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Abstract

This paper develops a wavelet (spectral) approach to estimate the parameters of a linear
regression model where the regressand and the regressors are persistent processes and contain a
measurement error. We propose a wavelet filtering approach which does not require instruments
and yields unbiased and consistent estimates for the intercept and the slope parameters. Our
Monte Carlo results also show that the wavelet approach is particularly effective when measure-
ment errors for the regressand and the regressor are serially correlated. With this paper, we
hope to bring a fresh perspective and stimulate further theoretical research in this area.

Keywords: Cointegration, discrete wavelet transformation, maximum overlap wavelet transfor-
mation, energy decomposition, errors-in-variables, persistence

JEL No: C1, C2, C12, C22, F31, G0, G1

∗Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A
1S6, Canada. Email: gencay@sfu.ca; Rimini Center for Economic Analysis, Italy and IRMACS, Canada. Ramazan
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1. Introduction

The problem of measurement error is often ignored, but its implications for standard methods

of statistical inference are potentially devastating. In an extreme case, one can argue that in the

presence of errors-in-variables the estimates of parameters of interest cannot be given any structural

interpretation (Cragg, 1994, 1997). The objective of this paper is to overcome the problem of

errors-in-variables by using a novel methodology and provide simulation evidence that demonstrate

its effectiveness, when the regressand and the regressor are persistent processes. We propose a

wavelet (spectral) approach that does not require instruments and yields unbiased and consistent

estimates for the intercept and the slope parameters. Specifically, we filter out the measurement

noise and use the filtered regressand and regressors in ordinary least squares (OLS). Furthermore,

our approach is particularly suited for highly persistent, i.e., near-integrated regressors1, and is

able to compensate for any biases coming from such processes. We find the instrumental variable

(IV) and OLS estimators very sensitive to serially correlated measurement errors in the regressor

and the regressand while the wavelet approach presents a more robust framework, especially when

the serial correlation increases.

This paper can also be viewed as an extension of the work by Gençay and Fan (2009) that

applied wavelets to test the presence of a unit root in a stochastic process. By using Monte Carlo

simulations, they demonstrated the comparable power of the wavelet-based tests with reasonable

empirical sizes. Similar to Gençay and Fan (2009), we address another important econometric

problem with the goal to inspire further theoretical research in this area. We find it worthwhile to

emphasize the simplicity of our approach and the fact that our Monte Carlo findings are robust to

various specifications of the wavelet filters.

In general, errors of measurement produce biased and inconsistent OLS estimators. More specifi-

cally, in the context of a simple bivariate linear model, Cragg (1994) stresses two effects: attenuation

and contamination. The former denotes the slope coefficient being biased towards zero while the

latter refers to a bias in the intercept of the opposite sign when the average of the explanatory

variable is positive. It may appear that the attenuation effect is not harmful as long as the slope

coefficient is significantly different from zero - at worst the estimate will be more conservative than

it should be. Moreover, as the magnitude of the attenuation effect is inversely related to the R2

value, it can be concluded that high R2 regressions exhibit negligible biases. However, (Cragg, 1994,

1997) shows that for more complex estimations, such as multiple regressions, these conclusions hold

only to a limited extent. For instance, when there is more than one independent variable, the di-

rection of bias is difficult to determine (Levi, 1973). In addition, Dagenais and Dagenais (1997)

argue that measurement errors adversely affect the size of Type I errors of standard econometric

tests. Bound et al. (2001) provide a comprehensive survey of measurement errors in survey data.

A critical point they emphasize is that traditional methods that are used to alleviate measurement

1By “near-integrated” we mean that the process has a root close to but not on the unit root circle.
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errors assume that the measurement error is not correlated with the true value of the regressor,

which they found often untrue. Violation of this assumption can produce estimates that are even

more distorted than OLS that ignore measurement errors. Chen et al. (2005) propose a solution

to this problem using auxiliary data that contain information about the conditional distribution of

the true regressors given the regressors that contain measurement errors.

In linear models, measurement errors are typically handled with the IV approach, but one needs

to find instruments correlated with the true value of the regressor and at the same time not cor-

related with the measurement error. It is worth noting that a good candidate for an instrument

thus could be the lagged value of the regressor because it is usually correlated with the original

regressor, but not contemporaneously correlated with the measurement error (assuming the mea-

surement error is not autocorrelated). Unfortunately, as noted by Amemiya (1985), Cragg (1994)

and Schennach (2004), standard IV approach breaks down when the specification is non-linear. In

this setting the measurement error cannot be considered as an additively separable disturbance and

finding an adequate instrument becomes extremely difficult.

