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Is there a Superior Distance Function
for Matching in Small Samples?

Abstract*
The study contributes to the development of ’standards’ for the application of match-
ing algorithms in empirical evaluation studies. The focus is on the first step of the
matching procedure, the choice of an appropriate distance function. Supplementary
to most former studies, the simulation is strongly based on empirical evaluation
situations. This reality orientation induces the focus on small samples. Furthermore,
variables with different scale levels must be considered explicitly in the matching
process. The choice of the analysed distance functions is determined by the results of
former theoretical studies and recommendations in the empirical literature. Thus, in
the simulation, two balancing scores (the propensity score and the index score) and
the Mahalanobis distance are considered. Additionally, aggregated statistical distance
functions not yet used for empirical evaluation are included. The matching outcomes
are compared using non-parametrical scale-specific tests for identical distributions of
the characteristics in the treatment and the control groups. The simulation results
show that, in small samples, aggregated statistical distance functions are the better
choice for summarising similarities in differently scaled variables compared to the
commonly used measures.

Keywords: distance functions, matching, microeconometric evaluation, propensity
score, simulation

JEL classification: C14, C15, C52

* The authors thank Prof. Heinz P. Galler for his very helpful comments and suggestions. Further-
more, we thank Heiner Dettmann and Wilfried Ehrenfeld for many long and fruitful discussions
on the simulation design as well as their excellent contributions to the implementation.
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Welches Distanzmaß sollte für Matching
in kleinen Stichproben verwendet werden?

Zusammenfassung
Die Studie leistet einen Beitrag zur Entwicklung von „Standards“ für den Einsatz
von Matchingverfahren in empirischen Evaluationsstudien. Der Fokus liegt dabei
auf der Entscheidung für ein geeignetes Distanzmaß. Die strenge Orientierung der
durchgeführten Simulation an realen Entscheidungssituationen stellt eine Ergänzung
zu den meisten bisher bekannten Studien dar. Sie erklärt zum einen die Fokussierung
auf kleine Stichproben, zum anderen die explizite Berücksichtigung unterschiedlich
skalierter Variablen, die im Matchingprozess berücksichtigt werden müssen. Die Anal-
yse umfasst diejenigen Distanzmaße, die in der theoretischen Literatur als vorteilhaft
angesehen bzw. häufig in empirischen Studien eingesetzt werden: die Mahalanobisdis-
tanz und Balancing Scores. Darüber hinaus werden zwei aus der Statistik bekannte –
in Evaluationsstudien bisher allerdings nicht verwendete – aggregierte Distanzmaße
untersucht. Die erzielten Matchingergebnisse werden anhand nichtparametrischer
skalenspezifischer Tests auf Übereinstimmung der Merkmalsverteilungen bewertet.
Die Ergebnisse zeigen, dass aggregierte Distanzmaße in kleinen Stichproben besser
in der Lage sind, Ähnlichkeiten in unterschiedlich skalierten Merkmalen zusammenz-
ufassen als die bisher gebräuchlichen Maße.

Schlagwörter: Distanzmaße, Matching, Mikroökonometrische Evaluation, Propen-
sity Score, Simulation

JEL-Klassifikation: C14, C15, C52
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1 Introduction

In many empirical investigations, the outcome of different treatments has to be
compared. Often, it is not possible to control for potentially influential covari-
ates. Instead, one tries to find objects in the various treatment groups that are
highly similar with respect to the presumed influential variables. Mechanisms to
find such objects are called matching algorithms. Well-known in metrical applica-
tions (see, e.g., Babor and Del Boca 2003, Cooney et al. 1991), over the last years
such matching procedures have also been become a widely used tool in the evalu-
ation literature of political decisions, particularly European labour market policy
interventions (see, e.g., Bergemann et al. 2004, Hujer and Thomsen 2006, Lechner
et al. 2004, Sianesi 2004). Besides the popularity in empirical studies, there is a
broad discussion of matching properties and the performance of this approach com-
pared to other evaluation techniques. Some of the most influential studies at this
field of research are Angrist and Hahn (2004), Cochran and Rubin (1973), Dehejia
and Wahba (2002), Heckman, Ichimura, Smith and Todd (1998), Heckman and Hotz
(1989), and Rosenbaum and Rubin (1983).
Furthermore, many proposals to improve matching can be found, e.g. Abadie and
Imbens (2002), Fröhlich (2004b), Heckman et al. (1997, 1998), Lechner (2001, 2004),
or Lechner and Miquel (2005).

Another strand of literature is more concentrated on practical guidance for the
choice of an appropriate matching method for empirical research. This includes on
the one hand reviews on recent developments (Angrist and Krueger 1999, Heck-
man et al. 1999, Imbens and Wooldridge 2008, Rubin 2006) and general recom-
mendations how to select a suitable matching procedure (see, e.g., Caliendo and
Kopeinig 2005, Heckman and Robb 1985, Rosenbaum 1987).
On the other hand, simulations and sensitivity analyses to discover the behaviour
of selected matching approaches in different research situations can be found in the
recent literature. One influential example is the discussion between Dehejia and
Wahba (1999, 2002) and Smith and Todd (2005) on the ability of matching to over-
come the the shortcomings of non-experimental estimators expressed by LaLonde
(1986). Other important studies include the comparison of different matching and
regression approaches by Abadie and Imbens (2002), and the study of Augurzky
(2000b) on the properties of propensity score matching. In a simulation study, Gu
and Rosenbaum (1993) compare the performance of matching based on different
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distance functions and assignment algorithms when the sample structure changes.
Also in a simulation Fröhlich (2004a) compares assignment algorithms based on the
propensity score. Altogether, the studies provide very different results, depending
on the design of the analysis.

The present study contributes to this discussion of advances and drawbacks of
matching approaches in certain empirical research situations. Unlike most former
studies, this analysis is strictly based on typical decision situations in practice. This
practical orientation requires a focus on small samples, because data collection is
expensive, and hence, the data base for many research questions is of limited size.

Matching procedures consist of two basic elements: a distance measure to decide
upon the similarity of objects, and an assignment algorithm to find adequate part-
ners for the members of the treatment group. In empirical studies, particular atten-
tion must be paid to the effect of differently scaled variables on the matching result,
because the set of matching variables will usually not consist of covariates of just
one scale level. This requirement influences particularly the first element, i.e., the
choice of the distance measure. Therefore, the central question investigated here is
the following: Which distance function is suitable for identifying and summarising
similarity information in small samples when the matching variables do not share
the same level of scaling?

To answer this question, a simulation study is conducted that compares commonly
applied distance functions, i.e., the propensity score, the index score and the Maha-
lanobis distance. Additionally, statistical distance functions not yet used for match-
ing are introduced. These distance functions combine several scale-specific distance
measures and are thus expected to better capture similarity information of differ-
ently scaled variables. In order to assess the ability of the analysed functions, dif-
ferent samples types are generated based on the model of a real German micro data
set. The performance of the distance functions is evaluated using non-parametric
scale-specific tests of the variable means and frequency distributions.

The paper is organised as follows. In the next section, the theory of matching and
the associated basic assumptions are explained. Subsequently, the analysed distance
functions (section 3) and the simulation design (section 4) are presented. Section 5
discusses possible performance measures as well as the results of the simulation in
terms of the employed measures. The most important features of the study and the
results are summarised in section 6.
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2 The Matching Approach

In order to evaluate a treatment, the outcome of the treated individuals is compared
to a non-treatment outcome. Of course, it is not possible in practice to observe both
outcomes for one and the same individual. This problem is usually illustrated with
the Model of Potential Outcomes:1

Yit = Di · Y T
it + (1−Di)Y C

it . (1)

The observed outcome Yit of individual i at time t is the outcome in case of treatment
Y T
it or non-treatment Y C

it . The dummy Di indicates, whether the individual i is
treated (Di = 1) or not (Di = 0).

