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Abstract

The established view on oligopolistic competition with environmental exter-

nalities has it that, since firms neglect the external effect, their incentive to

invest in R&D for pollution abatement is nil unless they are subject to some

form of environmental taxation. We take a dynamic approach to this issue,

using a simple differential game to show that the conclusion reached by the

static literature is not robust, as the introduction of dynamics shows that

firms do invest in R&D for environmental-friendly technologies throughout

the game, as long as R&D is accompanied by an output restriction exhibiting

a distinctively collusive flavour. We also examine the social planning case

and the effects of Pigouvian taxation, to show that there exists a feasible

tax rate inducing profit-seeking firms to choose a combination of output and

R&D such that the resulting social welfare level is the same as in the first

best.

Keywords: pollution, environmental externality, R&D, differential games,

social planning
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1 Introduction

The enormous amount of data being assembled by the IPCC (Intergovern-

mental Panel on Climate Change) on the anthropic responsibility in gen-

erating (or at least increasing) global warming, and the debate on how to

cope with it along the guidelines of the Kyoto Protocol and its follow-ups,

are clearly identifying the control of polluting emissions damaging the envi-

ronment as one of the hottest scientific issues of our times. As such, it is

receiving an increasing amount of attention in the current literature in the

field of environmental economics, with particular attention to the general

equilibrium implications of environmental aspects on trade and growth.1

Most of the existing contributions adopting a partial equilibrium approach

investigate the design of optimal Pigouvian taxation aimed at inducing firms

to reduce damaging emissions, both in monopoly and oligopoly settings.2

A related stream of literature examines the incentive for firms to carry out

R&D activities in order to introduce environmental-friendly technologies. In

static games, this requires the introduction of some form of taxation/subsidy

by the policy maker, in order to induce firms to take into account the pres-

ence of the externality, that they would clearly neglect otherwise.3 A third

line of research investigates the optimal design of minimum quality stan-

dards and/or profit taxation in vertically differentiated industries affected

by environmental externalities.4

1On the optimality of free trade with environmental externalities, see Copeland and

Taylor (1994, 2004) and Antweiler et al. (2001). As to the role of environmental issues in

growth theory, see Grossman and Krueger (1995), Bovenberg and de Mooij (1997), Bartz

and Kelly (2008) and Itaya (2008), inter alia.
2See Karp and Livernois (1994) and Benchekroun and Long (1998, 2002), inter alia.
3To this regard, see Downing and White (1986), Milliman and Prince (1989), Damania

(1996), Scott (1996), Chiou and Hu (2001), Mohr (2002), Hart (2004), Greaker (2006) and

Poyago-Theotoky (2007), inter alia.
4See Lutz et al. (2000), Amacher et al. (2004), Lombardini-Riipinen (2005), André et
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In the present paper, we take a differential game approach to the in-

vestigation of environmentally-oriented R&D efforts in a dynamic Cournot

oligopoly model where (at least in the first version of the game) there may

not be any tax or subsidy linked to the external effect, in order to show that

the main message emerging from the corresponding static version of the same

game falls short of telling the whole story of the issue at hand. In particular,

we describe a scenario where the stock of pollution increases in proportion

to industry output, and each firm may invest in R&D in order to diminish

its individual contribution to the emission of pollutants.

Our first result consists in showing that unregulated firms may indeed

fully neglect the environmental effects of their productive activity and repli-

cate the static Cournot-Nash equilibrium forever, without putting any effort

whatsoever in R&D activities for cleaner technologies at any point in time.

However, we also show that the alternative may in fact be more attractive,

if R&D efforts go along with an output contraction closely resembling car-

tel behaviour, although the setup remains fully non cooperative. That is,

we identify a path along which, by taking explicitly into account the exter-

nality, firms performs environmental R&D investments not because of some

altruistic or environmental concern but for pure profit-seeking reasons.

The game among unregulated firms yields multiple steady state equilibria,

all of them (except of course the quasi-static solution replicating the Cournot

outcome forever) being characterised by positive R&D efforts at all times,

except possibly doomsday. In summary, the appraisal of our analysis of

private incentives can be outlined as follows. First, the static game captures

the main feature of one of the steady states we identify, but cannot grasp the

essence of what happens along the optimal path to this long run equilibrium.

Secondly, the remaining two equilibria, both emerging whenever the stock

of polluting emissions vanishes, are linked by saddle point trajectories which

al. (2009) and Bottega and De Freitas (2009), inter alia.
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exit the least preferable point to enter the most desirable one, as far as

profit, consumer surplus and social welfare are concerned. This is a desirable

property, entirely driven by profit incentives, which in the present case are

not in conflict with social preferences.

Then, we examine two modified versions of our setup: in the first one,

a social planner concentrates the production of the good in a unique plant,

whereby the activity of R&D takes place in N different structures (due to the

decreasing returns to scale characterising the R&D technology). In this case,

five steady state points exist, one of which replicates the perfectly competitive

allocation that would emerge under social planning in the corresponding

static version of the model. Yet, a relevant feature of this equilibrium is that

the planner would be able to reach it only in the very specific (and totally

unrealistic) case where the production of the final good were not polluting

the environment at all.

The second extension takes into account the possibility of regulating

profit-seeking firms via the introduction of a Pigouvian tax associated to

the environmental externality. In this case, we show that the tax can be

designed so as to induce the industry to yield the first best level of social

welfare that is unattainable under planning, although of course the associ-

ated surplus distribution is not the same as it would be at the first best.

