders, and prices pT−1 at time T −1. With risk-neutral preferences, E[f̃] = pT−1 which implies

that pT−1 = f̂T−1 . Using the market clear condition, we have xA
T−1 = xB

T−1 =
f̂T−1−α

nA
T−1+nB

T−1
. This implies that at

T − 2, when only type A traders come to the market, E[pT−1] = pT−2, which implies pT−2 = f̂T−2 and pt = f̂t for
t = 1, 2, . . ., T − 1. Hence, prices follow a martingale process and there is no upward sloping trend embedded in the
price series.
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Returns

The gross returns17 are defined by rt = pt/pt−1 and the logarithm return log(rt) at t is equal to

log rt = Dt + logZt

where Dt = log(n + 1) − log(n) + log(nA
t + nB

t ) − log(2nA
t−1) and Zt = f̂t/f̂t−1. Dt is an exogenous

random variable which is determined by the arrival process, and Zt is the ratio of beliefs of two types
of traders. In order to understand the properties of rt, we need to study the time series properties
of Dt and Zt. Since it is difficult to get a closed form for the autocovariance function of Zt and Dt,
we rely on Monte Carlo simulations.

Remarks:

1. The negative first-order autocorrelation of returns is mainly due to the change in the mean
intensity of arrivals due to multiple trading frequencies. As shown in Figure 3, Dt possesses
a negative first-order autocorrelation with the magnitude -0.25 and no statistically significant
autocorrelations at higher lags. In the meantime, Zt possesses no statistically significant
autocorrelations at any lag. With the joint effects of Zt and Dt, the Monte Carlo study
suggests that rt has a negative first-order autocorrelation.

Volatility Clustering

Let log(rt) = Dt + log Zt, while log Zt = log(f̂t) − log(f̂t−1). It is easy to show that Dt is a
stationary process. Hence we focus on the time series properties of Zt. Zt can be recursively written
as18

Zt = 1 +
τt−1

τt
(

SA
t + SB

t

SA
t−1 + SB

t−1

(1 − τt−2

τt−1

1
Zt−1

) − 2), (7)

which is a nonlinear function of Zt−1.

Remarks:

1. For expositional purposes, we define Zt = ft(Zt−1). Using Equation 7, we have V ar(log(rt) =
V ar[Dt]+V ar[Zt] = V ar[Dt]+( ∂ft

∂Zt−1
)2V ar[Zt−1]. Remember that Zt−1 is a function of rt−1,

i.e., Zt−1 = f−1
t (rt−1). This suggests that V ar(log(rt) = V ar[Dt] + ( ∂ft

∂Zt−1
)2V ar(f−1

t (rt−1)).
As in Granger and Machina (2006), when Zt is a nonlinear function of Zt−1, it is evidence of
volatility clustering.

2. Volatility clustering is mainly due to the time series properties of Zt. As shown in Figure
3, Var(Dt) possesses no statistically significant autocorrelations at any lag. In contrast, the

17Alternatively, one can define returns by rt = log(pt) − log(pt−1). These two specifications do not alter our core
findings.

18See derivations in Appendix B.
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autocorrelations of Var(Zt) at the first ten lags are all statistically significant with magnitudes
ranging from 0.05 to 0.27. In addition, Var(Zt) decay with a hyperbolic rate of 0.34.

Impact of Signal Precision

In addition to the stylized facts, this model generates interesting predictions that are absent
from the standard asset pricing model. For example, this model predicts that the traders with
more precise signals impose smaller effects on changing equilibrium prices. It is useful to consider an
impulse response experiment. We start with an equilibrium where the beliefs of traders have already
converged to the true value of the underlying asset, i.e., f̂0 = f̃ . Suppose there is a large negative
innovation in the signal at t = 1 with the magnitude −f̃ , i.e., SA

1 = 0 and SB
1 = 0. All other signals

are equal to f̃ , i.e., SA
t = SB

t = f̃ . There is no noise in arrivals, i.e., nA
t = nB

t = n and α = 0. Then
the beliefs, equilibrium prices, and returns can be computed according to Proposition 2

f̂t = f̃(1 − 2τε

τt
) =

τt−1

τt
f̃

pt =
2(T−t+1)/2nT−t

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
f̂t for t is odd

pt =
2(T−t)/2nT−t

(2n + 1)(T−t)/2(n + 1)(T−t)/2
f̂t for t is even

rt =
τt−2

τt
.

When the precision of signal τε increases, the innovation in the signal has a smaller effect on returns.
To see this, note that rt = τt−2

τt
can be rewritten as 1− 4

τ0
τε

+2t
. When τε increases, rt decreases. This

implies that when traders have more precise signal, the change in price is smaller. This seemingly
counterintuitive result is caused by the strategic adjustments of the optimal holdings of traders.
When the signal is precise, traders tend to be reluctant to adjust their optimal holdings. This leads
to traders with more precise signals imposing smaller effects on equilibrium prices and returns.

III. Private Signals

The model developed in the previous section is simple, yet capable of capturing the three stylized
facts of financial data. Namely, prices display long memory and an upward sloping trend, returns are
stationary and display a negative first-order correlation, and the variance of returns (magnitude of
returns) displays volatility clustering with a hyperbolic decay rate. This section examines a variant
of the model where the traders receive private signals instead of public signals. Signal extraction due
to multiple trading frequencies in a private signal environment naturally contributes to the formation
of volatility clustering. Intuitively, given different trading frequencies, it is natural for traders in
one group to infer the other group’s signals from the prices. Infrequent traders can infer the signals
from the price in the period when they are absent, because the prices are entirely determined by
the demands of the frequent traders. Therefore, the past prices provide information that determines

11



the current price. This feedback mechanism facilitates the formation of the volatility clustering
(see, e.g., Brock and LeBaron (1996)). Signal extraction generates other interesting findings as well,
which provide insights into understanding private information trading in the market microstructure.
For example, signal extraction in this model generates an information hierarchy among traders in
an ex ante symmetric information setting.19 In this model, infrequent traders can infer signals
received by frequent traders exactly. In addition, infrequent traders infer more precise signals than
frequent traders. The information hierarchy created by multiple trading frequencies suggests that
the asymmetry of information diffusion may be endogenously determined by trading frequencies,
rather than exogenously given.

A. Informational Structure

Note that at t = 0, 2, . . . , T − 4, T − 2, only type A traders are present in the market. This
implies that the equilibrium prices in such periods are entirely determined by the behavior and
beliefs of type A traders. Therefore, type B traders can extract the beliefs of the type A traders by
inverting the equilibrium price function of the beliefs.

We assume that traders know the exact number of traders who came to the market in the
last period, i.e., at time t, the information set for the traders is It = {Pt−1, N

A
t−1, N

B
t−1}, where

Pt−1 = {pt−1, pt−2, . . . , p1, p0}, and NA
t−1 = {nA

t−1, n
A
t−2, . . . , nA

0 } and NB
t−1 = {nB

t−1, n
B
t−2, . . . ,

nB
0 }.

B. Bayesian Nash Equilibrium

To describe signal extraction behavior and the evolution of beliefs, we first characterize the
Bayesian Nash equilibrium. Given a sequence of beliefs after signal extraction, f̂A

t and f̂B
t for type

A traders and type B traders respectively, we can solve for the equilibrium at time T − 1.
With risk-neutral preferences, we can characterize the utility maximization problem faced by the

ith type A trader as

max
xA

T−1,i

E[f̃ − (α +
nA

T−1∑

j=1

xA
T−1,j +

nB
T−1∑

j=1

xB
T−1,j)]x

A
T−1,i.

The first-order condition is

f̂A
T−1 − α − (n − 1)xA

T−1,j − nxB
T−1,j − 2xA

T−1,i = 0

⇒ xA
T−1,i =

f̂A
T−1 − α − nxB

T−1,j

n + 1
.

Hence, the Bayesian Nash equilibrium at T − 1 can be characterized by

xA
T−1 =

(n + 1)f̂A
T−1 − nf̂B

T−1 − α

2n + 1
19A symmetric information setting means that ex ante, all traders will receive the same number of signals per

period, which are drawn from iid distribution.
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xB
T−1 =

(n + 1)f̂B
T−1 − nf̂A

T−1 − α

2n + 1
pT−1 = α + nA

T−1x
A
T−1 + nB

T−1x
B
T−1.