In this sense, the fundamental evaluation problem is a problem of missing data.
Therefore, average treatment effects instead of individual effects are analysed. The
individuals exposed to the analysed treatment are pooled in a so-called treatment
group, all other observed individuals are members of the non-treatment group. Out
of the non-treatment group, some individuals are selected to be compared to the
treatment group. They are summarised in the so-called control group. The treat-
ment effect is then estimated by comparing the average outcomes of the treatment
and the control group.2 The central problem for every method estimating average
treatment effects is to eliminate the so-called selection bias. This term denotes dif-
ferences in the outcomes of the treated and the comparison individuals which would
show up even if neither group was treated. To remove all influences on the outcome,
except for the treatment effect, all observable and unobservable heterogeneities be-
tween the compared groups must be controlled for.3

1 This approach is formulated by Rubin (1973a, 1973b, 1974, 1977) as a framework for the
analysis of causal effects. It can be found under different synonyms in the literature, e.g.,
’Switching Regression Model’ (Heckman et al. 1999), ’Rubin Causal Model’ (Imbens and
Wooldridge 2008), or Roy-Rubin-Model (Hujer and Caliendo 2000).

2 The most popular effect is the average treatment effect for the treated. Other effects are
discussed in the literature, see, e.g., Heckman et al. (1999), Imbens (2004), or Imbens and
Wooldridge (2008).

3 Since in most evaluation studies in a social science context, no designed experiments can be
performed – especially some random assignment to treatment and control group, like e.g.
in clinical studies, is usually impossible here – this problem cannot be solved by building
treatment and control group beforehand. Instead, the control group has to be constructed
from the non-treatment group after the treatment has taken place.
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Matching is based on the idea of finding ’statistical twins’ to solve the selection
problem. For each treated individual, one or more partners from the non-treatment
group are assigned. The assignment process is solely based on observable charac-
teristics. Thus, potential heterogeneity in unobservable factors cannot be removed
with matching.4

The central assumption of matching states that the potential outcomes are equal
for individuals with identical observed characteristics, irrespective of their assign-
ment to the treatment or the control group. In other words: Given the matching
variables, the potential treatment outcome and control outcome are independent
of the assignment to treatment. This assumption is commonly called Conditional
Independence Assumption (CIA) (Lechner 2001), Ignorable Treatment Assignment
(Rosenbaum and Rubin 1983) or Unconfoundedness (Imbens 2004):

Y T
t ,Y C

t ⊥D|X. (2)

The vector of matching variables is denoted by X, the assignment to treatment
by D; Y T

t and Y C
t denote the potential outcomes for the treated and the controls,

respectively, and ⊥ means independence. This assumption requires that all variables
relevant for the outcome as well as for the treatment are considered in the matching
process.

A necessary condition to be able to estimate the treatment effect is that for all
observed values of the matching variables, there exists at least one individual in
each of the groups carrying this value:

0 < Pr (D = 1|X) < 1. (3)

This condition is referred to as Overlap (Crump et al. 2009) or the Common Sup-
port Condition (Sianesi 2004). Individuals outside the Common Support cannot
be considered for the estimation of average treatment effects and must be removed
from the analysed sample.

4 A commonly recommended solution for this drawback is to combine matching with the
Difference-in-Differences approach, see, e.g., Smith and Todd (2005). In some cases, if the
data base is rich and contains detailed information, it is also possible to construct indicator
variables for unobservable factors, see Reinowski et al. (2005).
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If both assumptions (2) and (3) are fulfilled, the treatment assignment is said to be
strongly ignorable (Rosenbaum and Rubin 1983). Additionally, a causal interpreta-
tion of the estimated effect requires the independence of the individual treatment
effects of influences due to the treatment of other individuals, i.e. the compliance of
the so called Stable Unit Treatment Value Assumption (Fröhlich 2004b).
The basic requirement of the CIA (2) is to find one or more control(s) for every
treated individual with similar values of the matching variables. The first idea
one could have is to match on every single variable. This exact matching raises
the potential problem of not finding partners which correspond with respect to
all variables, particularly if many matching variables are considered (Black and
Smith 2004). Reducing the dimension of X is not a feasible option, because in
this case the compliance with CIA is not plausible (Heckman et al. 1997). So, the
similarity information must be summarised in an appropriate way.
Derived from the CIA, two basic requirements can be stated for the choice of a
similarity measure. Firstly, such measures have to correctly capture the similarities
and differences in the observed variables that occur between the analysed individuals.
Secondly, when summarising the information, each variable must be equally weighted
in the total similarity measure.

3 Analysed Distance Functions

In this study, the most common distance functions in the literature are compared to
some statistical functions not yet used in the evaluation context. The introduction of
these new distance functions results from drawbacks of the commonly used functions,
especially with respect to their suitability for capturing similarities of observations
in differently scaled variables in small samples.

3.1 Balancing Scores

The class of balancing scores consists of all functions BS with the following feature
(Rosenbaum and Rubin 1983):

X⊥D|BS (X) . (4)

If the assignment to treatment D is according to the balancing score BS, the distri-
bution of the variables X in the treatment and the control group do not differ from
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each other. That means the value of a variable is independent of the assignment
to treatment. In their seminal paper, Rosenbaum and Rubin (1983) prove that a
balancing score fulfills the CIA, if the score consists of variables that satisfy the
assumption

Y T
t ,Y C

t ⊥D|BS (X) . (5)

The terms Y T
t and Y C

t denote the outcome in the treatment and non-treatment
case, respectively. In the empirical literature, two balancing scores are common –
the propensity score and the index score.

Propensity Score The most widely used score is the propensity score (PS). This
one-dimensional distance function is defined as the probability of being in the treat-
ment group, or the probability of participation: PS (X) = Pr (D = 1|X) (see, e.g.,
Caliendo and Kopeinig 2005). Usually, this participation probability is not observ-
able and thus, has to be estimated. Probit models are commonly used for this
estimation.5 In the context of a Probit model, the observable decision to take a
treatment is assumed to be determined by an unobservable latent variable, the par-
ticipation tendency:

Di =

1 if INi > 0

0 else.
(6)

Here, the term Di denotes the individual participation decision, and INi the unob-
servable individual participation tendency. This normally distributed latent variable
is assumed to be influenced by observable relevant characteristics, the matching vari-
ables:

INi = βXi + εi with εi ∼ N(0,σ2), (7)

where Xi denotes the observed individual values of the relevant characteristics, β
their influence on the participation tendency. Within the scope of the model, the
PS is estimated using the standard normal distribution function Φ:

P̂S (Xi) = Φ (βXi) . (8)

5 Another widely used estimation approach is the Logit model. For further information on Logit
and Probit models see, e.g., Greene (2008).
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The propensity score is not only prevalent in empirical studies. It is object of
extensive theoretical research, too. Heckman, Ichimura and Todd (1998) show that
neither the asymptotic bias nor the asymptotic variance of the estimated treatment
effect is larger compared to that of exact matching. Furthermore, according to
Angrist and Hahn (2004) the asymptotic efficiency of PS-matching is higher than
that of exact matching. Hahn (1998) develops efficiency bounds for the variance of
PS-based matching and points out that knowing the true score lowers the variance
of the estimated effect.
Gu and Rosenbaum (1993) assess that the propensity score is superior to other
distance functions in a matching procedure when the number of covariates is large.
Augurzky (2000a) analyses the influence of specification errors in the PS-estimation
model on the performance, i.e., bias and mean squared error (MSE), of the estimated
treatment effect. Based on his results, he recommends using solely highly significant
covariates to estimate the PS. A further interesting result of Fröhlich (2004a) and
Zhao (2008) is that the failure to fulfill the linearity assumption implied by the PS
estimation model has only a small influence on the performance of the estimator.
Dehejia andWahba (1999) propose an iterative approach to specify the model for PS-
estimation. This approach is implemented in matching tools for standard software,
e.g. STATA, and is now widely used in empirical literature.6

An estimation of the participation tendency mentioned above is also often applied
in the empirical literature and is then called index score.

Index Score This score is derived from the PS estimation based on the Probit
model:

ÎN i = βXi. (9)

Compared to the propensity score, with the linear estimator (9) differences between
treated individuals and the control group in the tails of the score distributions
become more apparent, i.e., individuals with PS close to zero or one can be better
distinguished by means of the index score (Lechner 1998).
When using the scores in practice two potential problems should be considered.
Since the participation probability or participation tendency is not observable, the
corresponding score has to be estimated, and the balancing property of the scores

6 For details of this iterative process see Becker and Ichino (2002).
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proofed by Rosenbaum and Rubin (1983) only holds asymptotically. Furthermore,
estimating one of the scores implies including and weighting the variables accord-
ing to their influence on the participation, not on the outcome (Zhao 2004). This
may result in quite different outcomes for persons with identical score values, par-
ticularly in small samples (Fröhlich 2004b). Therefore, in small samples the risk of
biased treatment effect estimation is high, because the control group may consist
of individuals that are not ’statistical twins’ of the treated ones with respect to the
outcome.

