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Abstract

We develop a dynamic framework to identify aggregate market fears ahead of a major
market crash through the skewness premium of European options. Our methodology
is based on measuring the distribution of a skewness premium through a q-Gaussian
density and a maximum entropy principle. Our findings indicate that the October
19th, 1987 crash was predictable from the study of the skewness premium of deepest
out-of-the-money options about two months prior to the crash.

Keywords: Non-additive Entropy, Shannon Entropy, Tsallis Entropy, q-Gaussian Dis-
tribution, Skewness Premium.

JEL No: G1; C40

∗Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia,
V5A 1S6, Canada. Email: gencay@sfu.ca; Rimini Center for Economic Analysis, Italy and IRMACS,
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1. Introduction

At a given point in time, the sentiment of a financial market can be summarized through
the aggregation of the subjective beliefs of its participants, namely, aggregate market ex-
pectations. If each participant acts independently with one’s own belief, there would be a
wide dispersion of beliefs. If however, market participants have a highly dependent set of
beliefs, this leads to a smaller belief dispersion and less independence in the direction of
individual trading decisions.

The presence of independence necessitates the law of large numbers and the population
mean of beliefs can be captured accurately under such settings. In the presence of cascading
(lack of independence between beliefs), and therefore belief clustering, the independence
between trader beliefs fades away, the dispersion becomes much smaller and the aggregate
average beliefs diverge much further away from the population fundamentals. Both crashes
and bubbles may be interpreted as examples of the lack of belief heterogeneity and its lack of
dispersion. In such extreme market conditions, the majority of the market participants take
one side of the market which leads to large changes in return and high volatility. Therefore,
lack of belief heterogeneity necessitates large market movements and high volatility.1

Financial stability, therefore, requires belief heterogeneity, even when those beliefs are
formed in a bounded sense. In this paper, we examine the degree of belief heterogeneity
of the S&P-500 market participants before the crash of October 19th, 1987. Our approach
is to measure the belief heterogeneity through an entropic measure of dispersion.2 It is a
bounded measure and therefore the lower bound refers to a total lack of belief dispersion
whereas the upper bound is the maximum dispersion at a point in time.

Our approach can also be related to market microstructure3 in the sense that we deal
with dispersed information and investigate how it is aggregated and reflected in the price.
However, in contrast to market microstructure, we are not interested in market institutions
(mechanisms) and order flows, but attempt to understand how shifts in the heterogeneity
aspect of the private/public information can be directly linked to price.

Our entropic measure of market belief dispersion is calculated from option prices, or,
more specifically, from the percentage deviation of call and put prices. We argue that option

1The transition from belief heterogeneity to belief homogeneity leads to sequences of high volatility, or
volatility clustering. Obviously, this may happen either in an upward or downward market. This clustering
property was first noted in Mandelbrot (1963) in his study of cotton prices and in the long memory in Man-
delbrot (1971). These findings remained dormant until the early 1980s for volatility clustering until Engle
(1982) and Bollerslev (1986) proposed the ARCH and GARCH processes.

2Gell-Mann and Tsallis (2004) has an extensive survey of this methodology and its interdisciplinary
applications.

3See, for instance, Lyons (2001).
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prices can offer insight into the aggregate market expectations. For instance, if the prices of
deep out-of-the-money put options are relatively large compared to deep out-of-the-money
call options, this may imply that the market expects a large downward movement in the
price of the underlying. Similarly, pricing deep out-of-the-money puts significantly below
deep out-of-the-money calls can be understood as an expectation of an upward movement.
Bates (1991, 2000) finds that out-of-the-money American put options on S&P-500 Index
futures were unusually expensive relative to out-of-the-money calls before the October 1987
crash.4 Surprisingly, the relative prices of puts peaked in August 1987 and then returned
to “normal” levels where they stayed until the crash. Bates (1991) concludes that “if there
was a rational bubble in the stock market, one would have to conclude that it burst in mid-
August, not in mid-October.” Therefore, market expectations (reflected in American option
prices) immediately preceding the crash did not predict any unusual shifts. Noteworthy,
to investigate the issue further, we do not study option prices directly as in Bates (1991),
but use them to calculate a time-dependent entropic measure that can potentially capture
long-range, time-dependent, aggregate market expectations in the S&P-500 market. Also,
we utilize both transactions data for American options on S&P-500 Index futures contracts5

as well as daily S&P-500 Index European options.6 In a related work, Grech and Mazur
(2004) analyze the behavior of the Hurst exponent for the Dow Jones Industrial Average
Index prior to the crash of 1987 and find that changes in the “excitation state” of the market
were to some extent predictable.