Given the price in the T − 1 period, we can derive the equilibrium for t = 1, 2, 3, . . . , T − 2:

Proposition 4 The Bayesian Nash equilibrium at t can be characterized by
if t is odd:

xA
t =

2(T−t−1)/2n(T−t−1)

(2n + 1)(T−t+1)/2(n + 1)(T−t−3)/2
(f̂A

t − α) − 2(T−t−1)/2n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂B

t − α)

xB
t =

2(T−t−1)/2n(T−1−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−3)/2
(f̂B

t − α) − 2(T−t−1)/2n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂A

t − α)

pt = α + nA
t xA

t + nB
t xB

t

if t is even:

xA
t =

2(T−t)/2n(T−1−t)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂A

t − α)

pt = α + (nA
t )

2(T−t)/2n(T−1−t)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂A

t − α).

C. Signal Extraction

Using Proposition 4, we can describe the signal extraction behavior of traders. At t = T − 1,
type B traders know the actual arrivals nA

T−2 and nB
T−2 of both types of traders, and price pT−2 in

the last period. From Proposition 8, pT−2 = α + (nA
t ) 2n

(2n+1)(n+1)(f̂
A
T−2 −α). Therefore, the type B

traders can invert the price formula to get f̂A
T−2 = α+ (2n+1)(n+1)

(2n)nA
T−2

(pT−2 −α). Hence, at T − 1, type

B traders know type A traders’ belief at T − 2, f̂A
T−2. A similar analysis can be applied to type A

traders and to other trading dates.

Proposition 5 Type A traders know the exact beliefs of type B traders every other trading period,
and type B traders know the exact beliefs of type A traders every trading period, i.e.,

1. When t is odd, type B traders know f̂A
t−1, f̂A

t−2, . . . , f̂A
0 while type A traders only know f̂B

t−2,
f̂B

t−4, . . . , f̂B
0 .

2. When t is even, type B traders know f̂A
t−1, f̂A

t−2, . . . , f̂A
0 while type A traders only know f̂B

t−1,
f̂B

t−3, . . . , f̂B
0 .

Furthermore, traders can recover the private signals received by the other group by knowing the
history of the beliefs. For instance, type B traders know the full history of f̂A

t , and they understand
that the difference in the beliefs is due to the signals. By inverting the Bayesian updating formula,
they can even infer the private signals received by type A traders in addition to their beliefs.
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Assuming that the identical initial prior beliefs f̂A
0 = f̂B

0 are common knowledge, then the beliefs
of each type of traders can be determined as follows:

Proposition 6 The beliefs of two groups of traders at t are normally distributed, denoted by N (fA
t , 1

τt
)

and N (fB
t , 1

τt
),where the precision for type A traders is given by

τA
1 = τA

0 + τε

τA
2 = τA

1 + 2τε

τA
t = τA

t−1 + τε, for t is 2k − 1, k ≥ 2

τA
t = τA

t−1 + τε + τ̂A
t , for t is 2k, k ≥ 2

where τ̂A
t = 1+(τB

t−1)2

(1+τB
t−1)2

τε.

The mean for type A traders is given by

f̂A
1 = f̂A

0 +
τε

τ1
(SA

1 − f̂A
0 )

f̂A
2 = f̂A

1 +
τε

τA
2

(SA
2 + SB

1 − 2f̂A
1 )

f̂A
t = f̂A

t−1 +
τε

τA
t

(SA
t − f̂A

t−1) for t = 2k − 1, k ≥ 2

f̂A
t = f̂A

t−1 +
τε

τA
t

(SA
t − f̂A

t−1) +
τ̂A
t

τA
t

(ŜA
t − f̂A

t−1) for t = 2k, k ≥ 2

where ŜA
t = τB

t−1SB
t−2

1+τB
t−1

+ SB
t−1

1+τB
t−1

.

The precision for type B traders is given by

τB
1 = τB

0 + τε

τB
t = τB

t−1 + 2τε for t ≥ 2

and the mean for type B traders is given by

f̂B
1 = f̂B

0 +
τε

τB
1

(SB
1 − f̂B

0 )

f̂B
t = f̂B

t−1 +
τε

τB
t

(SB
t + SA

t−1 − 2f̂B
t−1) for t ≥ 2

Remarks:

1. Type B traders know the exact private signals received by type A traders, where type A
traders only have estimates of the type B traders’ private signals (ŜA

t ). This implies that there
is an informational hierarchy among traders. Type B traders know all the signals that type A
traders know. Notice that we start from an ex ante symmetric setting.
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2. Type B traders extract higher precision signals: the signals extracted by type B traders are of

precision τε, while the signals extracted by type A traders are of precision τ̂A
t = 1+(τB

t−1)
2

(1+τB
t−1)

2 τε.

It is easy to see that (1 + τB
t−1)

2 > 1 + (τB
t−1)

2. Therefore, τ̂A
t = 1+(τB

t−1)2

(1+τB
t−1)2

τε < τε.20

3. Signal extraction facilitates the formation of volatility clustering by changing the formation
of the beliefs. It is easy to see that due to signal extraction, there is a correlation between
the traders’ beliefs which is absent in the public signal case. The price is linear in beliefs
and preserves the correlation between the traders’ beliefs in its own correlation across trading
dates.21

D. Properties of Equilibrium

The previous section characterized the Bayesian Nash equilibrium in the public signal case.
In order to examine how the mechanism proposed in the paper, namely, traders with the multiple
trading frequencies behaving strategically can generate return predictability and volatility clustering,
we need to study the properties of the equilibrium. In addition, we are going to examine the difference
between the equilibria in the private signal case and the public signal case. The main properties of
the equilibrium in the private signal case are

1. Price series possess a linear trend and are linearly dependent.

2. Return series are stationary and there is a negative autocorrelation of returns at first lag.

3. Return series display volatility clustering with hyperbolic decay autocorrelations.

Before elaborating on each of these properties, we will describe the equilibrium behavior of beliefs
where the equilibrium price is a function of beliefs.

Beliefs

First, beliefs exhibit long memory as shown in Lemma 7.

Lemma 7 The autocovariance functions of beliefs f̂A
t and f̂B

t can be characterized by

Cov(f̂A
t , f̂A

t−j) =
1

τA
t−j

− 1
τA
t

Cov(f̂B
t , f̂B

t−j) =
1

τB
t−j

− 1
τB
t

20An exception occurs at t = 2. This is the only trading date where type A traders can extract an exact signal
received by type B traders. This exception originates from the assumption that initial beliefs are identical. When we
relax this assumption in Section V, type A traders are no longer able to extract exact signals.

21In addition to the beliefs channel, signal extraction can facilitate the formation of volatility clustering by providing
a forward looking mechanism. As discussed in Section V, when traders use signal extraction not only to improve the
understanding of fundamentals (via the beliefs channel) but also to predict the behaviors of the other group of traders,
the effect of signal extraction on the formation of volatility clustering is stronger.
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Cov(f̂A
t , f̂B

t−j) =

[t/2]∑

k=1

τ̂A
k

τA
t τB

t−j

,

where [x] is the integer part of x.

Remarks:

1. As in the public signal case, the signal innovation will have an impact on the beliefs even at
long lags and the decay rate is hyperbolic. To see this, rewrite the equations for the beliefs in
the form

f̂A
t = f̂0 +

τε

τA
t

(tε0 +
t∑

i=1

εA
i ) +

t/2∑

k=1

τ̂A
t ε0

τA
t

+

t/2∑

k=1

τ̂A
t ε̂A

2k

τA
t

f̂B
t = f̂0 +

τε

τB
t

((2t − 1)ε0 +
t−1∑

i=1

(εA
i + εB

i ) + εB
t ) (8)

where ε0 = f̃ − f̂0 and ε̂A
t = ŜA

t − f̃ . Using a similar impulse response experiment as in the
public signal case, one can show that the beliefs have long memory and that the decay rate is
hyperbolic.

2. It then follows that when t → ∞, the beliefs of each group converge asymptotically to the true
value of the underlying asset.

3. The correlation between beliefs is nonzero. It originates from the signal extraction behavior.
For instance, as shown in Proposition 6, type B traders know the private signals received by
type A traders in the last period. Hence, there is a common signal incorporated in the beliefs of
type B traders in the current trading period and type A traders in the last trading period. This
imposes a correlation structure on the beliefs of the traders. It turns out that the correlation
structure of the beliefs is preserved in the prices, since the price is linear in beliefs.