3.2 Statistical Distance Functions

Mahalanobis Distance The most common alternative distance measure in em-
pirical literature is the Mahalanobis distance. The distance function of Mahalanobis
(1936) is specifically for metrically scaled variables. The distance between two indi-
viduals is determined as the weighted sum of the variable-specific differences:

MDij = [(xi)− (xj)]′Cov−1 [(xi)− (xj)] . (10)

The terms xi and xj denote the vectors of the considered covariates of the treated
individual i and the non-treated j. The covariance matrix is denoted by Cov and
is defined as follows: Cov = 1

I+J−1
∑ (xi − x̄) (xi − x̄)′, where I and J are the

numbers of treated and non-treated individuals and x̄ denotes the vector of the
covariate means.

Using the covariance matrix to weight the inter-individual distances has the ad-
vantage that variances as well as potential correlations between the covariates are
accounted for. The other side of the coin is that distances of covariates with outliers
are understated (Gu and Rosenbaum 1993). Nevertheless, in a simulation study,
Zhao (2004) shows that in small samples the Mahalanobis distance is superior to
the propensity score in terms of the MSE of the estimated treatment effect and its
components, variance and bias. A serious drawback for the application in empirical
studies is the focus on variables of only one scale level, metrical variables. Thus, sim-
ilarities in not metrically scaled variables cannot be appropriately considered. Gu
and Rosenbaum (1993) point out that this is particularly problematic for nominal
variables with rarely occurring values.
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Following from the drawbacks of the commonly used distance functions described
above it seems to be beneficial to consider an alternative way of aggregation: to
construct distance functions that consist of different scale specific distance measures.
When pooling information of differently scaled variables, the following two require-
ments have to be taken into account. Firstly, normalisation of the single distances
is necessary to make sure that every distance information contributes to the overall
distance to the same degree. One of the most often used normalisation strategies
is to divide every single distance by the observed variable specific maximum dis-
tance (Diday and Simon 1976).7 Secondly, a transformation of the scale specific
information is often necessary to be able to interpret the aggregated function. The
reason is that distance functions are usually calculated for metrically-scaled vari-
ables, whereas similarity measures are used for nominally-scaled variables. A com-
mon transformation for normalized measures in the literature is: dn,ij = 1 − sn,ij,
where the distance between the treated individual i and non-treated individual j in
variable xn is denoted by dn,ij, and the similarity by sn,ij.
Two distance functions from statistical literature that meet these conditions seem
to be applicable in empirical evaluation studies and are therefore presented next.

Mahalanobis Matching Distance Kaufmann and Pape (1996) propose a com-
bination of different distance functions as weighted average of the scale-specific mea-
sures. The number of variables of each scale is used to weight the respective distance
functions.
To summarise metrically- and nominally-scaled variables the aforementioned Maha-
lanobis distance can be combined with the Generalised matching Coefficient (GMC).
This coefficient can be defined as the share of covariates with equal values in all nom-
inally scaled variables:

gMCij = 1
no

no∑
n=1

Q(xni,xnj). (11)

The Generalised matching Coefficient is denoted by gMCij, the number of nominal
covariates by no. Q(xni,xnj) is an indicator for the equality of individuals i and j
in variable xn:

Q(xni,xnj) =

1 if xni = xnj

0 else.
(12)

7 For alternative normalisation strategies see, e.g., Wilson and Martinez (1997).
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As can be observed from the equations, using the GMC allows for different numbers
of possible values in the covariates. The variables with coincident values are equally
weighted irrespective of the number of possible values.
When combining the scale-specific distance functions, the differences in metrically-
scaled variables are normalised with the maximum difference. The similarity infor-
mation from the GMC is transformed into a distance measure. Both functions are
weighted by the number of metrically- and nominally-scaled variables, respectively:

MDMCij = 1
N

[
me ·MDij + no · (1− gMCij)

]
. (13)

The terms MDMCij, MDij and gMCij stand for the Mahalanobis matching distance
and the scale-specific distances, N denotes the total number of variables: N =
me + no, where me is the number of metrically-scaled covariates and no that of the
nominally-scaled ones.

Gower Distance Another possibility to summarise similarity information of dif-
ferently scaled variables can be found in Gower (1971). Here, the weighted average
of variable specific similarity coefficients is presented:

SGij =

N∑
n=1

wnsn,ij

N∑
n=1

pcn,ij

. (14)

The aggregated similarity measure is denoted by SGij, the similarity between the
treated individual i and the non-treated one j in the variable xn is denoted by sn,ij.
wn is a variable specific weight, and ∑

pcn,ij is the number of variables without
missing values for the examined individuals i and j.
When using this similarity measure in empirical evaluation, the denominator of
equation (14) simplifies to

N∑
n=1

pcn,ij = N , because the values of the relevant match-
ing variables must be observable for every individual. Furthermore, the weighting
factor for every variable-specific similarity coefficient is set to one: wn = 1, and
the similarity coefficients are transformed into distance functions. The resulting
distance coefficient DGij is called Gower distance in the following:

DGij = 1
N

N∑
n=1

dn,ij. (15)

14 IWH Discussion Paper 03/2010
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The term dn,ij stands for the distance between individuals i and j in variable xn,
N is the total number of covariates. How the specific distance dn,ij is determined
depends on the scale of variable xn:

dn,ij =


|xni−xnj |
diffmaxn

if xn metrical

1−Qn,ij if xn nominal.
(16)

For metrically-scaled variables the absolute difference |xni − xnj| is used. The max-
imum observed difference diffmaxn in the variable xn is employed to normalise this
difference. Distances in nominally scaled variables are determined using the trans-
formed GMC. If every variable is separately considered, this coefficient corresponds
to the equality indicator (12).

In a simulation study the suitability of the aforementioned distance functions for
matching in empirical studies, i.e., their ability to meet the requirements stated in
section 2, is analysed.

4 Simulation

The purpose of this study is to contribute to the development of guidelines for the
application of matching in empirical research. In order to mimic real decision situ-
ations as closely as possible, the study is focused on small samples. Following the
literature, a sample consisting of 100 individuals is regarded as small in this study.8

Furthermore, when working with real data the researcher is faced with variables
of different scale levels that have to be considered for matching. Therefore, un-
like most earlier studies, differently scaled variables are explicitly considered in the
simulation.9

8 In earlier simulation studies, see, e.g., Fröhlich (2004a) and Zhao (2004), samples of this size
are defined as small. The only instance of a stricter definition of small is found in the study
of Gu and Rosenbaum (1993), where they set this restriction to 50 individuals.

9 The simulation is conducted using MATLAB 6.5.
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4.1 Hypotheses

The characteristics of the described distance functions allow the following hypotheses
regarding their ability to summarise similarity information from differently scaled
variables in small samples:

• Compared to balancing scores, statistical distance functions should better be
able to capture similarities and differences in the outcome determinants be-
tween individuals in small samples.

• Aggregated statistical distance functions should be superior to the Maha-
lanobis distance when metrically- as well as non-metrically scaled variables
have to be considered for matching.

4.2 Simulation Setup

The question asked for this analysis is: Which distance function is most suitable for
summarising the similarity and distance information of variables with different scale
levels? To answer this question, a simulation study with varying variable structures
for a fixed number of treated and non-treated individuals is conducted.

