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A note on GMM-estimation of probit models  
with endogenous regressors*  

Abstract 

Dagenais (1999) and Lucchetti (2002) have demonstrated that the naive GMM estimator 
of Grogger (1990) for the probit model with an endogenous regressor is not consistent. 
This paper completes their discussion by explaining the reason for the inconsistency and 
presenting a natural solution. Furthermore, the resulting GMM estimator is analyzed in a 
Monte-Carlo simulation and compared with alternative estimators. 
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1. Introduction 

GMM estimation is useful for estimating many types of econometric models. It has also 
been applied to probit models ever since the pioneering work of Avery, Hansen and 
Hotz (1983). However, their approach assumes that all explanatory variables are exoge-
nous. This assumption might be violated in some applications. Therefore, Grogger 
(1990, p. 330) considers the following model: 

*
1 2 1

*
1

1

y y x u

1, y 0
y

0, otherwise,

= γ + β +

 >
= 


 (1) 

where y1
* is a latent variable, y2 is a (1×G) vector of endogenous and observable metric 

variables, x1 is a (1×K1) vector of exogenous regressors, γ and β are vectors of unknown 
parameters, and u is a stochastic error term with mean zero and variance σ2, which may 
be normalized to one. In addition, define z = [y2 x1], δ = [γ' β']', and w = (1×(G+K1)) 
vector of instrumental variables which are correlated with y2 and uncorrelated with u. 
The dimension G+K1 is just a lower bound. If available, more instruments may be used. 

Grogger proposed a GMM estimator using the residuals  

ε = y1 − F(zδ), (2) 

F being the distribution function either of a standard normal distribution (probit model) 
or of a logistic distribution (logit model). However, Grogger’s residuals violate the cru-
cial assumption 

E(w'ε) = 0. (3) 

This has been demonstrated by Dagenais (1999) in a simulation experiment. In addition, 
Lucchetti (2002) proved the inconsistency of Grogger's GMM estimator analytically for 
the special case G=1 and K1=0. 

Section 2 explains why assumption (3) is violated in the presence of endogenous vari-
ables. Based on this result a natural and consistent GMM estimator is presented in sec-
tion 3. The article focuses on probit models, i.e. F(...) = Φ(...) being the distribution 
function of the standard normal distribution. Probit models are more flexible than logit 
models, and a natural GMM estimator can be derived more easily. A simulation study in 
section 4 compares this estimator with Grogger’s GMM and standard Maximum Likeli-
hood for different sample sizes. Section 5 explains extensions of the estimator to more 
complicated models and discusses the advantages in comparison with traditional two-
step estimators and a recent proposal of Kawaguchi and Naito (2005). Section 6 con-
cludes with a summary of the main results. 
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2. The cause of inconsistency 

Avery, Hansen and Hotz (1983) assume that all regressors are exogenous, i.e. γ = 0. In 
that case (2) reduces to ε = y1 − Φ(x1β). Since all variables are exogenous, the second 
right-hand term is equal to the conditional expectation of the endogenous dummy vari-
able: Φ(x1β) = E(y1|x1). Therefore, E(ε|x1) = 0. Using the law of iterated expectations 
gives: 

( ) ( )( ) ( )( )
1 1 1 11 x |x 1 1 x 1 |x 1E x ' E E x ' | x E x 'E | x 0ε εε = ε = ε = . 

Thus, the crucial assumption holds by definition if the residuals are the difference be-
tween the endogenous dummy variable and its conditional expectation given the instru-
mental variables. In other words: Choosing instrumental variables w and residuals ε 
with 

ε = y1 − E(y1|w) (4) 

is sufficient to ensure non-correlation of ε and w and thereby consistency of the GMM 
estimator. 

However, Grogger's residuals (2) are not equal to those in (4) even if all exogenous 
variables are part of w, what will be assumed in the following. The conditional expecta-
tion of y1 is 

( ) ( ) ( )1 2 1E y | w P u y x | w z= + γ > − β ≠ Φ δ . (5) 

The endogenous variable y2 is not a constant given x1 and other instrumental variables. 
Thus, it cannot be merged with −x1β as Grogger did. Instead the conditional distribution 
of u + y2γ must be determined to derive the expectation.  

