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University of Chicago

Federal Reserve Bank of Chicago

borovicka@uchicago.edu

Lars Peter Hansen

University of Chicago

National Bureau of Economic Research

lhansen@uchicago.edu

December 9, 2011

Abstract

Dynamic stochastic equilibrium models of the macro economy are designed to match

the macro time series including impulse response functions. Since these models aim

to be structural, they also have implications for asset pricing. To assess these impli-

cations, we explore asset pricing counterparts to impulse response functions. We use

the resulting dynamic value decomposition (DVD) methods to quantify the exposures

of macroeconomic cash flows to shocks over alternative investment horizons and the

corresponding prices or compensations that investors must receive because of the ex-

posure to such shocks. We build on the continuous-time methods developed in Hansen

and Scheinkman (2010), Borovička et al. (2011) and Hansen (2011) by constructing

discrete-time shock elasticities that measure the sensitivity of cash flows and their

prices to economic shocks including economic shocks featured in the empirical macroe-

conomics literature. By design, our methods are applicable to economic models that

are nonlinear, including models with stochastic volatility. We illustrate our methods

by analyzing the asset pricing model of Ai et al. (2010) with tangible and intangible

capital.

∗We thank John Cochrane, Jesús Fernández-Villaverde, John Heaton, Junghoon Lee and Ian Martin for
helpful comments. The views expressed herein are those of the authors and not necessarily those of the
Federal Reserve Bank of Chicago or the Federal Reserve System.



1 Introduction

It is standard practice to represent implications of dynamic macroeconomic models by show-

ing how featured time series respond to shocks. Alternative current period shocks influence

the future trajectory of macroeconomic processes such as consumption, investment or out-

put, and these impacts are measured by impulse response functions. From an asset pricing

perspective, these functions reflect the exposures of the underlying macroeconomic processes

to shocks. These exposures depend on how much time has elapsed between the time the

shock is realized and time of its impact on the macroeconomic time series under investiga-

tion. Changing this gap of time gives a trajectory of exposure elasticities that we measure.

In this manner we build shock-exposure elasticities that are very similar to and in some cases

coincide with impulse response functions.

In a fully specified dynamic, stochastic equilibrium model, exposures to macroeconomic

shocks are priced because investors must be compensated for bearing this risk. To cap-

ture this compensation, we produce pricing counterparts to impulse response functions by

representing and computing shock-price elasticities implied by the structural model. These

prices are the risk compensations associated with the shock exposures. The shock-exposure

and shock-price elasticities provide us with dynamic value decompositions (DVD’s) to be

used in analyzing alternative structural models that have valuation implications. Quantity

dynamics reflect the impact of current shocks on future distributions of a macroeconomic

process, while pricing dynamics reflect the current period compensation for the exposure to

future shocks.

In our framework the shock-exposure and shock-price elasticities have a common under-

lying mathematical structure. Let M be process that grows or decays stochastically in a

geometric fashion. It captures the compounding discount and/or growth rates over time in

a stochastic fashion and is constructed from an underlying Markov process X . Let W be a

sequence of independent and identically distributed standard normal random vectors. The

common ingredient in our analysis is the ratio:

εm(x, t) = αh(x) ·
E [MtW1 | X0 = x]

E [Mt | X0 = x]
. (1)

where x is the current Markov state and αh selects the linear combination of the shock vector

W1 of interest. The state dependence in αh allows for analysis of stochastic volatility. We

interpret this entity as a “shock elasticity” used to quantify the date t impact on values of

exposure to the shock αh(x)W1 at date one. We justify this formula and provide ways to

compute it in practice.

While these elasticities have not been explored in the quantitative literature in macroe-
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conomics, they have antecedents in the asset pricing literature. The intertemporal structure

of risk premia has been featured in the term structure of interest rates, but this literature

purposefully abstracts from the pricing of stochastic growth components in the macroecon-

omy. Recently Lettau and Wachter (2007) and Hansen et al. (2008) have explored the term

structure of risk premia explicitly in the context of equity claims that grow over time. Risk

premia reflect contributions from exposures and prices of those exposures. Here we build on

an analytical framework developed in Alvarez and Jermann (2005), Hansen and Scheinkman

(2009), Hansen and Scheinkman (2010) and Borovička et al. (2011) to distinguish exposure

elasticities and price elasticities. We illustrate these tools in measuring shock exposures and

model-implied prices of exposure to those shocks in a model with physical and intangible

capital constructed by Ai et al. (2010).

2 Analytical framework

In this section we describe some basic tools for valuation accounting, by which we provide

measures of shock exposures and shock prices for alternative investment horizons. We will

justify and interpret formula (1) given in the introduction. Let X be the state vector process

for a dynamic stochastic equilibrium model.

We consider dynamic systems of the form

Xt+1 = ψ(Xt,Wt+1) (2)

where W is a sequence of independent shocks distributed as a multivariate standard normal.

Moreover, Wt+1 is independent of the date-t state vector Xt. In much of what follows we

will focus on stationary solutions for this system.

By imposing appropriate balanced growth restrictions, we imagine that the logarithms

of many macroeconomic processes that interest us grow or decay over time and can be

represented as:

Yt = Y0 +

t−1∑

s=0

κ(Xs,Ws+1) (3)

where Y0 is an initial condition, which we will set conveniently to zero in much of our

discussion. A typical example of the increment to this process is

κ(Xs,Ws+1) = β(Xs) + α(Xs) ·Ws+1

where the function β allows for nonlinearity in the conditional mean and the function α

introduces stochastic volatility. We call such a process Y an additive functional since it
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accumulates additively over time, and can be built from the underlying Markov process X

provided that Wt+1 can be inferred from Xt+1 and Xt. By a suitable construction of the

state vector, this restriction can always be met. The state vector X thus determines the

dynamics of the increments in Y . When X is stationary Y has stationary increments.

While the additive specification of Y is convenient for modeling logarithms of economic

processes, to represent values of uncertain cash flows it is necessary to study levels instead

of logarithms. We therefore use the exponential of an additive functional, M = exp (Y ),

to capture growth or decay in levels. We will refer to M as a multiplicative functional

represented by κ or sometimes the more restrictive specification (α, β).

In what follows we will consider two types of multiplicative functionals, one that captures

macroeconomic growth, denoted by G, and another that captures stochastic discounting, de-

noted by S. The stochastic nature of discounting is needed to adjust consumption processes

or cash flows for risk. Thus S, and sometimes G as well, are computed from the underlying

economic model to reflect equilibrium price dynamics. For instance, G might be a consump-

tion process or some other endogenously determined cash flow, or it might be an exogenously

specified technology shock process that grows through time. The interplay between S and

G will dictate valuation over multi-period investment horizons.

2.1 One-period asset pricing

It is common practice in the asset pricing literature to represent prices of risk in terms of

expected return on an investment per unit of exposure to risk. For instance, the familiar

Sharpe ratio measures the difference between the expected return on a risky and a risk-free

cash flow scaled by the volatility of the risky cash flow. We are interested in using this

approach to assign prices to shock exposures.

As a warm up for subsequent analysis, consider one-period asset pricing for conditionally

normal models. Suppose that

logG1 = βg(X0) + αg(X0) ·W1

log S1 = βs(X0) + αs(X0) ·W1

where G1 is the payoff to which we assign values and S1 is the one-period stochastic discount

factor used to compute these values. The one-period return on this investment is:

R1 =
G1

E [S1G1 | X0]

Applying standard formulas for lognormally distributed random variables, the logarithm
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of the expected return is:

logE [G1 | X0 = x]− logE [S1G1 | X0 = x] = −βs(x)− αg(x) · αs(x)−
|αs(x)|2

2
.

Imagine applying this to a family of such payoffs parameterized in part by αg. The vector

αg defines a vector of exposures to the components of the normally distributed shock W1.

Then −αs is the vector of shock “prices” representing the compensation for exposure to the

shocks. This compensation is expressed in terms of expected returns as is typical in asset

pricing.

While this calculation is straightforward, we now explore a related derivation that will

extend directly to multiple horizons. We parameterize a family of payoffs using:

logH1(r) = rαh(X0) ·W1 −
r2

2
|αh(X0)|2 (4)

where r is a scalar parameter and impose

E[|αh(X0)|2] = 1.

In what follows we use the vector αh as an exposure direction. We have built H1(r) so that

it has conditional expectation equal to one, but other constructions are also possible.

Form a parameterized family of payoffs G1H1(r) where by design:

logG1 + logH1(r) = [αg(X0) + rαh(X0)] ·W1 + βg(X0)−
r2

2
|αh(X0)|2.

By changing r we alter the exposure in direction αh. These payoffs imply a corresponding

parameterized family of logarithms of expected returns:

logE[G1H1(r) | X0 = x]− logE[S1G1H1(r) | X0 = x].

Since we are using the logarithms of the expected returns measure and our exposure direction

αh(X0) ·W1 has a unit standard deviation, by differentiating with respect to r we compute

an elasticity:

d

dr
logE[G1H1(r) | X0 = x]

∣∣∣∣
r=0

− d

dr
logE[S1G1H1(r) | X0 = x]

∣∣∣∣
r=0

.

This calculation leads us to define counterparts to quantity and price elasticities from mi-

croeconomics:
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1. shock-exposure elasticity:

εg(x, 1) =
d

dr
logE[G1H1(r) | X0 = x]

∣∣∣∣
r=0

= αg(x) · αh(x)

2. shock-price elasticity:

εp(x, 1) =
d

dr
logE[G1H1(r) | X0 = x]

∣∣∣∣
r=0

− d

dr
logE[S1G1H1(r) | X0 = x]

∣∣∣∣
r=0

= −αs(x) · αh(x).

For this conditional log-normal specification, αg measures the exposure vector, −αs measures

the price vector and αh captures which combination of shocks is being targeted. In this

setting the shock price elasticity can be thought of as the “conditional covariance” between

− log S1 and αh ·W1.

Since exposure to risk requires compensation, notice that a “value elasticity” is the

difference between an exposure elasticity and a price elasticity:

d

dr
logE[S1G1H1(r) | X0 = x]

∣∣∣∣
r=0

= εg(x, 1)− εp(x, 1)

The value of an asset responds to changes in exposure of the associated cash flow to a shock

(a quantity effect), and to changes in the compensation resulting from the change in exposure

(a price effect). The shock elasticity of the asset value is then obtained by taking into account

both effects operating in opposite directions. Specifically, the shock price elasticity enters

with a negative sign because exposure to risk requires compensation reflected in a decline in

the asset value.

Our formulas for the shock elasticities exploit conditional log-normality of the payoffs to

be priced and of the stochastic discount factor. In this formulation we are using the possibility

of conditioning variables to fatten tails of distributions as in models with stochastic volatility.

This conditioning is captured by the Markov state x in our elasticity formulas. We use one as

the second argument for the elasticities to denote that we are pricing a one-period payoff. We

extend the analysis to multi-period cash flows in the next subsection. While the one-period

price elasticity does not depend on our specification of αg, the dependence on αg emerges

when we consider longer investment horizons.
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2.2 Multiple-period investment horizons

Next we analyze how our analysis extends to longer investment horizons. Consider the

parameterized payoff GtH1(r) with a date-zero price E [StGtH1(r) | X0 = x]. Notice that

we are changing the exposure at date one and looking at the consequences on a t-period

investment. The logarithm of the expected return is:

logE [GtH1(r) | X0 = x]− logE [StGtH1(r) | X0 = x] .

Following our previous analysis, we construct two elasticities:

1. shock-exposure elasticity:

εg(x, t) =
d

dr
logE[GtH1(r) | X0 = x]

∣∣∣∣
r=0

2. shock-price elasticity:

εp(x, t) =
d

dr
logE[GtH1(r) | X0 = x]

∣∣∣∣
r=0

− d

dr
logE[StGtH1(r) | X0 = x]

∣∣∣∣
r=0

.

These two elasticities are functions of the investment horizon t, and thus we obtain a term

structure of elasticities. The components of these elasticities have a common mathematical

form. This is revealed by using a multiplicative functional M to represent either G or

the product SG. Taking the derivative with respect to r yields equation (1) given in the

introduction and reproduced here:

εm(x, t) = αh(x) ·
E [MtW1 | X0 = x]

E [Mt | X0 = x]
.

This formula provides a target for computation and interpretation. Consider the pricing

of a vector of payoffs GtW1 in comparison to the scalar payoff Gt. The shock-exposure

elasticity is constructed from the ratio of expected payoffs E [GtW1 | X0 = x] relative to

E [Gt | X0 = x]. The shock-price elasticity includes an adjustment for the values of the

payoffs E [StGtW1 | X0 = x] relative to E [StGt | X0 = x]. Our interest in elasticities leads

us to the use of ratios in these computations.

Notice that

E [MtW1 | X0 = x]

E [Mt | X0 = x]
= E

[
E [Mt | W1, X0]

E [Mt | X0]
W1

∣∣∣∣X0 = x

]
.
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Thus a major ingredient in the computation is the covariance between E[Mt|W1,X0]
E[Mt|X0]

and the

shock vector W1, which shows how the shock elasticity measures the impact of the shock W1

on the conditional conditional expectation of Mt.

Prior to our more general discussion, consider the case in which M is lognormal,

E [logMt | W1, X0]−E [logMt | X0] = φt ·W1

where φt is the (state-independent) vector of “impulse responses” or moving-average coeffi-

cients of M for horizon t. Then

E [Mt |W1, X0]

E [Mt | X0]
= exp

(
φt ·W1 −

1

2
|φt|2

)
, (5)

and its covariance with W1 is:

E [MtW1 | X0 = x]

E [Mt | X0 = x]
= φt.

Thus whenM is constructed as a lognormal process and αh is state-independent, our elastic-

ities coincide with the impulse response functions typically computed in empirical macroe-

conomics.1 The shock-exposure elasticities are the responses for logG and the shock-price

elasticities are the impulse response functions for − log S.

Our interest is in calculating elasticities for nonlinear models and in particular for models

with stochastic volatility in which αg and possibly αh are state-dependent. Our methods

extend directly to such models provided the underlying Markov structure that we presume

is germane.