The remainder of the paper is structured as follows. Section 2 briefly

outlines the static version of the game. The setup of the dynamic problem

and the related trajectory analysis are laid out in section 3, where we also

compare the profit and welfare performance of the industry in correspondence

of the multiple steady state equilibria. In section 4 we examine the behaviour

of the model under social planning. In section 5 we illustrate the effects of

Pigouvian taxation on the equilibrium behaviour of profit-seeking firms as

well as the related welfare levels. Section 6 contains concluding remarks.
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2 A summary of the static problem

As a preliminary step, we revisit the static Cournot game in order to high-

light the lack of R&D incentives to decrease the amount of polluting emis-

sions characterising firms. The market is supplied by N single-product

homogeneous-good firms. The market demand function is p = a − Q, with

Q =
PN

i=1 qi, qi being firm i’s output. Technology is the same for all firms

alike, and it is summarised by the cost function C = cqi. Supplying the fi-

nal good entails a negative environmental externality S =
PN

i=1 biqi, where

bi = b − ki ≥ 0; b measures the marginal contribution of each firm to the

stock of pollutants; ki is the R&D effort of firm i to decrease its individual

amount of pollution,5 and it involves a convex cost Γi = rk2i , r > 0. Con-

sequently, firm i’s instantaneous profits are πi = (p− c) qi − Γi. This game

has a two-stage structure: in the first stage, firms non-cooperatively and si-

multaneously set their respective R&D efforts; in the second, they compete

à la Cournot-Nash. The solution concept is subgame perfection by backward

induction.

The optimal individual output in the second stage is q∗ = (a− c) / (N + 1) ,

whereby the profit function at the first stage reads as πi = (q
∗)2 − rk2i . This

clearly entails that ∂πi/∂ki < 0, and therefore the optimal R&D investment

is nil, yielding the static Cournot-Nash profits πCN = (q∗)2. On this ba-

sis, one has to introduce some form of environmental taxation, no matter

whether it is firm-specific or not, to induce firms to take into account the

presence of the externality and indeed carry out some R&D efforts to reduce

it. As we shall see in the following sections, this is not necessarily the case if

one adopts a properly dynamic approach to this issue.

5Here we assume firm-specific externalities and R&D activities, as it appears to be

reasonable in examining investments in environmental-friendly technologies. Hence, we

rule out the possibility of spillovers in R&D.
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3 The dynamic setup

As in the static model, consider a Cournot oligopoly with N single-product

homogeneous-good firms interacting over continuous time t ∈ [0,∞) . At any
time t, the demand function is p (t) = a−Q (t) , withQ (t) =

PN
i=1 qi (t) , qi (t)

being the instantaneous individual output of firm i. All firms use the same

productive technology, described by the cost function C (t) = cqi (t) . The

production of the final output involves a negative environmental externality

S (t) , evolving according to the following dynamics:

·
S (t) =

NX
i=1

bi (t) qi (t)− δS (t) , (1)

where δ > 0 is a constant decay rate and S (0) = S0 > 0 is the initial

condition. The coefficient bi (t) ≥ 0, with bi (0) = bi0 ≥ 0, measures the

marginal contribution to the stock of pollution that the production of firm

i entails. Depending on the R&D effort ki (t) of i,, it evolves over time

according to the following equation:

·
bi (t) = bi (t) [η − ki (t)] , η > 0. (2)

That is, until ki is smaller than the threshold value η, bi is increasing. As

in the static game, the instantaneous cost associated with the R&D activity

is Γi (t) = rk2i (t) , with r > 0. Hence, firm i’s instantaneous profits are

πi (t) = [p (t)− c] qi (t)− Γi (t) , and each firm i has to set qi (t) and ki (t) so

as to maximise

Πi =

Z ∞

0

{[p (t)− c] qi (t)− Γi (t)} e−ρtdt, (3)

under the state equations (1) and (2) and the initial conditions. Parameter

ρ > 0 is a constant discount rate common to all firms.
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3.1 Equilibrium analysis of the game

The solution concept is the open-loop Nash equilibrium. The current-value

Hamiltonian of firm i is:

Hi (·) =
(
[p (t)− c] qi (t)− Γi (t) + λi

·
S (t) + µii

·
bi (t) +

X
j 6=i

µij
·
bj (t)

)
, (4)

with the following necessary conditions (FOCs):

∂Hi

∂qi
= σ − 2qi (t)−Q−i (t) + λi (t) bi (t) = 0 (5)

where Q−i (t) ≡
P

j 6=i qj (t) and σ ≡ a− c;

∂Hi

∂ki
= −2rki (t)− µii (t) bi (t) = 0, (6)

Notice that µij (t) does not appear in the FOCs. The adjoint equations read

as follows:
·
λi (t) = (ρ+ δ)λi (t) (7)

·
µii (t) = [ρ− η + ki (t)]µii (t)− λi (t) qi (t) (8)

·
µij (t) = [ρ− η + kj (t)]µij (t)− λi (t) qj (t) . (9)

From (5) and (6) one obtains, respectively:

λi (t) = −
σ − 2qi (t)−Q−i (t)

bi (t)
(10)

µii (t) = −
2rki (t)

bi (t)
. (11)