From a methodological perspective, our so-called time-dependent entropic measure,
Tsallis (1988) entropy, that is derived from a time-series of put and call option prices
presents a new empirical technique for the analysis of dynamic predictive ability in fi-
nance.7 By monitoring a time-dependent entropy, one can gain insight into the evolution of
the belief heterogeneity of market participants and obtain an early indication of upcoming
crises or bubbles. We focus on two sets of underlying signals for both American (hourly
data) and European (daily data) options: 1) average percentage deviation of call prices
from put prices8, and 2) percentage deviation of call prices from put prices for the deepest
out-of-the-money options. The results for the American options in general, corroborate the
evidence by Bates (1991) where there are sharp declines in the entropy level in June-August

4October 1986 - February 1987 and June - August 1987.
5We thank David S. Bates for sharing his data with us.
6This is the same data set that was used in Garcia and Gençay (2000). Bates (1991) also argues that

European options may shed more light on the size of the percentage deviation of call prices from put prices
before the crash.

7Stutzer (2000) and Stutzer and Kitamura (2002) study option and asset pricing through an entropic
methodology.

8The call and put prices are matched in terms of the time to maturity and strike price.
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1987 and immediately following the crash.
European options generate more striking findings by identifying strong “abnormal” shifts

in the S&P-500 market participants’ beliefs prior to the crash. More precisely, when the
average percent deviation is utilized, we find that the entropy declines9 from a relatively
stable level of 0.76 to 0.28 on October 16, 1987. Similarly, for the deepest out-of-the-money
options, the entropy drops from 0.92 to 0.02 on August 25, 1987 and remains at a low level
until the day of the crash.

This paper is organized as follows. In the next section, we motivate our approach and
present a statistical framework for the dynamic entropy. Section 3 explains the implementa-
tion of the time-dependent entropy. Section 4 explains the link between market expectations
and options, and presents our findings. We conclude afterwards.

2. Distribution of asset returns and q-Gaussianity

The principle reason for the work on asset pricing is to model the underlying distribution
of returns (and volatility) and generate testable hypotheses along with reliable forecasts.
The distribution of returns is therefore one of the most fundamental properties of markets
and its functional form is still a topic of active debate. On one side, central-limit theo-
rem arguments suggest Gaussian distribution. While the normal distribution provides a
good approximation for the center of the distribution for low frequency series, there are
substantial deviations from normality for higher frequencies.

Almost half a century ago, Mandelbrot (1963) and Fama (1965) presented evidence in
favor of a stable Lévy distribution. The stable Lévy distributions emerge from a general-
ization of a central limit theorem for random variables in which their second moment does
not exist. The Lévy distributions are characterized by a parameter 1 ≤ α ≤ 2 where α = 2
corresponds to a special case of a normal distribution. For α < 2, however, the stable
Lévy distributions are so fat-tailed that their second and all higher moments are infinite.
Based on daily prices in different markets, Mandelbrot (1963) and Fama (1965) measured
α ≈ 1.7, suggesting that the second moment of the return distribution is not finite. More
recent studies, such as Dacorogna et al. (2001) disputed this finding subject to large re-
turns asymptotically following a power law behavior. With a tail index value of α > 2, the
second moment is well-defined and this is incompatible with the Lévy distribution. This
indicates that generalization of the central limit theorem with long tails may not be the
correct explanation.

9The entropy is bounded between [0,5/3].
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Examination of extensive high-frequency data sets, as carried out in Dacorogna et al.
(2001), indicate α ≈ 3. Thus, the mean and variance are well-defined, the kurtosis clearly
diverges, and the behavior of the skewness is at the margin. There is no overwhelming
evidence that the return distribution is from a stable class and the fact that the distribution’s
shape changes with the time scale makes it clear that the random process underlying prices
must have a nontrivial temporal structure.

We will motivate our approach of modeling aggregate belief heterogeneity (aggregate
market expectations) from an entropic perspective, relating how the number of states (or
regimes) in a market translate themselves into a probability distribution of the aggregate
market sentiment. One well-known entropy is the Shannon information measure (SS):

SS(f(x)) =
∫

f(x) ln

[
1

f(x)

]
dx (1)

= −
∫

f(x) ln
[
f(x)

]
dx,

or, in discrete setting SS is,

SS = −
n∑

i=1

pi ln pi,

n∑

i=1

pi = 1 (2)

where the number of states i = 1, . . . , n, pi is the probability of outcome i, and n is the
number of states. Namely, the entropy is the sum over the product of the probability of
outcome (pi) times the logarithm of the inverse of pi. This is also called i’s surprisal and
the entropy of x is the expected value of its outcome’s surprisal. It is worthwhile to note
that if two states A and B are independent from one another, p(A ∪ B) = p(A)p(B), then
SS is additive SS(A∪ B) = SS(A) + SS(B).