2.3 Alternative representation

To contrast transitory and long-term implications of structural shocks for the exposure and

price dynamics, we isolate growth rate and martingale components of multiplicative function-

als. Hansen and Scheinkman (2009) justify the following factorization of the multiplicative

functional:

Mt = exp(ηt)M̂t
e(X0)

e(Xt)
(6)

1Our dating is shifted by one period vis-à-vis an impulse response function. In macroeconomic modeling
what we denote as φt is the vector of responses of logMt−1 to the components of the shock vector W0. The
responses are indexed by the gap of time t− 1 between the shock date and the outcome date.
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where M̂ is multiplicative martingale and η is the growth or decay rate. Associated with

the martingale is a change of probability measure given by

Ê [Z | X0] = E
[
M̂tZ | X0

]

for a random variable Z that is a (Borel measureable) function of the Markov process between

dates zero and t. This change of measure preserves the Markov structure for X although it

changes the transition probabilities. To study long-horizon limits, we consider only measure

changes that preserve stochastic stability in the sense that

lim
t→∞

Ê [f(Xt) | X0 = x] →
∫
f(x)dQ̂(x)

where Q̂ is a stationary distribution under the change of measure.2

Using factorization (6),

E [MtW1 | X0 = x]

E [Mt | X0 = x]
=
Ê [ê(Xt)W1 | X0 = x]

Ê [ê(Xt) | X0 = x]

where ê = 1
e
. In the large t limit, the right-hand side converges to the conditional mean of

W1 under the altered distribution:

Ê [W1 | X0 = x] . (7)

The dependence of ê(Xt) on W1 governs the dependence of the shock elasticities on the

investment horizon and eventually decays as t→ ∞.

2.4 Multi-period risk elasticities and a decomposition result

To build assets with differential exposures to risk over multiple investment horizons, con-

sider a multi-period parameterization of an underlying cash flow GH (r), constructed as a

generalization of the family of payoffs from equation (4):

logHt (r) =

t−1∑

s=0

[
−1

2
r2 |αh (Xs)|2 + rαh (Xs) ·Ws+1

]
.

The perturbed cash flow GH (r) is now more exposed to the shock vector W in the

direction αh at all times between the current period and the maturity date. We capture the

2Notice that we did not specify the initial distribution for X0 in our use of M̂ . The convergence is
presumed to hold at least for almost all x under the Q̂ distribution.

8



sensitivity of the expected return to such a multi-period perturbation using the risk-price

elasticity ̺p (x, t)

̺p (x, t) =
1

t

d

dr
logE [GtHt (r) | X0 = x]

∣∣∣∣
r=0

− 1

t

d

dr
logE [StGtHt (r) | X0 = x]

∣∣∣∣
r=0

. (8)

The risk-price elasticity measures the marginal increase in the expected return on a cash flow

in response to a marginal increase in exposure of the cash flow functional in the direction

αh in every period. Scaling by t annualizes the elasticity.

The risk-price elasticity again consists of two terms, reflecting the contribution of the ex-

posure of the expected cash flow, and the contribution of the valuation of this cash flow. Both

terms have a common mathematical structure. Using a general multiplicative functional M

that substitutes either for S or SG, the derivative in (8) can be expressed as

̺ (x, t) =
1

t

d

dr
logE [MtHt (r) | X0 = x]

∣∣∣∣
r=0

=
1

t

E [MtDt | X0 = x]

E [Mt | X0 = x]

where D is an additive functional

Dt =

t−1∑

s=0

αh (Xs) ·Ws+1.

By interchanging summation and integration in the conditional expectation, and utilizing

the martingale decomposition from Section 2.3, we write the risk elasticity as3

̺ (x, t) =
1

t

t−1∑

s=0

E [Mtε (Xs, t− s) | X0 = x]

E [Mt | X0 = x]
=

1

t

t−1∑

s=0

Ê [ê (Xt) ε (Xs, t− s) | X0 = x]

Ê [ê (Xt) | X0 = x]
.

This formula reveals how a risk elasticity is constructed by averaging across time the

contributions of the shock elasticities in different periods. The contributions of future shocks

are weighted by the term
ê (Xt)

Ê [ê (Xt) | X0 = x]
(9)

which represents the contribution of the nonlinear dynamics of the model arising from both

the stationary component captured by ê, and by the martingale component incorporated in

the change of probability measure ·̂. The shock elasticities are essential inputs into this com-

putation because of the recursive construction of valuation as reflected by the multiplicative

functional M .

3While we are being casual about this interchange, Hansen and Scheinkman (2010) provide a rigorous
analysis of such formulas.
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The resulting elasticity of a payoff maturing in period t + τ to a shock that occurs in

period τ + 1 then is

ε (x, t; τ) =
Ê [ê (Xt+τ ) ε (Xτ , t) | X0 = x]

Ê [ê (Xt+τ ) | X0 = x]
.

By construction, ε (x, t; 0) = ε (x, t).

The impact of ê in the weighting (9) is transient in two particular senses. First, fix the

time of the shock τ and extend the maturity of the cash flow by t→ ∞. Then the limiting

elasticity generalizes result (7):

ε (x,∞; τ) = Ê [ε (Xτ ,∞) | X0 = x] = Ê [αh (Xτ ) ·Wτ+1 | X0 = x]

The impact of proximate shocks on cash flows far in the future remains state-dependent but

is only determined by the change in probability measure constructed from the contribution

of permanent shocks.

Second, fix the distance between the time of the shock and the maturity date, t, but

extend the date of the shock by τ → ∞. The resulting elasticity

ε (x, t;∞) =
Ê [ê (Xt) ε (X0, t)]

Ê [ê (Xt)]
=
Ê [ê(Xt)αh (X0) ·W1]

Ê [ê(X0)]

is independent of the current state, and depends on the transient term ê only through

its dynamics between the date of the shock and the maturity of the cash flow. Transient

dynamics preceding the date of the shock become irrelevant.

2.5 Partial shock elasticities

In our application in Section 7, we explore how shock elasticities are altered when we change

the shock configuration. We are interested in measuring the approximate impact of intro-

ducing new shocks. Among other things, this will allow us to quantify the contribution of

different propagation channels of the dynamics (2)–(3) to the shock elasticity. In a dynamical

system a given shock may operate through multiple channels as is the case in the example

economy we investigate. To feature a specific channel, we introduce a new shock and study

the sensitivity of the elasticities. Because of the potential nonlinear nature of the model, we

do not calculate this sensitivity by zeroing out the existing shocks. Instead we perturb the

system by exposing it to new hypothetical shocks.
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We motivate and compute the following object:

ε̃m(x, t) = α̃h(x) ·
d

dq

E
[
Mt(q)W̃1 | X0 = x

]

E [Mt(q) | X0 = x]

∣∣∣∣∣∣
q=0

. (10)

where W̃1 is a new shock vector and q as a way parameterize equilibrium outcomes when

the economic model is exposed to this random vector. The vector α̃(x) determines which

combination of α̃(x) is the target of the computation. We refer to this entity as a “partial

shock elasticity”.

Formally, we consider the following perturbed model:

Xt+1(q) = ψ̃
(
Xt(q),Wt+1, qW̃t+1, q

)
for t ≥ 0

where we assume that the shock vector W̃ is independent of W and X0. Changing the

real number q changes the stochastic dynamics for the Markov process X(q). We nest our

original construction by imposing that

ψ(x, w) = ψ̃(x, w, 0, 0).

Similarly, we let

Yt+1(q)− Yt(q) = κ̃
(
Xt(q),Wt+1, qW̃t+1, q

)
for t ≥ 0,

where

κ(x, w) = κ̃(x, w, 0, 0).

We consider the multiplicative functional M(q) = exp[Y (q)], which depends implicitly on q.

The functions ψ̃ and κ̃ are assumed to be smooth in what follows in order that we may

compute derivatives needed to characterize sensitivity.

We measure the sensitivity to the new shock W̃ to characterize a specific transmission

mechanism within the model. As in our construction of shock elasticities, we specify a

parameterized perturbation H̃1(r) analogous to (4):

log H̃1(r) = rα̃h(X0) · W̃1 −
r2

2
|α̃h(X0)|2.

We restrict α̃h so that

E|α̃h(Xt)|2 = 1
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analogous to our previous elasticity computation. Since W̃1 is independent of X0 and W ,

the shock elasticity for W̃1 is degenerate:

lim
q→0

α̃h(x) ·
E
[
Mt(q)W̃1 | X0 = x

]

E [Mt(q) | X0 = x]
= α̃h(x) ·

E
[
MtW̃1 | X0 = x

]

E [Mt | X0 = x]
= 0.

where M is M(q) evaluated at q = 0. In what follows we compute a partial elasticity by

differentiating with respect to q:

ε̃m(x, t) =
d

dq
α̃h(x) ·

E
[
Mt(q)W̃1 | X0 = x

]

E [Mt(q) | X0 = x]

∣∣∣∣∣∣
q=0

.

We use this derivative to quantify the impact of the shock elasticity when we introduce a

new shock into the dynamical system. When there are multiple components to W̃1, we will

be able to conduct relative comparisons of their importance by evaluating the derivative

vector:

d

dq

E
[
Mt(q)W̃1 | X0 = x

]

E [Mt(q) | X0 = x]

∣∣∣∣∣∣
q=0

.

2.5.1 Construction

Let X1,· and Y1,· denote the “first derivative processes” obtained by differentiating the func-

tions ψ̃ and κ̃ and evaluated at q = 0. These processes are represented using the recursion

X1,t+1 = ψ̃x(Xt,Wt+1, 0, 0)X1,t + ψ̃w̃(Xt,Wt+1, 0, 0)W̃t+1 + ψ̃q(Xt,Wt+1, 0, 0)

Y1,t+1 − Y1,t = κ̃x(Xt,Wt+1, 0)X1,t + κ̃w̃(Xt,Wt+1, 0, 0)W̃t+1 + κ̃q(Xt,Wt+1, 0, 0) (11)

To implement these recursions, we include X1,t as an additional state vector but we have

initialized it to be zero at date zero. The processX used in this recursion is the one associated

with the original (q = 0) dynamics.

By imitating our previous analysis, we compute:

ε̃m(x, t) = α̃h(x) ·
E
[
MtY1,tW̃1 | X0 = x

]

E [Mt | X0 = x]

− α̃h(x) ·
(
E [MtY1,t | X0 = x]

E [Mt | X0 = x]

)

E
[
MtW̃1 | X0 = x

]

E [Mt | X0 = x]



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where M is evaluated at q = 0. Since W̃1 is independent of X0 and W , the second term

on the right-hand side is zero but the first term is not. Thus formula (10) for the partial

elasticity is valid.

We compute this expectation in two steps. Since W̃1 is independent of X and W and

future W̃t’s, in the first step we compute expectations X̃1,t = E
[
X1,t(W̃1)

′ | Ft

]
and Ỹ1,t =

E
[
Y1,t(W̃1)

′ | Ft

]
recursively using

X̃1,t+1 = ψ̃x(Xt,Wt+1, 0, 0)X̃1,t

Ỹ1,t+1 − Ỹ1,t = κ̃x(Xt,Wt+1, 0, 0)X̃1,t

for t ≥ 1 and with initial conditions:

X̃1,1 = ψ̃w̃(x,W1, 0, 0)E
[
W̃1(W̃1)

′ | F1

]
= ψ̃w̃(x,W1, 0, 0)

Ỹ1,1 = κ̃w̃(x,W1, 0, 0)E
[
W̃1(W̃1)

′ | F1

]
= κ̃w̃(x,W1, 0, 0). (12)

For the recursions in (11), notice that

ψ̃x(Xt,Wt+1, 0, 0) = ψx(Xt,Wt+1)

κ̃x(Xt,Wt+1, 0, 0) = κx(Xt,Wt+1).

With this construction, we may view Ỹ1,t as the approximate vector of “impulse responses”

of Yt to unit “impulses” of the components of W̃1. For a nonlinear model, the date t response

will be a random variable. In the second step we use Ỹ1,t to represent the partial elasticity:

ε̃m(x, t) = α̃h(x) ·
E

[
Mt

(
Ỹ1,t

)′
| X0 = x

]

E [Mt | X0 = x]
.

2.5.2 An interesting special case

The following special case will be of interest in our application. Suppose that we construct

the perturbed model so that

ψ̃w̃(x, w, 0, 0)Υ = ψw(x, w), (13)

and similarly,

κ̃w̃(x, w, 0, 0)Υ = κw(x, w) (14)
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for some matrix Υ with the same number of rows as in the shock vector W̃t+1 and the same

number of columns as in the vector Wt+1. In this construction, Υ has at least as many rows

as columns and Υ′Υ = I.

Given a random vector αh(x) used to model state dependence in the exposure to Wt+1,

form:

α̃h(x) = Υαh(x)

In light of equalities (13) and (14), and our initialization in (12),

ε̃m(x, t) = α̃h(x) ·
E

[
Mt

(
Ỹ1,t

)′
| X0 = x

]

E [Mt | X0 = x]
≈ αh(x) ·

E [MtW1 | X0 = x]

E [Mt | X0 = x]
, (15)

where the right-hand side is a shock elasticity and the left-hand side is a partial shock

elasticity. The approximation becomes arbitrarily good in a continuous-time limit. See

Borovička et al. (2011) for a continuous-time characterization of the right-hand side of this

equation. In Appendix B.3, we analyze the discrete-time approximation (15) in more detail

and provide an alternative way to characterize this approximation.

In our application in Section 7, W̃ has twice as many entries as W . We construct the

model perturbed by W̃ in order to explore implications of alternative transmission mecha-

nisms when individual shocks have multiple impacts on the dynamic economic system. When

a component of Wt+1 influences the economic system through two channels, we design the

perturbed system in which two distinct components of W̃t+1 are independent inputs into

each of the channels. In this manner the partial elasticities in conjunction with formula (15)

allow us to unbundle the impacts of the original set of shocks.

3 Entropy decomposition

Our shock-price elasticities target particular shocks. It is also of interest to have measures

of the overall magnitude across shocks. In the construction that follows we build on ideas

from Bansal and Lehmann (1997), Alvarez and Jermann (2005), and especially Backus et al.

(2011). The relative entropy of a multiplicative functional M for horizon t is given by:

1

t
[logE (Mt|X0 = x)− E (logMt|X0 = x)] ,

which is nonnegative as an implication of Jensen’s Inequality. When Mt is log-normal, this

notion of entropy yields one-half the conditional variance of logMt conditioned on date zero

information, and Alvarez and Jermann (2005) propose using this measure as a “generalized
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notion of variation.” Our primary task is to construct a decomposition that provides a

more refined quantification of how entropy depends on the investment horizon t. While our

approach in this section is similar to the construction of shock elasticities, the analysis of

entropy is global in nature and does not require localizing the risk exposure. On the other

hand, it necessarily bundles the pricing implications of alternative shocks.

For a multiplicative functional M , form:

E[Mt | W1, X0]

E[Mt | X0]
(16)

which has conditional expectation one conditioned on X0. By Jensen’s inequality we know

that the expected logarithm of this random variable conditioned on X0 must be less than or

equal to zero, which leads us to construct:

ζm(x, t) = logE [Mt | X0 = x]− E [logE (Mt | W1, X0) | X0 = x] ≥ 0

which is a measure of “entropy” of the random variable in (16). It measures the magnitude

of new information that arrives between date zero and date one for the process M . This is

the building block for a variety of computations. We think of these measures as the entropy

counterparts to our shock elasticity measures considered previously. These measures do not

feature specific shocks but they also do not require that we localize the exposures.