To cope with measurement errors in non-linear models various approaches have been devised.

Hausman et al. (1991) generalized the IV method to polynomial functions establishing identification

and providing a consistent estimator. Wang and Hsiao (2003) and Newey (2001) used distributional

assumptions on the measurement error to obtain a general framework for non-linear models not

limited to polynomials, when no auxiliary data are present. Nevertheless, Schennach (2004) showed

that although the approaches by Hausman et al. (1991), Wang and Hsiao (2003) and Newey (2001)

do provide the identification of the non-linear errors-in-variables model using instruments, this

holds only in a limited number of specific cases. In contrast to this strand of research, Horowitz

and Manski (1995) relaxed the assumption of classical errors and conceptualized a model of mea-

surement error in which they assume that the observed sample is contaminated or corrupted.2

Other papers allowing for non-classical measurement errors involve the existence of true validation

data, i.e., subsamples of the primary data (e.g., Sepanski and Carroll, 1993 and Lee and Sepan-

ski, 1985). The methods that use validation data are essentially able to correct biases and obtain

consistent estimates from primary data without any distributional assumptions. Phillips (1987)

presented asymptotic results for unit root and near-unit root processes using a unified framework

to explain the properties of regressions involving borderline-stationary variables. His results suggest

very similar finite-sample behavior in unit root and near-integrated processes. However, failure to

properly identify variables that have a unit root can result in a “near-unit root bias” - standard

estimators such as OLS are significantly downwardly biased in finite samples (Cashin et al., 2004).

In addition, Elliott and Stock (1994) provide Monte Carlo evidence which indicates substantial size

distortions of the one-sided t-test on the slope coefficient when the regressor is highly persistent.

This paper introduces a novel approach to tackling the problem of errors-in-variables in a

2For more information on this approach see Molinari (2008).
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regression with highly persistent regressors.3 By employing extensive Monte Carlo simulations,

we demonstrate that the IV approach dominates the OLS approach which consistently produces

biased estimates. However, the IV approach becomes unreliable when the persistence of regressors

decreases and the serial correlation in the measurement error increases. The Monte Carlo results

further show that the wavelet approach dominates both the OLS and IV estimation methods and

is particularly effective for high levels of serial correlation in the measurement error.

The reminder of this paper is organized as follows. Section 2 briefly explains the problem of

measurement errors. Section 3 presents the wavelet methodology and its applications. Section

4 reports the results of our extensive Monte Carlo experiments and compares the OLS, IV and

wavelet approaches. Section 5 concludes.

2. The Problem

Consider a linear regression model

y∗t = α+ βx∗t + ε∗t , ε∗t ∼ iid(0, σ2
ε∗) (1)

where y∗t and x∗t are unobserved persistent processes, εt is identically and independently distributed

(iid) with variance σ2
ε∗ . The observables are

xt = x∗t + v1t and yt = y∗t + v2t (2)

where v1t ∼ iid(0, σ2
v1) and v2t ∼ iid(0, σ2

v2) are measurement errors. Substituting y∗t = yt−v1t and

x∗t = xt − v2t from Equation (2) into Equation (1) yields

yt = α + β(xt − v1t) + ε∗t + v2t (3)

= α + βxt + ε∗t + v2t − βv1t

= α + βxt + εt

where εt ≡ ε∗t + v2t − βv1t where εt ∼ iid(0, σ2
ε∗ + σ2

v2 + β2σ2
v1). The presence of measurement error

in yt and xt lead to an increase in the variance of the error term. In addition, since εt depends on

v1t, εt and xt are correlated as long as β is not zero. It is easy to show that E(εt|xt) = −βv1t and

Cov(xt, εt) = −βσ2
v1. Since this covariance does not depend on the sample size, it does not vanish

3A natural usage area of our approach is financial time series. Only a select few papers in modern financial
economics consider errors-in-variables problems. One of the first contributions that discussed measurement errors
is Fama and MacBeth (1973). This paper used a portfolio grouping technique in a two factor portfolio model to
minimize the impact of errors-in-variables biases. Other authors in the same vein include Shanken (1992), Ferson
and Locke (1998), Pastor and Stambaugh (1999), and, more recently, Carmichael and Coën (2008).
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asymptotically, and OLS estimator is downward biased and inconsistent.4 A conventional way to

deal with the inconsistency of the OLS estimator is to use IV estimation.