Prices

Next, we examine the properties of prices. The prices characterized in Proposition 4 can be
rewritten as

pt = α + (nA
t − n

n + 1
nB

t )Kt(f̂A
t − α) + (nB

t − n

n + 1
nA

t )Kt(f̂B
t − α) for t is odd

pt = α +
21/2(2n + 1)1/2

(n + 1)3/2
nA

t Kt(f̂A
t − α) for t is even

where Kt = 2(T−t−1)/2n(T−t−1)

(2n+1)(T−t+1)/2 (n+1)(T−t−3)/2 .
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For simplicity, we assume that α = 0 and that there is no noise in the arrivals, i.e, nA
t = nB

t = n.
Therefore, the prices can be characterized by:

pt =
n

n + 1
Kt(f̂A

t + f̂B
t ) for t is odd

pt =
21/2(2n + 1)1/2n

(n + 1)3/2
Kt(f̂A

t ) for t is even (9)

where Kt = 2(T−t−1)/2n(T−t−1)

(2n+1)(T−t+1)/2 (n+1)(T−t−3)/2 .

Remarks:

1. As in the public signal case, (log) price has a linear trend over time: logKt is linear in t.
Therefore Kt increases exponentially.22 Again, the deterministic trend arises from strategic
behaviors of traders. Due to differences in beliefs, they may adjust their optimal holdings at
different rates. This further contributes to the alternating pattern in prices.

2. The prices display long memory because of the embedded belief process. Likewise, the price
is linear in beliefs and preserves the dependence structure of the beliefs. Formally, the auto-
covariance function of prices can be characterized by

Cov(pt, pt−2j−1) =
n

n + 1
(n + 1/2)1/2n

(n + 1)3/2
KtKt−2j−1Cov(f̂A

t + f̂B
t , f̂A

t−2j−1)

Cov(pt, pt−2j) =
n2

n + 12
KtKt−2jCov(f̂A

t + f̂B
t , f̂A

t−2j + f̂B
t−2j)

where

Cov(f̂A
t + f̂B

t , f̂A
t−j + f̂B

t−j) =
1

τA
t−j

− 1
τA
t

+
1

τB
t−j

− 1
τB
t

+

[t/2]∑

k=1

τ̂A
k

τA
t τB

t−j

+

[t/2]∑

k=1

τ̂A
k

τA
t−jτ

B
t

Cov(f̂A
t + f̂B

t , f̂A
t−j) =

1
τA
t−j

− 1
τA
t

+

[t/2]∑

k=1

τ̂A
k

τA
t τB

t−j

.

Returns

Next, we examine the return series. Define rt = pt/pt−1. Since it is difficult to get a closed
form for the autocovariance function, we rely on Monte Carlo simulations. Monte Carlo simulations
show that the autocorrelation of rt at the first lag is -0.25 and is statistically significant, while the
autocorrelations at other lags are statistically not different from zero.

22 logKt = (T − 1)/2 log2 + (T − 1)/2log n − (T − 1)/2 log(2n + 1)− (T − 3) log(n + 1) + t/2[log(2n + 1) + log(n +
1)− log 2− 2 log n].
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Volatility Clustering

Let rt = Xt + Yt, where Xt = f̂A
t

2f̂A
t−1

and Yt = f̂B
t

2f̂A
t−1

. Xt can be rewritten as

Xt = 1 +
τt−1

τt
(

SA
t

SA
t−1

(1 − τt−2

τt−1

1
Xt−1

) − 1)

Remarks:

1. For expositional purposes, we define Xt = mt(Xt−1). Using the same methods of analysis as
in the public signal case, we obtain

Var(rt) = Var(Yt) + Var(Xt) + 2Cov(Xt, Yt)

= Var(Yt) + (
∂mt

∂Xt−1
)2Var(Xt−1) + 2Cov(Xt, Yt)

Remember that Xt−1 is a function of rt−1, i.e., Xt−1 = m−1
t (rt−1). This suggests that

V ar(rt) = Var(Yt) + ( ∂mt

∂Xt−1
)2Var(m−1

t (rt−1)) + 2Cov(Xt, Yt). As in Granger and Machina
(2006), when Xt is a nonlinear function of Xt−1, it is evidence of volatility clustering.

2. Signal extraction adds terms to the expression for volatility clustering. Cov(Xt, Yt) is the

covariance between the beliefs ratios of type A traders, f̂A
t

2f̂A
t−1

and f̂B
t

2f̂A
t−1

. As shown in Lemma 7,

the covariance between beliefs is positive. This shows that signal extraction facilitates the
formation of volatility clustering.

Role of Multiple Trading Frequency

Through a multiple trading frequency mechanism, this model generates interesting predictions
that are absent from the standard asset pricing model. We already discussed one example in the
public signal case, namely, that signal precision has an impact on the equilibrium prices and returns.
With signal extraction, this model is capable of generating other interesting predictions.

1. Traders with different trading frequencies have different levels of impact on equilibrium prices
and returns. To see this, it is useful to consider a heuristic argument. Let us compare the cumu-
lative impact of one innovation in the signal for type A traders or type B traders. As shown in

Equation 8, the cumulative impulse response of signal for type A traders is
t∑

i=1

τε

τA
t

+
t∑

i=1

τε

τB
t

. In

contrast, the cumulative impulse response of signal for type B traders is
t∑

i=1

τ̂A
t

τA
t

1
1+τB

t−1
+

t∑

i=1

τε

τB
t

.

Note that τ̂A
t < τε and 1

1+τB
t−1

< 1. Given that τ̂A
t is positive every other period, the cumula-

tive impulse response of the infrequent traders to a signal is smaller. Notice that the smaller
cumulative impulse response is due to the fact that type A traders are not capable of doing
signal extraction every trading period and their signal precision is lower.

18



2. The timing schedule of signals has an impact on equilibrium prices and returns. It arises from
the fact that type A traders are only able to extract exactly the signal of type B traders on
t = 2. If the bad news arrives at a later time, type A traders incorporate it into their beliefs
differently.

IV. Simulations

This section illustrates how the model is able to generate the claimed stylized facts, namely,
linearly trending prices, negative first-order autocorrelation of returns and volatility clustering. In
the simulations, the parameters are set at α = 100, T = 150, n = 50, f̃ = 150, τ0 = 10, τε = 3 and
ω = 400. We also report the robustness of our findings with different sets of parameter values.

A. Public Signals

The simulation results illustrate that (log) prices are linearly trending, returns are stationary
and possess a negative first lag autocorrelation, which is consistent with the literature (see, e.g.,
Dacorogna et al. (2001)). In addition, as shown in Figure 4, the autocorrelation function of the
variance of returns decays hyperbolically. Table III reports the average autocorrelations of rt and
Var(rt) across 100 simulations in the public signal case. It shows that for rt, there is a statistically
significant negative autocorrelation at the first lag with a magnitude of -0.48. There are no statis-
tically significant autocorrelations at other lags. For Var(rt), all autocorrelations are statistically
significant, with magnitudes ranging from 0.07 to 0.347.

The fixed cost of providing liquidity, α, mainly affects the position of the prices. Varying α does
not alter the pattern of the prices and returns. In addition, changing α has negligible effects on
the dependence structure of returns and the variance of returns. Changes in α mainly change the
position of prices but not the slope of price series. Because the fixed cost is constant over time, the
return series will be independent of α. Figure 5 shows the simulation results for α = 80, α = 150
and α = 200. The simulation results are consistent with our intuition. The dependence structure of
the returns and the variance of returns are almost the same for different α values.

Next, we examine the mean arrivals of traders of each group, n. As a common property of
the Cournot game, as n increases, the prices become more volatile. In the mean time, the returns
display less dependence structure, and less dependence structure at the second moment (the variance
of returns). Intuitively, as n increases, the strategic outcome converges to the competitive outcome,
which involves less strategic behavior and reduces the dependence structure of the returns and the
variance of returns. Figure 6 shows the autocorrelation function of returns and the variance of
returns when n = 50, n = 100, n = 200. The simulations show that as n increases, the variance of
returns displays less dependence structure. When n = 200, the autocorrelation coefficients of the
variance of returns at all but the first lag are very small. In contrast, when n = 50, the variance of
returns displays evidence of volatility clustering.
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We continue to study the effects of the variance of arrivals, ω. Figure 7 suggests that ω has
a negligible effect on the dependence structure of return and the variance of returns. It mainly
affects the volatility of prices. If ω is lower, then the prices become smoother (less volatile). This is
consistent with our intuition that ω is the parameter characterizing the arrival process only, which
is independent of the updating procedure. This means that ω should not have any explanatory
power in the dependence structure as opposed to n, which can affect the dependence structure of
the variance of returns by affecting the interaction between traders.