Consider the case in which M is lognormal. As we showed in (5),

E [Mt |W1, X0]

E [Mt | X0]
= exp

(
φt ·W1 −

1

2
|φt|2

)
,

where φt is the (state-independent) vector of “impulse responses” or moving-average coeffi-

cients of M for horizon t. Then

ζm(x, t) =
1

2
|φt|2 .

which is one-half the variance of the contribution of the random vector W1 to logMt.

Returning to our more general analysis, a straightforward calculation justifies:

lim
t→∞

ζm(x, t) = −E
[
log M̂1 | X0 = x

]

where M̂ is the martingale component of M in factorization (6) of the multiplicative func-

tional.

To see why ζm(x, t) are valuable building blocks, we use the multiplicative Markov struc-
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ture of M to obtain:

E [Mt | Fj+1]

E [Mt | Fj ]
=

E
[
Mt

Mj
| Fj+1

]

E
[
Mt

Mj
| Fj

] =
E
[
Mt

Mj
|Wj+1, Xj

]

E
[
Mt

Mj
| Xj

] ,

and thus

logE [Mt | Fj]− E [logE (Mt | Fj+1) | Fj] = ζm(Xj , t− j)

for j = 0, 1, ..., t− 1. Taking expectations as of date zero,

E [logE (Mt | Fj) | F0]−E [logE (Mt | Fj+1) | F0] = E [ζm(Xj, t− j) | X0] .

We now have the ingredients for representing entropy over longer investment horizons. Notice

that
Mt

E [Mt | F0]
=

t∏

j=1

E [Mt | Fj]

E [Mt | Fj−1]
.

Taking logarithms and expectations conditioned on date zero information, the entropy over

investment horizon-t is

1

t
[logE (Mt | X0)− E (logMt | X0)] =

1

t

t∑

j=1

E [ζm(Xt−j , j) | X0] . (17)

The left-hand side is a conditional version of the entropy measure for alternative prospective

horizons t. The right-hand side represents the horizon t entropy in terms of averages of the

building blocks ζm(x, t).

The structure of the entropy is similar to that of the risk elasticity function ̺(x, t) from

Section 2.4. Both are constructed as averages over the investment horizon of the expected

one-period contributions captured by our fundamental building blocks.

Recall the multiplicative martingale decomposition of M constructed in Section 2.3.

Hansen (2011) compares this to an additive decomposition of logM :

logMt = ρt + log M̃t + g(X0)− g(Xt)

where log M̃ is an additive martingale. Backus et al. (2011) propose the average entropy

over a t period investment horizon as a measure of horizon dependence. The large t limit of

equation (17) then is

lim
t→∞

1

t
[logE (Mt | X0)− E (logMt | X0)] = η − ρ.
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The asymptotic entropy measure is state-independent and is expressed as the difference of

two asymptotic growth rates, one arising from the multiplicative martingale decomposion

and the other from the additive martingale decompositions in logarithms.

We now suggest some applications of our entropy decomposition. First, to relate our

calculations to the work of Backus et al. (2011), let M = S. Backus et al. (2011) study the

left-hand side of (17) averaged over the initial state X0. They view this entropy measure for

different investment horizons as an attractive alternative to the volatility of stochastic dis-

count factors featured by Hansen and Jagannathan (1991). To relate these entropy measures

to asset pricing models and data, Backus et al. (2011) note that

−1

t
E [logE (St | X0)]

is the average yield on a t-period discount bond where we use the stationary distribution for

X0. Following Bansal and Lehmann (1997),

−1

t
E [log St] = −E [log S1] ,

is the average one-period return on the maximal growth portfolio under the same distribu-

tion. The right-hand side of (17) extends this analysis by featuring the role of condition

information captured by the state vector X0 and the entropy-building blocks ζ(x, t). Notice

that we may write

ζs(x, t) = logE [St | X0 = x]−E

[
logE

(
St

S1
| X1

)
| X0 = x

]
− E [log S1 | X0 = x] .

The first two terms compare the logarithm of a t-period bond price to the conditional average

of the logarithm of a t− 1-period bond price. The third term is the conditional growth rate

of the maximal growth-rate return. By featuring S only, these calculations by design feature

the term structure of interest rates but not the term structure of exposures of stochastic

growth factors.

As an alternative application, following Rubinstein (1976), Lettau and Wachter (2007),

Hansen et al. (2008), Hansen and Scheinkman (2009), and Hansen (2011) we consider the

interaction between stochastic growth and stochastic discounting. For instance, as in Sec-
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tion 2.4 the logarithm of the risk premium for a t-period investment in a cash flow Gt is:

1

t
logE [Gt | X0 = x]−1

t
logE [StGt | X0 = x] +

1

t
logE [St | X0 = x] =

=
1

t
(logE [Gt | X0 = x]− E [logGt | X0 = x])

+
1

t
(logE [St | X0 = x]− E [log St | X0 = x])

− 1

t
(logE [StGt | X0 = x]− E [logSt + logGt | X0 = x]) .

The formula relates the t-period risk premium on a stochastically growing cash flow on the

left-hand side to the entropy measures for three multiplicative functionals on the right-hand

side: G, S and SG.4 Our decompositions can be applied to all three components to measure

how important one-period ahead exposures are to t-period risk premia.

4 Convenient functional form

In the preceding sections, we have developed formulas for shock-price and shock-exposure

elasticities for a wide class of models driven by a state vector with Markov dynamics (2).

While the level of generality is of advantage, it is nevertheless imperative that we find

tractable implementations. Our interest lies in providing tools for valuation analysis in

structural macroeconomic models, and we feature here a special dynamic structure for which

we can obtain closed-form solutions for the shock elasticities. Moreover, we will show in

Section 5 that this dynamic structure embeds a special class of approximate solutions to

dynamic macroeconomic models constructed using perturbation methods.

Consider the following triangular state vector system:

X1,t+1 = Θ10 +Θ11X1,t + Λ10Wt+1

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23 (X1,t ⊗X1,t)

+Λ20Wt+1 + Λ21 (X1,t ⊗Wt+1) + Λ22 (Wt+1 ⊗Wt+1) . (18)

Such a system allows for stochastic volatility, and we restrict the matrices Θ11 and Θ22 to

have stable eigenvalues. The additive functionals that interest us satisfy

Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t)

+ Ψ0Wt+1 +Ψ1 (X1,t ⊗Wt+1) + Ψ2 (Wt+1 ⊗Wt+1) . (19)

4We thank Ian Martin for suggesting this link to entropy.
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In what follows we use a 1×k2 vector Ψ to construct a k×k symmetric matrix sym [matk,k (Ψ)]

such that5

w′ (sym [matk,k (Ψ)])w = Ψ (w ⊗ w) .

This representation will be valuable in some of the computations that follow. We use addi-

tive functionals to represent stochastic growth via a technology shock process or aggregate

consumption, and to represent stochastic discounting used in representing asset values. This

setup is rich enough to accommodate stochastic volatility, which has been featured in the

asset pricing literature and to a lesser extent in the macroeconomics literature.

A virtue of parameterization (18)–(19) is that it gives quasi-analytical formulas for our

dynamic elasticities. The implied model of the stochastic discount factor has been used in

a variety of reduced-form asset pricing models. Such calculations are free of any approxi-

mation errors to the dynamic system (18)–(19) and, as a consequence, ignore the possibility

that approximation errors compound and might become more prominent as we extend the

investment or forecast horizon t. On the other hand, we will use an approximation to deduce

this dynamical system, and we have research in progress that explores the implications of

approximation errors in the computations that interest us.

We illustrate the convenience of this functional form by calculating the logarithms of

conditional expectations of multiplicative functionals of the form (19). Consider a function

that is linear/quadratic in x = (x′1, x
′
2)

′:

log f(x) = Φ0 + Φ1x1 + Φ2x2 + Φ3 (x1 ⊗ x1)

Then conditional expectations are of the form:

logE

[(
Mt+1

Mt

)
f(Xt+1) | Xt = x

]
= logE [exp (Yt+1 − Yt) f(Xt+1) | Xt = x]

= Φ∗
0 + Φ∗

1x1 + Φ∗
2x2 + Φ∗

3 (x1 ⊗ x1)

= log f ∗(x) (20)

where the formulas for Φ∗
i , i = 0, . . . , 3 are given in Appendix A. This calculation maps a

function f into another function f ∗ with the same functional form. Our multi-period cal-

culations exploit this link. For instance, repeating these calculations compounds stochastic

growth or discounting. Moreover, we may exploit the recursive Markov construction in (20)

5In this formula matk,k (Ψ) converts a vector into a k × k matrix and the sym operator transforms this
square matrix into a symmetric matrix by averaging the matrix and its transpose. Appendix A introduces
convenient notation for the algebra underlying the calculations in this and subsequent sections.
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initiated with f(x) = 1 to obtain:

logE [Mt | X0 = x] = Φ∗
0,t + Φ∗

1,tx1 + Φ∗
2,tx2 + Φ∗

3,t (x1 ⊗ x1)

for appropriate choices of Φ∗
i,t.

4.1 Shock elasticities

To compute shock elasticities given in (1) under the convenient functional form, we construct:

E [MtW1 | X0 = x]

E [Mt | X0 = x]
=
E
[
M1E

(
Mt

M1
| X1

)
W1 | X0 = x

]

E
[
M1E

(
Mt

M1
| X1

)
| X0 = x

] .

Notice that the random variable:

L1,t =
M1E

(
Mt

M1
| X1

)

E
[
M1E

(
Mt

M1
| X1

)
| X0 = x

]

has conditional expectation one. Multiplying this positive random variable byW1 and taking

expectations is equivalent to changing the conditional probability distribution and evaluating

the conditional expectation ofW1 under this change of measure. Then under the transformed

measure, using a complete-the-squares argument we may show that W1 remains normally

distributed with a covariance matrix:

Σ̃t =
[
Ik − 2 sym

(
matk,k

[
Ψ2 + Φ∗

2,t−1Λ22 + Φ∗
3,t−1 (Λ10 ⊗ Λ10)

])]−1
.

where Ik is the identity matrix of dimension k.6 We suppose that this matrix is positive

definite. The conditional mean vector for W1 under the change of measure is:

Ẽ [W1|X0 = x] = Σ̃t [µt,0 + µt,1x1] ,

where Ẽ is the expectation under the change of measure and the coefficients µt,0 and µt,1 are

given in Appendix B.

6This formula uses the result that (Λ10W1)⊗ (Λ10W1) = (Λ10 ⊗ Λ10) (W1 ⊗W1).
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Thus the shock elasticity is given by:

ε (x, t) = αh(x) · E [L1,tW1 | X0 = x]

= αh(x)
′Σ̃t [µt,0 + µt,1x1]

The shock elasticity function in this environment depends on the first component, x1, of

the state vector. Recall from (18) that this component has linear dynamics. The coefficient

matrices for the evolution of the second component, x2, nevertheless matter for the shock

elasticities even though these elasticities do not depend on this component of the state vector.

4.2 Entropy increments

The convenient functional form (18)–(19) also provides a tractable formula for the entropy

components. Observe that

ζ (x, t) = −E [logL1,t|X0 = x] .

Consistent with our previous calculations, L1,t is the likelihood ratio built from two normal

densities for the shock vector: a multivariate normal density for the altered distribution

and a multivariate standard normal density. A consequence of this construction is that the

negative of the resulting expected log-likelihood satisfies:

ζ (x, t) =
1

2

[(
Ẽ [W1|X0 = x]

)′ (
Σ̃t

)−1 (
Ẽ [W1|X0 = x]

)
+ log |Σ̃t|+ trace

(
Σ̃ −1

t

)
− k

]

Thus the mean distortion Ẽ [W1|X0 = x] is a critical input into both the shock elasticities

and the entropy increments.7

5 Perturbation methods

In many applications it is convenient to view the functional form of the type we considered in

Section 4 as an approximation to dynamic stochastic equilibrium. Consider a parameterized

family of the dynamic systems specified in (2):

Xt+1(q) = ψ(Xt(q), qWt+1, q) (21)

7In a continuous-time limit, the only term that will remain is the counterpart to the quadratic form in
the conditional mean distortion for the shock.
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where we let q parameterize the sensitivity of the system to shocks. We will entertain a limit

in which q = 0 and first- and second-order approximations around this limit system. Specif-

ically, following Holmes (1995) and Lombardo (2010), we form an approximating system by

deducing the dynamic evolution for the pathwise derivatives with respect to q and evaluated

at q = 0. To build a link to the parameterization in Section 4, we feature a second-order

expansion:

Xt ≈ X0,t + qX1,t +
q2

2
X2,t

where Xm,t is the m-th order, date t component of the stochastic process. We abstract from

the dependence on initial conditions by restricting each component process to be stationary.

Our approximating process will similarly be stationary.8

5.1 Approximating the state vector process

While Xt serves as a state vector in the dynamic system (21), the state vector itself depends

on the parameter q. Let Ft be the σ-algebra generated by the infinite history of shocks

{Wj : j ≤ t}. For each dynamic system, we presume that the state vectorXt is Ft measurable

and that in forecasting future values of the state vector conditioned on Ft it suffices to

condition on Xt. Although Xt depends on q, the construction of Ft does not. As we will

see, the approximating dynamic system will require a higher-dimensional state vector for a

Markov representation, but the construction of this state vector will not depend on the value

of q. We now construct the dynamics for each of the component processes. The result will

be a recursive system that has the same structure as the triangular system (18).

Define x̄ to be the solution to the equation:

x̄ = ψ(x̄, 0, 0),

which gives the fixed point for the deterministic dynamic system. We assume that this fixed

point is locally stable. That is ψx(x̄, 0, 0) is a matrix with stable eigenvalues, eigenvalues

with absolute values that are strictly less than one. Then set

X0,t = x̄

for all t. This is the zeroth-order contribution to the solution constructed to be time-

invariant.

In computing pathwise derivatives, we consider the state vector process viewed as a func-

8As argued by Lombardo (2010), this approach is computationally very similar to the pruning approach
described by Kim et al. (2008) or Andreasen et al. (2010).

22



tion of the shock history. Each shock in this history is scaled by the parameter q, which

results in a parameterized family of stochastic processes. We compute derivatives with re-

spect to this parameter where the derivatives themselves are stochastic processes. Given the

Markov representation of the family of stochastic processes, the derivative processes will also

have convenient recursive representations. In what follows we derive these representations.9

Using the Markov representation, we compute the derivative of the state vector process

with respect to q, which we evaluate at q = 0. This derivative has the recursive representa-

tion:

X1,t+1 = ψq + ψxX1,t + ψwWt+1

where ψq, ψx and ψw are the partial derivative matrices:

ψq
.
=
∂ψ

∂q
(x̄, 0, 0), ψx

.
=
∂ψ

∂x′
(x̄, 0, 0), ψw

.
=

∂ψ

∂w′
(x̄, 0, 0).