A new novel solution to the bias problem is to filter out the measurement noise and use the

filtered regressand and regressors in OLS to obtain unbiased and consistent estimators. We apply

the wavelet method to both yt and xt, and regress the scaling coefficients of ỹ∗t onto x̃∗t . Namely,

we run the following regression

ỹ∗t = α + βx̃∗t + ε̃t, ε̃t ∼ iid(0, σ2
ε̃) (4)

instead of Equation (3). Since noise terms are left behind in the wavelet coefficients, the scaling

coefficients will provide unbiased and consistent coefficient estimators without any instruments

added to the regression.

3. Wavelet Framework

Wavelet methods are rather newer ways of analyzing time series and can be seen as a natural

extension of the Fourier analysis. The formal subject matter, in terms of their formal mathematical

and statistical foundations go back only to the 1980s. In recent years, there have been several

unique applications of wavelet methods to financial and econometric problems. Early applications

of wavelets in economics and finance are by Ramsey and his coauthors (see Ramsey et al. (1995),

Ramsey and Zhang (1997), Ramsey (1999), Ramsey (2002) for a review and references) who explore

the use of DWT in decomposing various economic and financial data. Davidson et al. (1998)

investigated U.S. commodity prices via wavelets. Gençay et al. (2003, 2005) propose a wavelet

approach for estimating the systematic risk or the beta of an asset in a capital asset pricing model.

The proposed method is based on a wavelet multiscaling approach where the wavelet variance

of the market return and the wavelet covariance between the market return and a portfolio are

calculated to obtain an estimate of the portfolio’s systematic risk (beta) at each scale. In time series

econometrics, one example of the successful application of wavelets is in the context of long memory

processes where a number of estimation methods have been developed. These include wavelet-based

OLS, the approximate wavelet-based maximum likelihood approach, and wavelet-based Bayesian

approach. Fan (2003) and Fan and Whitcher (2003) provide an extensive list of references. The

success of these methods relies on the so called ‘approximate decorrelation’ property of the DWT

of a possibly nonstationary long memory process.5 Fan and Whitcher (2003) propose overcoming

the problem of spurious regression between fractionally differenced processes by applying the DWT

to both processes and then estimating the regression in the wavelet domain. Other examples of

applications of wavelets in econometrics include wavelet-based spectral density estimators and their

4Davidson and MacKinnon (2004)(pages 312-314) provide an excellent treatment of the errors-in-variables and
instrumental variables approaches. Our notation closely follows Davidson and MacKinnon (2004).

5See Fan (2003) for a rigorous proof of this result for a nonstationary fractionally differenced process.
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applications in testing for serial correlation/conditional heteroscedasticity, see e.g., Hong (2000),

Hong and Lee (2001), Lee and Hong (2001), Duchesne (2006a), Duchesne (2006b), and Hong and

Kao (2004).

A wavelet is a small wave which grows and decays in a limited time period.6 To formalize the

notion of a wavelet, let ψ(.) be a real valued function such that its integral zero,

∫ ∞

−∞

ψ(t) dt = 0, (5)

and its square integrates to unity,

∫ ∞

−∞

ψ(t)2 dt = 1. (6)

Wavelets are, in particular, useful for the study of how weighted averages vary from one aver-

aging period to the next. Let x(t) be real-valued and consider the integral

x̄(s, e) ≡
1

s− e

∫ e

s

x(u) du (7)

where we assume that e > s. x̄(s, e) is the average value of x(.) over the interval [s, e]. Instead of

treating an average value x̄(s, e) as a function of end points of the interval [s, e], it can be considered

as a function of the length of the interval,

λ ≡ s− e

while centering the interval at

t = (s+ e)/2.

λ is referred to as the scale associated with the average, and using λ and t, the average can be

redefined such that

a(λ, t) ≡ x̄(t−
λ

2
, t+

λ

2
) =

1

λ

∫ t+λ
2

t−λ
2

x(u) du

where a(λ, t) is the average value of x(.) over a scale of λ centered at time t. The change in a(λ, t)

from one time period to another is measured by

6The contrasting notion is a big wave such as the sine function which keeps oscillating indefinitely.
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w(λ, t) ≡ a(λ, t+
λ

2
)− a(λ, t−

λ

2
) = (8)

1

λ

∫ t+λ

t
x(u) du−

1

λ

∫ t

t−λ
x(u) du.

Equation 8 measures how much the average changes between two adjacent nonoverlapping time

intervals, from t − λ to t + λ, each with a length of λ. Because the two integrals in Equation 8

involve adjacent nonoverlapping intervals, they can be combined into a single integral over the real

axis to obtain

w(λ, t) =

∫ ∞

−∞

ψ̃(t)x(u) du (9)

where

ψ̃(t) =





−1/λ, t− λ < u < t,

1/λ, t < u < t+ λ,
0, otherwise.

w(λ, t)’s are the wavelet coefficients and they are essentially the changes in averages across adjacent

(weighted) averages.