Finally, we investigate the effects of τε, the precision of the signal. When the precision of the
signal is high, it tends to put more weight on the signals rather than the beliefs of the last period.
Therefore, the potential high precision signal τε can reduce the dependence structure. The simulation
results suggest that the magnitude of this effect is small.

B. Private Signals

The simulation results are quite similar to the public signal case. Price series have an upward
sloping trend and there is a dependence structure in returns, while the returns are stationary. The
first-order autocorrelation coefficient of the returns is negative. As in Figure 8, the autocorrela-
tion function of the variance of returns exhibits hyperbolic decay, which is evidence of volatility
clustering. Table IV reports the average autocorrelations of rt and Var(rt) in 100 simulations. It
shows that for rt, the autocorrelation at the first lag is -0.25, which is statistically significant, while
the autocorrelations at other lags are statistically indistinguishable from zero. For Var(rt), all the
autocorrelations are statistically significant. The magnitude ranges from 0.1 to 0.29. Compared to
the public signal case, the persistent structure of Var(rt) is of a similar magnitude.

We also present the results of the experiments in terms of parameters in Figure 9, Figures 10
and 11. The model behavior resembles the public signal case. The dependence structures of returns
and the variance of returns, which are captured by the autocorrelation function, are similar when
changing the carrying cost, α. Changing the mean intensity of arrival n has negligible effects on
dependence structure of returns. As n increases, however, the variance of returns becomes less
persistent, which is reflected in smaller magnitude of the autocorrelation coefficients. Different
values of the standard deviation of arrivals ω have negligible effects on the dependence structure of
returns and the variance of returns.

To summarize, this simulation provides an illustration of the robustness of the proposed mecha-
nism. In both the public and the private signal cases, the simulation demonstrates the three stylized
facts. First, the prices display long memory and an upward sloping trend. Second, the returns are
stationary and display a negative first-order correlation. Third, the variance of returns (the mag-
nitude of returns) display volatility clustering and the decay rate is hyperbolic. Furthermore, the
simulations suggest that there is an inverse relationship between the mean intensity of the arrivals
and the persistence structure of the variance of returns. In both cases, as the mean intensity of
the arrivals n increases, the magnitudes of the autocorrelations become smaller, indicating that the
variance of returns is less persistent. As guided by the theoretical framework, it is reasonable to
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believe that this diminishing effect of mean intensity of the arrivals is due to less strategic behav-
iors of traders, as the Bayesian Nash equilibrium converges to the competitive equilibrium. This
framework suggests that strategic behavior contributes to the persistent structure in the variance of
returns.

V. Extensions

A. Sophisticated Guess

Previous analysis shows that signal extraction facilitates the formation of volatility clustering
through a beliefs channel. It is interesting to consider additional mechanisms led by signal extraction.
In additional to the beliefs channel, traders seek the short-run profit opportunities by predicting the
other party’s behavior using the extracted beliefs. Intuitively, this forward looking mechanism will
bring more persistence to the prices and the magnitude of returns.

For expositional purposes, first consider the Bayesian Nash equilibrium at time T − 1. Time
T − 1 is the last trading date. Therefore, traders only care about the true value of the underlying
asset. The profit maximization problem faced by the ith type A trader can be characterized by

max
xA

T−1,i

E[f̃ − (α +
nA

T−1∑

j=1

xA
T−1,j +

nB
T−1∑

j=1

xB
T−1,j)]x

A
T−1,i.

Therefore the equilibrium at time T − 1 is the same as in the signal extraction case we studied
in Section III

xA
T−1 =

(n + 1)f̂A
T−1 − nf̂B

T−1 − α

2n + 1

xB
T−1 =

(n + 1)f̂B
T−1 − nf̂A

T−1 − α

2n + 1
pT−1 = α + nA

T−1x
A
T−1 + nB

T−1x
B
T−1.

At time T −2, only type A traders come to the market, and they care about the per period profit
instead, i.e., they care about the price in the next period pT−1 instead of f̃ . Therefore, the profit
maximization problem faced by the ith type A trader at time T − 2 is

max
xA

T−2,i

EA[pT−1 − (α +
nA

T−2∑

j=1

xA
T−2,j +

nB
T−2∑

j=1

xB
T−2,j)]x

A
T−2,i

which implies that

xA
T−2 =

EA[pT−1]− α

n + 1
.

By backward induction,

EA[pT−1] − α = EA[nA
T−1x

A
T−1 + nB

T−1x
B
T−1]
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= nEA[
n

2n + 1
(f̂A

T−1 + f̂B
T−1 − 2α)]

=
n2

2n + 1
(EA[f̂A

T−1] + EA[f̂B
T−1]).

At t = T − 2, the best guess for f̂A
T−1 is f̂A

T−2, the current mean of the beliefs. Without signal
extraction, the best guess for f̂B

T−1 is also f̂A
T−2, because there is no further information on the

beliefs of type B traders. With signal extraction, type A traders may be able to find a better guess
instead of their own belief, for instance, f̂B

T−3. One direct impact of this new guess is that signal
extraction behavior can alter the optimal holdings of traders and the equilibrium price.

Given a sequence of beliefs after signal extraction, f̂A
t and f̂B

t for type A and type B traders, we
can characterize the Bayesian Nash equilibrium as:

Proposition 8 The Bayesian Nash equilibrium at t can be characterized by

xA
t =

2(T−t−3)/2n(T−t−1)

(2n + 1)(T−t+1)/2(n + 1)(T−t−3)/2
(f̂A

t + f̂B
t−2 − 2α)

− 2(T−t−3)/2n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂A

t−1 + f̂B
t − 2α)

xB
t =

2T n(T−t−1)

(2n + 1)(T−t+1)/2(n + 1)(T−t−3)/2
(f̂B

t + f̂A
t−1 − 2α)

−
n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂A

t + f̂B
t−2 − 2α)

pt = α + nA
t xA

t + nB
t xB

t

if t is odd;

xA
t =

2(T−t−2)/2n(T−t−1)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂A

t + f̂B
t−1 − 2α)

pt = α + (nA
t )xA

t

if t is even;

Figure 13 demonstrates the simulation result and Table V demonstrates the average autocorre-
lations of rt and Var(rt) across 100 simulations. We can see that the variance of rt displays a more
persistent structure which is reflected by larger magnitude of autocorrelations ranging from 0.168
to 0.383. This suggests that signal extraction can affect the formation of prices and induce more
persistence in the variance of returns.

B. Heterogeneous Priors

Previous analysis assumed that the prior beliefs are the same for both types of traders. In this
section, we extend the models studied in the previous sections to allow for the heterogeneous priors,
i.e. f̂A

0 6= f̂B
0 .
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Public Signals

We start with the public signal case, in which both traders receive the same signal but they will
hold different beliefs. We will solve the Bayesian Nash equilibrium in a similar way to the private
signal case. Formally, the beliefs of both groups can be characterized by

Proposition 9 The beliefs of two groups of traders at t are normally distributed, denoted by N (fA
t , 1

τt
)

and N (fB
t , 1

τt
),where the precision is given by

τt = τt−1 + 2τε

and the means are given by

f̂A
t = f̂A

t−1 +
τε

τt
(SA

t + SB
t − 2f̂A

t−1)

f̂B
t = f̂B

t−1 +
τε

τt
(SB

t + SA
t − 2f̂B

t−1).

We can characterize the Bayesian Nash equilibrium at t as:

Proposition 10 The Bayesian Nash equilibrium at t can be characterized by:

xA
t =

2(T−t−1)/2n(T−1−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−3)/2
(f̂A

t − α) −
2(T−t−1)/2n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂B

t − α)

xB
t =

2(T−t−1)/2n(T−1−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−3)/2
(f̂B

t − α) − 2(T−t−1)/2n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t−1)/2
(f̂A

t − α)

pt = α + nA
t xA

t + nB
t xB

t

if t is odd;

xA
t =

2(T−t)/2n(T−1−t)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂A

t − α)

pt = α + (nA
t )

2(T−t)/2n(T−1−t)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂A

t − α).

if t is even.