In particular, the term ψwWt+1 reveals the role of the shock vector in this recursive rep-

resentation. Recall that we have presumed that x̄ has been chosen so that ψx has stable

eigenvalues. Thus the first derivative evolves as a Gaussian vector autoregression. It can be

expressed as an infinite moving average of the history of shocks, which restricts the process

to be stationary. The first-order approximation to the original process is:

Xt ≈ x̄+ qX1,t.

In particular, the approximating process on the right-hand side has x̄+ q(I −ψx)
−1ψq as its

unconditional mean.

In many applications, the first-derivative process X1,· will have unconditional mean zero,

ψq = 0. This includes a large class of models solved using the familiar log approximation

techniques, widely used in macroeconomic modeling. This applies to the example economy

we consider in Section 7. In Section 6 we suggest an alternative approach motivated by

models in which economic agents have a concern for model misspecification. This approach,

when applied to economies with production, results in a ψq 6= 0.

9Conceptually, this approach is distinct from the approach often taken in solving dynamic stochastic
general equilibrium models. The common practice is to a compute a joint expansion in q and state vector x
around zero and x̄ respectively in approximating the one-period state dynamics. This approach often results
in approximating processes that are not globally stable, which is problematic for our calculations. We avoid
this problem by computing an expansion of the stochastic process solutions in q alone, which allows us to
impose stationarity on the approximating solution. In conjunction with the more common approach, the
method of “pruning” has been suggested as an ad hoc way to induce stochastic stability, and we suspect that
it will give similar answers for many applications. See Lombardo (2010) for further discussion.
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We compute the pathwise second derivative with respect to q recursively by differentiating

the recursion for the first derivative. As a consequence, the second derivative has the recursive

representation:

X2,t+1 = ψqq + 2 (ψxqX1,t + ψwqWt+1) +

+ψxX2,t + ψxx (X1,t ⊗X1,t) + 2ψxw (X1,t ⊗Wt+1) + ψww (Wt+1 ⊗Wt+1)

where matrices ψij denote the second-order derivatives of ψ evaluated at (x̄, 0, 0) and formed

using the construction of the derivative matrices described in Appendix A.2. As noted by

Schmitt-Grohé and Uribe (2004), the mixed second-order derivatives ψxq and ψwq are often

zero using second-order refinements to the familiar log approximation methods.

The second-derivative process X2,· evolves as a stable recursion that feeds back on itself

and depends on the first derivative process. We have already argued that the first derivative

process X1,t can be constructed as a linear function of the infinite history of the shocks. Since

the matrix ψx has stable eigenvalues, X2,t can be expressed as a linear-quadratic function

of this same shock history. Since there are no feedback effects from X2,t to X1,t+1, the joint

process (X1,·, X2,·) constructed in this manner is necessarily stationary.

With this second-order adjustment, we approximate Xt as

Xt ≈ x̄+ qX1,t +
q2

2
X2,t.

When using this approach we replace Xt with these three components, thus increasing the

number of state variables. Since X0,t is invariant to t, we essentially double the number of

state variables by using X1,t and X2,t in place of Xt.

Further, the dynamic evolution for (X1,·, X2,·) becomes a special case of the the triangular

system (18) given in Section 4. When the shock vectorWt is a multivariate standard normal,

we can utilize results from Section 4 to produce exact formulas for conditional expectations

of exponentials of linear-quadratic functions in (X1,t, X2,t). We exploit this construction in

the subsequent subsection. For details on the derivation of the approximating formulas see

Appendix A.

5.2 Approximating an additive functional and its multiplicative

counterpart

Consider the approximation of a parameterized family of additive functionals with increments

given by:

Yt+1(q)− Yt(q) = κ(Xt(q), qWt+1, q)
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and an initial condition Y0(q) = 0. We use the function κ in conjunction with q to param-

eterize implicitly a family of additive functionals. We approximate the resulting additive

functionals by

Yt ≈ Y0,t + qY1,t +
q2

2
Y2,t (22)

where each additive functional is initialized at zero and has stationary increments.

Following the steps of our approximation of X , the recursive representation of the zeroth-

order contribution to Y is

Y0,t+1 − Y0,t = κ(x̄, 0, 0)
.
= κ̄;

the first-order contribution is

Y1,t+1 − Y1,t = κq + κxX1,t + κwWt+1

where κx and κw are the respective first derivatives of κ evaluated at (x̄, 0, 0); and the

second-order contribution is

Y2,t+1 − Y2,t = κqq + 2 (κxqX1,t + κwqWt+1) +

+κxX2,t + κxx (X1,t ⊗X1,t) + 2κxw (X1,t ⊗Wt+1) + κww (Wt+1 ⊗Wt+1)

where the κij’s are the second derivative matrices constructed as in Appendix A.2. The

resulting component additive functionals are special cases of the additive functional given in

(19) that we introduced in Section 4.

Consider next the approximation of a multiplicative functional:

Mt = exp (Yt) .

The corresponding components in the second-order expansion of Mt are

M0,t = exp (tκ̄)

M1,t =M0,tY1,t

M2,t =M0,t (Y1,t)
2 +M0,tY2,t.

Since Y has stationary increments constructed fromXt andWt+1, errors in approximating

X and κ may accumulate when we extend the horizon t. Thus caution is required for this

and other approximations to additive functionals and their multiplicative counterparts. In

what follows we will be approximating elasticities computed as conditional expectations

of multiplicative functionals that scale the shock vector or functions of the state vector.
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Previously, we have argued that the nonstationary martingale component of multiplicative

functionals can be absorbed conveniently into a change of measure. Thus for our purposes,

this problem of approximation of a multiplicative functional is essentially equivalent to the

problem of approximating a change in measure. Since our elasticities are measured per unit

of time, the potential accumulation of errors is at least partly offset by this scaling. In our

applications we will perform some ad hoc checks, but such approximation issues warrant

further investigation.

5.3 Approximating shock elasticities

We consider two alternative approaches to approximating shock elasticities of the form:

ε(x, t) = αh(x) ·
E [MtW1 | X0 = x]

E [Mt | X0 = x]
. (23)

Recall that we produced this formula by localizing the risk exposure and computing a (log-

arithmic) derivative.

5.3.1 Approach 1: Approximation of elasticity functions

Our first approach is a direct extension of the perturbation method just applied. We will

show how to construct a second-order approximation to the shock elasticity function of the

form

ε(X0, t) ≈ ε0(t) + qε1(t) +
q2

2
ε2(X1,0, X2,0, t)

where only the second-order component is state-dependent. First, observe that the zeroth-

order approximation is

ε0(t) = 0

because the zeroth-order contribution in the numerator of (23) is

E [exp(tκ̄)W1|X0 = x] = 0.

This result replicates the well-known fact that first-order perturbations of a smooth deter-

ministic system do not lead to any compensation for risk exposure.

The first-order approximation is:

ε1(t) = αh(x̄) · E [Y1,tW1 | F0] = αh(x̄) ·
[

t−1∑

j=1

κx (ψx)
j−1

ψw + κw

]′
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which is state-independent. This approximation shows the explicit link between the impulse

response function for a log-linear approximation and the shock elasticity function.

The second-order adjustment to the approximation is:

ε2(X1,0, X2,0, t) = αh(x̄) ·
{
E
[
(Y1,t)

2
W1 + Y2,tW1 | F0

]
− 2E [Y1,tW1 | F0]E [Y1,t | F0]

}
+

+ 2

[
∂αh

∂x′
(x̄)

]
X1,0 · E [Y1,tW1 | F0] .

This adjustment can be expressed as a function of X1,0 and X2,0 since (X1,·, X2,·) is Markov.

Notice that the second-order approximation can induce state dependence in the shock

elasticities. Often it is argued that higher than second-order approximations are required to

capture state dependence in risk premia. Since we have already performed a differentiation

to construct an elasticity, the second-order approximation of an elasticity implicitly include

third-order terms. Relatedly, in approximating elasticities using representation (23), we have

normalized the exposure to have a unit standard deviation and this magnitude is held fixed

even when q declines to zero. By fixing the exposure we reduce the order of differentiation

required for state dependence to be exposed.

To illustrate these calculations, consider a special case in which

Yt+1 − Yt = κ(Xt, qWt+1, q) = β(Xt) + qα(Xt) ·Wt+1.

Then

ε(x, 1) = αh(x) ·
E [M1W1 | X0 = x]

E [M1 | X0 = x]
= qαh(x) · α(x).

We may use our previous formulas or perform a direct calculation to show that

ε1(1) = αh(x̄) · α(x̄)

ε2(X1,0, X2,0, 1) = 2(X1,0)
′

[
∂αh

∂x′
(x̄)

]′
α(x̄) + 2(X1,0)

′

[
∂α

∂x′
(x̄)

]′
αh(x̄)

In comparison, suppose that we compute a risk premium for the one-period cash flow

G1 = exp [βg(X0) + qαg(X0) ·W1]

priced using the one-period stochastic discount factor:

S1 = exp [βs(X0) + qαs(X0) ·W1]
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The one-period risk premium (in logarithms) is:

logE [G1 | X0 = x]− logE [S1G1 | X0 = x] + logE [S1 | X0 = x] = (q)2αg(x) · αs(x).

The first two terms on the left when taken together give the logarithm of the expected one

period return, and the negative of the third term is an adjustment for the risk-free rate. Since

we scaled the cash flow exposure by q, the risk premium scales in q2 and the second-order

approximation to this premium will be constant in contrast to our shock elasticities.

5.3.2 Approach 2: Exact elasticities under approximate dynamics

As an alternative approach, we exploit the fact that the second-order approximation is a

special case of the convenient functional form that we discussed in Section 4. This allows

us to compute elasticities using the quasi-analytical formulas we described in that section.

With this second approach, we calculate approximating stochastic growth and discounting

functionals and then use these to represent arbitrage-free pricing. This second approach

leads us to include some (but not all) third-order terms in q as we now illustrate.

Recall that in the example just considered, we approximated the one-period shock elas-

ticity as

ε(x, 1) = qαh(x) · α(x).

With this second approach, we obtain

ε(x, 1) ≈ q

[
αh(x̄) + q

∂αh

∂x′
(x̄)X1,0

]
·
[
α(x̄) + q

∂α

∂x′
(x̄)X1,0

]
.

The q and q2 terms agree with the outcome of our first approach, but we now include an

additional third-order term in q. Both approaches are straightforward to implement and can

be compared.

There are applications where it is natural to make the perturbation vector αh (x) depend

on x, for example, when calculating shock elasticities in models with stochastic volatility.

However, in line with the literature on impulse response functions, αh (x) will often be

chosen to be a constant vector of zeros with a single one. In this case, both notions of the

second-order approximation of a shock elasticity function coincide.

5.4 Approximating partial shock elasticities

In Section 2.5 we defined the partial shock elasticity function as a way to explore alternative

transmission mechanisms and the impact of introducing new shocks. We may either compute

28



direct expansions or we may use the second-order expansion in q as a starting point. The

formulas in Section 2.5 are directly applicable to these, except that we must compute the

initializations:

X̃1,1 = ψ̃w̃(x,W1, 0, 0)

Ỹ1,1 = κ̃w̃(x,W1, 0, 0).

We may approximate these initial conditions by constructing a joint expansion based on

scaling Wt+1 by q and qW̃ and including first-order terms in q. This allows us to exploit the

analytical tractability of the convenient functional form in Section 4.

In Appendix B.3, we show that the first-order expansion in r of the partial elasticity

function

ε̃(X0, t) ≈ ε̃0(t) + qε̃1(X1,0, t).

corresponds to the second-order expansion of the shock elasticity function for appropriately

chosen shock configurations. The differentiation in q that we used to construct the partial

elasticity (10) implies that the partial elasticity function is nonzero already in its zeroth-

order:

ε̃0(t) = α̃(x̄) ·
[

t−1∑

j=1

κ̃x

(
ψ̃x

)j−1

ψ̃w̃ + κ̃w̃

]′

where the derivative matrices are evaluated at the deterministic steady state (x̄, 0, 0, 0).

Observe that ε̃0(t) is linear in the partial derivatives with respect to W̃ evaluated at the

deterministic steady state, which is also true for the higher-order terms in the expansion of

ε̃(x, t). This illustrates why partial elasticities decompose additively in shock configurations,

as we documented in the ‘interesting special case’ in Section 2.5. We utilize this additive de-

composition in Section 7 to quantify the contribution of different shock propagation channels

to shock elasticities in an example economy.

5.5 Equilibrium conditions

In our discussion for pedagogical simplicity we took as a starting point the Markov rep-

resentation for the law of motion (21). In economic applications, this law of motion is

expressed in terms equilibrium conditions that involve conditional expectations of state and

co-state variables. Using the perturbation methods described in Judd (1998), we may com-

pute the necessary derivatives at the deterministic steady state without explicitly computing

the function ψ in advance. As in our calculations there is a convenient recursive structure
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to the derivatives in which higher-order derivatives can be built easily from the lower-order

counterparts. The requisite derivatives can be constructed sequentially, order by order.

5.6 Related approaches

There also exist ad-hoc approaches which mix orders of approximation for different compo-

nents of the model or state vector. The aim of these methods is to improve the precision of

the approximation along specific dimensions of interest, while retaining tractability in the

computation of the derivatives of the function ψ. Justiniano and Primiceri (2008) use a

first-order approximations but augment the solution with heteroskedastic innovations. Be-

nigno et al. (2010) study second-order approximations for the endogenous state variables in

which exogenous state variables follow a conditionally linear Markov process. Malkhozov

and Shamloo (2011) combine a first-order perturbation with heteroskedasticity in the shocks

to the exogenous process and corrections for the variance of future shocks. These solution

methods are designed to produce nontrivial roles for stochastic volatility in the solution of

the model and in the pricing of exposure to risk. The approach of Benigno et al. (2010) or

Malkhozov and Shamloo (2011) give alternative ways to construct the functional form used

in Section 4.

6 Recursive and robust utility investors

In this section we contrast two preference specifications which share some common features

but can lead to different approaches for local approximation. The first preference specifica-

tion is the recursive utility of Kreps and Porteus (1978). By design, this specification avoids

presuming that investors reduce intertemporal, compound consumption lotteries. Instead

investors may care about the intertemporal composition of risk. As an alternative, we con-

sider an investor whose preferences are influenced by his concern for robustness, which leads

him to evaluate his utility under alternative distributions and checking for sensitivity.