3.1. Discrete wavelet transformation

In principle, wavelet analysis can be carried out in all arbitrary time scales. This may not be

necessary if only key features of the data are in question, and if so, discrete wavelet transformation

(DWT) is an efficient and parsimonious route as compared to the continuous wavelet transformation

(CWT). The DWT is a subsampling of w(λ, t) with only dyadic scales, i.e., λ is of the form

2j−1, j = 1, 2, 3, . . . and, within a given dyadic scale 2j−1, t’s are separated by multiples of 2j.

Let x be a dyadic length vector (N = 2J ) of observations. The length N vector of discrete

wavelet coefficients w is obtained by

w = Wx,

where W is an N×N real-valued orthonormal matrix defining the DWT which satisfies WTW = IN
(n × n identity matrix).7 The nth wavelet coefficient wn is associated with a particular scale and

with a particular set of times. The vector of wavelet coefficients may be organized into J+1 vectors,

7Since DWT is an orthonormal transform, orthonormality implies that x = WT
w and ||w||2 = ||x||2.

6



w = [w1,w2, . . . ,wJ , vJ]T ,

where wj is a length N/2j vector of wavelet coefficients associated with changes on a scale of length

λj = 2j−1 and vJ is a length N/2J vector of scaling coefficients associated with averages on a scale

of length 2J = 2λJ .

Using the DWT, we may formulate an additive decomposition of x by reconstructing the wavelet

coefficients at each scale independently. Let dj = WT
j wj define the jth level wavelet detail asso-

ciated with changes in x at the scale λj (for j = 1, . . . , J). The wavelet coefficients wj = Wjx

represent the portion of the wavelet analysis (decomposition) attributable to scale λj, while WT
j wj

is the portion of the wavelet synthesis (reconstruction) attributable to scale λj. For a lengthN = 2J

vector of observations, the vector dJ+1 is equal to the sample mean of the observations.

A multiresolution analysis (MRA) may now be defined via

xt =

J+1∑

j=1

dj,t t = 1, . . . , N. (10)

That is, each observation xt is a linear combination of wavelet detail coefficients at time t. Let

sj =
∑J+1

k=j+1 dk define the jth level wavelet smooth. Whereas the wavelet detail dj is associated

with variations at a particular scale, sj is a cumulative sum of these variations and will be smoother

and smoother as j increases. In fact, x − sj =
∑j

k=1 dk so that only lower-scale details (high-

frequency features) from the original series remain. The jth level wavelet rough characterizes the

remaining lower-scale details through

rj =

j∑

k=1

dk, 1 ≤ j ≤ J + 1.

The wavelet rough rj is what remains after removing the wavelet smooth from the vector of obser-

vations. A vector of observations may thus be decomposed through a wavelet smooth and rough

via

x = sj + rj,

for all j.

A variation of the DWT is called the maximum overlap DWT (MODWT). Similar to the DWT,

the MODWT is a subsampling at dyadic scales, but in contrast to the DWT, the analysis involves

all times t rather than the multiples of 2j. Retainment of all possible times eliminates alignment

effects of DWT and leads to more efficient time series representation at multiple time scales. In

this paper, we use the MODWT in our disentangling of the intraday from the interday dynamics.
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3.2. Analysis of variance

The orthonormality of the matrix W implies that the DWT is a variance preserving transformation

where

‖w‖2 =

J∑

j=1

N/2j−1∑

t=0

w2
j,t + v2

J,0 =

N−1∑

t=0

x2
t = ‖x‖2 .

This can be easily proven through basic matrix manipulation via

‖x‖2 = x
T
x = (Ww)TWw

= w
TWTWw = w

T
w = ‖w‖2 .

Given the structure of the wavelet coefficients, ‖x‖2 is decomposed on a scale-by-scale basis via

‖x‖2 =
J∑

j=1

‖wj‖
2 + ‖vJ‖

2 , (11)

where ‖wj‖
2 is the sum of squared variation of x due to changes at scale λj and ‖vJ‖

2 is the

information due to changes at scales λJ and higher. An alternative decomposition of ‖x‖2 to

Equation 11 is

‖x‖2 =
J∑

j=1

‖dj‖
2 + ‖sJ‖

2

which decomposes the variations in x across the variations in details and the smooth.