Tsallis (1988) entropy (Sq) is a generalization to a non-additive measure

Sq(f(x)) =
1 −

∫
f(x)qdx

q − 1
(3)

where q is a measure of non-additivity such that Sq(A ∪ B) = Sq(A) + Sq(B) − (1 −
q)Sq(A)Sq(B). Larger values for q emphasize long-range interactions between regimes
(states) and can be interpreted as a long memory parameter. Tsallis entropy recovers
the Shannon entropy when q → 1 such that limq→1 Sq = SS .

The maximum entropy principle for Tsallis entropy under the constraints
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∫
f(x)dx = 1,

∫
x2f(x)qdx∫
f(y)qdy

= σ2 (4)

yields10 the q-Gaussian probability density function

f(x) =
expq(−βqx

2)∫
expq(−βqx2)dx

∝ 1
Z

[1 + (1− q)(−βqx
2)]

1
1−q (5)

where βq and Z are a function of q specified as in Borland (2004), and expq(x) is the
q-exponential function defined by

expq(x) =





[1 + (1− q)x]
1

1−q if 1 + (1− q)x > 0

0 otherwise.
(6)

For q → 1, q-Gaussian distribution11 Equation (5) recovers the usual Gaussian distribution.
To illustrate the empirical relevance of the q-Gaussian probability distribution we will

estimate daily, weekly and monthly S&P-500 Index returns for the period 1990-2000 with
the q-Gaussian density. We first define returns as

Rt = lnSt − ln St−1 (7)

where S denotes the S&P-500 Index over daily, weekly and monthly time intervals.
We then define normalized returns as

rt =
Rt − µR

σR
(8)

where µR denotes the mean of Rt and σR is the standard deviation of Rt.
The top panel of Figure 1 displays empirical histograms for the daily (circles), weekly

(triangles) and monthly (squares) normalized returns, together with the estimated q-Gaussian
distribution. Clearly, the plain vanilla Gaussian distribution is unable to approximate the
tails at all three time scales. However, the fit of the q-Gaussian probability distribution
captures the frequency of extreme events together with ordinary frequencies satisfactorily.
The estimation involves the optimal q estimation which minimizes the sum of the squared

10See, for instance, Suyari (2006).
11For a zero mean process with unitary variance βq = 1/(5 − 3q) with q < 5/3.
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errors of the logarithms of the q-Gaussian probability density and the data-implied empiri-
cal density. It is found that the optimal q=1.62 (0.03) for the daily data, q=1.64 (0.02) for
the weekly data, and q=1.63 (0.01) for the monthly data.12 Additionally, we also estimate
the optimal q using the maximum likelihood (ML) estimator as follows13

qML = argmax
q

T∏

i=1

f(xi|q) = argmax
q

T∑

i=1

log f(xi|q), (9)

where T is the sample size. The optimal values for qML are 1.31 (daily data), 1.29 (weekly
data) and 1.30 (monthly data), where the standard errors are 0.002, 0.001, 0.001, respec-
tively (Figure 1, bottom panel). Clearly, the ML estimator presents a more precise method
and we will thus utilize it for our robustness analysis in subsection 4.3. It is worth noting
that in both cases the q-Gaussian probability distribution describes the returns measured
over three different time intervals well and that q values remain stable across three data
frequencies.

3. Implementation

Implementation of Sq for a time series of observations xt, t = 1, . . . , T involves the following
steps.14 Define a moving window (X) with K observations

X = {xt,k, k = 1, . . . , K} (10)

to calculate the underlying discrete probability distribution by an equipartitioning of X into
n states, x0 < x1 < . . . < xn. Here, x0 = min[X ] and xn = max[X ]. Next, let us introduce
the set {Ii = [xi−1, xi), i = 1, . . . , n} of disjoint intervals such that

D =
n⋃

i=1

Ii (11)

where D = xn − x0 is the range of X.
Let pi be the probability that xt belongs to the interval Ii. pi is defined as the ratio

between the number of observations found within Ii and the total number of observations
(K). Then, Sq in its discrete version can be written as

12The numbers in parentheses are standard errors. We estimate standard deviations through a block
bootstrap procedure with 1000 replications.

13We thank the anonymous referee for this and other useful comments.
14See Gamero et al. (1997) or Tong et al. (2002) for more information.
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Sq =
1 −

∑n
i=1 pi

q

q − 1
. (12)

Through a moving window, the evolution of Sq for xt is calculated over time. We use the
percentage deviation of call from put prices for the underlying signal xt. The calculation of
a time-dependent entropy is influenced by the following considerations (Thakor and Tong,
2004):15

1. Number of states. With too few states, one may not be able to characterize the
underlying market sentiment reliably, and with too many states, tracking fine changes
in the dispersion of beliefs becomes difficult. Without loss of generality, we set n=10.