The associated transversality conditions are:

lim
t→∞

e−ρtλi (t)S (t) = 0;

lim
t→∞

e−ρtµii (t) bi (t) = 0; (12)

lim
t→∞

e−ρtµij (t) bj (t) = 0.
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Before carrying out the equilibrium analysis, it is worth dwelling upon

the interpretation of the above necessary conditions. First of all, note that

(7) admits the solution λi (t) = 0 at all times, which in turn allows µii (t) = 0

to be a solution to (8). In such a case, the dynamic model would immediately

reproduce the very same outcome of the static game, with no investments at

all at any time and the static Cournot-Nash equilibrium replicated at all t:

Proposition 1 Adjoint equations admit the solution λi (t) = µii (t) = 0

at all t ∈ [0,∞) . This entails qi (t) = σ/ (N + 1) and ki (t) = 0 for all

i = 1, 2, 3, ...N at all t ∈ [0,∞) .

However, if the R&D control is always nil and the output control is al-

ways equal to the static Cournot-Nash solution, the level of pollution would

explode to plus infinity unless bi (0) = bi0 = 0, i.e., unless the polluting fea-

tures of productive technology are not an issue because technology itself is

already clean at the very outset (which of course makes the entire story a

trivial one). From a technical standpoint, this is equivalent to saying that

transversality condition would be violated.

Additionally, adjoint equations (7-8) also admits non-nil solutions which,

by definition, do not appear in the static version of the game. This has some

interesting implications as to the firms’ incentive to invest in environmental-

friendly technologies. To shed light on this aspect, we may propose the

following observations.

Equation (5) produces firm i’s instantaneous best reply:

q∗ (Q−i (t)) =
σ −Q−i (t) + λi (t) bi (t)

2
(13)

which shifts inwards (resp. outwards) w.r.t. its static counterpart for all

λi (t) < 0 (resp., λi (t) > 0). Equivalently, (10) takes a negative value for

all Q (t) < Nσ/ (N + 1) , i.e., whenever the industry output is lower than its

static Cournot-Nash level (and conversely). Now, if λi (t) < 0, the inward
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shift of best reply functions entails a quasi-collusive behaviour on the part of

firms, via an output contraction that, nonetheless, is driven by a fully non

cooperative behaviour. Also, note that (8) yields µii (t) < 0 for all ki (t) > 0.

The fact that adjoint variables are negative indicates that firm i attaches

a negative shadow value to its marginal contribution to the increase in the

pollution stock. Yet, the output contraction opens the possibility that the

firm increases its profits instant by instant, even if a costly R&D project

for a greener technology is undertaken.6 That is, the incentive to adopt the

investment strategy associated with λi (t) < 0 is highlighted by the flow of

instantaneous gains exemplified by:

πCN (k = 0) ≡ σ2

(N + 1)2
< (bp− c) bq − rk2 ≡ bπ (k > 0) (14)

for non-empty sets of values of k > 0 and bq ∈ µ0, σ

N + 1

¶
. During the game,

firm i may smooth the R&D investment not because she has developed any

environmentally-oriented conscience of her own, but rather in order to be able

to keep the output at a quasi-collusive level forever. In other words, from

the firms’ viewpoint, the R&D cost Γi (t) is the fee to be paid to build up

a path replicating that of a cartel in quantities, without actually taking any

implicitly collusive attitude that would constitute a target for the antitrust

authority. Conversely, from consumers’ viewpoint, a higher market price is

what they have to pay in return for a cleaner environment.

Having said that, we may proceed to the characterisation of the equilib-

rium behaviour. One can impose symmetry across quantities, costate vari-

ables and states:

qi (t) = qj (t) = q (t) , λi (t) = λj (t) = λ (t) , (15)

6Using a repeated game with infinite Nash reversion, Damania (1996) finds that firms

may not be willing to buy pollution-abating technologies if the associated exogenous cost

is too high.
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µii (t) = µjj (t) = µ (t) , bi (t) = bj (t) = b (t) (16)

and drop the time argument for brevity. From the FOCs (5) and (6) one also

obtains the control equations:

·
q =

λ
·
b+

·
λb

N + 1
,

·
k = −µ

·
b+

·
µb

2r
(17)

which can be rewritten, using (7-8) and (10-11), leading to the following

state-control dynamical system:

·
S (t) = Nb (t) q (t)− δS (t) (18)
·
b(t) = b(t)(η − k(t)) (19)

·
q(t) =

[(N + 1) q(t)− σ] [ρ+ δ + η − k(t)]

N + 1
(20)

·
k(t) = ρk(t)− q(t) [σ − (N + 1) q(t)]

2r
(21)

Although the equations (18-19) and (20-21) are not decoupled, we can stress

that, given any solution curve (q(t), k(t)) of equations (20-21), we can obtain

the state trajectories by applying the methods of separation of variables and

Lagrange’s variation of constants to (18-19):

b (t) = b0e
ηt−

R t
0 k(s)ds, (22)

S(t) =

µ
S0 + b0

Z t

0

³
e(η+δ)s−

R s
0 k(τ)dτ

´
q(s)ds

¶
e−δt. (23)

Which implies that both bi (t) and S (t) > 0 are non negative at all times

(except, possibly, doomsday in which they are nil) Before inspecting the

stationary points of the above dynamic system, it is worth observing that,

using the time elimination method, we can write the derivative

·
q
·
k
=

2r [(N + 1) q(t)− σ] [ρ+ δ + η − k(t)]

(N + 1) [2rρk (t)− q(t) (σ − (N + 1) q(t))]
=

dq

dk
(24)

indicating the slope of the open-loop Nash trajectory in the control plane.