Sample Design The simulation study is based on samples that are representing
a group of persons of treated or non-treated individuals with different observed
characteristics. The choice of variables is geared to frequently used information
in empirical labour market studies. Following this basic concept, variables with
different scale levels are generated. The distributions of these variables are generated
following the information of a real data set, the German microcensus.
The microcensus is a survey based on a representative one per cent sample of all
households in Germany. The microcensus provides information about every person
in each household as well as the family and household context. It is the basis for
policy decisions in the Federal Republic and the EU as well as for the current labor
market research.10 The microcensus draws a realistic picture of the scale level of the
information that usually have to be included in evaluation studies and is therefore

10 Statistical information gained from the Census is the basis of decisions made on, for example,
the resource allocation of the European Social Fund and the European Regional Development
Fund. Furthermore, the data is used in the annual reports of The German Council of Economic
Experts.
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used as a model for the simulation samples. This study uses the 2004 sub-sample of
persons aged 25 to 55 years that corresponds to a commonly analysed age group in
labour market studies.

The information in the data contains different scale levels, e. g., the metrical vari-
ables age, duration of education, and income level. Dichotomous nominally-scaled
variables include information on sex, nationality and employment status. A third
group of information contains ordinal and nominally-scaled variables with more than
two possible values, such as education level, family background or kind of occupa-
tion. This group serves as an orientation for the construction of polytomous nominal
variables. Ordinal variables are not generated explicitly, since they are usually con-
verted into dichotomous nominal variables for the identification of similarities.

For the simulation samples 5 metrical, 5 dichotomous and 5 polytomous nominal
variables are generated. Normal distribution is assumed for all metrically-scaled
variables. The means and standard deviations of the following characteristics in
the microcensus underlie the random selections: age, number of children, duration
of education, seniority and net income. The generated dichotomous variables are
based on the binomial distribution and microcensus information on sex, marital
status, German citizenship, working in the public service sector and residence in
Eastern Germany. For generating polytomous nominal variables, the frequency of
occurrence of the different values of education level, occupational qualification, kind
of occupation, size of enterprise and sector in which respondents are employed is
reproduced.
All the variables are drawn from univariate variable distributions.11

In addition, linear combinations of these variables are defined: the ’true’ treatment
effect, the treatment and the non-treatment income.12 The income specification
geared to income estimates in the Annual Report 2004/2005 of The German Council
of Economic Experts.13 The difference between both incomes is determined by an

11 Thus, the correlation structure of the generated variables is not taken into account. This is a
minor restriction that could affect the behaviour and performance of the analysed functions.
However, analysing the joint distributions of the differently scaled variables goes beyond the
scope of this study.

12 The generation of additional variables follows the requirements of policy evaluation, e.g.,
evaluating the income effect of training for the participants.

13 The determinants of income in this report are: age, number of children, duration of education,
seniority, sex, German citizenship, residence in Eastern Germany, working in the public service
sector and quadratic terms of the mentioned factors. See German Council of Economic Experts
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individual treatment effect, which is also generated as a linear combination of several
variables.14

The result of constructing a sample is an ’artificial’ group of individuals having the
characteristics of the persons in the German microcensus.

Simulation Design Every generated random sample consists of 100 treated
and 1000 non-treated individuals that are characterised by the variables described
above.15

In the simulation, four different sample types are generated. These types differ from
each other in the strength and the nature of the deviation of the variables in the
non-treatment subsample from that of the subsample of the treated individuals. For
every sample type, 1000 random samples are generated, i.e., every simulation step
consists of 1000 runs.
The variable structure in the subsamples of treated individuals is fixed over the
simulation. Changes in the variable structure of the whole sample are achieved by
combining the treatment subsamples with different non-treatment subsamples (see
table 1). The analysis starts with random samples with almost identical distributions
of all variables in both subsamples. The next steps are to generate dissimilarities
solely in the distribution of the metrically-scaled characteristics and deviations solely
in the nominally-scaled variables, respectively. The last step of the simulation is
characterised by samples with dissimilar distributions in variables of all scale levels.

Table 1: Simulation Design

Distribution of . . . Metrical Variables
similar dissimilar

Nominal Variables similar sample 1 sample 2
dissimilar sample 3 sample 4

(2004), box 30. The parameters of this estimation will be used to generate the incomes in the
samples.

14 A detailed description of the generated variables and their use for matching as well as for
defining the treatment effect and the incomes can be found in table 7 in the Appendix.

15 The matching result is influenced by the ratio of treated to non-treated persons: the as-
signment of adequate partners tends to be less difficult with a higher ratio (see, e.g.,
Fröhlich 2004a). The ratio of 1:10 persons is expected to be large enough to eliminate a
potential negative influence of this ratio on the matching result.
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Following Gu and Rosenbaum (1993), the variation between different samples is
conducted by a shift of the mean variable value. The deviation term incorporates
two components, the variable-specific variation as well as the desired amount of de-
viation.16 For variables with different variability, a fixed amount of deviation has
different influences of the resulting distributions: The effect of deviation for variables
with higher variability will be smaller than that for less varying variables. Thus, the
variable-specific variation is included in the deviation term.
Variations in metrically-scaled variables are generated by variable-specific deviations
from the means in the treatment sample. For nominally scaled variables, the de-
viation term determines different frequencies of occurrence of the various possible
values between treated and non-treated individuals. For each sample it is randomly
decided whether a positive or a negative deviation term is generated.

The desired amount of deviation in similar non-treatment samples is one per cent
of the variable-specific variance, for dissimilar variable distributions the value is set
to 25 per cent.

5 Analysis of the Distance Functions

In previous studies and in the empirical literature, three distance functions are com-
monly recommended: the propensity score, the index score (see 3.1) and the Ma-
halanobis distance (see 3.2). These functions are compared in the simulation. The
propensity score (8) and the index score (9) are estimated using a Probit model.17

Additionally, two aggregated statistical distance functions not yet used for empirical
evaluation, the Mahalanobis matching distance and the Gower distance (see 3.2) are
included in the analysis.

16 For metrically-scaled variables the standard deviation is used to define the variation. As no
statistical deviation measure exists for nominally-scaled variables, the ’variance’ is approxi-
mated by the deviation from the variable ’median’.
The value of the variable-specific desired amount of deviation is based on the test statistic
of a goodness of fit test, i.e., the test statistic of a χ2-homogeneity test for nominally-scaled
variables and that of the t-test in the case of metrically-scaled variables.
Detailed information on the definition of the variations between the treatment and non-
treatment subsamples can be found in table 7 in the Appendix.

17 This study uses a tool developed by LeSage (1999) for the estimation.
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All analysed distance functions are specified using the same variables. In the specifi-
cation, metrically as well as dichotomous and polytomous nominally-scaled variables
are included. Interaction terms and quadratic terms are not considered.

As is the case in every empirical study, the common support condition must be
verified as true for every matching variable. The assumption is met if at least one
non-treated individual with the same variable value as a treated one can be found,
and vice versa. For metrical variables, the condition is regarded as fulfilled if the
deviation does not exceed a range of 10 per cent of the variable-specific mean. For
the nominal variables, only exact matches are accepted.
Objects with covariate values that are outside the common support are excluded
from the matching process, and hence are not considered in the analysis of the
distance functions.

Based on the information of inter-individual distances, partners are assigned to
the treated persons. Only one assignment algorithm, an optimal nearest neighbor
matching, is used for all assignments, because the analysis concentrates on distance
functions. Optimal assignments are not very common in the evaluation literature,
but compared to other procedures they have the advantage that – in terms of the
defined criterion – they find the best solution (Rosenbaum 1989).

The Hungarian Algorithm is introduced to the literature by Kuhn (1955). Based
on the work of König (1916) and Egervary (1931), he proposes a solution for the
classical assignment problem. The aim of this optimisation procedure is the minimal
cost full assignment of persons to jobs. This idea can be applied to the assignment of
similar individuals.18 The cost will be replaced by the individual distances between
treated and non-treated individuals, the sum of these distances is the optimisation
criterion.19

The combination of the distance functions described above and the assignment pro-
cess results in various control groups. These control groups can be evaluated using
different performance measures.

18 The basic idea of this procedure is often explained using matrix notation, see, e.g., Bazaraa
et al. (1990). An alternative description of the algorithm based on graph theory can be found
in Reinowski et al. (2005).