While the two preference specifications may be observationally equivalent in particular

model economies, here we briefly explore conceptual differences in the construction of their

expansions. We have ongoing work that studies the comparisons in more detail. Here, we

focus on the second-order expansion to illustrate the impact of such preferences on valua-

tion and pricing and, in particular, on the construction of the approximations of the shock

elasticity functions.
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6.1 Recursive preferences and the robust utility interpretation

We follow Epstein and Zin (1989) and others by using a homogeneous aggregator in modeling

recursive preferences in the study of asset pricing implications. For simplicity we focus on

the special case in which investors’ preferences exhibit a unitary elasticity of intertemporal

substitution. In this case the continuation value process satisfies the forward recursion:

log Vt = [1− exp(−δ)] logCt +
exp(−δ)
1− γ

logE
[
(Vt+1)

1−γ |Ft

]
. (24)

where Vt is the date t continuation value associated with the consumption process {Ct+j :

j = 0, 1, ...}. The parameter δ is the subjective rate of discount and γ is used for making

a risk adjustment in the continuation value. The limiting γ = 1 version gives the separable

logarithmic utility. We focus on the case in which γ > 1. As we will see, the forward-looking

nature of the continuation value process can amplify the role of beliefs and uncertainty about

the future in asset valuation.

We suppose that the equilibrium consumption process from an economic model is a mul-

tiplicative functional of the type described previously. For numerical convenience, subtract

logCt from both sides of this equation:

log Vt − logCt =
exp(−δ)
1− γ

logE

[(
Vt+1

Ct

)1−γ

| Ft

]
,

or

logUt =
exp(−δ)
1− γ

logE (exp [(1− γ) logUt+1 + (1− γ)(logCt+1 − logCt)] | Ft)

where logUt = log Vt−logCt. The stochastic discount factor process is given by the recursion:

St+1

St
= exp(−δ)

(
Ct

Ct+1

)
(Vt+1)

1−γ

E
[
(Vt+1)

1−γ | Ft

] (25)

= exp(−δ)
(

Ct

Ct+1

) (Ut+1)
1−γ
(

Ct+1

Ct

)1−γ

E

[
(Ut+1)

1−γ
(

Ct+1

Ct

)1−γ

| Ft

] ,

which gives the one-period intertemporal marginal rate of substitution for a recursive utility

investor. When γ = 1 the expression for the stochastic discount factor simplifies and reveals

the intertemporal marginal rate of substitution for discounted logarithmic utility. When

γ > 1, there is a potentially important contribution from the forward-looking continuation

value process reflected in Vt+1 or Ut+1.

Allowing the parameter γ in the recursive utility specification to be large has become
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common in the macro-asset pricing literature. For this reason we are led to consider moti-

vations other than risk aversion for large values of this parameter. Anderson et al. (2003)

extend the literature on risk-sensitive control by Jacobson (1973), Whittle (1990) and others

and provide a “concern for robustness” interpretation of the utility recursion (24). Under

this interpretation the decision maker explores alternative specifications of the transition

dynamics as part of the decision-making process. This yields a substantially different in-

terpretation of the utility recursion and the parameter γ. An outcome of this robustness

assessment is an exponentially-tilted worst case model (subject to penalization) in which the

term

S̃t+1

S̃t

≡ (Vt+1)
1−γ

E
[
(Vt+1)

1−γ | Ft

] =
(Ut+1)

1−γ
(

Ct+1

Ct

)1−γ

E

[
(Ut+1)

1−γ
(

Ct+1

Ct

)1−γ

| Ft

]

in the stochastic discount factor ratio (25) induces an alternative specification of the tran-

sitional dynamics used to implement robustness. Notice that this term has conditional

expectation equal to one, and as a consequence it implies an alternative density for the

shock vector Wt+1 conditioned on date t information.

6.2 Expansion approaches

Since an essential ingredient for the evolution of the logarithm of the stochastic discount fac-

tor process is the continuation value process, as a precursor to approximating the stochastic

discount factor process we first approximate logU . As previously, we seek an approximation

of the form:

logUt ≈ logU0,t + q logU1,t +
q2

2
logU2,t

where the terms on the right-hand side are themselves components of stationary processes.

We will construct the approximation of the continuation value as a function of a correspond-

ing approximation of the logarithm of the consumption process logC given by equation (22).

For ease of comparison, we will hold fixed the second-order approximation for consumption

as we explore two different approaches. In a production economy the approximation of the

consumption process will itself change as we alter the specification of preferences.

6.2.1 Recursive utility approach

The conventional approach that is valid for the recursive utility specification dictates to

treat both the scaled continuation value process U as well as the consumption process C as
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functions of the perturbation parameter q:

logUt (q) =
exp(−δ)
1− γ

logE (exp [(1− γ) (logUt+1 (q) + logCt+1 (q)− logCt (q))] | Ft) .

The zero-th order expansion implies a constant contribution

logU0,t ≡ ū =
exp (−δ)

1− exp (−δ) (logC0,t+1 − logC0,t) (26)

and the higher-order terms can be represented recursively as

logU1,t = exp(−δ)E [logU1,t+1 + logC1,t+1 − logC1,t | Ft]

logU2,t = exp(−δ)E [logU2,t+1 + logC2,t+1 − logC2,t | Ft] +

+(1− γ) exp(−δ)E
[
(logU1,t+1 + logC1,t+1 − logC1,t)

2 | Ft

]

−(1− γ) exp(−δ) [E (logU1,t+1 + logC1,t+1 − logC1,t | Ft)]
2

and can be solved forward. This approach assures that both logU and logC will con-

form functional forms introduced when constructing expansions of additive functionals in

Section 5.2. Observe that only the second-order term logU2,· in the expansion of the contin-

uation value depends on the risk aversion parameter γ, and only scales the first-order terms.

We next consider an alternative approach motivated by a concern for robustness.

6.2.2 Robust utility approach

To obtain a lower-order contribution for a concern about robustness, control theorists explore

alternative ways to parameterize robustness as the exposure to uncertainty is altered.10 The

term (γ − 1)−1 ≡ θ in expression (24) can be viewed as a parameter that penalizes alternative

probability models for the continuation value in the search for a “worst-case” model, and

the associated martingale S̃ as the probability distortion used to represent this alternative

model.

While the risk aversion coefficient γ might be plausibly viewed as a preference parameter

that should be held constant as we change the riskiness of the stochastic environment by

changing q, the parameter θ does not have such an interpretation. Instead, we may be more

interested in the consequences of θ for the minimizing probability distortion as we change q.

For instance, Anderson et al. (2003) and Hansen and Sargent (2011) suggest using measures

10For instance, Campi and James (1996) provide links between the risk-sensitive optimal control problem
and different stochastic and nonstochastic limiting counterparts. Anderson et al. (2011) apply and extend
their approach to dynamic economic models.

33



of statistical detection as aids to calibrating θ which leads them to look directly at the

implied distortions S̃. It turns out that if we fix θ as we change the amount of extrinsic

uncertainty by scaling the shocks by q, the probability distortion for the shock vector Wt+1

given by the solution of the robust decision problem vanishes as q → 0 even though the

covariance matrix of this shock remains fixed.11

This leads us to consider perturbations where the penalty parameter θ depends on q as

well. We thus define
1

γ − 1
= qθ (27)

for θ > 0, which results in the recursion

logUt (q) = − exp(−δ)qθ logE
(
exp

[
− 1

qθ
(logUt+1 (q) + logCt+1 (q)− logCt (q))

]
| Ft

)
.

This modification of the perturbation approach has profound consequences on the result-

ing functional form not only of the scaled continuation value logU but also of the consump-

tion process. Define log Πt+1 (q) = logUt+1 (q) + logCt+1 (q)− logCt (q) and write

logUt (q) = exp (−δ) log Π0,t+1

− exp(−δ)qθ logE
[
exp

(
− 1

qθ
(logΠt+1 (q)− logΠ0,t+1)

)
| Ft

]
.

The term on the second line is zero for q = 0, and the zero-th order term of logU thus

coincides with that of the recursive utility expansion in expression (26). Higher-order terms

are different, though. The first-derivative process now satisfies

logU1,t = − exp(−δ)θ logE
[
exp

(
−1

θ
(logU1,t+1 + logC1,t+1 − logC1,t)

)
| Ft

]
,

and the second-derivative process is

logU2,t = exp(−δ)Ẽ [(logU2,t+1 + logC2,t+1 − logC2,t) | Ft]

where Ẽ represents an expectation operator under a change of measure induced by the

11Using a related perspective, Petersen et al. (2000) and Hansen et al. (2006) consider specifications for
which there is a constraint on a measure of relative entropy where θ now becomes a Lagrange multiplier used
to compute and implement robust decision making. Holding the relative entropy of the distortion constant
for alternative specifications of q results in multipliers that scale approximately linearly in q.
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positive random variable

exp
[
−1

θ
(logU1,t+1 + logC1,t+1 − logC1,t)

]

E
[
exp

[
−1

θ
(logU1,t+1 + logC1,t+1 − logC1,t)

]
| Ft

] (28)

with a unit expectation. Under this change of measure, the shockWt+1 will retain its unitary

covariance matrix but will have a nonzero, constant mean.

6.3 Stochastic discount factors

The robustness interpretation of the risk aversion parameter (27) will also have implications

for the expansion of the stochastic discount factor

logSt ≈ logS0,t + q logS1,t +
q2

2
logS2,t.

Under the recursive expansion, the risk aversion parameter γ is held constant, and the

terms in the expansion of the stochastic discount factor are linear in continuation values and

changes in consumption:

logS0,t+1 − logS0,t = −δ + logC0,t − logC0,t+1

logS1,t+1 − logS1,t = logC1,t − logC1,t+1

+ (1− γ) [logU1,t+1 + logC1,t+1 − logC1,t − exp (δ) logU1,t]

logS2,t+1 − logS2,t = logC2,t − logC2,t+1

+ (1− γ) [logU2,t+1 + logC2,t+1 − logC2,t − (1− γ) exp (δ) logU2,t]

The robust utility expansion, on the other hand, scales the penalization parameter θ by

q as well. This implies the following first-order expansion:

log S0,t+1 − log S0,t = −δ + logC0,t − logC0,t+1

−1

θ
[logU1,t+1 + logC1,t+1 − logC1,t − exp (δ) logU1,t]

log S1,t+1 − log S1,t = logC1,t − logC1,t+1

− 1

2θ
[logU2,t+1 + logC2,t+1 − logC2,t − exp (δ) logU2,t]

The robust expansion moves the terms that represent the risk-adjusted continuation value

to a lower-order term in the expansion of the stochastic discount factor. Under the robust

utility expansion, there are first-order adjustments to the continuation value and zeroth-order

adjustments to the stochastic discount factor process. These are lower order modifications
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than those implied by the recursive utility specification. On the other hand, the first terms

logCk,t − logCk,t+1 on the right-hand sides of the respective formulas are the same for both

expansions. These terms represent the contribution of substitution between periods t and

t + 1. With the exception of these terms, our first-order expansion for the robust utility

specification expansion is comparable to the second-order expansion under recursive utility.12

6.4 Shock elasticities

We compare the first-order expansions of the shock elasticities for the robust and recursive

utility specifications. Consider growth functionals with expansions of the type given in

Section 5. With a slight abuse of notation define a time horizon t twisted conditional

expectation via:
M0,t

E [M0,t | X0]

where M is G or SG. In the case of G, there is no twisting because G0,t is a deterministic

function of time, but the shock elasticity calculation for SG leads to a twist for the robust

utility model because of the contribution of S0,t. This twisting coincides with the compound-

ing of the one-period change in probability measure implied by formula (28). Both elasticity

approximations have a common functional form:

ε (x, t) = ε0 (x, t) + qε1 (x, t)

where

ε0 (X1,0, X2,0, t) = αh (x̄) · Ẽ [W1 | X0 = x]

ε1 (X1,0, X2,0, t) =

(
∂αh

∂x′
(x̄)X1,0

)
· Ẽ [W1 | X0 = x] + αh (x̄) · C̃ov [logM1,t,W1 | X0 = x]

where the ·̃ notation is interpreted differently for the two approximations. Under the recursive

utility expansion, Ẽ [W1 | X0 = x] = 0, and the first-order shock elasticity coincides with

formulas derived in Section 5. For the robust utility specification the Ẽ [W1 | X0 = x] is no

longer zero. In particular, the zeroth-order term contributes to the elasticity approximation.

12The derivatives of the stochastic discount factor S under the robust expansion have a different stochastic
structure than that assumed in Section 5. In particular, under the expansion for robust utility, logS0,t is not
a linear function of time. The stochastic nature of logS0,t will also lead to first-order risk premia, reflecting
the covariance between logS0,t and the first-order term of the cash-flow process.
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7 Application: Intangible risk

We use the model of Ai et al. (2010) to illustrate our methodology by analyzing shock

elasticities associated with consumption and capital dynamics in a model with two types

of capital. The two capital stocks face different risk exposures, which leads to differences

in their valuation. We decompose shock elasticities to understand the mechanism how risk

propagates in the model economy.

The model is motivated by an extensive literature that confronts challenges in measuring

capital. In this literature, one component of the capital stock, tangible capital, is measured

while another one, intangible capital, is not. In what follows we will refer to the tangible

component as physical capital. Intangible capital is introduced to account fully for firm

values. For instance, if firms accumulate large quantities of unmeasured productive intangible

capital, their market valuation will differ from valuation based on the replacement value of

the stock of physical capital. Hall (2000, 2001) uses this argument to understand the secular

movement in asset values relative to measures of capital. Similarly, McGrattan and Prescott

(2010a,b) argue that accounting properly for the accumulation of intangible capital explains

the heterogeneity in measured returns and the observed macroeconomic dynamics including

the period of the 1990’s.13

Following Hansen et al. (2005) we consider a related question by exploring risk-based

explanations for the heterogeneity in the returns to physical and intangible capital. Hansen

et al. (2005) use the return heterogeneity documented by Fama and French (1992, 1996) to

motivate studies of the risk exposure differences between returns on tangible and intangible

capital. Among other things, Fama and French (1992, 1996) show that firms with high book-

to-market (B/M) ratios (value firms) have systematically higher expected returns compared

to their low B/M counterparts (growth firms).14 Ai et al. (2010) build a stylized model to

investigate formally the link between the value premium featured by Fama and French and

the differential contribution of intangible capital to what are classified as growth or value

firms. In the Ai et al. (2010) model growth firms are those with relatively large amounts

of intangible capital, are less exposed to aggregate risk, and therefore earn lower expected

returns.

13This literature implicitly confronts the potential fragility in asset values because to the extent tangible
capital is used to explain increases in asset values, it must also account for large declines in these values.