Percival and Mofjeld (1997) proved that the MODWT is an energy (variance) preserving trans-

form such that the variance of the original time series is perfectly captured by the variance of the

coefficients from the MODWT. Specifically, the total variance of a time series can be partitioned

using the MODWT wavelet and scaling coefficient vectors by

‖x‖2 =

J∑

j=1

‖w̃j‖
2 + ‖ṽJ‖

2 (12)

where w̃j is a length N/2j vector of MODWT wavelet coefficients associated with changes on a

scale of length λj = 2j−1 and ṽJ is a length N/2J vector of MODWT scaling coefficients associated

with averages on a scale of length 2J = 2λJ .8 This will allow us to construct MODWT versions of

the wavelet variance.

8More information on the MODWT transformation can be found in Percival and T. (2000).
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4. Monte Carlo Simulations

Consider a linear regression model

y∗t = α + βx∗t + εt, εt ∼ iid(0, σ2
ε) (13)

where y∗t and x∗t = γx∗t−1 +wt are unobserved, wt ∼ iid(0, σ2
w) and εt ∼ iid(0, σ2

ε). The observables

are yt = y∗t + v1t and xt = x∗t + v2t where v1t ∼ iid(0, σ2
v1) and v2t ∼ iid(0, σ2

v2) are measurement

errors. The simulation set up is such that x∗t is a persistent process (γ ∈ {0.99, 0.97, 0.95}).
Figure 1 illustrates the OLS, IV and MODWT (level of decomposition = 4, least asymmetric

- LA(8) wavelet) performance for this model where α = 1, β = 1, γ = 0.99, and all error terms

are N (0, 1).9 The sample size is T = 2000 observations, the number of replications is B = 1000,

boundary-free MODWT scaling coefficients are used in the wavelet-OLS regression and the standard

errors of the estimated OLS regressions are calculated with the Newey-West heteroscedasticity and

autocorrelation correction (Newey and West, 1987). The IV estimation is performed with the

lagged value of the regressor used as an instrument. The IV and MODWT approaches exhibit

similar distributional properties. They are both superior to the OLS distributions that are clearly

distorted with the slope coefficient estimates biased towards zero. Decreasing the persistence (γ)

from 0.99 to 0.95 exacerbates these biases for the OLS estimator (see also Table 1, explained below).

Next, we introduce serial correlation in the measurement error for the regressor, i.e., v2t =

ρv2(t−1) + e2t where e2t ∼ iid(0, σ2
e2). As before, we observe the performance of the OLS, IV and

MODWT (level 4, LA(8)) models where the true values α = 1 and β = 1, while all error terms are

N (0, 1). Table 1 presents the results of the Monte Carlo simulations (T = 2000 and B = 1000) for

a variety of model specifications: γ ∈ {0.99, 0.97, 0.95}, ρ ∈ {0, 0.2, 0.6}. Our framework thus sheds

light on the effects of decreasing the persistence of the regressor (γ) and of increasing the serial

correlation in the measurement error (ρ). We report the mean of the simulated distribution of β̂

(Mean) along with its standard deviation (SD), median (Med) and mean absolute deviation (MAD).

The results show that the OLS and IV estimators in general do not work well in the presence of

the serial correlation in measurement error. The poor performance is an increasing function of the

serial correlation and a decreasing function of the persistence level. For instance, when γ = 0.95

and ρ = 0.6, Mean(β̂)MODWT = 0.9496 while Mean(β̂)IV = 0.9093. It is noteworthy that the OLS

estimator is the most biased of the three approaches with the corresponding Mean(β̂)OLS = 0.7957.

Figure 2 confirms these findings and reveals that the MODWT method is the only one that to a

certain extent preserves the shape of the distributions. Not surprisingly, the OLS estimator distorts

the t-statistic of β̂ and pushes it to the left, being just slightly tangent to the true t-distribution

with its right tail.

9The results in this section are in general robust to the wavelet family choice (extremal phase, least asymmetric,
best localized and coiflets) and the level of decomposition up to Level 7.
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Finally, we allow for serially correlated measurement errors in both the regressor and the regres-

sand: v1t = ρv1(t−1) + e1t, v2t = ρv2(t−1) + e2t where e1t ∼ iid(0, σ2
e1) and e2t ∼ iid(0, σ2

e2). Table 2

shows findings similar to the ones in Table 1: serial correlation affects the IV and OLS estimators

more than the MODWT model, especially when the persistence (γ) decreases. In addition, we

observe higher standard deviation and MAD for all methods.