The sign of (24) is evaluated in

9



Remark 2 Take q (t) ∈
µ
0,

σ

N + 1

¶
. Then, dq/dk < 0 for all

k (t) ∈
µ
min

½
ρ+ δ + η,

q(t) [σ − (N + 1) q (t)]

2rρ

¾
,

max

½
ρ+ δ + η,

q(t) [σ − (N + 1) q (t)]

2rρ

¾¶
.

That is to say, for any individual output level lower than the Cournot-

Nash output, there exists an admissible range of values for k (t) wherein the

two controls are substitutes at a generic point in time, during the game. In

such a case, any output contraction with respect to the Cournot-Nash static

equilibrium drives some R&D effort for cleaner technologies.

Steady state equilibria are described by the following:

Proposition 3 The stationary points of the system are:

PA = (SA, bA, qA, kA) =

µ
0, 0,

σ

N + 1
0

¶
,

PB = (SB, bB, qB, kB) = (0, 0, qB, δ + ρ+ η) ,

PC = (SC , bC , qC , kC) = (0, 0, qC , δ + ρ+ η) ,

where

qB =
σ −

p
σ2 − 8r (N + 1) (ρ+ δ + η) ρ

2 (N + 1)
,

qC =
σ +

p
σ2 − 8r (N + 1) (ρ+ δ + η) ρ

2 (N + 1)
.

Proof. Imposing the stationarity condition
·
k = 0 yields

k (q) =
q [σ − (N + 1) q]

2rρ
(25)

which can be plugged into
·
q = 0 to obtain the following solutions:

qA =
σ

N + 1
; qB,C =

σ ±
p
σ2 − 8r (N + 1) (ρ+ δ + η) ρ

2 (N + 1)
(26)
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with qB,C ∈ R+ for σ >
p
8r (N + 1) (ρ+ δ + η) ρ. By substituting in (25)

we have that kB,C = δ + ρ+ η.

In correspondence of the Cournot-Nash optimal quantity qA, we have

kA = 0., SA = 0, bA = 0.

The following results show the dynamic behaviour of the optimal solu-

tions:

Proposition 4 PA, PB and PC are saddle points of the system.

Proof. The Jacobian matrix of the state-control system reads as:

J =

⎛⎜⎜⎜⎜⎜⎜⎝
−δ Nq Nb 0

0 η − k 0 −b
0 0 ρ+ δ + η − k −q + σ

N + 1

0 0
1

2r
[2(N + 1)q − σ] ρ

⎞⎟⎟⎟⎟⎟⎟⎠ . (27)

J(PA) has the eigenvalues λ1 = −δ < 0, λ2 = η > 0, λ3 = ρ+ δ + η > 0 and

λ4 = ρ > 0, subsequently PA is a saddle point.

The analysis of the remaining two equilibria is slightly more difficult:

both J(PB) and J(PC) admit the negative eigenvalues λ1 = −δ < 0 and

λ2 = −ρ − δ < 0, so the stability properties of those two points depend on

the roots of the characteristic polynomials of the submatrices, for j = B,C:⎛⎜⎜⎜⎝
ρ+ δ + η − kj −qj +

σ

N + 1

1

2r
[2(N + 1)qj − σ] ρ

⎞⎟⎟⎟⎠ , (28)

i.e.

pj(λ) = λ2 − ρλ− 1

2r

µ
−qj +

σ

N + 1

¶
[2(N + 1)qj − σ]. (29)

If j = B, the two remaining eigenvalues are complex with real part ρ/2 > 0,

whereas if j = C, they are real and at least one of them is positive, hence

PB and PC are saddle points too.
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As is well known, a saddle point can be reached starting from initial states

that can be subject to more or less stringent conditions. In particular:

Remark 5 The steady state PA is degenerate, as it can be reached only along

an equilibrium trajectory which solves (18-19) for b0 = 0 and for any S0 > 0,

i.e., it is completely contained in the half-line determined by the intersection

of the hyperspaces b = 0, q =
σ

N + 1
, k = 0, with the stock of pollution

asymptotically decreasing to 0.

That is, the equilibrium reproducing the Cournot-Nash outcome can be

attained iff the technology is already fully environmental-friendly from the

outset, which makes this case quite peculiar and somewhat uninteresting.

Or, put it in other terms, the requirement on b0 indicates that the prediction

of the static game is far from convincing. Completely different considerations

apply to the remaining two steady states, that are attainable for b0 > 0.

Proposition 6 In the half-space k > η, along each equilibrium trajectory of

the system close to PB and PC the state variables S and b are monotonically

decreasing to 0.

Proof. The stationary points PB and PC belong to the half-space k > η. The

eigenvectors of J(PB) and J(PC) imply that the stable subspaces Es(PB) and

Es(PC) are spanned by the vectors of the canonical basis of R4: (1, 0, 0, 0)
and (0, 1, 0, 0), that is the trajectories on the respective stable manifolds are

heading towards the equilibrium coordinates S = 0, b = 0.

The economic meaning of the previous results is clear: in correspondence

of the two points PB and PC the stock of pollution tends to diminish and

finally disappears.