3. A natural GMM estimator 

To simplify notation, G is set to one. The conditional distribution of u+y2γ may become 
very complicated depending on the conditional distribution of y2. However, choosing 
the normal distribution leads to a feasible solution. Assume that a reduced form equa-
tion for y2 can be specified: 

( ) ( )2
2 1 2 vy x v, x x x , v | x N 0,= π + = σ� , (6) 
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v being an error term, π a vector of unknown parameters, and x2 a (1×K2) vector of ex-
ogenous variables which are uncorrelated with v and u. Furthermore, it is assumed that 
the conditional distribution of u does not depend on x2, i.e.  

( )2u | x N 0,σ� .  (7) 

For instance, this is valid if the x2 variables are stochastically independent of u. Using 
(6) and (7) gives 

2u y u v x+ γ = + γ + πγ  and 

( ) ( ) ( )2 2 2 2 2
2 sum sum vu y | x N x , , 2 Cov u, v+ γ πγ σ σ = σ + γ σ + γ� . 

Following (5) 

( ) 1
1

sum

x x
E y | x .

 πγ + β= Φ  σ 
 (8) 

Thus, normalizing σsum to one (instead of σ) and choosing  

( )1 1y x xε = − Φ πγ + β  (9) 

leads to residuals which are uncorrelated with all components of x, i.e. E(x'ε) = 0. Thus, 
the crucial assumption (3) holds for w = x and for w = every subvector of x. In addition, 
further instrumental variables may be included in w that do not change the conditional 
expectation of y1, i.e. E(y1 | x, further variables) = Φ(xπγ + x1β). 

The residuals (9) contain not only the parameters of interest but also the unknown π. A 
possible solution is a two-step estimator: The first step is to estimate the reduced form 
equation (6). The second step is to calculate a GMM estimator using (9) after replacing 
π by its first step estimate. However, the standard errors of the second step estimator 
need be adjusted in order to account for the presence of the estimate of π. This problem 
can be avoided by a joint GMM estimation of (γ, β')' and π. A joint estimation leads 
automatically to correct standard errors. If the parameters are just identified, i.e. the 
number of moment conditions is equal to the number of parameters, the results of the 
joint estimation are equal to the results of a two step approach with adjusted standard er-
rors (Newey/ McFadden 1994, ch. 6.1). 

To estimate π the usual moment conditions are feasible because the regressand in (6) is 
observable:  

( ) ( )( )2E x 'v E x ' y x 0= − π =  (10) 
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Define i = observation index (i = 1, ..., N), wi, xi, y1i, y2i, and εi the values of w, x, y1, y2, 
and ε for the i-th observation, W = (w1' w2' ⋅⋅⋅ wN')', X = (x1' x2' ⋅⋅⋅ xN')', y1 = (y11, ..., 
y1N)', y2 = (y21, ..., y2N)', and ε = (ε1, ..., εN)'. A consistent joint GMM estimator of (γ, β')' 
and π is given by minimizing the function 

( ) ( )2 2

W ' N W ' N
q A

X ' y X N X ' y X N

′ε ε   
=    − π − π   

 (11) 

with respect to (γ, β')' and π. A is a weighting matrix which may be chosen as usual to 
minimize the asymptotic covariance matrix of the estimator (e.g. Harris/ Mátyás 1999, 
p.21, Greene 2003, ch. 18.3). If the parameters are just identified, the result does not de-
pend on the choice of A. 

4. A simulation study 

The properties of the natural GMM estimator and Grogger’s GMM are compared in a 
Monte-Carlo simulation. It is based on the design of Dagenais (1999), who calculates 
only correlations and no estimates. He uses the following model: 

*
1i 2i i

2i i i

i i 2i

y y 4 u

y 4 4w v

u 2v v ,

= + +
= − + +
= +

 (12) 

vi and v2i being independently drawn from a N(0, 16) distribution, and wi is generated 
from a uniform distribution on [−2, 2]. 