Remarks:

1. Monte Carlo simulations confirm that heterogeneous beliefs in the public signal case will not
change qualitative features of our main results. From Proposition 10, we can see that the
Bayesian Nash equilibrium is quite similar to the private signal case. This makes sense because
with heterogeneous priors, the beliefs are different at each trading date even with public signals.
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Private Signals

Note that with heterogeneous beliefs, type A traders cannot extract exact signals at any trading
date as opposed to the homogeneous priors case, in which they could at t = 2. This is the only
modification of the equilibrium in the private signals case with heterogeneous priors. Instead, type
A traders can only get a composite signal combined with the initial belief of type B traders f̂B

0 and
their belief f̂B

1 at t = 1. For t = 3, 4, 5, . . . , T − 1, the signal extraction behavior of both types is
identical to the homogeneous priors case. Formally,

Proposition 11 The beliefs of the two groups of traders at t are normally distributed, denoted by
N (fA

t , 1
τt

) and N (fB
t , 1

τt
), where the precision for type A traders is given by

τA
1 = τA

0 + τε

τA
t = τA

t−1 + τε, for t is 2k − 1, k ≥ 2

τA
t = τA

t−1 + τε + τ̂A
t , for t is 2k, k ≥ 1

where τ̂A
t = 1+(τB

t−1)2

(1+τB
t−1)2

τε. The mean for type A is given by

f̂A
1 = f̂A

0 +
τε

τ1
(SA

1 − f̂A
0 )

f̂A
t = f̂A

t−1 +
τε

τA
t

(SA
t − f̂A

t−1), for t is 2k − 1, k ≥ 2

f̂A
t = f̂A

t−1 +
τε

τA
t

(SA
t − f̂A

t−1) +
τ̂A
t

τA
t

(ŜA
t − f̂A

t−1), for t is 2k, k ≥ 1

where ŜA
t = τB

t−1SB
t−2

1+τB
t−1

+ SB
t−1

1+τB
t−1

. The precision for type B traders is given by

τB
1 = τB

0 + τε

τB
t = τB

t−1 + 2τε for t ≥ 2

and the mean for type B traders is given by

f̂B
1 = f̂B

0 +
τε

τB
1

(SB
1 − f̂B

0 )

f̂B
t = f̂B

t−1 +
τε

τB
t

(SB
t + SA

t−1 − 2f̂B
t−1) for t ≥ 2

Figure 12 depicts the average autocorrelations of rt and Var(rt) across 100 simulations in the
public signal case and in the private signal case with heterogeneous priors. It shows that the
magnitudes of the average autocorrelations are similar to those in the cases with homogeneous
beliefs. This implies that the changing from the homogeneous priors to the heterogeneous priors
have negligible effects on the persistence structure of the returns and the variance of returns.

In summary, heterogeneous beliefs affect the equilibrium in a minor way. In the public signal
case, traders have different beliefs. The differences in beliefs are constant over time and equal to the
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difference in priors. In the private signal case, it changes the belief updating of type A traders at
only one trading date, t = 2. As a result, the qualitative properties of prices, returns, and volatility
of returns do not change.

VI. Conclusions

This paper has developed a discrete-time multiperiod model of volatility clustering due to the
combined effects of rational traders with multiple trading frequencies and their strategic interactions.
First, multiple trading frequencies lead to an alternating pattern in prices which generates a serial
correlation in the magnitude of the returns. Secondly, signal extraction provides a feedback mecha-
nism, which induces a correlation between the past prices and the current price. This facilitates the
formation of the volatility clustering. In addition, the proposed mechanism is capable of generating
linearly trending prices and a negative correlation at the first lag of returns.

We also find that the number of traders has an impact on the formation of volatility clustering.
This is a consequence of the fact that when the mean intensity of arrivals increases, the strategic
competition outcome will converge to the competitive outcome. Hence, the effect of strategic in-
teraction diminishes. Monte Carlo simulations show that in all settings, as the mean arrivals of
traders increase, the variance of returns becomes less persistent. In the extreme, when the number
of traders is sufficiently large, the model predicts that there is only one statistically significant first-
order autocorrelation of variance of returns, while other autocorrelation coefficients are statistically
indistinguishable from zero.

This model yields several interesting predictions. First, traders with more precise signals have a
smaller impact on the evolution of equilibrium prices and returns. Secondly, traders with different
trading frequencies impose different levels of impact on the equilibrium prices and returns. Frequent
traders respond to the signals in smaller magnitudes and this is transformed into a smaller cumulative
impact on the evolution of the equilibrium.

We show that an information hierarchy can be generated in an ex ante symmetric setting through
signal extraction. Thus when trading frequencies are different, signal extraction can endogenously
determine the information diffusion. The informational advantages of the traders may be due to
their trading frequency. One potentially interesting avenue for future research is to endogenize the
trading frequencies in a more general model where trading frequencies and an information hierarchy
are simultaneously determined. Doing so would allow us to address additional issues, such as the
microstructure impact of trading from information diffusion. For instance, in the context of this
model, trading frequency is exogenously determined and leads to signal extraction which generates
volatility clustering and information hierarchy. It is not obvious which factors make traders choose
to trade less frequently. We leave the clarification of these issues for the future work.
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A Proofs

Proof to Proposition 1
Proof: With identical initial beliefs f̂A

0 = f̂B
0 , and invoking DeGroot (1970), this leads to f̂A

t = f̂B
t

for t = 1, 2, . . . ,T − 1:

τt = τt−1 + 2τε

f̂A
t = f̂A

t−1 +
τε

τt
(SA

t + SB
t − 2f̂A

t−1)

f̂B
t = f̂B

1 +
τε

τt
(SB

t + SA
t − 2f̂B

t−1).

Q.E.D

Proof to Proposition 2
Proof: The proof is by induction. The Bayesian Nash equilibrium at T − 1 is characterized by

xA
T−1 = xB

T−1 = xT−1 =
f̂T−1 − α

2n + 1
pT−1 = α + (nA

T−1 + nB
T−1)xT−1

= α + (nA
T−1 + nB

T−1)
f̂T−1 − α

2n + 1
.

Therefore, the equilibrium characterization holds when t = T − 1. Suppose the Proposition holds at
t = 2k, where k is a integer such that 2k ≤ T − 1, i.e,

xA
2k =

2(T−2k)/2n(T−2k−1)

(2n + 1)(T−2k)/2(n + 1)(T−2k)/2
(f̂2k − α)

p2k = α + (nA
2k)

2(T−2k)/2n(T−2k−1)

(2n + 1)(T−2k)/2(n + 1)(T−2k)/2
(f̂2k − α).

Therefore at t = 2k − 1, the ith type A traders face the maximization problem which can be
characterized by

maxxA
2k−1,i

E[p2k − (α +
nA

2k−1∑

j=1

xA
2k−1,j +

nB
2k−1∑

j=1

xB
2k−1,j)]x

A
2k−1,i.

First-order condition to the above utility maximization problem is:

E[p2k] − α − (n − 1)xA
2k−1,j − nxB

2k−1,j − 2xA
2k−1,i = 0.

Invoking the symmetry result, we will have xA
2k−1 = xB

2k−1 in equilibrium, then Equation 10 can be
rewritten as:

xA
2k−1,i =

E[p2k] − α

2n + 1
.
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At t = 2k − 1,

E[p2k] = E[α + (nA
2k)

2(T−2k)/2n(T−2k)

(2n + 1)(T−2k)/2(n + 1)(T−2k)/2
(f̂2k − α)]

= α + n
2(T−2k)/2n(T−2k)

(2n + 1)(T−2k)/2(n + 1)(T−2k)/2
E(f̂2k − α)

= α +
2(T−2k)/2n(T−2k+1)

(2n + 1)(T−2k)/2(n + 1)(T−2k)/2
(f̂2k−1 − α).