Next, to illustrate the robustness of the MODWT method, we present the results for the LA(8)

filter and the level of decomposition is set to 6 (Tables 3 and 4). We observe that increasing the

level of decomposition improves upon the results in Tables 1 and 2, but the evidence in principal

confirms the dominance of the MODWT approach. In Tables 5-8, we also report the results for the

Haar wavelet with the levels of decomposition 4 and 6. These results are essentially the same as

for the LA(8) filter. It is worth noting that the higher level of decomposition again increases the

precision of the MODWT (Haar) estimates.10

5. Conclusions

This paper introduces a new approach to tackling the problem of errors-in-variables in a regression

with highly persistent regressors. By employing extensive Monte Carlo simulations, we demonstrate

that the IV estimation dominates the OLS approach which consistently produces biased estimates.

However, the IV approach becomes unreliable when the persistence of regressors decreases and the

serial correlation in the measurement error increases. The Monte Carlo results further show that

the MODWT approach dominates both the OLS and IV estimation methods and is particularly

effective for high levels of serial correlation in the measurement error. The MODWT method

requires no instruments and yields unbiased and consistent parameter estimates in a single or

multiple regression models. These findings are robust to various specifications of the wavelet filters.

The current version of this paper constitutes an initial exploration of the application of wavelets

to the problem of errors-in-variables; much remains to be done. In future work, we would like to

adapt our methodology to the case of less persistent regressors. In addition, there are more practical

aspects to consider, such as testing the MODWT approach on real data. For example, the market

microstructure literature routinely ignores the fact that order flows are subject to measurement

errors. Therefore, our approach may shed more light and complement existing literature in this

area. The application of wavelets to this particular problem as well as problems that might arise

when the model specification is non-linear, remains to be explored.

10In unreported results, we also compared the performance of the OLS, IV, and MODWT methods for regressions
with two persistent and independent regressors contaminated with measurement errors. We did not find any major
differences between these results and the results for a single regressor.
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Figure 1: Distributions of β̂ and tβ̂ from OLS, IV and Wavelet (MODWT) regressions when the

regressor is measured with error (γ=0.99). The estimated distributions are marked by dotted lines.
The true β = 1. The OLS estimator is biased and centered incorrectly. The MODWT and IV
estimators are unbiased and centered correctly. The corresponding t-distribution is marked by a

solid line.
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Figure 2: Distributions of β̂ and tβ̂ from OLS, IV and Wavelet (MODWT) regressions when

the regressor is measured with a serially correlated error (γ = 0.99, ρ = 0.6). The estimated

distributions are marked by dotted lines. The true β = 1. The OLS and IV estimators are biased
and centered incorrectly. The MODWT estimator is more robust to serially correlated measurement
errors. The corresponding t-distribution is marked by a solid line.
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.998 0.004 0.998 0.003 0.999 0.004 0.999 0.003 0.976 0.007 0.977 0.005
0.2 0.996 0.006 0.997 0.004 0.995 0.006 0.996 0.004 0.955 0.013 0.956 0.010
0.6 0.989 0.009 0.989 0.007 0.978 0.009 0.979 0.007 0.943 0.016 0.946 0.012

0.97 0 0.995 0.008 0.996 0.006 0.999 0.008 1.000 0.006 0.940 0.011 0.941 0.009
0.2 0.988 0.009 0.988 0.007 0.986 0.010 0.986 0.008 0.886 0.017 0.887 0.013
0.6 0.970 0.015 0.970 0.012 0.943 0.016 0.944 0.013 0.863 0.021 0.863 0.017

0.95 0 0.992 0.010 0.991 0.008 0.999 0.010 0.999 0.008 0.908 0.013 0.909 0.011
0.2 0.982 0.013 0.982 0.010 0.979 0.013 0.979 0.010 0.831 0.018 0.831 0.014
0.6 0.949 0.019 0.950 0.015 0.909 0.018 0.910 0.015 0.795 0.022 0.795 0.017

Table 1: Comparison of OLS, IV and MODWT (LA-8, level of decomposition 4) regressions when

the regressor is measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor is

measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂ (Med) and the

mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.

1
3



γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.998 0.005 0.998 0.004 0.999 0.005 0.999 0.004 0.977 0.007 0.978 0.006
0.2 0.995 0.007 0.995 0.006 0.994 0.007 0.995 0.005 0.954 0.013 0.954 0.010
0.6 0.989 0.012 0.989 0.009 0.978 0.013 0.979 0.010 0.944 0.017 0.945 0.014

0.97 0 0.995 0.009 0.995 0.007 0.999 0.009 0.999 0.007 0.941 0.011 0.942 0.009
0.2 0.989 0.013 0.989 0.010 0.986 0.013 0.986 0.011 0.887 0.018 0.887 0.014
0.6 0.969 0.020 0.969 0.016 0.942 0.020 0.943 0.016 0.862 0.025 0.863 0.019

0.95 0 0.992 0.011 0.992 0.009 0.999 0.011 0.999 0.009 0.908 0.014 0.908 0.011
0.2 0.980 0.018 0.981 0.014 0.977 0.017 0.978 0.013 0.829 0.023 0.831 0.018
0.6 0.951 0.026 0.951 0.021 0.910 0.026 0.912 0.020 0.795 0.027 0.796 0.021

Table 2: Comparison of OLS, IV and MODWT (LA-8, level of decomposition 4) regressions when

the regressor and the regressand are measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor and the

regressand are measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂

(Med) and the mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.