14For related empirical motivation see the cross-sectional heterogeneity in cash-flow risk exposures of
growth and value firms documented by Bansal et al. (2005) and Hansen et al. (2008).
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7.1 The model

We use the aggregate version of the Ai et al. (2010) model inclusive of adjustment costs. Ai

et al. (2010) suggest a more primitive starting point meant to provide microfoundations for

the model. We use shock elasticities to characterize the valuation of measured and intangible

capital stocks. Parameters and specification of some of the functional forms can be found

in Appendix C. While a more explicit use of econometric methods to the estimation of this

model is a welcome extension, we find it useful to exposit properties of the model as given

in the Ai et al. (2010) paper.

7.1.1 Technology

The economy consists of two sectors. Final output is produced using physical capital K and

labor, and allocated to consumption C and investment into physical capital I and intangible

capital I∗:

Ct + It + I∗t = (Kt)
ν (Zt)

1−ν
.

The model abstracts from endogenous labor supply and instead normalizes the labor input

to be one. The technology process Z is specified exogenously. To produce new capital,

investment I must be combined with the stock of intangible capital K∗

Kt+1 = (1− λ)Kt +

(
Z∗

t+1

Z∗
t

)
G (It, K

∗
t ) .

The investment-specific technology process Z∗ is also specified exogenously. In the process

of capital accumulation G (It, K
∗
t ) units of intangible capital are depleted in the production

of one unit of new physical capital. With this adjustment, intangible capital accumulates in

accordance with:

K∗
t+1 = (1− λ∗) [K∗

t −G (It, K
∗
t )] +H (I∗t , Kt) .

The functions G and H used to model adjustment costs are both concave.

7.1.2 Exogenous inputs

The technology processes Z and Z∗ evolve according to:

logZt+1 − logZt = Γ0 + Γ1Xt +ΨWt+1 (29)

logZ∗
t+1 − logZ∗

t = Γ∗
0 + Γ∗

1Xt +Ψ∗Wt+1

Xt+1 = Θ1Xt + ΛWt+1.
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where Xt and Wt+1 are both two-dimensional. The first component of the shock vector W is

a direct shock to the growth rate of technology Z, while the second component represents a

long-run risk shock to the expected growth rates. The persistence in these expected growth

rates is modeled using a first-order, bivariate Markov process X . Correspondingly, Ψ and

Ψ∗ are two-dimensional row vectors with a zero in their second columns, and Λ is a two-

dimensional square matrix with zeros in its first column.

The matrix Θ1 is a diagonal matrix with common diagonal entries strictly less then one,

and Λ has identical entries in the second column. By design, the two components of X

remain the same when they have a common initialization. We include both components to

the state vector because we will consider perturbations of the original dynamics (29) where

the two components will have distinct roles. Observe that the first component of W impacts

both Z and Z∗. Moreover, we impose the restrictions

Ψ∗ = −1 − ν

ν
Ψ, Γ1 =

[
1 0

]
, Γ∗

1 =
[
0 −1−ν

ν

]
.

Under the maintained restrictions,

Γ∗
1Xt +Ψ∗Wt+1 = −

(
1− ν

ν

)
(Γ1Xt +ΨWt+1)

and shocks thus have offsetting impacts on the technology processes Z and Z∗. A positive

shock movement increases the growth rate in the neutral technology process Z but simul-

taneously decreases the investment-specific process Z∗. Ai et al. (2010) interpret Z∗ as a

wedge that temporarily mitigates the risk exposure of newly installed capital. In summary,

there are two underlying shocks whose impacts we seek to characterize: a direct shock and

a long-run risk shock.

To understand better the shock transmission mechanisms in this model, we also consider

a less rigid specification by introducing an independent shock vector W̃t+1 that has four

components:

logZt+1(q)− logZt(q) = Γ0 + Γ1Xt(q) + ΨWt+1 + qΨ̃W̃t+1

logZ∗
t+1(q)− logZ∗

t (q) = Γ∗
0 + Γ∗

1Xt(q) + Ψ∗Wt+1 + qΨ̃∗W̃t+1

Xt+1(q) = Θ1Xt(q) + ΛWt+1 + qΛ̃W̃t+1

where

Ψ̃ =
√
2
[
Ψ 0

]
, Ψ̃∗ =

√
2
[
0 Ψ

]
, Λ̃ =

√
2

[
Λ1 0

0 Λ1

]
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and Λ1 is the first row (or the second row as they are the same) of Λ. We construct W̃t+1

in order to explore independent shocks that impinge directly on each technology as well as

independent shocks that shift the predictable components to these technologies. The first

two components of W̃ only impact the neutral technology process Z while the remaining

two components impact the investment-specific technology process Z∗. We compute partial

elasticities by exploring small changes in the exposure to W̃t+1 parameterized by q. By

design, the constructed impact matrices for W̃t+1 satisfy:

Ψ̃Υ = Ψ, Ψ̃∗Υ = Ψ∗, Λ̃Υ = Λ.

where

Υ =
1√
2

[
I

I

]
.

Notice that Υ′Υ = I. We impose these restrictions to ensure that restrictions (13) and (14)

given in Section 2.5 are satisfied.

7.1.3 Preferences

The model is closed by introducing a representative household with recursive preferences of

the Epstein and Zin (1989) type:

Vt =

{
[1− exp (−δ)] (Ct)

1−ρ + exp (−δ)E
[
(Vt+1)

1−γ | Ft

] 1−ρ
1−γ

} 1

1−ρ

. (30)

This specification is more general than the recursion considered in Section 6 by allowing the

elasticity of intertemporal substitution ρ−1 to be different from one. We obtain equation (24)

by taking the limit as ρ → 1. The preference recursion (30) implies a stochastic discount

factor which is a generalization of expression (25):

St+1

St
= β

(
Ct+1

Ct

)−ρ

 Vt+1

(
E
[
(Vt+1)

1−γ | Ft

]) 1

1−γ




ρ−γ

.

The first-order conditions from a fictitious planner problem then lead to recursive formu-

las for the (shadow) prices of existing physical and intangible capital Q and Q∗, respectively:

Qt = ν

(
Zt

Kt

)1−ν

+ E

[
St+1

St

[
HK (I∗t , Kt)Q

∗
t+1 + (1− λ)Qt+1

]
| Ft

]

Q∗
t = E

[
St+1

St

((
Z∗

t+1

Z∗
t

)
GK∗ (It, K

∗
t )Qt+1 + (1− λ∗) [1−GK∗ (It, K

∗
t )]Q

∗
t+1

)
| Ft

]
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This equation system can be solved forward to compute the prices of the two capital stocks.15

The resulting solution will, at least implicitly, use the multi-period stochastic discount factors

to make risk adjustments in future time periods. Dividing both equations by the right-hand

side variables gives the pricing formula for one-period returns to physical and intangible

capital. The conditional expectation of the one-period stochastic discount factor times the

one-period return is equal to one.

7.2 Dynare implementation

Following Ai et al. (2010), we solve the model using a second-order perturbation around the

deterministic steady state. We provide online the Dynare code for the model, and the toolbox

that computes shock elasticities from the solution generated by Dynare.16 The toolbox is

general and can be employed to analyze shock elasticities in conjunction with Dynare using

only minor modifications to the model files.17

We exploit Dynare to construct the equilibrium dynamics for the increments of additive

functionals that are of our interest. With the characterization of the dynamics (18)–(19),

we only need to implement the elasticity formulas developed in Section 5.

7.3 Shock price and exposure dynamics

We use elasticities and partial elasticities to obtain a more complete characterization of the

equilibrium expected return heterogeneity. We analyze the dynamics of aggregate consump-

tion which determines the characteristics of the stochastic discount factor, and the pricing

implications for the two capital stocks.

7.3.1 Consumption price and exposure elasticities

We first consider the shock elasticities for the equilibrium consumption process. To make

comparisons to the literature on long-run consumption risk, we use consumption as the

growth functional. The resulting elasticities are reported in Figure 1.

The top left panel gives the shock-price elasticities. The flat trajectories are familiar

from our earlier analysis of consumption-based models of the type suggested by Bansal

15Alternative formulas can be obtained by looking at the first-order conditions for investment.
16See http://home.uchicago.edu/∼borovicka/software.html.
17Dynare produces a full second-order approximation of the model solution as in Schmitt-Grohé and

Uribe (2004). This approximation is globally unstable, and does not fit the convenient triangular structure
introduced in Section 4. However, we can apply the perturbation methods from Section 5 to the second-order
solution itself. This step effectively doubles the number of state variables, generating separate vectors of
variables for the first- and second-order dynamics. This method also corresponds to the algorithms used in
Andreasen et al. (2010).
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Figure 1: Shock elasticities for consumption. The left panels give the shock-price elasticities
and the right panels give the shock-exposure elasticities. The top row shows elasticities for
alternative investment horizons in the original model. The second and third rows show the
corresponding elasticities using the perturbed specification. The second row features the
transmission mechanism for neutral technology shocks, and the third row for investment-
specific shocks. To capture the state dependence in the elasticities, we report three quartiles.

and Yaron (2004). See Hansen (2011) and Borovička et al. (2011). As is shown in these

two papers, with large specifications of the risk aversion coefficient γ, a forward-looking

martingale component associated with the continuation value process dominates the pricing

implications. Expected future growth in consumption is an important contributor to this
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martingale component. The magnitudes of the shock-price elasticities reported in Figure 1

are about double of those reported in our earlier work.

There is a substantive difference in the structure of the Bansal and Yaron (2004) and

the Ai et al. (2010) models. Bansal and Yaron (2004) specify directly predictability in the

growth rates in consumption whereas Ai et al. (2010) specify the predictability in technology

processes that are inputs into production. The two models in fact produce very different

implied predictability for consumption, reflected in the shock-exposure elasticities. For in-

stance, the limiting shock-exposure elasticity for the shock to the growth rates in technology

reported in the top right panel of Figure 1 is about double that implied by the Bansal and

Yaron (2004) model. Given the forward-looking role for continuation values in pricing, the

approximate doubling of the long-run responses also doubles the entire trajectory of the

shock-price elasticity function.

The direct empirical evidence for the long-run predictability in consumption is weak,

however. For instance, see Hansen et al. (2008). This has led one of us to view long-run

risk models as models of sentiments (Hansen (2011)) and to explore related models in which

investors have skepticism about their model as in Hansen (2007) and Hansen and Sargent

(2010). Given the even more prominent role of this forward-looking channel in the Ai et al.

(2010) model, it would be valuable either to reconsider the evidence for predictability in

growth using other macroeconomic time series or to reduce the degree of the confidence that

investors have in the long-run risk model.18

Since the long-run risk shocks have a common impact on both technology processes, we

use partial elasticities to explore the two channels of influence: i) neutral technology channel

and ii) investment-specific channel. As is evident from comparing the panels in rows two and

three, the neutral technology channel is much more important for equilibrium consumption

as reflected by the larger exposure elasticities. This same channel dominates pricing again

with a flat trajectory. The investment-specific channel has only a small and transitory

impact on equilibrium consumption dynamics, reflected in elasticities that start small and

decay quickly to zero. The partial shock-price elasticities for the investment specific channel

are also very small, although they do not decay to zero due to the forward-looking channel

of the recursive preference specification.

Another difference between the model used Bansal and Yaron (2004) and that used by

Ai et al. (2010) is that Bansal and Yaron introduce stochastic volatility in consumption as

an exogenously specified process. There is no counterpart process in the Ai et al. (2010)

model, although stochastic volatility could be generated endogenously by the nonlinearity in

18Hansen et al. (2008) feature corporate earnings but do not report findings for other macroeconomic
aggregates.
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the equilibrium evolution. Stochastic volatility would be manifested in the state dependence

of the shock elasticities. Figure 1 shows that this endogenous source is only noticeable for

the partial elasticities associated with the investment channel and these elasticities are small

in magnitude.

7.3.2 Elasticities for capital and the associated prices

The Ai et al. (2010) model features differences in valuation of physical and intangible capital.

To understand what underlies the differences, we report exposure elasticities for quantities

and prices of capital. Figure 2 shows the differential exposures of the two capital stocks, K

and K∗, to the underlying shocks, and Figure 3 complements the analysis by depicting the

exposures of the corresponding prices of capital, Q and Q∗. The prices are of direct interest,

but they are also important components to returns to holding capital over time.

The responses of physical capital (top left panel in Figure 2) start small and build up over

time, as is typically the case in business cycle models. The long-run responses of intangible

capital (top right panel) necessarily coincide with the positive responses for physical capital

but the short-run responses are very different for both shocks. The exposure of intangible

capital to the direct shock to the technology processes is initially strongly negative (beginning

after a one-period delay), while the exposure elasticity for the long-run risk shock provides

a mirror image of the direct shock elasticity in the short run. For the physical capital the

short-run exposure elasticities are slightly negative for both shocks but then both eventually

become positive and more pronounced.

The partial elasticities in the second and third row of Figure 2 show that the neutral

technology shock channel dominates the long-term responses for both capital stocks as might

be expected. The investment-specific channel is important for intangible capital for the

shorter investment horizons but not for the physical capital stock. In fact, the investment-

specific channel inhibits the accumulation of physical capital after a positive shock because

new vintages of physical capital are temporarily less productive.

Consider next the exposure elasticities for the prices of the two types of capital reported

in Figure 3. Overall these exposure elasticities are much smaller than the corresponding

quantity elasticities and are only transitory because prices of capital in this model are sta-

tionary. The important differences are in the elasticities to the long-run risk shock. They are

initially negative for the price of intangible capital but substantially positive for the physical

capital stock. Recall that intangible capital is expected to increase in response to such a

shock in contrast to the physical capital stock, but the physical capital stock becomes more

valuable. From the partial elasticity plots it is evident that the important differences are

accounted for by the investment-specific channel.

44



5 10 15 20 25
−0.05

0

0.05

0.1

0.15

maturity (years)

shock−exposure elasticity − physical capital

 

 

direct
long−run risk

5 10 15 20 25
−0.05

0

0.05

0.1

0.15

maturity (years)

shock−exposure elasticity − intangible capital

 

 

5 10 15 20 25
−0.05

0

0.05

0.1

0.15

maturity (years)

contribution of the neutral technology channel

 

 

5 10 15 20 25
−0.05

0

0.05

0.1

0.15

maturity (years)

contribution of the neutral technology channel

 

 

5 10 15 20 25
−0.05

0

0.05

0.1

0.15

maturity (years)

contribution of the investment specific channel

 

 

5 10 15 20 25
−0.05

0

0.05

0.1

0.15

maturity (years)

contribution of the investment specific channel

 

 

Figure 2: Shock-exposure elasticities for physical and intangible capital. The left panels give
the elasticities for physical capital and the right panels give the elasticities for intangible
capital. The top row shows elasticities for alternative investment horizons in the original
model. The second and third rows show the corresponding partial elasticities using the
perturbed specification. The second row features the transmission mechanism for neutral
technology shocks, and the third row for investment-specific shocks. To capture the state
dependence in the elasticities, we report three quartiles.