2. Partitioning method. There are two different methods for partitioning the range of
a signal: (a) fixed partitioning (equipartition is performed on all available data) and
(b) adaptive partitioning (equipartition is performed on each moving-window of data,
i.e., it changes over time). The adaptive partitioning approach can track transient
changes in a signal better than the fixed partitioning and is more suitable for our
application.

3. Estimation of q. The entropic index q is the degree of long-memory in the data. Gell-
Mann and Tsallis (2004) estimate q ≈ 1.4 for high-frequency financial data (returns
and volumes) and stress that as the data frequency decreases, q approaches unity.
Larger q values (1 < q ≤ 2) emphasize highly volatile activities in the signal when
a time-dependent entropy is plotted against time, i.e., the entropy is more sensitive
to possible disturbances in the probability distribution function. When q=2, the
expression for Sq simplifies to Sq = 1 −

∑n
i=1 pi

2. In this paper, we find the optimal
q for each time series by minimizing the sum of the squared errors of the logarithms
of the q-Gaussian probability density and the data-implied empirical density.

4. Sliding step (∆) and moving window size (K). The sliding step (the number of
observations by which the moving window is shifted forward across time) and moving
window size (the number of observations used in calculating the entropy) determine
the time resolution of Sq. If the focus is on tracking the local changes, the sliding
step is set to be very small (e.g., one observation: ∆=1). Non-overlapping windows

15Overviews of non-additive entropy can be found in Gell-Mann and Tsallis (2004) and Anteneodo and
Tsallis (2003). Tabak and Cajueiro (2006) use Sq to assess efficiency of major world currencies. Queiros
et al. (2006) study probability distributions of stock market returns and volumes within the non-additive
entropy framework.

7



(∆ ≥ K) are useful only when one is interested in monitoring the general trend of xt.
To get a reliable probability distribution function, K should not be too small. We set
∆=1 and K=120.

An example of dynamic entropy is illustrated in Figure 2 for a GARCH (1,1) process
where xt = ztσt, σ2

t = c + αε2t−1 + βσ2
t−1 where zt is an identically and independently

distributed normal random variable with zero mean and unit variance. The entropy is
calculated with q = 2, n = 10, K = 200 days and 2,000 observations. The range of entropy
is [0, 0.9] for q = 2. In the top panel, the volatility persistence is set to be minimal with
coefficients c = 0.5, α = 0.05 and β = 0.05, and leads to stable entropy across time. The
spread of volatility across time does not exhibit large bursts and entropy fluctuates around a
tight band of 0.85. The bottom level corresponds to a very persistent volatility with c = 0.5,
α = 0.5 and β = 0.4999. Outbursts of volatility are evident with 40% high peaks and it
is clustered. The entropy falls dramatically in such high volatility periods and the dips in
the entropy are evident relative to the top panel. In this example, the drop in the entropy
in high volatility periods is contemporaneous with almost no lead time for predictability.
In our analysis, we will demonstrate that it is possible to predict such high volatile periods
with plenty of lead-time using option based indicators and the dynamic entropy principle.16

4. Market Expectations and Options

The options are priced at the discounted expected value of their future payoffs using a risk-
neural distribution. An equivalent risk-neural distribution is derived by using the actual
distribution of the underlying asset price and summarizes the prices of Arrow-Debreu state-
contingent claims.

In a broader context, option prices represent the market’s aggregate expectations. Hence,
a set of put and call option prices can reveal an aggregate view of the market price at a
given maturity. For instance, if the prices of deep out-of-the-money put options on S&P-500
are relatively large compared to deep out-of-the-money call options, this may imply that
the market expects a large downward movement in the price of the underlying. Similarly,
pricing deep out-of-the-money puts significantly below deep out-of-the-money calls can be
understood as an expectation of an upward movement.

Bates (1991, 2000) investigated the S&P-500 Index options on futures to gather evidence
on whether the October 1987 crash was expected. He documented that from October 1986

16Gradojevic and Gençay (2008) demonstrate the usefulness of the entropy in predicting overnight interest
rates during the Turkish financial crisis of 2000/2001.
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to August 1987, the market experienced a 42% upsurge, but gradually declined until the
crash. This was also reflected in the percentage deviation of put prices from call prices,
named as the skewness premium:17

x ≡ P (S, T, Kc)
C(S, T, Kp)

− 1 (13)

where S is the price of the underlying (S&P-500 Index for European options or S&P-500
futures price for American options), T is maturity, Kc and Kp are strike prices for call and
put options, respectively.