From the standpoint of the dynamical behaviour of the system, in the

above-mentioned half-space the Nash trajectories approach PB in the control

plane, spiral around it and then head towards PC , which is a saddle point

12



in the sense that there exists a phase curve contained in the control plane

which enters PC . As we will see in next subsection, this is good news because

in that point higher levels of profit and social welfare can be reached with

respect to PB.

The figures we are going to show in the following are sketched with the

help of Mathematic@ 5.0, after fixing suitably the relevant parameters:

N = 20, σ = 1, ρ = 3 · 10−2, η = 10−2, r = 10−2, δ = 10−2.

The first parametric plot represents a phase curve in a hyperspace S = S0,

being the horizontal plane the control space and the state b the variable on

the vertical axis. Choosing q(0) = 10−2, k(0) = 2 · 10−1, b(0) = 2 as initial
conditions for this numerical simulation, we obtain the following sketch of a

trajectory:

Figure 1. The path spirals down towards the steady state PB in the

control plane as the polluting emissions decrease over time

In the following plot we can visualize the sketches of some equilibrium

trajectories on the (k, q) control plane, with the same parameter values as

13



in Figure 1. On such a plane, coherently with the eigenvalues of (28), PB =

(0.16, 0.08) is clearly an unstable focus, whereas PC = (0.16, 0.38) is a saddle

point.

Figure 2. On the control plane, the saddle point trajectories either leave

the Cournot-Nash equilibrium PA or spiral around PB. The feasibility of PC

is ensured

Moreover, the optimal R&D effort of the representative firm is positive

at any time t during the game. Or, put it the other way around, any non-

zero value of the co-state variable attached to the dynamics of the individual

firm’s contribution to the increase of the pollution stock ensures that the

firm itself has indeed an incentive to invest in R&D activities for pollution

abatement all along the game.

3.2 Profit and welfare assessment

In this section we compare the optimal quantities, the level of profits and of

social welfare associated to the three steady states.
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Proposition 7 For every admissible σ, N , r, ρ, δ, η, we have qA > qC > qB.

In steady state, the profit levels are the following:

π(PA) =
σ2

(N + 1)2
, (30)

π(PB) = σqB −Nq2B − r(ρ+ δ + η)2, (31)

π(PC) = σqC −Nq2C − r(ρ+ δ + η)2. (32)

On the basis of (30-32), we can state:

Proposition 8 The profits π(PB) and π(PC) are positive if either of the

following holds:

1. ρ ≥ δ + η;

2. ρ < δ + η and

2
p
2(N + 1)(δ + η − ρ) < σ < [(N+1)(δ+η)+(1−N)ρ]

r
r(δ + η + ρ)

δ + η − ρ
.

Assuming that the parameters are such that profits are indeed non nega-

tive, we can make a comparison to assess the relative desirability of the three

outcomes:

Proposition 9 The following inequalities hold:

1. π(PC) > π(PB) irrespective of parameter values;

2. π(PA) > π(PC) if ρ ∈ [0, δ + η).

The intuition behind the above result is that PA is characterised by a

larger output level (which, per se, would be detrimental for profits) but the

corresponding R&D effort is nil (which in turn is good news for profits), while

the remaining two steady states are characterised by lower output levels
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in combination with positive R&D efforts. In particular, it is noteworthy

observing that the Cournot-Nash solution may be worse than the steady state

PC where the firm indeed invests in R&D, despite the fact that pollution does

not affect its profits.

Now we turn to consumer surplus CS(Pi), i = A,B,C, in the three

equilibria. Note that, in principle, the definition of consumer surplus would

be CS(Pi) = Q2
i /2−S; however, S = 0 always in steady state. The resulting

ranking is summarised in

Proposition 10 Over the entire admissible range of parameters, we have

CS(PA) > CS(PC) > CS(PB).

Finally, we evaluate social welfare SW (Pi) = Nπ(Pi) + CS(Pi), i =

A,B,C, to obtain:

Proposition 11 Over the entire admissible range of parameters, we have

SW (PA) > SW (PC) > SW (PB).

Propositions 7-11 also entail:

Corollary 12 Any ρ ∈ [0, δ + η) suffices to ensure that private and so-

cial preferences over the spectrum of steady state equilibria are reciprocally

aligned.

This essentially relies upon the fact that the industry R&D effort in PA is

nil. Note however that, as we have outlined above, PA is indeed degenerate.

4 Social planning

We assume that the benevolent planner uses a single plant for the production

of the consumption good (in view of the constant returns to scale character-

ising the related technology), while keeping N R&D labs, as this activity
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features decreasing returns. Hence, the list of variables reduces to N + 1

controls and two states, namely, S and b. The Hamiltonian of the planner

is:7

HSP (·) =
½
(σ − q) q +

q2

2
− S −Nrk2 + λ (bq − δS) + µb (η − k)

¾
(33)

where subscript SP stands for social planning. The necessary conditions are:

∂HSP

∂q
= σ − q + λb = 0; (34)

∂HSP

∂k
= −N (µb+ 2rk) = 0; (35)

−∂HSP

∂S
=

·
λ− ρλ⇔

·
λ = (ρ+ δ)λ+ 1; (36)

−∂HSP

∂b
=

·
µ− ρµ⇔ ·

µ = (ρ− η +Nk)µ− λq. (37)