19 A tool developed by Borlin (1999) is used to implement this algorithm. Since the number of
treated individuals differs from that of the non-treated ones, the distance matrix is adjusted
prior to the calculation: In order to produce a quadratic matrix additional rows whose elements
are large numbers, compared to the real distances in the data (i.e. 9999) are inserted.
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5.1 Measuring the Performance

Measuring the performance of matching means to control for two possible sources
of biased estimation results. Firstly, estimation bias occurs due to the insufficient
balance of the variable distributions in both samples. Secondly, the loss of observa-
tions may induce biased results. While the first source of bias – a violation of the
Conditional Independence Assumption – can lead to biased results in any situation,
the loss of observations only influences the estimation results if heterogeneous treat-
ment effects occur.
The loss of observations is mainly determined by the choice of an assignment algo-
rithm. In this study, an optimal assignment is applied, so no loss of observations due
to an insufficient assignment process is expected.20 Thus, only a potential violation
of CIA is inspected.
Because this assumption is not directly testable, there is no ’standard test’ to
evaluate matching results. To get an impression of the quality of the results, in
many empirical studies descriptive analyses are conducted (see, e.g., Black and
Smith 2004, Buscha et al. 2008).
Furthermore, various performance measures can be found in the literature. When
the ’true’ treatment effect is known – as is the case in simulation studies or sensi-
tivity analyses with experimental data – a statistical efficiency measure, the mean
squared error (MSE), is commonly applied (e.g., Abadie and Imbens 2002, Dehejia
and Wahba 1999, LaLonde 1986). The MSE is composed of the bias and the vari-
ance of the estimated treatment effect. It provides information on the deviation of
the estimated from the ’true’ effect as well as the deviation of single estimates from
their mean (see, e.g., Dekking et al. 2005).
The matching process, but not the estimation result itself, is examined by means
of the Percent Bias Reduction.21 The Bias before matching of a variable is the dif-
ference between the mean values in the treatment and the non-treatment sample,
whereas the Bias after matching denotes the mean of the value differences between
each treated individual and its control(s) (Ming and Rosenbaum 2000). The bias
comparison shows how much of the initial deviation is removed in the matching pro-

20 Furthermore, this aspect is more important for the evaluation of different assignment algo-
rithms and thus, is not considered in the analysis of distance functions.

21 Cochran (1968) introduced this performance measure to the literature. Subsequently, it has
been widely used in empirical studies (e.g., Augurzky 2000b, Cochran and Rubin 1973, Gu
and Rosenbaum 1993).
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cess. Furthermore, the bias after matching is a source of information on the balance
of the variable values between each treated individual and its control subsample.
A similar information can be gained by the comparison of the Standardised Differ-
ence of the variables before and after matching. The difference before matching is
the ratio of the difference of the mean values in the treatment and the non-treatment
sample and the pooled standard deviation of both subsamples. After matching the
difference is determined using the mean value of the control group.22 The compari-
son of both Standardised Differences also shows how much deviation is removed by
matching. Additionally, the difference after matching can be seen as a proxy for the
ability of the matching process to balance the variable distributions in the groups
altogether. This performance measure is also commonly used in empirical studies
(see, e.g., Rosenbaum and Rubin 1985, Sianesi 2004).
Unfortunately, no criterion for an acceptable size of the after-matching-values of the
performance measures can be found (Smith and Todd 2005). Therefore, statistical
tests of differences in the variable distributions of the treatment and the control
group are conducted in some studies (e.g., Augurzky and Kluve 2004, Lechner 1999,
Sianesi 2004).
Similarly, to assess the performance of the distance functions, non-parametric tests
for related samples are used in this study. Because of the different scale levels of
the considered variables, it is not possible to use one test for all covariates. Thus,
scale-specific tests are applied: for metrically-scaled variables the Wilcoxon signed
rank test (Sheskin 2004) and for dichotomous nominal variables the McNemar test
(Sheskin 2004). As for polytomous nominal variables no test for related samples is
available, the χ2-test of homogeneity (Sheskin 2004) is used.

5.2 Results

In the following, the main results for each of the four simulated sample types, as
described in table 1, are presented.23

22 All other terms of the equation stay the same.
23 See tables 8 to 12 in the Appendix for detailed results for each of the analysed distance

functions. Additionally, the Bias before and after matching, as well as the Percent Bias
Reduction is given in the tables. The information is regarded as supplementary and not used
for the analysis, because the definition of the Bias as the difference of variable means is not
adequate to detect discrepancies in the frequency distribution of nominal variables.
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The results in the presented tables represent the average results of the 1000 random
samples that are generated for each sample type. In the first column, the number of
the matching variables is given: variables 1-5 are metrically-scaled, 6-9 dichotomous,
and 10-12 polytomous nominally-scaled.24 These variables are used to specify each
of the distance functions. In the second column, the average variable values in the
treatment group can be found. Within each sample type, they are identical for all
distance functions. Between the different sample types, the averages may gradually
differ from each other, because individuals may be excluded from the analysis if the
common support condition is not fulfilled. The same applies to the averages in the
non-treatment sample which are given in the third column.
In contrast, quite different average variable values can appear in the control groups
resulting from applying the different distance functions. Such differences represent
the different weighting schemes for the covariates that are associated with the anal-
ysed distance functions.
In columns 4-11, the average variable value in the control group as well as the results
of the tests can be found for every distance function. The test results are reported
as an average rejection rate over all random samples where all tests are performed
on a nominal 5% signifikant level. The result of each single test is denoted by zero
if the null hypothesis of equal means and frequency distributions cannot be rejected
and one in the case of rejection, respectively. Thus, the lower the reported value,
the more balanced are the variable distributions in the treatment and the control
group – and the better is the distance function.
The analysis yields almost identical results for the propensity score and the index
score.25 Therefore, only the results for the propensity score are presented the fol-
lowing tables (columns 4-5).

5.2.1 Variable Distributions Similar

Table 2 contains the results for the initial sample type, similar distributions of all
variables in the treatment and the non-treatment sample. The presented results
indicate that the statistical distance functions are able to discover similarities in

24 An overview of the matching variables is given in table 7 in the Appendix.
25 Both scores differ slightly in the average rate of rejection of the tests in a few variables, but

the average variable values are identical for all considered variables. See tables 8 and 9 in the
Appendix.
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differently scaled variables in most cases, whereas the analysed scores often fail to
find suitable partners for the treated individuals. The differences in the quality of
the matching results regarding the performance measures are conspicuous.
The comparison of the average variable means in the control groups generated by
means of the PS and the index score with the initial values shows that in many
samples non-treated individuals are selected whose characteristics, on average, differ
more from those of the treated ones than before matching. The assignment of
’improper’ non-treated individuals leads to relatively high rejection rates of the
hypothesis of equal means and frequency distributions in the scale-specific tests. In
more than half the samples, on average over all scale levels, the null hypothesis is
rejected.
On the other hand, the average variable means in the control groups resulting from
the application of statistical distance functions are altogether more similar to those
of the treated individuals than the values in the initial non-treatment group. Based
on the Mahalanobis and the Gower distance, the identified control groups on average
show smaller deviations from the treated group than the initial sample of non-treated
individuals.
Looking at the average variable means gives a first impression on the performance of
the distance functions. However, they provide no information on the most important
and interesting question for the empirical research: What distance function is able
to identify the closest partners for the treated individuals and thus to generate the
best possible control groups? This question can be answered by means of the test
results.26

The average rejection rate of the hypothesis of equal mean values or frequency
distributions over all scale levels is approximately 20 per cent in the case of the
Mahalanobis distance, 25 per cent for the Gower distance, and for the Mahalanobis
matching distance only approximately 10 per cent. The aim of matching, to balance
the variable distributions in the treatment and the control group, is best achieved
when the matching process is based on the Mahalanobis matching distance. Overall,
this distance function seems to be the best choice for the identification of suitable
partners for the treated individuals when the members of a small sample group are
very similar.