Bates (1991) found that although the skewness premium18 was negative from October
1986 until August 1987, it returned to normal levels two months prior to the October 1987
crash. The strong indication of downside risk peaked in August 1987 when it was about
-25% for the out-of-the-money options (i.e., put options were 25% more expensive than call
options), but returned to “normal” levels where it stayed until the crash. Secondly, Bates
(1991) fitted a jump-diffusion model to option prices to capture the subjective probability
distribution of S&P-500 futures implicit in their call and put option prices. He noticed
that the implicit distribution became negatively skewed in October 1986, as the S&P-500
futures price started increasing, reaching the negative skewness peak in the June-August
1987 period. His conclusion was that although the October 19, 1987 crash had been expected
months prior it actually took place, its timing was not predictable because market indicators
returned to normal levels two months prior to the crash. Bates (1991) notes that there were
no fears of a market crash even late on Friday afternoon of October 16th. These findings
may lend to the interpretation that the crash was expected to take place in August 1987 as
a self-fulfilling prophecy (or a “rational bubble”).

Rappoport and White (1994) examined whether the crash of 1929 was also expected.
As opposed to Bates (1991), they assessed crash fears through return volatilities implied
by the option (approximated by brokers’ loans) prices calculated using the Black-Scholes
and the knockout option pricing models. Their evidence shows that implied volatilities rose
sharply over a year prior to the crash, i.e., crash fears increased until the moment of the
crash. It is noteworthy that Rappoport and White (1994) and Bates (1991) are consistent
with each other in the sense that an increase in the market’s expectation of a downward
movement in prices coincides with a booming market.

Our study is a novel refinement of this literature of the predictability of a crash through
17We were inspired by Bates (1991), but our definition of the skewness premium is slightly different and

we use it for all available American and European options (not just for the 0-4% out-of-the-money options).
18Bates (1991) used [C(S, T,Kc)/P (S, T, Kp)] − 1.
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an entropic analysis of market heterogeneity embedded in option prices. Since the Bates
(1991) framework loses its predictive power two months prior to the October 1987 crash,
our contribution will be to investigate early warning signals which remain strong until the
day of the crash.

We will calculate the time-dependent entropy with two types of skewness premium
measures. The first one is the average skewness premium for options with the same time-
to-maturity and strike price. The second one is the skewness premium for the deepest
available out-of-the-money option pairs.

4.1 Bates (1991) Data - American Options

The asymmetry of the skewness premium, as a proxy for the aggregate market expecta-
tions, is used to calculate the time-dependent entropy for hourly American options for
1987. More specifically, the Bates (1991) options data is used to first calculate the average
and the deepest out-of-the-money skewness premia. Subsequently, the non-additive entropy
is maximized to estimate the probability distribution of the skewness premium to estimate
q (long-memory parameter) for the q-Gaussian distribution. We minimize the sum of the
squared errors between the q-Gaussian probability density and the empirical density to es-
timate q. For the average skewness premium, the long-memory parameter is q̂ = 1.61 (0.12)
and the one for the deepest out-of-the-money option pairs is q̂ = 1.60 (0.14) where the
bootstrap standard errors are in parentheses. The entropy is bounded between [0, 1.25] for
q = 1.60 where the lower boundary implies belief homogeneity of market participants. On
the other hand, the upper boundary indicates the maximum dispersion of beliefs amongst
the market participants.

An early substantive shift in the aggregate beliefs of the market participants before the
crash of 1987, namely, a sharp decrease in the time-dependent entropy, is an early warning
of the crash. If the entropy stays at such low levels until the time of the crash, this would
represent evidence for the upcoming crash. Figure 3 (top panel) presents the entropy with
the hourly average skewness premium (for the American options) before the crash.19 On
May 27th, the entropy drops to 0.78 and recovers to 0.84 on September 8th. On October
16th, the entropy value is 0.98. On October 19th, it drops to 0.77 by the mid-day trading
and to 0.41 in the last hour of the trading. On October 20th, the entropy starts at 0.22
and drops to 0.05 in the last hour of the trading.

The informative content of the skewness premium for the deepest out-of-the-money
options is somewhat stronger (Figure 3, bottom panel). Although there was a sharp decrease

19The size of the moving window is K=500 hours (≈ 60 days). Changing the size of the moving window
does not change the main message of our findings.
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in the entropy between May 1987 - August 1987, this does not constitute a clear warning
signal because the entropy recovers in the last hours of the trading on Friday before the
crash. On May 19th, the entropy is at 0.46 and goes to 0.51 on August 26th. On October
16th, it starts at 0.58, dropping to 0.48 in the last hour of the trading. On the day of the
crash it falls from 0.37 to 0.01 in the last hours of the trading and stays in the range of 0.01
- 0.02 on October 20th.

Overall, our findings for the average skewness premium with American options corrob-
orate Bates (1991) where the crash fears were not strong immediately before the crash. In
addition, the deepest out-of-the-money American options provide slightly more useful early
information about the crash. Since deep out-of-the money European options at a given
maturity are more informative relative to the American options about market expectations,
the next section extends the analysis to the skewness premium of the European options.