Overall, the partial elasticities illuminate the interaction between the quantity and price

dynamics for the two types of capital. While the neutral technology shock channel dominates

the long-term quantity responses for both capital stocks, the investment-specific channel
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Figure 3: Shock-exposure elasticities for the prices of physical and intangible capital. The
left panels give the elasticities for the price of physical capital Q and the right panels give
the elasticities for the price of intangible capital Q∗. The top row shows elasticities for
alternative investment horizons in the original model. The second and third rows show the
corresponding partial elasticities using the perturbed specification. The second row features
the transmission mechanism for neutral technology shocks, and the third row for investment-
specific shocks. To capture the state dependence in the elasticities, we report three quartiles.

plays a crucial role in the short-run dynamics after a long-run risk shock. This latter channel

drives both the quantity response of intangible capital, and the price response of physical

capital.
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Figure 4: Shock exposure elasticities for cumulative excess returns on physical and intangible
capital in the Ai et al. (2010) model. The left column gives the elasticities and partial
elasticities for physical capital, the right column for intangible capital. The top row shows
elasticities for alternative investment horizons in the original model. The second and third
rows show the corresponding partial elasticities using the perturbed specification. The second
row features the transmission mechanism for neutral technology shocks, and the third row
for investment-specific shocks. To capture the state dependence in the elasticities, we report
three quartiles.
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7.3.3 Exposure elasticities for cumulative returns

The Ai et al. (2010) model generates a large expected return on physical capital, much larger

than for intangible capital. To enhance our understanding of the differences in the risk pre-

mia associated with the two capital investments, we study the shock-exposure elasticities of

their associated excess returns. An n-period return is a cash flow delivered in n periods for

a unitary initial investment. Figure 4 plots the shock-exposure elasticities of the cumula-

tive excess returns on physical and intangible capital and their decomposition into partial

elasticities.

The elasticities of the cumulative excess returns are flat. The excess return exposures

for the physical capital are essentially the same for both shocks, but they are substantially

different for the excess returns on intangible capital. The exposure elasticity for the long-run

risk shock is slightly negative for the intangible capital excess return whereas this exposure

elasticity is much bigger in magnitude and positive for the direct shock. Recall that the

shock-price elasticities are much larger for the long-run risk shock and hence investors in the

physical capital are compensated more than investors in intangible capital. The negative

exposure elasticity of intangible capital to the long-run risk shock makes intangible capital

a good hedge against such a shock and this is reflected in equilibrium expected returns.

The partial elasticities are particularly revealing for the excess return to the physical

capital asset. The primary channel for the large exposure to the direct shock is through

the impact of the neutral technology process, while the primary channel for the long-run

risk shock is through the impact of the investment-specific technology. Consider the partial

elasticities for the long-run risk shock. The impact on the expected returns via the neutral

technology process Z is very small. This same impact via the investment-specific technology

Z∗ is large for the physical capital stock but small and actually negative for the intangible

capital stock for the reasons given in our discussion of exposure elasticities for the quantities

and prices of capital. This investment-specific channel is the critical one for generating large

expected returns for physical capital vis-à-vis intangible capital.

In summary, distinguishing price from exposure elasticities and exploring separately chan-

nels with two technological inputs reveal key features underlying the differences in risk premia

between physical and intangible capital investments. As in the earlier literature, shocks to

long-run risk are central to understanding these differences. The partial elasticities for the

shock prices are large for the neutral technology process. Exposure to the shock to long-run

risk in this technology requires compensation . At the same time, excess returns to physical

capital have large exposure elasticities to the long-run risk shocks to the investment-specific

technology process. The large premium for returns to physical capital are generated by the

high (in fact perfect) correlation between the two long-run risk shocks.
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8 Conclusion and directions for further research

In this paper, we build on our previous work in Hansen and Scheinkman (2010), Borovička

et al. (2011), and Hansen (2011) by developing tractable ways to measure the sensitivity

of expected cash-flows with macroeconomic components and the associated expected re-

turns to structural shocks. These shock elasticities measure prices and quantities of risk in

macro-asset pricing models. They constitute fundamental building blocks for dynamic value

decompositions within stochastic equilibrium models. We show that the same approach

can be used to deconstruct dynamic entropy measures analyzed in Alvarez and Jermann

(2005) and Backus et al. (2011) by taking account of the role of conditioning information

for alternative investment horizons.

This paper focuses on tractable implementability in contrast to Hansen and Scheinkman

(2010), who provide a more rigorous basis for some of our calculations by taking continuous-

time limits. We show that a second-order perturbation approach to model solution along the

lines of Holmes (1995) and Lombardo (2010) results in tractable closed-form formulas for the

shock elasticities. To support the use of our methodology, we provide a set of Matlab codes19

that can be integrated with Dynare/Dynare++ and generate the shock elasticities for second-

order solutions to dynamic macroeconomic models. It remains to provide more rigor to some

of these approximations and to explore other more global approaches to approximation.

This paper also sketches an approach for constructing low-order expansions applicable to

economies in which either private agents or policy makers have a concern for robustness. Our

emphasis is to show how robustness can have consequences for even first-order approxima-

tions to continuation values and for initial terms in expansions for stochastic discount factors

and the resulting elasticities. We suspect this same approach will also provide additional

insights into the study and design of robust macroeconomic policy rules.

In this paper we used shock elasticities as interpretive diagnostics for comparing the asset

valuation implications of alternative macroeconomic models and for understanding better the

channels by which exogenous shocks influence equilibrium outcomes. We have not described

formally shock identification and statistical uncertainty in our measurements, but we should

be able to build on the related macroeconomic literature on identification and inference for

impulse response functions. Also methods like the ones we describe here should provide

useful complements for the recent empirical work by Binsbergen et al. (2011) and others

on the decomposition of cash flow contributions to equity returns for alternative investment

horizons.

19See http://home.uchicago.edu/∼borovicka/software.html.
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Appendix

A Conditional expectations of multiplicative functionals

Let X = (X ′
1,X

′
2)

′ be a 2n×1 vector of states, W ∼ N(0, I) a k×1 vector of independent Gaussian

shocks, and Ft the filtration generated by (X0,W1, . . . ,Wt). In this appendix, we show that given

the law of motion from equation (18)

X1,t+1 = Θ10 +Θ11X1,t + Λ10Wt+1 (31)

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23 (X1,t ⊗X1,t) +

+Λ20Wt+1 + Λ21 (X1,t ⊗Wt+1) + Λ22 (Wt+1 ⊗Wt+1)

and a multiplicative functional Mt = exp (Yt) whose additive increment is given in equation (19):

Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) + (32)

+Ψ0Wt+1 +Ψ1 (X1,t ⊗W1,t+1) + Ψ2 (Wt+1 ⊗Wt+1)

we can write the conditional expectation of M as

logE [Mt | F0] =
(
Γ̄0

)
t
+
(
Γ̄1

)
t
X1,0 +

(
Γ̄2

)
t
X2,0 +

(
Γ̄3

)
t
(X0 ⊗X0) (33)

where
(
Γ̄i

)
t
are constant coefficients to be determined.

The dynamics given by (31)–(32) embeds the perturbation approximation constructed in Sec-

tion 5 as a special case. The Θ and Λ matrices needed to map the perturbed model into the

above structure are constructed from the first and second derivatives of the function ψ(x,w, q) that

captures the law of motion of the model, evaluated at (x̄, 0, 0):

Θ10 = ψq Θ11 = ψx Λ10 = ψw

Θ20 = ψqq Θ21 = 2ψxq Θ22 = ψx Θ23 = ψxx

Λ20 = 2ψwq Λ21 = 2ψxw Λ22 = ψww

where the notation for the derivatives is defined in Appendix A.2.

A.1 Definitions

To simplify work with Kronecker products, we define two operators vec and matm,n. For an m×n

matrix H, vec (H) produces a column vector of length mn created by stacking the columns of H:

h(j−1)m+i = [vec(H)](j−1)m+i = Hij.
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For a vector (column or row) h of length mn, matm,n (h) produces an m× n matrix H created by

‘columnizing’ the vector:

Hij = [matm,n(h)]ij = h(j−1)m+i.

We drop the m,n subindex if the dimensions of the resulting matrix are obvious from the context.

For a square matrix A, define the sym operator as

sym (A) =
1

2

(
A+A′

)
.

Apart from the standard operations with Kronecker products, notice that the following is true. For

a row vector H1×nk and column vectors Xn×1 and Wn×1

H (X ⊗W ) = X ′ [matk,n (H)]′W

and for a matrix An×k, we have

X ′AW =
(
vecA′

)′
(X ⊗W ) . (34)

Also, for An×n, Xn×1, Kk×1, we have

(AX)⊗K = (A⊗K)X

K ⊗ (AX) = (K ⊗A)X

Finally, for column vectors Xn×1 and Wk×1,

(AX)⊗ (BW ) = (A⊗B) (X ⊗W )

and

(BW )⊗ (AX) = [B ⊗A•j ]
n
j=1 (X ⊗W )

where

[B ⊗A•j ]
n
j=1 = [B ⊗A•1 B ⊗A•2 . . . B ⊗A•n] .

A.2 Concise notation for derivatives

Consider a vector function f (x,w) where x and w are column vectors of length m and n, respec-

tively. The first-derivative matrix fi where i = x,w is constructed as follows. The k-th row [fi]k•

corresponds to the derivative of the k-th component of f

[fi (x,w)]k• =
∂f (k)

∂i′
(x,w) .

Similarly, the second-derivative matrix is the matrix of vectorized and stacked Hessians of
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individual components with k-th row

[fij (x,w)]k• =

(
vec

∂2f (k)

∂j∂i′
(x,w)

)′

.

It follows from formula (34) that, for example,

x′

(
∂2f (k)

∂x∂w′
(x,w)

)
w =

(
vec

∂2f (k)

∂w∂x′
(x,w)

)′

(x⊗ w) = [fxw (x,w)]k• (x⊗ w) .

A.3 Conditional expectations

Notice that a complete-the squares argument implies that, for a 1× k vector A, a 1× k2 vector B,

and a scalar function f (w),

E [exp (B (Wt+1 ⊗Wt+1) +AWt+1) f (Wt+1) | Ft] = (35)

= E

[
exp

(
1

2
W ′

t+1 (matk,k (2B))Wt+1 +AWt+1

)
f (Wt+1) | Ft

]

= |Ik − sym [matk,k (2B)]|−1/2 exp

(
1

2
A (Ik − sym [matk,k (2B)])−1A′

)
Ẽ [f (Wt+1) | Ft]

where ·̃ is a measure under which

Wt+1 ∼ N
(
(Ik − sym [matk,k (2B)])−1A′, (Ik − sym [matk,k (2B)])−1

)
.

We start by utilizing formula (35) to compute

Ȳ (Xt) = logE [exp (Yt+1 − Yt) | Ft] =

= Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) +

+ logE

[
exp

([
Ψ0 +X ′

1t [matk,n (Ψ1)]
′]Wt+1 +

1

2
W ′

t+1 [matk,k (Ψ2)]Wt+1

)
| Ft

]

= Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t)−

−1

2
log |Ik − sym [matk,k (2Ψ2)]|+

1

2
µ′ (Ik − sym [matk,k (2Ψ2)])

−1 µ

with µ defined as

µ = Ψ′
0 + [matk,n (Ψ1)]X1,t.

Reorganizing terms, we obtain

Ȳ (Xt) = Γ̄0 + Γ̄1X1,t + Γ̄2X2,t + Γ̄3 (X1,t ⊗X1,t)
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where

Γ̄0 = Γ0 −
1

2
log |Ik − sym [matk,k (2Ψ2)]|+

1

2
Ψ0 (Ik − sym [matk,k (2Ψ2)])

−1 Ψ′
0

Γ̄1 = Γ1 +Ψ0 (Ik − sym [matk,k (2Ψ2)])
−1 [matk,n (Ψ1)] (36)

Γ̄2 = Γ2

Γ̄3 = Γ3 +
1

2
vec
[
[matk,n (Ψ1)]

′ (Ik − sym [matk,k (2Ψ2)])
−1 [matk,n (Ψ1)]

]′

For the set of parameters P = (Γ0, . . . ,Γ3,Ψ0, . . . ,Ψ2), equations (36) define a mapping

P̄ = Ē (P) ,

with all Ψ̄j = 0. We now substitute the law of motion for X1 and X2 to produce Ȳ (Xt) =

Ỹ (Xt−1,Wt). It is just a matter of algebraic operations to determine that

Ỹ (Xt−1,Wt) = logE [exp (Yt+1 − Yt) | Ft] =

= Γ̃0 + Γ̃1X1,t−1 + Γ̃2X2,t−1 + Γ̃3 (X1,t−1 ⊗X1,t−1)

+Ψ̃0Wt + Ψ̃1 (X1,t−1 ⊗Wt) + Ψ̃2 (Wt ⊗Wt)

where

Γ̃0 = Γ̄0 + Γ̄1Θ10 + Γ̄2Θ20 + Γ̄3 (Θ10 ⊗Θ10) (37)

Γ̃1 = Γ̄1Θ11 + Γ̄2Θ21 + Γ̄3 (Θ10 ⊗Θ11 +Θ11 ⊗Θ10)

Γ̃2 = Γ̄2Θ22

Γ̃3 = Γ̄2Θ23 + Γ̄3 (Θ11 ⊗Θ11)

Ψ̃0 = Γ̄1Λ10 + Γ̄2Λ20 + Γ̄3 (Θ10 ⊗ Λ10 + Λ10 ⊗Θ10)

Ψ̃1 = Γ̄2Λ21 + Γ̄3

(
Θ11 ⊗ Λ10 +

[
Λ10 ⊗ (Θ11)•j

]n
j=1

)

Ψ̃2 = Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10)

This set of equations defines the mapping

P̃ = Ẽ
(
P̄
)
.

A.4 Iterative formulas

We can write the conditional expectation in (33) recursively as

logE [Mt | F0] = logE

[
exp (Y1 − Y0)E

[
Mt

M1
| F1

]
| F0

]
.
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Given the mappings Ē and Ẽ , we can therefore express the coefficients P̄ in (33) using the

recursion

P̄t = Ē
(
P + Ẽ

(
P̄t−1

))

where the addition is by coefficients and all coefficients in P̄0 are zero matrices.

B Shock elasticity calculations

In this appendix, we provide details on some of the calculations underlying the derived shock

elasticity formulas.