Since the parameters of probit models are identified only up to a positive factor (Mad-
dala 1983, p. 94), suitable normalizations are necessary to analyze the bias of the esti-
mators. Concerning the natural GMM estimator the factor is equal to sum1 σ  (cf. (8)). 
Therefore, the simulation study is based on the residuals 

2 2i
new,i 1i sum v uv

sum

4w
ˆ ˆ ˆ ˆy , 2

ˆ

 
ε = − Φ σ = σ + σ + σ σ 

, (13) 

where σ̂ , vσ̂  and uvσ̂  are the empirical variances and the empirical covariance of the 
ui’s and the vi’s. Regarding Grogger’s GMM estimator this aspect was not discussed be-
fore. However, his idea implicitly assumes that the factor is the same as the one for the 
probit model without endogenous regressors. Hence, the residuals  
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2i
grog,i 1i

y 4
y

ˆ
+ ε = − Φ  σ 

 (14) 

are used. The instrumental variables are 1 and wi for both estimators. Thus, there are 
two moment conditions for Grogger’s GMM and four moment conditions for the natural 
GMM. 

Due to the fact that the good properties of the GMM estimator are valid only asymptoti-
cally the behaviour of the estimator in small and medium samples is also analyzed. 
Therefore, all simulations were done for three sample sizes: N=80 (small sample), 
N=400 (medium sample) and N=2000 (large sample. They are replicated 1000 times. 
More details can be found in the LIMDEP code in the Appendix. 

Table 1 contains the relevant correlations. As the means are very similar for all sample 
sizes, only the values for N=2000 are presented. 

Table 1: 
Correlations between different variables (1000 replications) 

   Corr(variable 1, variable 2) 

 variable 1 variable 2 mean standarddev. 

 y2 u 0.5631 0.0142 

 w ( )1i 2iy y 4− Φ +  −0.4636 0.0132 

 w εgrog −0.1009 0.0205 

 w εnew 0.0001 0.0213 

 w y2 0.7765 0.0075 

 

The mean correlation between w and Groggers original residuals (2) is in the interval 
which is reported by Dagenais (1999, p. 20). It is similar to the correlation between the 
endogenous regressor and u. The comparison of the correlation between the original re-
siduals and w on the one hand and the correlation between (14) and w on the other hand 
indicates that the correlation depends on the normalization of the explanatory variables. 
Finally, the correlation between the instrumental variable and the endogenous regressor 
is rather high. In other words, w is not a weak instrument. 

Table 2 contains the estimation results. In addition to the two GMM estimators the stan-
dard probit maximum likelihood estimator (MLE) is presented, which assumes exoge-
neity of y2.  
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Both the standard MLE and Grogger’s GMME of γ and β0 are highly biased, whereas 
the natural GMME behaves well for medium and large sample sizes. The bias of the es-
timators influences marginal effects and test statistics. For instance, for all 1000 replica-
tions the t-ratios belonging to Grogger’s GMME are smaller than those of the natural 
GMME (N=400 and N=2000).  

The last part of the table shows that the problem of bias is much smaller for the ratio of 
the two parameters. Further work is needed to elucidate whether this result is caused by 
the simulation design or by systematical reasons.  

Table 2: 
Means of estimations (1000 replications) 

 estimate N probit MLE 

(root(MSE)) 

naive GMME 

(root(MSE)) 

natural GMME 

(root(MSE)) 

 γ̂  (γ=1) 80 2.096 (1.164) 0.751 (0.370) 0.993 (0.329) 

  400 2.042 (1.056) 0.743 (0.281) 0.995 (0.090) 

  2000 2.040 (1.042) 0.746 (0.259) 1.001 (0.032) 

 0β̂ (β0=4) 80 8.822 (5.408) 2.956 (1.983) 3.905 (2.551) 

  400 8.617 (4.726) 2.956 (1.258) 3.956 (0.573) 

  2000 8.622 (4.645) 2.979 (1.070) 3.994 (0.252) 

 0π̂  (π0=-4) 80 - - -4.005 (0.459) 

  400 - - -3.999 (0.201) 

  2000 - - -4.001 (0.091) 

 1π̂  (π1=4) 80 - - 3.993 (0.372) 

  400 - - 3.994 (0.161) 

  2000 - - 3.999 (0.073) 

 0
ˆ ˆβ γ  80 4.196 (0.796) 3.940 (4.994) 3.940 (5.013) 

  400 4.218 (0.399) 3.970 (0.692) 3.969 (0.698) 

  2000 4.227 (0.272) 3.990 (0.309) 3.989 (0.312) 
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5. Extensions and discussion  

Expression (11) can be generalized easily to more than one endogenous regressor in 
equation (1) by adding empirical moments according to moment conditions like (10) for 
each additional endogenous variable. Furthermore, the GMM estimator will also be fea-
sible if some of the endogenous variables are latent. For instance, in case binary out-
comes are observed, residuals εgi = ygi − Φ(xiπg) may be used to define empirical mo-
ments (g = index of the endogenous variables). Thus, the proposed GMM estimator can 
be applied to a wide class of probit models with endogenous regressors. 