4.2 European Options

In this part of the paper, we analyse the daily S&P-500 Index European put and call option
prices from the Chicago Board Options Exchange. The data set20 contains options across
different strike prices and maturities over the period from January 1987 to December 1988.
The estimate of the long-memory parameter (q̂) for the daily average skewness premium
and the skewness premium for the deepest out-of-the-money options are 1.51 (0.05)21 and
1.53 (0.04), respectively.

First, we study the entropy with the daily S&P-500 Index without use of any options
market information.22 The index itself does not provide any advance warnings and there is
no significant change in the entropy level prior to the 1987 crash (Figure 4). More precisely,
the entropy declined by about 17% on the day of the crash and subsequently returned to the
pre-crash levels of March - April 1988. Table 1 illustrates how the probabilities of the states
which were roughly evenly distributed on October 14, 1987, converged to states s6 − s10

on October 19, 1987. This indicates the lack of belief heterogeneity during and following
the crash, and early warning signals are not prevalent when the entropy is based on the
S&P-500 Index.

Consequently, we extend the set of underlying signals to potentially more useful two
variants of the daily skewness premium. As the top panel of Figure 5 indicates, for the

20This is the data set used in Garcia and Gençay (2000).
21The numbers in parentheses are the bootstrap standard errors. We use one leave-out bootstrap with

replacement for a window size of K observations.
22The moving window is K=120 days, q̂=1.62 which was estimated in Section 2, and the number of states

is n=10.
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average skewness premium, there appears to be no strong indication of crash fears until
a few days prior to the crash. On October 15th, the entropy is at 0.76, drops to 0.28 on
October 16th, and to 0.06 on the day of the crash. From the study of the state probabilities
it is apparent that they are not evenly distributed and occupy mostly states s1−s3 before the
crash (Table 2). Furthermore, the most striking result is the convergence of the probabilities
to state s1 on October 16, 1987. This is also reflected in the entropy that drops by more
than 63% one day before the crash.

Finally, we investigate the evolution of the entropy based on the skewness premium for
the deepest out-of-the-money options. These findings are the most striking where an early
indication of the lack of belief dispersion surfaced on August 25, 1987 (Figure 5, bottom
panel), two months prior to the crash. Moreover, after this substantial decrease from 0.92
to 0.02, the entropy remained at a relatively stable level of 0.27 until the time of the crash
and only going down to 0.26 on the day of the crash. The distribution of the probabilities
for the states also converged to state s1 on August 25, 1987 (Table 3). In this particular
case, the deepest out-of-the-money options are more informative regarding the extreme
expectations, and the entropy provides a useful platform to measure the concentration of
these expectations in a particular direction.

4.3 Robustness Exercises for European Options

Based on the findings from Section 2 that the ML estimator should also be considered for
finding the optimal q, in this subsection, we investigate the robustness of our findings for
European options. First, we find the optimal qML for the entropy based on the skewness
premium for the deepest out-of-the-money options. In this instance, qML = 1.42, i.e., it
is slightly lower than 1.53, found above. The optimal qML for the entropy based on the
average skewness premium is 1.50 which is essentially the same as the optimal q found
by curve-fitting (1.51). Thus, we will focus our attention on the deepest out-of-the-money
options.

Figure 6 presents the sensitivity of the findings with respect to various choices for the
size of the moving window (K), number of states (n) and the optimal entropic index (q).
The top two panels show that for a fixed K = 120 and n = 10, reducing q = 1.53 to the
optimal qML = 1.42 does not affect the main message of our paper – the major drop in the
entropy occurs on August 25, 1987 and the two panels are almost identical. Furthermore,
the middle two panels show that, for a fixed n = 10 and q = 1.42, the results are not
sensitive to reducing K to 60 or increasing it to 150 days. It is important to note that
the results are more prominent with the wider moving window that makes use of the long-
memory property of the Tsallis entropy. Finally, the bottom two panels indicate that, for
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a fixed q = 1.42 and K = 120, when n is increased to 15, the results are even more striking
and show how the entropy remained relatively low from August 25, 1987 until the day of
the crash. These results are similar for n = 5 (bottom right panel). We conclude that our
main findings are robust to the various reasonable choices of q, K and n, and are in line
with the discussion from Section 3.