B.1 Shock elasticities under the convenient functional form

To calculate the shock elasticities in Section 4.1, utilize the formulas derived in Appendix A to

deduce the one-period change of measure

logL1,t = logM1 + logE

(
Mt

M1
| X1

)
− logE

[
M1E

(
Mt

M1
| X1

)
| X0 = x

]
.

In particular, following the set of formulas (37), define

µ0,t =
[
Ψ1 +Φ∗

1,t−1Λ1,0 +Φ∗
2,t−1Λ20 +Φ∗

3,t−1 (Θ10 ⊗ Λ10 + Λ10 ⊗Θ10)
]′

µ1,t = matk,n

[
Ψ1 +Φ∗

2,t−1Λ21 +Φ∗
3,t−1

(
Θ11 ⊗ Λ10 +

[
Λ10 ⊗ (Θ11)•j

]n
j=1

)]

µ2,t = sym
[
matk,k

(
Ψ2 + Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10)

)]

Then it follows that

logL1,t = (µ0,t + µ1,tX1,0)
′W1 + (W1)

′ µ2,tW1 −

−1

2
logE

[
exp

(
(µ0,t + µ1,tX1,0)

′W1 + (W1)
′ µ2,tW1

)
| F0

]

Expression (35) then implies that

E [L1,tW1 | F0] = Ẽ [W1 | F0] =

= (Ik − 2µ2,t)
−1 (µ0,t + µ1tX1,0)

The variance of W1 under the ·̃ measure satisfies

Σ̃t =
(
Ik − 2sym

[
matk,k

(
Ψ2 + Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10)

)])−1
.
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B.2 Approximation of the shock elasticity function

In Section 5, we constructed the approximation of the shock elasticity function ε (x, t). The first-

order approximation is constructed by differentiating the elasticity function under the perturbed

dynamics

ε1 (X1,0, t) =
d

dq
α(X0 (q)) ·

E [Mt (q)W1 | X0 = x]

E [Mt (q) | X0 = x]

∣∣∣∣
q=0

= α (x̄) · E [Y1,tW1 | X0 = x] .

The first-derivative process Y1,t can be expressed in terms of its increments, and we obtain a

state-independent function

ε1 (t) = α (x̄) ·E




t−1∑

j=1

κx (ψx)
j−1 ψw + κw



′

where κx, ψx, κw, ψw are derivative matrices evaluated at the steady state (x̄, 0).

Continuing with the second derivative, we have

ε2 (X1,0,X2,0, t) =
d2

dq2
α(X0 (q)) ·

E [Mt (q)W1 | X0 = x]

E [Mt (q) | X0 = x]

∣∣∣∣
q=0

=

= α (x̄) ·
{
E
[
(Y1,t)

2W1 + Y2,tW1 | F0

]
− 2E [Y1,tW1 | F0]E [Y1,t | F0]

}
+

+2

[
∂α

∂x′
(x̄)

]
X1,0 ·E [Y1,tW1 | F0] .

However, notice that

E
[
(Y1,t)

2W1 | F0

]
= 2




t−1∑

j=0

κx (ψx)
jX1,0






t−1∑

j=1

κx (ψx)
j−1 ψw + κw




′

E [Y1,tW1 | F0] =




t−1∑

j=1

κx (ψx)
j−1 ψw + κw




′

E [Y1,t | F0] =

t−1∑

j=0

κx (ψx)
j X1,0

and thus

E
[
(Y1,t)

2W1 | F0

]
− 2E [Y1,tW1 | F0]E [Y1,t | F0] = 0.

The second-order term in the approximation of the shock elasticity function thus simplifies to

ε2 (X1,0,X2,0, t) = α (x̄) ·E [Y2,tW1 | F0] + 2

[
∂α

∂x′
(x̄)

]
X1,0 · E [Y1,tW1 | F0] . (38)
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The expression for the first term on the right-hand side is

E [Y2,tW1 | F0] = E




t−1∑

j=0

(Y2,j+1 − Y2,j)W1 | F0


 = 2matk,n (κxw)X1,0 +

+2

t−1∑

j=1

[
ψ′
w

(
ψ′
x

)j−1
matn,n (κxx) (ψx)

j +matk,n

[
κx (ψx)

j−1 ψxw

]]
X1,0

+2

t−1∑

j=1

j−1∑

k=1

[
ψ′
w

(
ψ′
x

)k−1
matn,n

[
κx (ψx)

j−k−1ψxx

]
(ψx)

k
]
X1,0

To obtain this result, notice that repeated substitution for Y1,j+1 − Y1,j into the above formula

yields a variety of terms but only those containing X1,0⊗W1 have a nonzero conditional expectation

when interacted with W1.

B.3 Partial shock elasticities

In Section 5.4, we constructed the first-order approximation of the partial shock elasticity function,

and argued that it is equivalent to the second-order approximation of the shock elasticity function.

Recall that for a shock vector W̃ that is independent of W ,

ε̃(x, t) = α̃(x) ·
E
[
MtY1,tW̃1 | X0 = x

]

E [Mt | X0 = x]

where

Y1,t =

t−1∑

j=0

(Y1,j+1 − Y1,j) = κ̃w̃ (X0,W1, 0, 0) W̃1 +

+

t−1∑

j=1

κ̃x (Xj,Wj+1, 0, 0)

(
j−1∏

k=1

ψ̃x (Xk,Wk+1, 0, 0)

)
ψ̃w̃ (X0,W1, 0, 0) W̃1 =

=
t−1∑

j=0

(
Ỹ1,j+1 − Ỹ1,j

)
W̃1

where Ỹ1,t = E

[
Y1,t

(
W̃1

)′
| Ft

]
, with Ft being the σ-algebra generated by (X0,W1, . . . ,Wt). Once

W̃1 is conditioned out, we proceed with the parameterization of the sensitivity to the shockW given

by (21), and follow the approximations from Section 5.

We construct a first-order approximation of the partial shock elasticity function

ε̃ (x, t) ≈ ε̃0 (x, t) + qε̃1 (x, t) .

The zero-th order approximation to the partial shock elasticity function evaluates Ỹ1,t at the de-
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terministic steady state

ε̃0 (x, t) = α̃(x̄) ·




t−1∑

j=1

κ̃x (x̄, 0, 0, 0)
[
ψ̃x (x̄, 0, 0, 0)

]j−1
ψ̃w̃ (x̄, 0, 0, 0) + κ̃w̃ (x̄, 0, 0, 0)


 .

Notice that derivatives κ̃x and ψ̃x evaluated at the deterministic steady state coincide with κx and

ψx. In line with the interesting special case from Section 2.5.2, consider the following positioning

of the shock vector W̃ :

ψ̃ (x,w, qw̃, q) ≡ ψ
(
x,w + qΥ′w̃, q

)
(39)

κ̃ (x,w, qw̃, q) ≡ κ
(
x,w + qΥ′w̃, q

)
.

Then the derivatives evaluated at q = 0 satisfy:

ψ̃w̃ (x,w, 0, 0) ≡ ψw (x,w, 0) Υ′

κ̃w̃ (x,w, 0, 0) ≡ κw (x,w, 0) Υ′,

and post-multiplying by Υ yields expressions (13)–(14). Choosing the exposure direction vector as

α̃h = Υαh, we obtain ε̃0 (x, t) = ε1 (x, t). By constructing alternative configurations of the shock

vector W̃ in the functions ψ̃ and κ̃, the partial elasticity function allows us to study a richer class

of dynamic responses.

In order to construct the first-order approximation, notice that

ε̃1 (X1,0, t) =
d

dq
α̃(X0)

E

[
Mt

(
Ỹ1,t

)′
| X0 = x

]

E [Mt | X0 = x]

∣∣∣∣∣∣∣∣
q=0

=

= α̃(x̄) ·E
[
d

dq

(
Ỹ1,t

)′∣∣∣∣
q=0

| F0

]
+
∂α̃

∂x′
(x̄)X1,0 · ε̃0 (x, t) .

The second term on the second line corresponds to one half of the second term in expression (38).

It remains to express the derivative in the first term. Recall that

Ỹ1,1 (q) = κ̃w̃ (X0 (q) , qW1, 0, 0)

Ỹ1,j+1 (q)− Ỹ1,j (q) = κ̃x (Xj (q) , qWj+1, 0, 0)(
j−1∏

k=1

ψ̃x (Xk (q) , qWk+1, 0, 0)

)
ψ̃w̃ (X0 (q) , qW1, 0, 0) , j > 0.

We then have

E

[
d

dq

(
Ỹ1,1

)′∣∣∣∣
q=0

| F0

]
= mat

k̃,n
(κ̃xw̃)X1,0
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and, for j > 0,

E

[
d

dq

(
Ỹ1,j+1 (q)− Ỹ1,j (q)

)′∣∣∣∣
q=0

| F0

]
=

= ψ̃′
w̃

(
ψ̃′
x

)j−1
matn,n (κ̃xx)E [X1,j | F0] + mat

k̃,n

[
κ̃x

(
ψ̃x

)j−1
ψ̃xw̃

]
X1,0 +

+

j−1∑

k=1

ψ̃′
w̃

(
ψ̃′
x

)k−1
matn,n

[
κ̃x

(
ψ̃x

)j−k−1
ψ̃xx

]
E [X1,k | F0] .

Collecting the terms and substituting for E [X1,k | F0], we obtain a result that is analogous to

the first term of 1
2ε2 (X1,0,X2,0, t) in expression (38):

E

[
d

dq

(
Ỹ1,t

)′∣∣∣∣
q=0

| F0

]
=

= E


 d

dq

t−1∑

j=0

(
Ỹ1,j+1 − Ỹ1,j

)′
∣∣∣∣∣∣
q=0

| F0


 = mat

k̃,n
(κ̃xw̃)X1,0 +

+

t−1∑

j=1

[
ψ̃′
w̃

(
ψ̃′
x

)j−1
matn,n (κ̃xx)

(
ψ̃x

)j
+mat

k̃,n

[
κ̃x

(
ψ̃x

)j−1
ψ̃xw̃

]]
X1,0 +

+

t−1∑

j=1

j−1∑

k=1

ψ̃′
w̃

(
ψ̃′
x

)k−1
matn,n

[
κ̃x

(
ψ̃x

)j−k−1
ψ̃xx

](
ψ̃x

)k
X1,0

Once again, if we construct ψ̃ and κ̃ to satisfy (39), then all partial derivatives of κ̃ and ψ̃ with

respect to W̃ correspond to those of κ and ψ with respect to W multiplied by Υ′. When we choose

α̃h = Υαh, we obtain

ε̃1 (X1,0, t) =
1

2
ε2 (X1,0, t)

and thus the approximations coincide.

Moreover, an inspection of the above expressions for ε̃0 (x, t) and ε̃1 (x1,·, t) reveals that all terms

are linear in a single partial derivative with respect to W̃ . Partial elasticities will thus be additive in

shock configurations, and we can naturally additively decompose elasticities by positioning shocks

in alternative locations in the functions ψ̃ and κ̃.

C Parameterization of the Ai et al. (2010) model

For sake of illustration and comparability, we use the same parameters as used by Ai et al. (2010) in

their extended model with adjustment costs, H (I∗,K), in the accumulation of intangible capital.

The production technology for turning intangible capital into new vintages of physical capital is
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Preferences
Time preference β 0.971
Risk aversion γ 10
Intertemporal elasticity of substitution ρ−1 2

Technology
Capital share ν 0.3
Depreciation rate of physical capital λ 0.11
Depreciation rate of intangible capital λ∗ 0.11
Weight on physical investment ϕ 0.88
Elasticity of substitution in G(I,K∗) η 2.5
Elasticity of substitution in H(I∗, K) ξ 5
Scaling parameters H(I∗, K) a1 0.6645

a2 -0.0324

Exogenous shocks
Mean growth rate Γ0 0.02

Γ∗
0 0

Volatility of the direct shock Ψ [0.0508 0]
Autocorrelation of the long-run risk process (Θ1)1,1 0.925

Volatility of the long-run risk shock Λ1 [0 0.008636]

Table 1: Parameterization of the Ai et al. (2010) model. All parameters correspond to a
calibration at the annual frequency.

specified by the CES aggregator

G (I,K∗) =
(
ϕI1−1/η + (1− ϕ) (K∗)1−1/η

) 1

1−1/η

and the adjustment cost function for the production of new intangible capital is chosen to be

H (I∗,K) =

[
a1

1− 1/ξ

(
I∗

K

)1−1/ξ

+ a2

]
K

where a1 and a2 are chosen so as to assure that H
(
Ī∗, K̄

)
= HI∗

(
Ī∗, K̄

)
= 1 for steady state values

Ī∗ and K̄. The parameter values are summarized in Table 1.
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mation of Dynamic Models with Time-Varying Risk. NBER Working paper W16633.

Binsbergen, Jules H. van, Michael W. Brandt, and Ralph S. J. Koijen. 2011. On the Timing

and Pricing of Dividends. Forthcoming in American Economic Review.
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Risk-Price Dynamics. Journal of Financial Econometrics 9 (1):3–65.

Campi, Marco and Matthew R. James. 1996. Nonlinear Discrete-Time Risk-Sensitive Opti-

mal Control. International Journal of Robust and Nonlinear Control 6:1–19.

60



Epstein, Larry G. and Stanley E. Zin. 1989. Substitution, Risk Aversion, and the Temporal

Behavior of Consumption and Asset Returns: A Theoretical Framework. Econometrica

57 (4):937–969.

Fama, Eugene F. and Kenneth R. French. 1992. The Cross-Section of Expected Stock

Returns. The Journal of Finance 47 (2):427–465.

———. 1996. Multifactor Explanations of Asset Pricing Anomalies. The Journal of Finance

51 (1):55–84.

Hall, Robert E. 2000. E-Capital: The Link between the Stock Market and the Labor Market

in the 1990s. Brookings Papers on Economic Activity 2000 (2):73–102.

———. 2001. The Stock Market and Capital Accumulation. American Economic Review

91 (5):1185–1202.

Hansen, Lars Peter. 2007. Beliefs, Doubts and Learning: Valuing Macroeconomic Risk.

American Economic Review 97:1–30.

———. 2011. Dynamic Valuation Decomposition within Stochastic Economies. Economet-

rica forthcoming. Fisher-Schultz Lecture at the European Meetings of the Econometric

Society.

Hansen, Lars Peter and Ravi Jagannathan. 1991. Implications of Security Market Data for

Models of Dynamic Economies. Journal of Political Economy 99 (2):225–262.

Hansen, Lars Peter and Thomas Sargent. 2010. Fragile beliefs and the price of uncertainty.

Quantitative Economics 1 (1):129–162.

Hansen, Lars Peter and Thomas J. Sargent. 2011. Robustness and Ambiguity in Continuous

Time. Journal of Economic Theory 146 (3):1195–1223.
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