26 All tests are performed at the significance level α = 5%.

24 IWH Discussion Paper 03/2010



IWH

Ta
bl
e
2:

Si
m
ul
at
io
n
R
es
ul
ts

fo
r
Sa

m
pl
es

w
it
h
Si
m
ila

r
D
is
tr
ib
ut
io
n
in

bo
th
,
M
et
ri
ca
l
an

d
N
om

in
al

V
ar
ia
bl
es

In
iti
al

D
at
a

Pr
op

en
sit

y
Sc

or
e

M
ah

al
an

ob
is

D
ist

an
ce

M
ah

al
an

ob
is

M
at
ch
in
g

G
ow

er
D
ist

an
ce

X
a

T
b

N
T
b

C
b

Te
st
c

C
b

Te
st
c

C
b

Te
st
c

C
b

Te
st
c

1
40

.0
2

39
.9
7

37
.2
4

0.
67

39
.9
8

0.
13

40
.1
0

0.
15

40
.0
1

0.
09

2
0.
99

1.
06

0.
92

0.
37

1.
01

0.
15

1.
02

0.
20

0.
99

0.
08

3
12

.0
1

11
.9
9

11
.2
0

0.
55

12
.0
1

0.
16

12
.0
6

0.
22

12
.0
1

0.
10

4
11

.8
3

12
.4
6

10
.2
2

0.
49

11
.9
7

0.
16

12
.3
3

0.
21

11
.8
3

0.
07

5
13

00
.0
0

13
46

.4
6

11
37

.4
4

0.
52

13
10

.9
5

0.
14

13
46

.9
4

0.
21

12
98

.8
0

0.
11

6
0.
50

0.
50

0.
55

0.
49

0.
51

0.
05

0.
50

0.
00

0.
50

0.
14

7
0.
65

0.
65

0.
68

0.
47

0.
66

0.
03

0.
66

0.
00

0.
64

0.
15

8
0.
90

0.
90

0.
91

0.
26

0.
91

0.
01

0.
93

0.
13

0.
90

0.
11

9
0.
20

0.
20

0.
33

0.
50

0.
20

0.
00

0.
18

0.
06

0.
20

0.
13

10
2.
86

2.
86

2.
72

0.
75

2.
89

0.
44

2.
88

0.
00

2.
86

0.
64

11
2.
35

2.
35

2.
26

0.
68

2.
34

0.
51

2.
33

0.
03

2.
36

0.
60

12
3.
14

3.
15

2.
98

0.
75

3.
22

0.
45

3.
20

0.
00

3.
14

0.
61

N
ot
es
:

Av
er
ag
e
re
su
lts

fo
r
10
00

sa
m
pl
es
.

D
ev
ia
tio

n
of

th
e
m
ea
ns

an
d
fr
eq
ue
nc
ie
s
of

th
e
va
ria

bl
e
va
lu
es
,r

es
p.
:
1
pe

r
ce
nt

of
va
ria

bl
e
sp
ec
ifi
c
va
ria

nc
e.

a
In
cl
ud

ed
va
ria

bl
es
.
Sc
al
e
le
ve
l:
1-
5
m
et
ric

al
,6

-9
di
ch
ot
om

ou
s,

10
-1
2
po

ly
to
m
ou

s;
b
Av

er
ag
e
va
lu
e
of

th
e
va
ria

bl
e
in

th
e
tr
ea
tm

en
t
sa
m
pl
e
(T

),
th
e
no

n-
tr
ea
tm

en
t
sa
m
pl
e
(N

T
)
an

d
th
e
co
nt
ro
lg

ro
up

(C
);

c
Av

er
ag
e
re
je
ct
io
n
ra
te

of
th
e
nu

ll
hy

po
th
es
is

of
eq
ua

lm
ea
ns

an
d
fr
eq
ue
nc
y
di
st
rib

ut
io
ns
;S

ig
ni
fic
an

ce
le
ve
lα

=
5%

;
Sc
al
e
sp
ec
ifi
c
te
st
s
(m

et
ric

al
va
ria

bl
es
:
W

ilc
ox
on

sig
ne
d
ra
nk

te
st
,d

ic
ho

to
m
ou

s:
M
cN

em
ar

te
st
,p

ol
yt
om

ou
s:
χ

2 -
te
st
).

IWH Discussion Paper 03/2010 25



IWH

A more detailed look at the test results reveals interesting variations of the distance
functions in their ability to balance the variable distributions for the different scale
levels. The rejection rate for polytomous variables is rather high when the matching
process is based on the Mahalanobis distance and the Gower distance, i.e., about 45
and 60 per cent, respectively. The Mahalanobis matching distance is, however, a very
good basis for balancing the distributions of polytomous variables. The ’weakness’ of
this distance function seems to be the balance of metrically-scaled variables, where
the rejection rate is almost one fifth, similar to that of the Mahalanobis distance.
The smallest rejection rate at this scale level appears for the Gower distance with
10 per cent. Regarding the balance of the distribution of dichotomous variables, all
statistical distance functions seem to be applicable, although the rejection rate for
the Mahalanobis distance is smallest.
As an intermediate result it can be stated that in the presence of similar samples
the propensity score and the index score do not provide a good basis for identifying
similar partners for the treated individuals. The statistical distance functions are
better suited for this task. Between these three functions, variations in their abili-
ties to balance the variable distributions depending on the scale level are detected.
Overall, the best partners for the treated individuals (compared to the results of
other distance functions analysed) can be identified by means of the Mahalanobis
matching distance.

5.2.2 Variable Distributions Dissimilar with respect to one Scale Level

The following tables summarise the simulation results for the two sample types with
dissimilarities in metrical or nominal variables. In table 3, the results for sam-
ples with dissimilar distributions of metrically-scaled and similar distributions of
nominally-scaled variables are presented. The non-treatment samples are charac-
terised by a deviation amount of 25 per cent of the variable-specific variance from
the mean values in the treatment sample for metrically-scaled variables. For the
nominally-scaled variables, the deviation in the frequency of occurrence of the vari-
able values is 1 per cent of the variable-specific deviation from the variable median.
Table 4 contains the results for the opposite case of similarly distributed metrical
variables and dissimilar dichotomuos and polytomous variables.
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The generated deviations of the variable values between the treated individuals and
the non-treated ones are not visible in the average variable means. This is explained
by the fact that, when generating the samples, positive and negative deviations are
randomly drawn. Both cases are equally likely, i.e., the means over all samples do
not differ from each other.
The test results for the two sample types draw a very similar picture of the per-
formance of the analysed distance functions to that of the initial sample type. For
the PS and index score distinctly higher rejection rates are again observed than for
the statistical distance functions. In the samples with dissimilar metrical variables,
the null hypothesis of equal mean values and frequency distributions is rejected on
average in every second sample, compared to rejection rates below 40 per cent for
the Mahalanobis distance, about 35 per cent for the Gower distance and 30 per
cent for the Mahalanobis matching distance. The distinction is even clearer in the
samples with dissimilar nominally-scaled variables. In case of the PS and the index
score, the overall rejection rate is more than 50 per cent, whereas the rates for the
statistical distance functions are much smaller (20, 30 and 15 per cent, respectively).
The results for the different scale levels show a pattern similar to that in the initial
sample type. Balancing the distribution of polytomous variables is problematic with
the Mahalanobis distance and – particularly – with the Gower distance. The average
rejection rates are 50 and 65 per cent. In contrast, the difference of the distributions
of the polytomous variables is not statistically significant between treated individuals
and the control groups generated with the Mahalanobis matching distance; the
average rejection rate is nearly 0 per cent in both sample types.
The opposite is true in the case of the metrically-scaled variables. At this scale
level, the average rejection rates are smallest for the Gower distance, whereas the
Mahalanobis distance and the Mahalanobis matching distance perform relatively
poorly – particularly in the samples 3 and 4 (see table 1).
For dichotomous variables the Gower distance leads to a slightly worse balancing
result than the Mahalanobis distance and the Mahalanobis matching distance.
The comparison of the results of both sample types reveals important differences in
the abilities of the analysed distance functions. For samples with dissimilar metrical
characteristics, a substantial deterioration of the performance of the Mahalanobis
distance and the Mahalanobis matching distance compared to the results in the
initial design is observed. The average rejection rate of the hypothesis of balanced
metrical variables is about 65 per cent and is thus even higher than the rejection
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rates for the PS and the index score. The Gower distance is, however, also able to
balance the means of the metrical variables in the case of relatively dissimilar data –
the average rejection rate here is about one third. Changes compared to the initial
results are, on the other hand, very limited for the samples with dissimilar nominal
variables.
Overall – for both sample types and scales of all levels – the ’ranking’ of the analysed
distance functions does not change, but the superiority of the Mahalanobis matching
distance compared to the Gower distance and the Mahalanobis distance is less clear,
especially in the sample type of dissimilar metrical variables. The statement con-
cerning the performance of the propensity score and index score however, remains
the same as for the initial sample case.