Therefore, the optimal holdings for type A traders and type B traders at t = 2k − 1 can be charac-
terized by

xA
2k−1,i = xB

2k−1,i =
E[p2k] − α

2n + 1
=

2(T−2k)/2n(T−2k+1)

(2n + 1)(T−2k+2)/2(n + 1)(T−2k)/2
(f̂2k−1 − α).

Further, the price at t = 2k − 1 is

p2k−1 = α + (nA
2k−1 + nB

2k−1)
2(T−2k)/2n(T−2k)

(2n + 1)(T+2k+2)/2(n + 1)(T−2k)/2
(f̂2k−1 − α).

At t = 2k − 2, the type A traders face the maximization problem which can be characterized by

maxxA
2k−2,i

E[p2k−1 − (α +
nA

2k−2∑

j=1

xA
2k−2,j]x

A
2k−2,i.

First-order condition to the above utility maximization problem is:

E[p2k−1]− α − (n − 1)xA
2k−1,j − 2xA

2k−1,i = 0.

Invoking the symmetry result, we will have xA
2k−1 = xB

2k−1 in equilibrium, then Equation 10 can be
rewritten as:

xA
2k−2,i =

E[p2k−1] − α

n + 1
.

Similarly, at t = 2k − 2

E[p2k−1] = E[α + (nA
2k−1 + nB

2k−1)
2(T−2k)/2n(T−2k)

(2n + 1)(T−2k+2)/2(n + 1)(T−2k)/2
(f̂2k−1 − α)]

= α + 2n
2(T−2k)/2n(T−2k)

(2n + 1)(T−2k+2)/2(n + 1)(T−2k)/2
E(f̂2k−1 − α)

= α +
2(T−2k+2)/2n(T−2k+1)

(2n + 1)(T−2k+2)/2(n + 1)(T−2k)/2
(f̂2k−2 − α).

Therefore, the optimal holding for type A traders and type B traders at t = 2k − 2 can be
characterized by

xA
2k−2,i =

E[p2k−1] − α

n + 1
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=
2(T−2k+2)/2n(T−2k+1)

(2n + 1)(T−2k+2)/2(n + 1)(T−2k+2)/2
(f̂2k−2 − α)

=
2(T−t)/2n(T−t−1)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂t − α).

Furthermore, the price at t = 2k − 2 is

pt = α + (nA
t )

2(T−t)/2n(T−t−1)

(2n + 1)(T−t)/2(n + 1)(T−t)/2
(f̂t − α).

Q.E.D

Proof to Proposition 5
Proof : At t, both types of traders know actual arrivals of both types of traders’ last period,

NA
t−1 and NB

t−1, and price in the last period, pt−1. When t is odd, t−1 is even. From Proposition 4,

pt−1 = α + (nA
t−1)

2(T−t+1)/2n(T−t)

(2n + 1)(T−t+1)/2(n + 1)(T−t+1)/2
(f̂A

t−1 − α). (10)

Type B can infer f̂A
t−1 according to

f̂A
t−1 = α +

(2n + 1)(T−t+1)/2(n + 1)(T−t+1)/2

2(T−t+1)/2n(T−t)(nA
t−1)

(pt−1 − α), (11)

while type A cannot extract any information about f̂B
t−1. When t is even, t − 1 is odd. From

Proposition 4,

pt−1 = α + (nA
t−1 −

n

n + 1
nB

t−1)Kt−1(f̂A
t−1 − α) + (nB

t−1 −
n

n + 1
nA

t−1)Kt−1(f̂B
t−1 − α) (12)

where Kt−1 = 2(T−t)/2n(T−t)

(2n+1)(T−t+2)/2(n+1)(T−t−2)/2 . Type B can infer f̂A
t−1 according to

f̂A
t−1 = α +

(pt−1 − α)
(nA

t−1 − n
n+1

nB
t−1)Kt−1

−
(nB

t−1 − n
n+1nA

t−1)Kt−1(f̂B
t−1 − α)

(nA
t−1 − n

n+1
nB

t−1)Kt−1
. (13)

And type A can also infer f̂B
t−1 in a similar way:

f̂B
t−1 = α +

(pt−1 − α)
(nB

t−1 − n
n+1

nA
t−1)Kt−1

−
(nA

t−1 − n
n+1nB

t−1)Kt−1(f̂A
t−1 − α)

(nB
t−1 − n

n+1
nA

t−1)Kt−1
. (14)

Hence,

1. When t is odd, type B traders know f̂A
t−1, f̂A

t−2, . . . , f̂A
0 while type A only know f̂B

t−2, f̂B
t−4,

. . . , f̂B
0 .

2. When t is even, type B traders know f̂A
t−1, f̂A

t−2, . . . , f̂A
0 while type A only know f̂B

t−1, f̂B
t−3,

.. . . , f̂B
0 .
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Q.E.D

Proof to Proposition 6
Proof: This is done by induction. Notice that at t = 1, there is no need to do signal extraction

because there are no signals for traders at t = 0. Therefore at t = 1, both types of traders will
update their belief according to their own signals, i.e:

τA
1 = τA

0 + τε

τB
1 = τB

0 + τε

f̂A
1 = f̂A

0 +
τε

τ1
(SA

1 − f̂A
0 )

f̂B
1 = f̂B

0 +
τε

τ1
(SB

1 − f̂B
0 ).

At t = 2, type B traders know f̂A
1 , and type A traders know f̂B

1 . For type B traders, they can
infer the signal type A traders received at t = 1, SA

1 = (f̂A
1 − f̂A

0 ) τA
1
τε

+ f̂A
0 . In the meantime, type

A traders are also able to infer the exact signal type B received at t = 1, SB
1 = (f̂B

1 − f̂B
0 ) τB

1
τε

+ f̂B
0

when t = 2. Therefore type A traders update their beliefs incorporating their own signal SA
2 and

the signal extracted SB
1 , while type B traders update their beliefs incorporating their own signal SB

2

and the signal extracted SA
1 , i.e:

τA
2 = τA

1 + 2τε

τB
2 = τB

1 + 2τε

f̂A
2 = f̂A

1 +
τε

τA
2

(SA
2 + SB

1 − 2f̂A
1 )

f̂B
2 = f̂B

1 +
τε

τB
2

(SB
2 + SA

1 − 2f̂B
1 ).

At t = 3, type B traders know f̂A
2 and f̂A

1 , while type A traders have no further information.
Similarly, type B traders can infer exact signal SA

2 = (f̂A
2 − f̂A

1 ) τA
2
τε

+ 2f̂A
1 −SB

1 while type A traders
cannot, i.e:

τA
3 = τA

2 + τε

τB
3 = τB

2 + 2τε

f̂A
3 = f̂A

2 +
τε

τA
3

(SA
3 − f̂A

2 )

f̂B
3 = f̂B

2 +
τε

τB
3

(SB
3 + SA

2 − 2f̂B
2 ).

At t = 4, type B can infer SA
3 = (f̂A

3 − f̂A
1 ) τA

3
τε

+ f̂A
3 , while type A knows f̂B

3 and f̂B
1 . Type A

traders understand that

f̂B
3 = f̂B

2 +
τε

τB
3

(SB
3 + SA

2 − 2f̂B
2 )
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= f̂B
1 +

τε

τB
2

(SB
2 + SA

1 − 2f̂B
1 ) +

τε

τB
3

(SB
3 + SA

2 − 2f̂B
2 )

= f̂B
1 +

τε

τB
2

(SB
2 + SA

1 − 2f̂B
1 ) +

τε

τB
3

(SB
3 + SA

2 − 2f̂B
1 − 2τε

τB
2

(SB
2 + SA

1 − 2f̂B
1 )).

Therefore, type A traders cannot exact the exact signal anymore. They can only know τεS
B
2 + τε

τB
3

SB
3 ,

which is normally distributed. They can always normalize this combined signal to update their belief.
Let ŜA

4 = τB
3 SB

2
1+τB

3
+ SB

3
1+τB

3
be the normalized signal, where ŜA

4 is normally distributed with mean f̃ ,

precision τ̂A
4 = (1+τB

3 )2

(1+τB
3 )2

τε. Therefore,

τA
4 = τA

3 + τε + τ̂A
4

τB
4 = τB

3 + 2τε

f̂A
4 = f̂A

3 +
τε

τA
4

(SA
4 − f̂A

3 ) +
τ̂A
4

τA
4

(ŜA
4 − f̂A

3 )

f̂B
2 = f̂B

1 +
τε

τB
2

(SB
2 + SA

1 − 2f̂B
1 ).