With respect to the case of competition, observe that, under social planning,

in steady state it cannot be that λ = µ = 0. By manipulating the above

conditions, we obtain the following state-control system:

·
S = bq − δS (38)
·
b = b(η −Nk) (39)
·
q = b+ (q − σ) (ρ+ δ + η −Nk) (40)
·
k = ρk − q (σ − q)

2r
(41)

Unlike the oligopoly game we have investigated above, the planner’s problem

yields five steady state points:

7We attribute to the planner the same time discounting that we have used to measure

firms’s time preferences in the previous section. One might, however, suppose that the

planner’s discount rate be significantly lower than firms (possibly even nil), in order to

give an appropriate weight to the welfare of future generations. For a thorough appraisal

of this issue, see the Stern Review (Stern, 2007) as well as Dasgupta (2007), Norhaus

(2007) and Weitzman (2007).
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Proposition 13 The stationary points of the system are:

PSP1 = (SSP1, bSP1, qSP1, kSP1) = (0, 0, σ, 0),

PSP2 = (SSP2, bSP2, qSP2, kSP2) =

µ
0, 0, qSP2,

δ + ρ+ η

N

¶
,

PSP3 = (SSP3, bSP3, qSP3, kSP3) =

µ
0, 0, qSP3,

δ + ρ+ η

N

¶
,

PSP4 = (SSP4, bSP4, qSP4, kSP4) =

µ
2rηρ(ρ+ δ)

δN
, bSP4,

bSP4
ρ+ δ

,
η

N

¶
,

PSP5 = (SSP5, bSP5, qSP5, kSP5) =

µ
2rηρ(ρ+ δ)

δN
, bSP5,

bSP5
ρ+ δ

,
η

N

¶
,

where

qSP2 =

√
Nσ −

p
Nσ2 − 8r (ρ+ δ + η) ρ

2
√
N

qSP3 =

√
Nσ +

p
Nσ2 − 8r (ρ+ δ + η) ρ

2
√
N

bSP4 =
(ρ+ δ)

³√
Nσ −

p
Nσ2 − 8rηρ

´
2
√
N

bSP5 =
(ρ+ δ)

³√
Nσ +

p
Nσ2 − 8rηρ

´
2
√
N

Proof. Imposing stationarity on the R&D effort yields

k =
q (σ − q)

2rρ
(42)

which can be plugged into
·
q = 0 to obtain the following solutions:

qSP1 = σ; qSP2,3 =

√
Nσ ∓

p
Nσ2 − 8r (ρ+ δ + η) ρ

2
√
N

(43)

with qSP2,3 ∈ R+ for σ >
p
8r (ρ+ δ + η) ρ/N. This in turns implies kSP2,3 =

(δ + ρ+ η) /N . The corresponding state coordinates are S = 0, b = 0. On

the other hand, if b 6= 0,
·
b = 0 in k = η/N and plugging this expression into
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·
k = 0, we obtain qSP4,5. Consequently,

·
q = 0 yields bSP4,5 and finally

·
S = 0

produces SSP4,5.

Figure 3. The five steady state points in the space (k, q, S)
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Figure 3 locates the five steady state points emerging under social plan-

ning in three dimensions, in the space (k, q, S) . Note that the equilibrium

points PSP4 and PSP5 entail a positive amount of pollution and therefore do

not belong to the control plane. The existence of the fourth and fifth solu-

tions depends on the fact that the dynamics of the output level (40) depends
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on b, denoting that the planner indeed takes into account the environmental

impact of the production technology when choosing the output level..

The Jacobian matrix is:

J =

⎛⎜⎜⎜⎜⎜⎝
−δ q b 0

0 η −Nk 0 −Nb

0 1 ρ+ δ + η −Nk −N(q − σ)

0 0
1

2r
(2q − σ) ρ

⎞⎟⎟⎟⎟⎟⎠ . (44)

By repeating a procedure analogous to the one carried out to produce Propo-

sition 4, we can prove that:

Proposition 14 PSP1, PSP2, PSP3, PSP4 and PSP5 are saddle points.

Next we are going to evaluate the profits and the social welfare levels at

each equilibrium point.

π(PSP1) = 0,

π(PSP2) = π(PSP3) =
r

N
(ρ2 − (δ + η)2), (45)

π(PSP4) = π(PSP5) =
ηr

N
(2ρ− η).

Proposition 15 1. If ρ ∈ (δ + η,∞), then the profits π(PSP2), π(PSP3),

π(PSP4) and π(PSP5) are positive;

2. if ρ ∈ (δ + η, δ + 2η), then π(PSP2) = π(PSP3) < π(PSP4) = π(PSP5).

The social welfare associated to the steady states is computed as follows:

SW (PSPi) = π(PSPi) +
q2SPi
2
− SSPi, i = 1, . . . , 5, (46)
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and yields, respectively:

SW1 = SW (PSP1) =
σ2

2
, (47)

SW2 = SW (PSP2) =
σ2

4
− σ

p
σ2N − 8r(ρ+ δ + η)ρ

4
√
N

− r(δ + η)(δ + η + ρ)

N
,

SW3 = SW (PSP3) =
σ2

4
+

σ
p
σ2N − 8r(ρ+ δ + η)ρ

4
√
N

− r(δ + η)(δ + η + ρ)

N
,

SW4 = SW (PSP4) =
σ2

4
− σ

p
σ2N − 8rηρ
4
√
N

− rη[2ρ2 + δ(η + ρ)]

δN
,

SW5 = SW (PSP5) =
σ2

4
+

σ
p
σ2N − 8rηρ
4
√
N

− rη[2ρ2 + δ(η + ρ)]

δN
.