5.2.3 Variable Distributions Dissimilar with respect to both Scale Levels

Table 5 contains the results for the sample type with dissimilar distributions in
both types (metrical and nominal) of variables. The deviation of the means and
frequencies of the variable values is set to 25 per cent of the variable-specific variance.
The results for the samples with dissimilar variables lead to a very similar assessment
of the abilities of the analysed distance functions as the previous analysis steps. Es-
pecially striking are the contrasting results for the Mahalanobis matching distance
and the Gower distance. The poor performance of the Mahalanobis matching dis-
tance regarding metrical variables – with average rejection rates of approximately
65 per cent – is contrasted by a perfect balance of the polytomous nominal variables
– the rejection rates are at 0 per cent. The opposite is true for the Gower distance.
Here, the average rejection rates in the case of metrical variables are about 35 per
cent, and for polytomous variables almost 75 per cent. The perfomance of the Ma-
halanobis distance lies between the two aggregated functions within the scale levels,
but is slightly worse overall.
An interesting point is the improvement of the performance of propensity score and
index score relative to the statistical distance functions. The null hypotheses of
equal means or frequency distributions is rejected, on average, in 45 per cent of the
samples – compared to about 40, 35, and 30 per cent in the case of the Mahalanobis
distance, Gower distance, and Mahalanobis matching distance, respectively.
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5.2.4 Summary of the Results

Summarising the results for all the sample types, there is a recurrent pattern in the
quality of distance functions in terms of their abilities to balance the variable distri-
butions, i.e. covariate means and frequency distributions of the values. Compared
to the statistical distance functions, the propensity score and the index score are
less able to identify and summarise similarities and differences in differently scaled
variables. On average over all four sample types, the null hypothesis is rejected in
about one half of the samples versus one third in the case of the Mahalanobis dis-
tance and Gower distance, and about one fifth in case of the Mahalanobis matching
distance.
The results suggest that the use of parametric models to estimate distance functions
and the implicit weighting of the included variables according to their impact on
the participation probability is problematic in small samples. This confirms the
reservations expressed in Fröhlich (2004b) about the use of PS in small samples.
The results are also consistent with the findings of Zhao (2004), who states that
– in comparison with the PS – the Mahalanobis distance is the better distance
function for balancing the variable distributions in small samples.27 The observed
differences between the results of the propensity score and the index score are –
unlike in Augurzky (2000a) – very small. The higher suitability of the index score
for distinguishing between individuals on the distribution tails cannot be observed
in this study’s results.
Table 6 presents a ’ranking’ of the analysed distance functions that summarises the
simulation results.
The ranking of the statistical distance functions varies if the detailed results for the
different scale levels are considered. The Gower distance is not suitable for balancing
the distributions of polytomous variables, the results for the dichotomous variables
are also poor in comparison to those of Mahalanobis matching distance and Maha-
lanobis distance. The ’strength’ of this distance function lies in capturing metrical
variables.
Almost the opposite is true for the Mahalanobis matching distance. While the bal-

27 A similar statement for a small number of covariates (N=5) can be found in Gu and Rosen-
baum (1993), who also assessed the opposite for a large number of variables (N=20). The
number of variables used in the present simulation study (N=12) should be ’small enough’,
so that the results do not contradict those of Gu and Rosenbaum (1993).
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Table 6: Ranking of the Analysed Distance Functions

Scale-specific Rank Overall

Distance Function metrical V. dichotomous V. polytomouos V. Rank

Propensity Score 4 3 4 3
Index Score 4 3 4 3
Mahalanobis Distance 2 1 2 2
Gower Distance 1 2 3 2
Mahalanobis Matching D. 3 1 1 1

ance of nominal variables (dichotomous and particularly polytomous) after matching
is very good in every sample type, the ’weakness’ of this distance function becomes
clear when metrical variables are not similarly distributed.
The performance of the Mahalanobis distance for the different scale levels lies in
most cases between those of the two aggregated distance functions.

The hypothesis regarding the superiority of statistical distance functions in compar-
ison to the scores is confirmed by the simulation results. It can be observed in the
samples that the Mahalanobis distance and the aggregated distance functions are
better able to capture similarities and differences in the determinants of the outcome
than propensity score and index score.

Following the second hypothesis, an aggregated distance function should perform
better than the Mahalanobis distance when differently scaled variables are con-
sidered. This hypothesis involves two aspects. It expresses the expectation that,
compared to a specific distance for metrical variables, the ’correct’ capture of the
similarities or differences in nominal variables will result in better balanced frequency
distributions of these variables after matching. Moreover, with an aggregated dis-
tance function a ’smoothing’ of the remaining deviations over all variables should
be achieved, because every single difference has got the same weight in the total
distance.
The expectation of better balanced variable distributions of nominal variables can
be confirmed for polytomous variables in case of the Mahalanobis matching dis-
tance. For dichotomous variables, however, no considerable differences between the
Mahalanobis distance and the aggregated distance function are observed. The re-
sults of the Gower distance for nominally-scaled variables are worse than those of
the Mahalanobis distance.

IWH Discussion Paper 03/2010 33



IWH

The smoothing property for the remaining variable deviations can only be observed
for the Gower distance.

6 Conclusion

In the study, the suitability of different distance functions for capturing similarity
information is analysed. With the focus on small samples and differently scaled vari-
ables this study contributs to the discussion about distance functions for matching.
The selection of the distance functions is determined by former studies as well as
theoretical considerations. Thus, two commonly used balancing scores (the propen-
sity score and the index score) and three statistical distance functions are compared
in this simulation study. Of the three distance functions, the Mahalanobis distance
has featured in former studies as well. The other two aggregated distance functions
have not yet been used for empirical evaluation.
From theoretical considerations it is expected that the included distance functions
should differ in their applicability, i.e., aggregated statistical distance functions
should be superior in summarising similarity information in empirical studies.
In the simulation, four sample types are generated that differ from each other in
the strength and the nature of the deviation of the variable distributions in the
subsamples of non-treated and treated. The performance of the distance functions
is evaluated using scale-specific non-parametrical tests of differences in the variable
distributions after matching. The simulation results confirm the expectation of
superiority of aggregated statistical distance functions.
The selection of an appropriate distance function for empirical studies depends on
the predominant scale level of the matching variables. When samples have many
metrically-scaled variables, the Gower distance should be used to capture the simi-
larity information of the matching covariates. When most of the matching variables
are nominally scaled – particularly in the case of polytomous variables – the Ma-
halanobis matching distance is the best available distance function. In the case of
dichotomous variables, the performance of the analysed functions do not differ to a
great extent, even though the results of the Gower distance are slightly worse than
those of both other functions.
The divergent results of the two aggregated distance functions regarding nominally-
and metrically-scaled variables necessitates further research. The question is
whether it is possible to combine the ’strengths’ of both distance functions and
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simultaneously to eliminate their ’weaknesses’.
Considering the elements of both distance functions, it appears that the General-
ized matching Coefficient – as is used in the Mahalanobis matching distance – is a
better function for capturing similarities in nominally-scaled variables than using a
single indicator of correspondence for each covariate. For the identification of differ-
ences in metrically-scaled variables the normalised absolute differences – as in the
Gower distance – seems to be a better alternative to the Mahalanobis distance. A
subsequent study should analyse whether the strengths of both aggregated distance
functions can actually be joined in an aggregated distance function consisting of the
Generalized matching Coefficient for nominal variables and the normalised absolute
differences for metrical variables.
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A Additional Information on the Simulation

Table 7: Definition of the Samples

Generated Variables Application for . . .
Characteristicsa Mean Std.dev.b # of valuesc Matching Effectd Outcomed

x1 Age 40.00 8.00 x x x
x2 # of children 0.70 1.00 x x
x3 Duration of education 12.00 2.50 x x
x4 Seniority 10.00 9.00 x x
x5 Net income 1200.00 800.00 x
x6 Sex 0.50 2 x x
x7 Marital status 0.64 2 x x
x8 German citizenship 0.91 2 x x x
x9 Public service sector 0.17 2 x
x10 Eastern Germany 0.15 2 x x
x11 Sector 3 x
x12 Education level 4 x
x13 Qualification 4 x x
x14 Kind of occupation 4 x x
x15 Size of enterprise 4 x
x16 Quadrat. term