1
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.999 0.005 0.999 0.004 1.000 0.004 1.000 0.003 0.976 0.007 0.977 0.006
0.2 0.998 0.006 0.998 0.005 0.994 0.005 0.994 0.004 0.955 0.012 0.956 0.009
0.6 0.996 0.010 0.996 0.008 0.979 0.010 0.979 0.008 0.944 0.016 0.945 0.012

0.97 0 0.997 0.009 0.996 0.007 0.999 0.007 0.999 0.006 0.940 0.010 0.940 0.008
0.2 0.995 0.013 0.995 0.010 0.986 0.009 0.987 0.007 0.887 0.017 0.888 0.013
0.6 0.988 0.019 0.988 0.015 0.943 0.015 0.944 0.012 0.862 0.020 0.862 0.016

0.95 0 0.997 0.014 0.997 0.011 1.000 0.010 1.000 0.008 0.908 0.012 0.908 0.010
0.2 0.991 0.018 0.991 0.014 0.978 0.013 0.978 0.010 0.830 0.019 0.830 0.015
0.6 0.975 0.028 0.975 0.022 0.908 0.020 0.909 0.016 0.794 0.024 0.794 0.019

Table 3: Comparison of OLS, IV and MODWT (LA-8, level of decomposition 6) regressions when

the regressor is measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor is

measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂ (Med) and the

mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.

1
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.999 0.006 0.999 0.004 0.999 0.005 0.999 0.003 0.977 0.007 0.978 0.005
0.2 0.999 0.008 0.999 0.006 0.994 0.007 0.995 0.006 0.954 0.013 0.956 0.011
0.6 0.997 0.013 0.998 0.010 0.978 0.012 0.978 0.010 0.943 0.017 0.943 0.014

0.97 0 0.999 0.011 0.999 0.008 1.000 0.008 1.000 0.007 0.942 0.011 0.942 0.009
0.2 0.996 0.018 0.996 0.014 0.986 0.013 0.986 0.010 0.886 0.019 0.887 0.015
0.6 0.988 0.028 0.987 0.022 0.943 0.020 0.944 0.016 0.862 0.024 0.865 0.019

0.95 0 0.995 0.017 0.996 0.014 0.999 0.012 0.999 0.010 0.908 0.014 0.908 0.011
0.2 0.992 0.023 0.990 0.018 0.979 0.017 0.979 0.013 0.830 0.021 0.831 0.017
0.6 0.973 0.042 0.973 0.033 0.908 0.027 0.910 0.022 0.795 0.028 0.794 0.022

Table 4: Comparison of OLS, IV and MODWT (LA-8, level of decomposition 6) regressions when

the regressor and the regressand are measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor and the

regressand are measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂

(Med) and the mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.999 0.004 0.999 0.003 1.000 0.004 1.000 0.003 0.977 0.007 0.978 0.005
0.2 0.998 0.006 0.998 0.004 0.994 0.005 0.995 0.004 0.955 0.012 0.956 0.010
0.6 0.996 0.010 0.996 0.007 0.978 0.010 0.979 0.008 0.944 0.017 0.946 0.013

0.97 0 0.998 0.009 0.997 0.007 1.000 0.007 1.000 0.006 0.941 0.011 0.942 0.009
0.2 0.995 0.013 0.995 0.010 0.987 0.010 0.987 0.008 0.887 0.017 0.887 0.014
0.6 0.989 0.018 0.988 0.014 0.944 0.016 0.944 0.013 0.863 0.022 0.864 0.018

0.95 0 0.996 0.014 0.995 0.011 0.999 0.010 0.999 0.008 0.909 0.013 0.909 0.010
0.2 0.991 0.018 0.991 0.014 0.978 0.013 0.979 0.010 0.829 0.019 0.831 0.015
0.6 0.976 0.027 0.975 0.022 0.910 0.019 0.910 0.015 0.796 0.023 0.797 0.018