In a recent discussion paper Kawaguchi and Naito (2005) propose an alternative GMM 
estimator for probit models with an endogenous regressor. It is based on the conditional 
expectation of y1i given xi and v2i. However, they consider only the case of two equa-
tions, and it is more difficult to generalize their approach to an arbitrary number of 
equations. Moreover, their estimator is restricted to observable endogenous regressors. 
Hence, it is less flexible than the proposed estimator above.  

More traditional approaches are two step estimators based on the Maximum Likelihood 
principle. The first step estimates the reduced form equations, the second step estimates 
either (1) after replacing y2 by its reduced form forecast or a conditional likelihood func-
tion (cf. Rivers/ Vuong 1988 and Blundell/ Smith 1993 for an overview and discussion). 
However, the standard errors of the second step need to be corrected. The procedure is 
well known but involves cumbersome computations (cf. Murphy/ Topel 1985 or Greene 
2003, ch. 17.7). This problem is avoided by using the natural GMM estimator. 

All estimators are less efficient than a joint Maximum Likelihood estimation of (1) and 
(6). However, for multiple equation hybrid models the implementation of a joint MLE is 
more complicated than that of the natural GMME. Moreover, in case three or more en-
dogenous regressors are latent and binary observable, joint ML estimation becomes in-
feasible. The estimator involves the integration over the density of a multivariate normal 
distribution; the dimension of the integral is equal to the number of discrete endogenous 
variables. Such high dimensional integrals cannot be solved numerically. Simulation 
techniques are needed, which are computationally expensive. 

Furthermore, a GMM approach is rather flexible for panel data, whereas adequate ML es-
timation requires tight restrictions on the error terms (cf. Lechner/ Breitung 1996, p. 583).  

A crucial assumption for the natural GMME as well as for the conditional GMME of 
Kawaguchi and Naito is that the error terms are homoscedastic and normally distributed. 
Concerning heteroscedasticity a flexible GMM-based estimator has been proposed by 
Wilde (2005, ch. 4.4). If the normality assumption is violated, semiparametric ap-
proaches are necessary (cf. Blundell/ Powell 2004 for an overview and discussion). 
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6. Conclusion 

The naive GMM estimator of Grogger is not consistent because the residuals are not 
equal to the difference between the endogenous dummy variable and its conditional ex-
pectation (given the instrumental variables). A natural GMM estimator is based on this 
difference. In case the error term of the original equation and the disturbances of the re-
duced form equations of the endogenous regressors are normally distributed, calculating 
the conditional expectation is straightforward. A joint GMM estimation of all equations 
leads not only to consistent estimators but also to correct standard errors. The approach 
is applicable to an arbitrary number of equations and can also be applied to latent en-
dogenous regressors. A simulation study points out that the estimator behaves well for 
medium and high sample sizes, whereas the mean square error is rather high for small 
sample sizes. 
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Appendix: LIMDEP Code of the simulation study 

sample ;1-80$ 

calc ;Ran(210465) $ 

create ;wi=Rnu(-2,2) $ 

matrix ;wi_80=wi $ 

sample ;1-2000 $ 

matrix ;wi_400=[wi_80/wi_80/wi_80/wi_80/wi_80] 

 ;wi_2000=[wi_400/wi_400/wi_400/wi_400/wi_400] $ 

create ;wi=wi_2000 $ 

create ;obs=Trn(1,1) $ 

calc ;replikat=1000 $ 

matrix ;b_probit=init(Replikat,9,0) ;b_grogg=init(Replikat,9,0)  

 ;b_newgmm=init(Replikat,15,0) ;korrelat=init(Replikat,15,0) 