Suppose the proposition holds at t = 2k.23 This implies

f̂A
2k = f̂A

2k−1 +
τε

τA
2k

(SA
2k − f̂A

2k−1) +
τ̂A
2k

τ2k
(ŜA

2k − f̂A
2k−1)

f̂B
2k = f̂B

2k−1 +
τε

τB
2k

(SB
2k + SA

2k−1 − 2f̂B
2k−1)

where ŜA
2k = τB

2k−1SB
2k−2

1+τB
2k−1

+ SB
2k−1

1+τB
2k−1

.

At t = 2k+1, type B traders know f̂A
2k, f̂A

2k−1, while type A traders have no further information.
Notice that ŜA

2k is a function of SB
2k−2 and SB

2k−1. This implies type B traders know ŜA
2k. Therefore,

type B traders can infer exact signal

SA
2k =

τA
2k

τε
(f̂A

2k − f̂A
2k−1 −

τ̂A
2k

τA
2k

(ŜA
2k − f̂A

2k−1)) + f̂A
2k−1 (15)

while type A traders cannot infer anything new. Therefore, at t = 2k + 1,

τA
2k+1 = τA

2k + τε

τB
2k+1 = τB

2k + 2τε

f̂A
2k+1 = f̂A

2k +
τε

τA
2k+1

(SA
2k+1 − f̂A

2k)

f̂B
2k+1 = f̂B

2k +
τε

τB
2k+1

(SB
2k+1 + SA

2k − 2f̂B
2k).

In other words, the proposition holds at t = 2k + 1. To complete the proof, we also need to examine
the beliefs updating at t = 2k + 2. At t = 2k + 2, type B traders know f̂2k+1 and f̂2k. Therefore,

23We have already shown that it holds at t = 4.
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they can infer SA
2k+1 = τA

2k+1
τε

(f̂A
2k+1 − f̂A

2k) + f̂A
2k. Therefore, for type B traders, the belief updating

at t = 2k + 2 is characterized as

τB
2k+2 = τB

2k+1 + 2τε

f̂B
2k+2 = f̂B

2k+1 +
τε

τB
2k+2

(SB
2k+2 + SA

2k+1 − 2f̂B
2k+1)

while type A traders only know f̂2k+1 and f̂2k−1. They understand the belief updating of type B at
t = 2k + 1 is

f̂B
2k+1 = f̂B

2k +
τε

τB
2K+1

(SB
2k+1 + SA

2k − 2f̂B
2k)

= f̂B
2k−1 +

τε

τB
2k

(SB
2k + SA

2k−1 − 2f̂B
2k−1) +

τε

τB
2k+1

(SB
2k+1 + SA

2k − 2f̂B
2k)

= f̂B
2k−1 +

τε

τB
2k

(SB
2k + SA

2k−1 − 2f̂B
2k−1)

+
τε

τB
2k+1

(SB
2k+1 + SA

2k − 2(f̂B
2k−1 +

τε

τB
2k

(SB
2k + SA

2k−1 − 2f̂B
2k−1)).

Therefore, type A can infer a composite signal ŜA
2k+2 = τB

2k+1SB
2k

1+τB
2k+1

+ SB
2k+1

1+τB
2k+1

, with the precision

τ̂A
2k+2 = 1+(τB

2k+1 )2

(1+τB
2k+1 )2

τε. In summary, the belief updating of type A traders at t = 2k + 2 is

τA
2k+2 = τA

2k+1 + τε + τ̂A
2k+2

τB
2k+2 = τB

2k+1 + 2τε

f̂A
2k+2 = f̂A

2k+1 +
τε

τA
2k+2

(SA
2k+2 − f̂A

2k+1) +
τ̂A
2k+2

τA
2k+2

(ŜA
2k+2 − f̂A

2k+1)

f̂B
2k+2 = f̂B

2k+1 +
τε

τB
2k+2

(SB
2k+2 + SA

2k+1 − 2f̂B
2k+1).

Hence, the proposition holds at t = 2k + 2 and this completes the proof.

B Derivations

Derivation of Equation 7
We start with Zt. By definition, Zt = f̂t

f̂t−1
, which can be written as

Zt = 1 +
τε

τt
(
SA

t + SB
t

f̂t−1

− 2)

(16)

Note that 1
Zt−1

= f̂t−2

f̂t−1
, which can be written as

1
Zt−1

=
τt−1

τt−2
− τε

τt−2f̂t−1

(SA
t−1 + SB

t−1)
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which can be used to solve 1

f̂t−1

1

f̂t−1

=
( τt−1

τε
− τt−2

τε

1
Zt−1

)

(SA
t−1 + SB

t−1)
.

Substitute Equation 17 into Equation 16, we get the expression.
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Lags Dt Var(Dt)
Mean Std p-value Mean Std p-value

1 -0.255 0.073 0 0.018 0.041 0
2 0.006 0.082 0.444 0.007 0.060 0.252
3 -0.008 0.060 0.203 -0.004 0.046 0.338
5 -0.002 0.064 0.770 -0.003 0.052 0.560
6 -0.004 0.070 0.608 -0.007 0.047 0.174
7 -0.009 0.076 0.233 -0.003 0.050 0.549
8 0.003 0.068 0.693 -0.006 0.043 0.198
9 -0.005 0.070 0.507 0.006 0.067 0.356
10 -0.006 0.069 0.419 -0.005 0.044 0.239

Table I.: Monte Carlo study of Dt (arrival component). First column reports the mean
of autocorrelations. Second column reports the variance of autocorrelations. Third column
reports the p-value of t test for null hypothesis that the mean equals zero. The columns four
to six are the corresponding results for variance of Dt.

Lags Zt Var(Zt)
Mean Std p-value Mean Std p-value

1 -0.024 0.172 0.290 0.271 0.152 0
2 0.009 0.157 0.624 0.220 0.179 0
3 -0.036 0.161 0.043 0.200 0.141 0
4 0.001 0.171 0.938 0.144 0.160 0
5 0.006 0.160 0.641 0.130 0.155 0
6 0.001 0.173 0.924 0.108 0.164 0
7 -0.002 0.157 0.865 0.097 0.177 0
8 0.008 0.164 0.486 0.079 0.167 0
9 0.015 0.172 0.126 0.071 0.166 0
10 0.002 0.163 0.871 0.054 0.174 0

Table II.: Monte Carlo study of Zt (belief component). First column reports the mean
of autocorrelations. Second column reports the variance of autocorrelations. Third column
reports the p-value of t test for null hypothesis that the mean equals zero. The columns four
to six are the corresponding results for variance of Zt.
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Lags rt Var(rt)
Mean Std p-value Mean Std p-value

1 -0.489 0.058 0 0.347 0.165 0
2 -0.005 0.097 0.579 0.094 0.153 0
3 0.001 0.105 0.138 0.099 0.155 0
4 -0.002 0.109 0.893 0.091 0.152 0
5 -0.006 0.088 0.414 0.083 0.164 0
6 0.013 0.098 0.534 0.083 0.154 0
7 -0.011 0.093 0.187 0.082 0.162 0
8 0.008 0.110 0.308 0.086 0.152 0
9 -0.004 0.099 0.291 0.079 0.155 0
10 -0.003 0.105 0.958 0.071 0.160 0

Table III.: Autocorrelations of rt and Var(rt) in public signal case. First column
reports the average of the autocorrelations across 100 simulations. Second column reports the
standard deviation of the autocorrelations across 100 simulations. Third column reports the
p-value of t test for the null hypothesis that the mean equals zero. The columns four to six are
the corresponding results for Var(rt).