Proposition 16 1. SW1 > SW5 > SW4 and SW3 > SW2 over the whole

admissible range of parameters;

2. if ρ ∈ (δ + η, δ + 2η) and δ > 2η, then SW5 > SW3.

The steady state replicating the perfectly competitive outcome of the

static model would look like the most desirable one, since the related level

of social welfare exceeds all the remaining ones. However, it remains out of

reach for all b0 > 0.
8

Additionally, there exists a subset of the admissible range of parameters

in which the steady state PSP5 is both privately and socially preferable to

all the steady state allocations arising from the open-loop Nash game among

unregulated firms. With this in mind, we turn now our attention to the

design of a Pigouvian tax/subsidy that may adjust firms’ incentives so as to

drive them to reproduce PSP1.

8That is, the equivalent of Remark 5 holds here. The proof of this fact follows the same

lines as for the Cournot equilibrium of the open-loop game among firms. The details have

been omitted for brevity.
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5 Effects of a Pigouvian taxation

In this section, a Pigouvian tax rate θ > 0 is introduced, with taxation taking

the form of a linear function of the environmental externality produced by the

industry. Such a taxation affects each current-value Hamiltonian function,

which now writes as:

Hi (·) =
Ã
σ −

nX
j=1

qj

!
qi − rk2i − θS + λi

·
S + µii

·
bi +

X
j 6=i

µij
·
bj. (48)

As in Benchekroun and Long (1998, 2002), our objective here is to investigate

whether this Pigouvian tax rate can be designed so as to reproduce the same

social welfare level characterising the first best (that the planner himself

would be, in general, unable to attain). Clearly, this assumption leaves the

FOCs (5) and (6) unchanged, whereby the adjoint equations (7) become as

follows:
·
λi (t) = (ρ+ δ)λi (t) + θ. (49)

The above dynamics implies that the presence of a Pigouvian taxation in-

duces firms to shrink output levels as compared to the unregulated setting,

as can be ascertained from (13), whenever λi (0) < 0. That is, the policy

maker, being aware of the tradeoff between the price effect and the external

effect implied by any change in output, is willing to accept an increase in

price (as a result of the related higher degree of quasi-collusion) for the sake

of reducing the environmental externality.

Unlike (7), (49) does not admit the nil solution, so Proposition 1 cannot

hold, as in the social planning case. The state-control system is as follows
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(again, omitting the time argument):

·
S = Nbq − δS (50)
·
b = b(η − k) (51)

·
q =

[(N + 1) q − σ] [ρ+ δ + η − k] + θb

N + 1
(52)

·
k = ρk − q [σ − (N + 1) q]

2r
(53)

As a consequence of taxation, firms’ cost structure is modified to account for

pollution, and therefore
·
q depends on θb. As a consequence, also

·
k depends

on θb. Therefore,

dq

dk
=
2r [((N + 1) q − σ) (ρ+ δ + η − k) + θb]

(N + 1) [2rρk − q (σ − (N + 1) q)]
(54)

and the slope of the Nash trajectory in the control plane becomes sensitive

to pollution thanks to the Pigouvian tax rate.

Also in this case, multiple equilibrium points appear. Provided that

the market is large enough, σ > 2
p
2(1 +N)rρ(ρ+ δ + η), we obtain three

steady states corresponding to no pollution:

(S1, b1, q1, k1) =

µ
0, 0,

σ

N + 1
, 0

¶
; (55)

(S2, b2, q2, k2) =

Ã
0, 0,

σ −
p
σ2 − 8(1 +N)rρ(ρ+ δ + η)

2(1 +N)
, ρ+ δ + η

!
;

(S3, b3, q3, k3) =

Ã
0, 0,

σ +
p
σ2 − 8(1 +N)rρ(ρ+ δ + η)

2(1 +N)
, ρ+ δ + η

!
.

Moreover, as in the social planning case, two further equilibria with positive
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stocks of pollution exist:

(S4, b4, q4, k4) =

Ã
2ηNrρ(δ + ρ)

δθ
,
(δ + ρ)(σ −

p
σ2 − 8η(1 +N)rρ)

2θ
,

4ηrρ

σ −
p
σ2 − 8η(1 +N)rρ

, η

!
; (56)

(S5, b5, q5, k5) =

Ã
2ηNrρ(δ + ρ)

δθ
,
(δ + ρ)(σ +

p
σ2 − 8η(1 +N)rρ)

2θ
,

4ηrρ

σ +
p
σ2 − 8η(1 +N)rρ

, η

!
. (57)

The steady states (56) and (57) depend on the Pigouvian tax rate: in par-

ticular, notice that qθ4 > qθ5 and that the associated steady state levels of

pollution are decreasing in θ.