5. Conclusions

By monitoring a time-dependent entropy, one can gain insight into the evolution of the
aggregate market expectations and obtain an early indication of upcoming crises or bubbles.
We focus on two sets of underlying signals for both American (hourly data) and European
(daily data) options. The results for the American options in general corroborate the
evidence by Bates (1991) with sharp declines in the entropy immediately following the
crash. In the case of American options, the skewness of the corresponding risk-neutral
probability distribution is not directly linked to the relative prices of out-of-the-money put
and call options. We extend our investigation to European options and this generates more
striking findings where we are able to identify strong “abnormal” shifts in the S&P-500
market participants’ aggregate beliefs roughly two months prior to the October 1987 crash.
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Date s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 TE

Oct 14, 87 0.05 0.08 0.11 0.04 0.11 0.18 0.15 0.12 0.07 0.09 1.18
Oct 15, 87 0.04 0.08 0.11 0.05 0.11 0.18 0.15 0.12 0.07 0.09 1.18
Oct 16, 87 0.04 0.08 0.10 0.05 0.11 0.18 0.15 0.12 0.07 0.09 1.18
Oct 19, 87 0.00 0.00 0.00 0.00 0.03 0.12 0.15 0.29 0.25 0.16 1.00
Oct 20, 87 0.00 0.00 0.00 0.00 0.03 0.12 0.15 0.29 0.25 0.16 1.01
Oct 21, 87 0.00 0.00 0.01 0.00 0.03 0.11 0.15 0.29 0.25 0.16 1.01
Oct 22, 87 0.00 0.00 0.02 0.00 0.03 0.10 0.15 0.29 0.25 0.16 1.01

Table 1: Distribution of Belief Heterogeneity - Price
The time-dependent Tsallis entropy (TE) is calculated with a moving window of 120 days for the S&P-

500 Index. s1,. . . ,s10 denote non-overlapping intervals (states). The lower boundary of s1 is the minimum

of the moving window. Accordingly, the upper boundary of s10 is the maximum of the moving window.

Belief probabilities (pi) are calculated from the ratio between the number of observations in each interval

and the total number of observations in the moving window. The maximum entropy (belief heterogeneity)

corresponds to equal probability of 10% for each state. The minimum entropy (belief homogeneity) occurs

when all observations concentrate in one particular state such that one state receives 100% of the probability.

In this particular case above, belief distribution is more evenly distributed on October 14, 1987 which

becomes more concentrated towards October 22, 1987 in states s7, s8, . . . , s10. The increased concentration

from October 14th to 22nd leads to a reduction in the entropy. The entropy is bounded between [0, 1.23]

for q = 1.62.
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Date s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 TE

Oct 14, 87 0.56 0.32 0.07 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.75
Oct 15, 87 0.56 0.31 0.07 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.76
Oct 16, 87 0.89 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28
Oct 19, 87 0.98 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Oct 20, 87 0.97 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
Oct 21, 87 0.95 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.11
Oct 22, 87 0.95 0.01 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.13

Table 2: Distribution of Belief Heterogeneity - Average Skewness Premium

The time-dependent Tsallis entropy (TE) is calculated with a moving window of 120 days for the S&P-500

average skewness premium for European options. s1,. . . ,s10 denote non-overlapping intervals (states). The

lower boundary of s1 is the minimum of the moving window. Accordingly, the upper boundary of s10 is the

maximum of the moving window. Belief probabilities (pi) are calculated from the ratio between the number

of observations in each interval and the total number of observations in the moving window. The maximum

entropy (belief heterogeneity) corresponds to equal probability of 10% for each state. The minimum entropy

(belief homogeneity) occurs when all observations concentrate in one particular state such that one state

receives 100% of the probability. In this particular case above, belief distribution is concentrated in states

s1, s2 and s3 on October 14, 1987. The concentration increases towards s1 as October 22nd approaches,

leading the entropy to fall to 0.13 from 0.75. The entropy is bounded between [0, 1.23] for q = 1.62.
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Date s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 TE

Aug 20, 87 0.53 0.19 0.06 0.04 0.04 0.03 0.00 0.07 0.01 0.03 0.92
Aug 21, 87 0.53 0.19 0.05 0.04 0.04 0.03 0.00 0.07 0.02 0.03 0.91
Aug 24, 87 0.53 0.20 0.04 0.04 0.04 0.03 0.00 0.07 0.02 0.03 0.92
Aug 25, 87 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Aug 26, 87 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04
Aug 27, 87 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06
Sep 16 - Oct 16, 87 0.89 0.05 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.27
Oct 19, 87 0.89 0.05 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.26

Table 3: Distribution of Belief Heterogeneity - Daily Skewness Premium for
the Deepest Out-of-the-money European Options

The time-dependent Tsallis entropy (TE) is calculated with a moving window of 120 days for the S&P-500

average skewness premium. s1,. . . ,s10 denote non-overlapping intervals (states). The lower boundary of s1 is

the minimum of the moving window. Accordingly, the upper boundary of s10 is the maximum of the moving

window. Belief probabilities (pi) are calculated from the ratio between the number of observations in each

interval and the total number of observations in the moving window. The maximum entropy (belief hetero-

geneity) corresponds to equal probability of 10% for each state. The minimum entropy (belief homogeneity)

occurs when all observations concentrate in one particular state such that one state receives 100% of the

probability. In this particular case above, belief distribution is spread out in states s1 to s10 on August 20,