Lags rt Var(rt)
Mean Std p-value Mean Std p-value

1 -0.461 0.077 0 0.293 0.151 0
2 -0.018 0.131 0.173 0.125 0.171 0
3 0.017 0.114 0.134 0.121 0.159 0
4 -0.001 0.119 0.905 0.125 0.157 0
5 0.010 0.127 0.413 0.128 0.160 0
6 -0.009 0.131 0.519 0.119 0.160 0
7 0.016 0.115 0.173 0.114 0.172 0
8 -0.014 0.125 0.280 0.102 0.162 0
9 0.013 0.122 0.291 0.114 0.158 0
10 0.001 0.110 0.902 0.109 0.170 0

Table IV.: ACFs of rt and Var(rt) in signal extraction case. First column reports
the mean of autocorrelations. Second column reports the variance of autocorrelations. Third
column reports the p-value of t test for null hypothesis that the mean equals zero. The columns
four to six are the corresponding results for Var(rt).
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Lags rt Var(rt)
Mean Std p-value Mean Std p-value

1 -0.460 0.099 0 0.383 0.154 0
2 -0.023 0.166 0.169 0.214 0.160 0
3 0.024 0.142 0.090 0.204 0.165 0
4 -0.003 0.144 0.860 0.202 0.163 0
5 0.011 0.150 0.479 0.198 0.163 0
6 -0.006 0.151 0.698 0.188 0.176 0
7 -0.019 0.135 0.221 0.179 0.187 0
8 0.019 0.144 0.188 0.166 0.165 0
9 0.002 0.140 0.179 0.175 0.153 0
10 0.001 0.136 0.913 0.168 0.178 0

Table V.: ACFs of rt and Var(rt) when traders use sophisticated guess. First column
reports the mean of autocorrelations. Second column reports the variance of autocorrelations.
Third column reports the p-value of t test for null hypothesis that the mean equals zero. The
column four to six are the corresponding results for Var(rt).

35



Signal ASignal BForecast Signal A Signal B Forecast

Type A Type B

Belief A Holding A Holding B Belief B

Market demand

Market supply

Price

Figure 2: A flowchart for the public signal case: how the price is generated? In the public signal case, each
trader receives a signal, observes the signal of other traders, and forecasts the next period’s price at the beginning of
the current trading period. Based on this information, each trader updates his belief about the value of the underlying
asset and adjusts his optimal holdings which are aggregated into the market demand. Combined with the market
supply, the price is determined.
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(b) ACF of simulated Var(Dt)
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(c) ACF of simulated Zt
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Figure 3: Monte Carlo Study of autocorrelation function (ACF) of Dt and Zt. (a) Average autocorrelations
of Dt across 100 simulations. (b) Average autocorrelations of Var(Dt). (c) Average autocorrelationsof Zt. (d) Average
autocorrelations of Var(Zt). For ACF plots, a hyperbolic decay function of autocorrelations is imposed.
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(e) ACF of simulated the variance of returns

Figure 4: Simulation results in the public signal case. (a) Time series of simulated prices. (b) Time series of
simulated returns. (c) Time series of simulated variance of returns. (d) Average autocorrelations of returns across
100 simulations (e) Average autocorrelations of variance of returns. For ACF plots, a hyperbolic decay function of
autocorrelations is imposed.
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(a) ACF of returns for α = 80
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(b) ACF of variance of returns for α = 80
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(c) ACF of returns when α = 150
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(d) ACF of variance of returns for α = 150
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(e) ACF of returns for α = 200
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(f) ACF of variance of returns for α = 200

Figure 5: Dependence structure (autocorrelation function (ACF) of rt and Var(rt)) and carrying cost
in the public signal case. (a) Average autocorrelations of returns across 100 simulations for α = 80. (b) Average
autocorrelations of variance of returns for α = 80. (c) Average autocorrelations of returns for α = 150. (d) Average
autocorrelations of variance of returns for when α = 150. (e) Average autocorrelations of returns for α = 200.
(f) Average autocorrelations of variance of returns for α = 200. For ACF plots, a hyperbolic decay function of
autocorrelations is imposed.

39



Lag

A
C

F

0 10 20 30 40 50

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

(a) ACF of returns for n = 50
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(b) ACF of variance of returns for n = 50
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(c) ACF of returns for n = 100
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(d) ACF of variance of returns for n = 100
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(e) ACF of returns for n = 200
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(f) ACF of variance of returns for n = 200

Figure 6: Dependence structure (autocorrelation function (ACF) of rt and Var(rt)) and mean arrivals
in the public signal case. (a) Average autocorrelations of returns across 100 simulations for n = 50. (b) Average
autocorrelations of variance of returns for n = 50. (c) Average autocorrelations of returns for n = 100. (d) Average
ACF of variance of returns for n = 100. (e) Average autocorrelations of returns when n = 200. (f) Average
autocorrelations of variance of returns for n = 200. For ACF plots, a hyperbolic decay function of autocorrelations is
imposed.
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(e) ACF of returns for
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Figure 7: Dependence structure (autocorrelation function (ACF) of rt and Var(rt)) and standard de-
viation of arrivals in the public signal case. (a) Average autocorrelations of returns across 100 simulations for√

ω = 10. (b) Average autocorrelations of variance of returns for
√

ω = 10. (c) Average autocorrelations of returns for√
ω = 20. (d) Average autocorrelations of variance of returns for

√
ω = 20. (e) Average autocorrelations of returns

for
√

ω = 30. (f) Average autocorrelations of variance of returns for
√

ω = 30. For ACF plots, a hyperbolic decay
function of autocorrelations is imposed.
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(e) ACF of variance returns

Figure 8: Simulation results in the private signal case. (a) Time series of simulated prices. (b) Time series
of simulated returns. (c) Time series of simulated variance of returns. (d) Average autocorrelations of returns across
100 simulations (e) Average autocorrelations of variance of returns. For ACF plots, a hyperbolic decay function of
autocorrelations is imposed.

42



Lag

A
C

F

0 10 20 30 40

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

0.
1

(a) ACF of returns for α = 80
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(b) ACF of variance returns for α = 80
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(c) ACF of returns for α = 100
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(d) ACF of variance of returns for α = 100
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(e) ACF of returns for α = 120
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(f) ACF of variance of returns for α = 120

Figure 9: Dependence structure (autocorrelation function (ACF) of rt and Var(rt)) and carrying cost
in the private signal case. (a) Average autocorrelations of returns for α = 80 across 100 simulations. (b) Average
autocorrelations of variance of returns for α = 80. (c) Average autocorrelations of returns for α = 100. (d) Average
autocorrelations of variance of returns for α = 100. (e) Average autocorrelations of returns for α = 120. (f) Average
autocorrelations of variance of returns for α = 120. For ACF plots, a hyperbolic decay function of autocorrelations is
imposed.
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(a) ACF of returns for n = 30
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(b) ACF of variance of returns for n = 30
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(c) ACF of returns for n = 50
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(d) ACF of variance of returns for n = 50
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(e) ACF of returns for n = 80
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(f) ACF of variance of returns for n = 80

Figure 10: Dependence structure (autocorrelation function (ACF) of rt and Var(rt)) and mean arrivals
in the private signal case. (a) Average autocorrelations of returns across 100 simulations for n = 30. (b) Average
autocorrelations of variance of returns for = 50. (c) Average autocorrelations of returns for n = 50. (d) Average
autocorrelations of variance of returns for n = 80. (e) Average autocorrelations of returns for n = 80. (f) Average
autocorrelations of variance of returns for n = 80. For ACF plots, a hyperbolic decay function of autocorrelations is
imposed.
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Figure 11: Dependence structure (autocorrelation function (ACF) of rt and Var(rt)) and variance of
arrivals in the private signal case. (a) Average autocorrelations of returns across 100 simulations for

√
ω = 10.

(b) Average autocorrelations of variance of returns for
√

ω = 10. (c) Average autocorrelations of returns for
√

ω = 20.
(d) Average autocorrelations of variance of returns for

√
ω = 20. (e) Average autocorrelations of returns for

√
ω = 30.

(f) Average autocorrelations of variance of returns for
√

ω = 30. For ACF plots, a hyperbolic decay function of
autocorrelations is imposed.
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Figure 12: The effects of heterogeneous priors on autocorrelation function (ACF) of rt and Var(rt).
(a) Average autocorrelations of rt across 100 simulations with public signal. (b) Average autocorrelations of Var(rt)
with public signal. (c) Average autocorrelations of rt with private signal. (d) Average autocorrelations of Var(rt)
with private signal. For ACF plots, a hyperbolic decay function of autocorrelations is imposed.
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Figure 13: Simulation results when traders use sophisticated guess. (a) Time series of simulated prices.
(b) Time series of simulated returns. (c) Time series of simulated variance of returns. (d) Average autocorrela-
tions of returns (e) Average autocorrelations of variance of returns. For ACF plots, a hyperbolic decay function of
autocorrelations is imposed.
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