At this stage, it is worth carrying out a comparative analysis of the social

welfare equilibrium levels again. Let qθi , S
θ
i , π

θ
i and SW θ

i be, respectively,

the i-th steady state values in the present case, the levels of social welfare

SW θ
i is computed by the following formula:

SW θ
i =

(Nqθi )
2

2
+Nπθi − Sθ

i . (58)

The only two steady states affected by the tax rate are the fourth and the

fifth one and

SW θ
4 = ηNr

"
η

Ã
− 8Nrρ2

(σ −
p
σ2 − 8(1 +N)ηrρ)2

− 1
!
+ (59)

+2ρ

Ã
2σ

σ −
p
σ2 − 8(1 +N)ηrρ

− δ + ρ

δθ

!#
;

SW θ
5 = ηNr

"
η

Ã
− 8Nrρ2

(σ +
p
σ2 − 8(1 +N)ηrρ)2

− 1
!
+

+2ρ

Ã
2σ

σ +
p
σ2 − 8(1 +N)ηrρ

− δ + ρ

δθ

!#
,
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so SW θ
4 > SW θ

5 irrespective of all the parameter values.

Now we compare SW θ
4 with the maximum social welfare level that would

be obtained under social planning case, i.e. SW1 =
σ2

2
, in order to derive the

threshold values of the tax rate that allows to reach SW1 under oligopolistic

competition .

If we consider SW θ
4 as a function of θ ∈ (0,∞), we can stress that it takes

negative values when θ is close to zero, :

lim
θ→∞

SW θ
4 =

2ηNr[4ηrρ(η + ηN − ρN)− (2ρ− η)σ(σ −
p
σ2 − 8(1 +N)ηrρ)]

(σ −
p
σ2 − 8(1 +N)ηrρ)2

.

(60)

Moreover, SW θ
4 is strictly increasing, consequently admitting a horizon-

tal asymptote, whose level is positive if ρ ∈
µ
η

2
,
η(1 +N)

N

¶
. Call K :=

K(η, r, ρ,N, σ) such a positive level.

If K >
σ2

2
, then the optimal tax rate θ∗ entailing the identity SW1 =

SW θ∗
4 is given by:

θ∗ =
4ηNrρ(δ + ρ)

δ(2K − σ2)
. (61)

An analogous procedure can be carried out with SW θ
5 , where it can be easily

ascertained that the tax rate θ∗∗ such that SW1 = SW θ∗∗
5 exceeds θ∗ and the

inequality with respect to the related externality levels is inverted, i.e. Sθ∗
4 >

Sθ∗∗
5 . In other words, the tax rate that allows to reproduce the social welfare

SW1 is higher and corresponds to a higher level of output and pollution.

This seemingly counterintuitive fact relies on the identity leading to the

value (61):

SW θ
4,5 = πθ4,5 + CSθ

4,5 − Sθ
4,5 =

σ2

2
, (62)

implying

θ =
4ηNrρ(δ + ρ)

δ[2(πθ4,5 + CSθ
4,5)− σ2]

. (63)

25



Thus, inequality qθ4 > qθ5 affects the denominator of the previous relation,

because π4 + CS4 > π5 + CS5. Hence, the first best social welfare can be

obtained by moving along two different paths: either with a larger quantity

and a lower price but a higher externality level, or conversely with a smaller

quantity and a higher price but a lower externality.9

The remarkable feature of the latter result is that, starting form a situ-

ation where the command optimum (point PSP1) reproducing the perfectly

competitive outcome is not, in general, attainable under planning except in

the uninteresting case where the productive technology is completely green at

the outset, it is nonetheless true that there exist an optimal stationary indus-

trial policy whereby the regulator can drive profit-maximising firms to yield

the same steady state welfare level associated with the first best, although of

course at the price of a different surplus allocation and environmental exter-

nality. If the regulator is interested in the size of the total pie but not in the

relative size of its slices, this is a price that he might well be willing to pay.

6 Concluding remarks

We have revisited the issue of the incentive for firms to carry out R&D efforts

aimed at introducing environmental-friendly technologies. Contrary to the

acquired view establishing that such an incentive is lacking due to the fact

that firms fail to internalise the environmental externality, the dynamic ap-

proach we have adopted in the foregoing analysis shows that firms do have an

9Note that the corresponding steady state profits are independent of θ:

πθ4,5 =
δσ
³
σ ±
√
Ω
´
− 2η (N + 1) rΥ

2δ (N + 1)2

where Ω = σ2−8ηρ (N + 1) r and Υ = 2ρ2 (N + 1)N+δ
£
η (N + 1) + 2ρN2

¤
. There exist

admissible parameter regions where the above profits are strictly positive.
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R&D incentive in this direction throughout the game, although it may indeed

vanish in one specific steady state, which portrays the equilibrium outcome

of the corresponding static game. Such an incentive has no altruistic nature,

being associated with a quasi collusive decision on output levels whereby any

environmentally-oriented R&D is accompanied by a price increase.

Moreover, we have investigated the behaviour of the model under the

assumption that a benevolent planner controls production and R&D, showing

that the perfectly competitive outcome with marginal cost pricing and a

totally clean technology is one of the possible steady states of the system, but

is feasible only if initial conditions are such that the environmental externality

is not an issue from the very outset.

Yet, as a (partial) remedy, we have found that there exist a feasible sta-

tionary Pigouvian tax rate able to induce profit-maximising firms to follow

a path leading to the very same aggregate steady state welfare as in the first

best.

The foregoing analysis can be extended in several directions, to examine

feedback solutions, the implications of international trade with transbound-

ary pollution and uncertainty affecting both the accumulation of pollution

and the R&D outcome, all of these issues to be nested into a general equi-

librium approach. These extensions are left for future research.
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