1987. The concentration increases towards s1 on August 25th, leading the entropy to fall to 0.02 from 0.92.

The concentration in s1 remains until the day of the crash. The entropy is bounded between [0, 1.23] for

q = 1.62.
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Figure 1: Empirical Histograms for the Daily, Weekly and Monthly S&P-500

Index Normalized Returns (1990-2000)
Normalized returns are plotted on the x-axis and the probability density on the y-axis as a log-linear plot. Top

panel: The estimation of the optimal q involves minimizing the sum of the squared errors of the logarithms of the

q-Gaussian probability density (solid line) and the data-implied empirical density (circles for the daily, triangles for

the weekly, and squares for the monthly data). Bottom panel: The estimation of the optimal q is performed using

the maximum likelihood estimator. The curves for the weekly and monthly data have been shifted vertically by 102

and 104, respectively. The dotted line is the Gaussian distribution.
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Figure 2: Tsallis Entropy with GARCH(1,1) Process
For each panel, entropy values are on the left side of the vertical axis and the corresponding conditional volatility is

on the right vertical axis. The GARCH (1,1) process is xt = ztσt, σ2
t = c + αε2t−1 + βσ2

t−1 where zt is an identically

and independently distributed normal random variable with zero mean and unit variance. The entropy is calculated

with q = 2, n = 10, K = 200 days and 2,000 observations. The range of entropy is [0, 0.9] for q = 2. In the top panel,

the volatility persistence is set to be minimal with coefficients c = 0.5, α = 0.05 and β = 0.05 which leads to stable

entropy across time. The spread of volatility across time does not exhibit large bursts and entropy fluctuates around a

tight band of 0.85. The bottom level corresponds to a very persistent volatility with c = 0.5, α = 0.5 and β = 0.4999.

Outbursts of volatility are evident with 40% high peaks and it is clustered. The entropy falls dramatically in such

high volatility periods and the dips in the entropy are evident relative to the top panel. In this example, the drop in

the entropy in high volatility periods is contemporaneous with almost no lead time for predictability. In subsequent

figures, we will demonstrate that it is possible to predict such high volatile periods with plenty of lead-time using

option based indicators and the entropy principle of belief heterogeneity.
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Figure 3: Hourly Skewness Premium and Dynamic Entropy
For each panel, entropy values are on the left side of the vertical axis and the hourly skewness premium is on the

right vertical axis. The size of the moving window is K=500 hours (≈ 60 days). In the top panel, the hourly average

skewness premium (x) is plotted with the dotted line and time-dependent discrete Tsallis entropy (TE) for x is the

solid line. The entropy dips on May 27, 1987 and recovers on September 8, 1987. In the bottom panel, hourly skewness

premium (x) for the deepest (available)-out-of-the-money call and put options for 1987 is plotted with the dotted line

and time-dependent discrete Tsallis entropy (TE) for x is the solid line. The entropy dips on May 20, 1987 and starts

recovering on August 31, 1987. There is another sudden small drop a week before the crash.
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Figure 4: Daily S&P-500 Index and Dynamic Entropy

Tsallis entropy (TE) values are on the left side of the vertical axis (solid line) and the daily S&P-500 Index for

1986-1988 is on the right vertical axis (dotted line). The time-dependent, discrete entropy is calculated from the daily

S&P-500 Index based on the size of the moving window of K=120 days. The entropy does not provide any lead time

for predicting the October 19th crash. The sudden drop in the entropy is simultaneous with the drop in the index.
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Figure 5: Daily Skewness Premium and Dynamic Entropy
For each panel, entropy values are on the left side of the vertical axis and the daily skewness premium is on the right

vertical axis. The size of the moving window is K=120 days. In the top panel, daily average skewness premium (x)

is plotted with the dotted line and time-dependent discrete Tsallis entropy (TE) for x is the solid line. The entropy

dips on October 16, 1987 and its level on that day is marked with the star. In the bottom panel, daily skewness

premium (x) for the deepest (available)-out-of-the-money call and put options is plotted with the dotted line and

time-dependent discrete Tsallis entropy (TE) for x is the solid line. The entropy dips on August 25, 1987 and its

level on that day is marked with the star.
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Figure 6: Robustness Testing

For each panel, entropy values are on the left side of the vertical axis (solid line) and the daily skewness premium for

the deepest (available)-out-of-the-money call and put options is on the right vertical axis (dotted line). The entropy

dips on August 25, 1987 and its level on that day is marked with the star. Robustness testing is performed with

respect to the size of the moving window in days (K), number of states (n) and the optimal entropic index (q). Top

left: K=120, n=10, q=1.53; Top right: K=120, n=10, q=1.42; Middle left: K=60, n=10, q=1.42; Middle right:

K=150, n=10, q=1.42; Bottom left: K=120, n=15, q=1.42; Bottom right: K=120, n=5, q=1.42.
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