 ;t_grogg=init(Replikat,6,0) ;t_newgmm=init(Replikat,6,0) $ 

calc ;Ran(310465) $ 

calc ;i=1 ;gamma=1$ 

procedure 

create ;v1i=Rnn(0,4) $ 

create ;v2i=Rnn(0,4) $ 

create ;ui=2*v1i+v2i$ 

calc ;Sti=2000 ;k=1 ;kk=4 ;kkk=7 ;kkkk=10 ;kkkkk=13$ 

do while ;loop;Sti>=80 $ 

calc ;sigm_ui=sdv(ui) ;sigm_vi=sdv(v1i) ;cov_uv=cov(ui,v1i) 

 ;sigm_sum=sqr(sigm_ui^2+gamma*gamma*sigm_vi^2+2*gamma*cov_uv) $  

create ;gross_yi=-4+4*wi+v1i ;yi_stern=4+gross_yi+ui  

 ;yi=0 ;if(yi_stern>0)yi=1$ 

create ;gryi_nor=gross_yi/sigm_ui ;one_nor=1/sigm_ui 

 ;e_grogg=yi-Phi(4+gross_yi) ;e_norm=yi-Phi(4*one_nor+gryi_nor) 

 ;epsilon=yi-Phi((4+1*(-4+4*wi))/sigm_sum)$ 

calc ;cor_yu=cor(gross_yi,ui) ;cor_weg=cor(wi,e_grogg) 

 ;cor_wen=cor(wi,e_norm) ;cor_wep=cor(wi,epsilon) 

 ;cor_wy=cor(wi,gross_yi)$ 

matrix ;korrelat(i,k)=cor_yu ;korrelat(i,kk)=cor_weg 
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 ;korrelat(i,kkk)=cor_wen ;korrelat(i,kkkk)=cor_wep 

 ;korrelat(i,kkkkk)=cor_wy$  

prob ;lhs=yi;rhs=one_nor,gryi_nor$ 

calc ;b0_b1=b(1)/b(2) $  

matrix ;b_probit(i,k)=b(1) ;b_probit(i,kk)=b(2) ;b_probit(i,kkk)=b0_b1$ 

gmme ;fn1=one*(yi-Phi(b0*one_nor+b1*gryi_nor)) 

 ;fn2=wi*(yi-Phi(b0*one_nor+b1*gryi_nor)) 

 ;labels=b0,b1 ;start=4,1 ;maxit=200$ 

calc ;b0_b1_gr=b(1)/b(2) $ 

matrix ;b_grogg(i,k)=b(1) ;b_grogg(i,kk)=b(2) ;b_grogg(i,kkk)=b0_b1_gr $ 

matrix ;se_quadr=Vecd(varb) ;se_kehrw=se_quadr!-0.5 ;t_stat=dirp(b,se_kehrw)  

 ;t_grogg(i,k)=t_stat(1) ;t_grogg(i,kk)=t_stat(2)$ 

gmme ;fn1=one*(yi-Phi((b0+b1*(pi1+pi2*wi))/sigm_sum)) 

 ;fn2=wi*(yi-Phi((b0+b1*(pi1+pi2*wi))/sigm_sum)) 

 ;fn3=one*(gross_yi-pi1-pi2*wi) 

 ;fn4=wi*(gross_yi-pi1-pi2*wi) 

 ;labels=b0,b1,pi1,pi2 ;start=4,1,-4,4 ;maxit=200$ 

calc ;b0_b1_ne=b(1)/b(2) $ 

matrix ;b_newgmm(i,k)=b(1) ;b_newgmm(i,kk)=b(2) 

 ;b_newgmm(i,kkk)=b0_b1_ne 

 ;b_newgmm(i,kkkk)=b(3) ;b_newgmm(i,kkkkk)=b(4)$ 

matrix ;se_quadr=Vecd(varb) ;se_kehrw=se_quadr!-0.5 

 ;t_stat=dirp(b,se_kehrw)  

 ;t_newgmm(i,k)=t_stat(1) ;t_newgmm(i,kk)=t_stat(2)$ 

calc ;Sti=Sti/5 ;k=k+1 ;kk=kk+1 ;kkk=kkk+1 ;kkkk=kkkk+1
 ;kkkkk=kkkkk+1$ 

reject ;new;obs>Sti $ 

enddo ;loop $ 

sample ;1-2000 $ 

calc ;i=i+1$ 

endproc 

exec ;n=replikat;silent $  

delete ;logl_obs $ 
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