Table 5: Comparison of OLS, IV and MODWT (Haar, level of decomposition 6) regressions when

the regressor is measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor is

measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂ (Med) and the

mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.999 0.005 0.999 0.004 1.000 0.005 1.000 0.004 0.977 0.007 0.978 0.006
0.2 0.998 0.008 0.998 0.006 0.995 0.007 0.995 0.005 0.955 0.013 0.957 0.010
0.6 0.996 0.012 0.997 0.009 0.978 0.012 0.978 0.010 0.943 0.017 0.944 0.013

0.97 0 0.999 0.012 1.000 0.009 1.000 0.009 1.000 0.007 0.942 0.011 0.943 0.009
0.2 0.994 0.016 0.995 0.012 0.985 0.013 0.985 0.010 0.884 0.019 0.885 0.015
0.6 0.988 0.027 0.988 0.021 0.943 0.020 0.943 0.016 0.863 0.024 0.863 0.019

0.95 0 0.996 0.017 0.997 0.013 0.999 0.012 0.999 0.009 0.908 0.014 0.909 0.012
0.2 0.991 0.024 0.991 0.019 0.978 0.017 0.978 0.013 0.829 0.022 0.830 0.018
0.6 0.974 0.039 0.975 0.031 0.911 0.024 0.911 0.019 0.796 0.026 0.797 0.021

Table 6: Comparison of OLS, IV and MODWT (Haar, level of decomposition 6) regressions when

the regressor and the regressand are measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor and the

regressand are measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂

(Med) and the mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.998 0.004 0.998 0.003 1.000 0.004 1.000 0.003 0.976 0.007 0.978 0.006
0.2 0.996 0.005 0.996 0.004 0.995 0.005 0.995 0.004 0.955 0.012 0.956 0.009
0.6 0.990 0.009 0.990 0.007 0.978 0.011 0.978 0.008 0.944 0.017 0.945 0.013

0.97 0 0.995 0.007 0.995 0.005 0.999 0.007 0.999 0.005 0.941 0.010 0.941 0.008
0.2 0.988 0.010 0.988 0.007 0.986 0.010 0.986 0.008 0.887 0.017 0.888 0.013
0.6 0.972 0.015 0.972 0.012 0.943 0.016 0.944 0.013 0.863 0.022 0.865 0.017

0.95 0 0.992 0.010 0.992 0.007 1.000 0.009 1.000 0.007 0.908 0.013 0.908 0.011
0.2 0.979 0.013 0.979 0.011 0.977 0.013 0.977 0.011 0.828 0.019 0.829 0.015
0.6 0.950 0.019 0.949 0.015 0.910 0.019 0.910 0.015 0.796 0.023 0.796 0.019

Table 7: Comparison of OLS, IV and MODWT (Haar, level of decomposition 4) regressions when

the regressor is measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor is

measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂ (Med) and the

mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.
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γ ρ MODWT IV OLS

Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂) Mean(β̂) SD(β̂) Med(β̂) MAD(β̂)

0.99 0 0.998 0.005 0.998 0.004 1.000 0.005 1.000 0.004 0.977 0.008 0.978 0.006
0.2 0.996 0.007 0.996 0.006 0.995 0.007 0.995 0.006 0.954 0.014 0.955 0.011
0.6 0.990 0.012 0.990 0.009 0.978 0.013 0.979 0.010 0.944 0.018 0.946 0.014

0.97 0 0.995 0.009 0.994 0.007 0.999 0.009 0.999 0.007 0.941 0.011 0.941 0.009
0.2 0.988 0.013 0.987 0.010 0.986 0.012 0.985 0.010 0.887 0.018 0.887 0.014
0.6 0.973 0.020 0.973 0.016 0.944 0.020 0.944 0.016 0.863 0.024 0.863 0.019

0.95 0 0.992 0.012 0.992 0.009 1.000 0.011 1.000 0.009 0.908 0.014 0.908 0.011
0.2 0.980 0.017 0.980 0.013 0.979 0.017 0.979 0.013 0.830 0.022 0.831 0.017
0.6 0.952 0.027 0.952 0.021 0.911 0.025 0.910 0.019 0.797 0.026 0.795 0.021

Table 8: Comparison of OLS, IV and MODWT (Haar, level of decomposition 4) regressions when

the regressor and the regressand are measured with error.
This table reports the results of the Monte Carlo simulations for OLS, IV and MODWT regressions. The regressor and the

regressand are measured with error. We list the mean value of β̂ (Mean), the standard deviation of β̂ (SD), the median of β̂

(Med) and the mean-absolute deviation of β̂ (MAD) after B = 1000 replications for T = 2000. α = 1 and β = 1.
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