(
x2

1
)

x
x17 Quadrat. term

(
x2

4
)

x
x18 Interaction term (x4 ∗ x14) x

Modification of Variables in Non-treatment Sample compared to the Treated Individuals
x1 − x5 : x̄NT = x̄T ± (P̆t + k ∗ σ)

x6 − x10 : zNT1 = P̆χ2 ∗ zT1 ± (1 + k)

zNT0 = zNT − zNT1

x11 : zNT3 = P̆χ2 ∗ zT3 ± (k ∗ sM )

zNT1 = zNT3 ∗zT1
zT3

; zNT2 = zNT − zNT1 − zNT3

x12 − x15 : zNT4 = P̆χ2 ∗ zT4 ± (k ∗ sM )

zNT1 = zNT4 ∗zT1
zT4

; zNT2 = zT2 ; zNT3 = zNT − zNT1 − zNT2 − zNT4

Notes:
a Characteristics in the microcensus;
b Standard deviation of the characteristics in the microcensus;
c Number of possible variable values;
d Application of the variable to define the treatment effect and the outcome in the case of participation
and of non-participation.

Scale level of the variables: x1–x5 metrical (normally distributed); x6–x10 dichotomous; x11–x15 polytomous.
x̄T , x̄NT – Variable mean in the treatment and non-treatment samples, respectively;
zTv , zNTv – Frequency of occurrence of a variable value v in the treatment and non-treatment sample;
P̆t, P̆χ2 – Constant term, orientated on the test statistics of the goodness-of-fit tests, α = 5%

(normally distributed variables t-test, dichotomous and polytomous variables χ2-test of homogeneity);
σ – Standard deviation of normal distribution;
sM – Absolute deviation from the variable median;
k – Desired amount of deviation

(similarity: 1 per cent of variable-specific variance, dissimilarity: 25 per cent).
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Table 8: Analysis of the Propensity Score

Average Values Bias
Variablesa Tb NTb Cb Test Resultsc before M. after M. Reduction

Similar Metrical and Nominal Variables
1 40.02 39.97 37.24 0.67 1.18 2.86 -142.71
2 0.99 1.06 0.92 0.37 0.10 0.15 -50.69
3 12.01 11.99 11.20 0.55 0.52 0.93 -80.45
4 11.83 12.46 10.22 0.49 1.15 2.03 -77.09
5 1300.00 1346.46 1137.44 0.52 120.36 214.30 -78.05
6 0.50 0.50 0.55 0.49 0.10 0.16 -65.79
7 0.65 0.65 0.68 0.47 0.09 0.14 -54.75
8 0.90 0.90 0.91 0.26 0.06 0.06 -8.42
9 0.20 0.20 0.33 0.50 0.08 0.17 -111.90

10 2.86 2.86 2.72 0.75 0.04 0.18 -406.03
11 2.35 2.35 2.26 0.68 0.03 0.14 -399.67
12 3.14 3.15 2.98 0.75 0.04 0.21 -436.52

Dissimilar Metrical and Similar Nominal Variables
1 40.02 40.12 38.24 0.48 2.42 2.27 6.11
2 0.99 1.06 0.97 0.29 0.20 0.14 32.77
3 12.01 11.99 11.55 0.48 1.08 0.74 30.85
4 11.81 12.44 11.02 0.46 2.30 1.84 19.94
5 1298.03 1347.71 1224.51 0.49 240.39 195.02 18.87
6 0.50 0.50 0.53 0.22 0.10 0.10 -0.64
7 0.65 0.65 0.67 0.20 0.09 0.09 3.32
8 0.90 0.90 0.91 0.13 0.06 0.05 18.12
9 0.20 0.21 0.26 0.25 0.08 0.09 -19.13

10 2.85 2.86 2.77 0.75 0.04 0.18 -389.44
11 2.35 2.35 2.30 0.68 0.03 0.14 -382.39
12 3.14 3.14 3.04 0.76 0.04 0.21 -423.65

Similar Metrical and Dissimilar Nominal Variables
1 40.01 40.01 37.31 0.61 1.28 2.86 -123.24
2 1.00 0.98 1.04 0.60 0.18 0.22 -20.96
3 12.01 11.99 11.26 0.55 0.73 0.88 -20.96
4 11.87 11.68 11.44 0.37 1.13 1.63 -44.20
5 1301.22 1288.11 1239.52 0.37 115.23 170.71 -48.15
6 0.50 0.50 0.55 0.38 0.10 0.13 -34.37
7 0.65 0.65 0.67 0.36 0.09 0.12 -28.08
8 0.90 0.90 0.90 0.23 0.06 0.06 -3.80
9 0.20 0.20 0.29 0.40 0.08 0.13 -65.20

10 2.85 2.93 2.60 0.84 0.08 0.28 -253.02
11 2.35 2.45 2.11 0.88 0.10 0.25 -141.83
12 3.14 3.16 2.96 0.80 0.04 0.23 -470.86

Dissimilar Metrical and Nominal Variables
1 40.01 39.94 38.69 0.45 2.42 2.06 15.15
2 0.99 1.08 0.96 0.24 0.21 0.13 38.80
3 12.00 12.01 11.62 0.45 1.08 0.70 34.76
4 11.81 12.54 11.08 0.41 2.31 1.68 27.23
5 1297.48 1352.24 1229.10 0.46 244.86 183.59 25.02
6 0.50 0.50 0.54 0.24 0.10 0.10 4.08
7 0.65 0.65 0.68 0.22 0.10 0.09 9.71
8 0.90 0.90 0.92 0.17 0.06 0.05 15.51
9 0.20 0.20 0.27 0.27 0.08 0.10 -21.14

10 2.85 2.92 2.75 0.82 0.07 0.18 -172.85
11 2.35 2.49 2.21 0.89 0.14 0.17 -21.26
12 3.14 3.16 3.07 0.76 0.04 0.19 -343.52

Notes:
Average results for 1000 samples.
Deviation of the means and frequencies of variable values:
similar variables 1 per cent of variable-specific variance, dissimilar variables 25 per cent.
a Scale level of the included variables: 1-5 metrical, 6-9 dichotomous, 10-12 polytomous;
b Average value of the variable in the subsamples (T – treated, NT – non-treated, C – control group);
c Average rejection rate of the null hypothesis of equal means and frequency distributions;
Scale-specific tests: Wilcoxon signed rank test for metrical variables, McNemar test for dichotomous
variables, χ2-test for polytomous variables, resp.; Significance level α = 5%.
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Table 9: Analysis of the Index Score

Average Values Bias
Variablesa Tb NTb Cb Test Resultsc before M. after M. Reduction

Similar Metrical and Nominal Variables
1 40.02 39.97 37.24 0.66 1.18 2.86 -142.71
2 0.99 1.06 0.92 0.37 0.10 0.15 -50.69
3 12.01 11.99 11.20 0.54 0.52 0.93 -80.45
4 11.83 12.46 10.22 0.50 1.15 2.03 -77.09
5 1300.00 1346.46 1137.44 0.51 120.36 214.30 -78.05
6 0.50 0.50 0.55 0.50 0.10 0.16 -65.79
7 0.65 0.65 0.68 0.47 0.09 0.14 -54.75
8 0.90 0.90 0.91 0.26 0.06 0.06 -8.42
9 0.20 0.20 0.33 0.49 0.08 0.17 -111.90

10 2.86 2.86 2.72 0.75 0.04 0.18 -406.03
11 2.35 2.35 2.26 0.68 0.03 0.14 -399.67
12 3.14 3.15 2.98 0.75 0.04 0.21 -436.52

Dissimilar Metrical and Similar Nominal Variables
1 40.02 40.12 38.24 0.47 2.42 2.27 6.11
2 0.99 1.06 0.97 0.29 0.20 0.14 32.77
3 12.01 11.99 11.55 0.47 1.08 0.74 30.85
4 11.81 12.44 11.02 0.45 2.30 1.84 19.94
5 1298.03 1347.71 1224.51 0.49 240.39 195.02 18.87
6 0.50 0.50 0.53 0.22 0.10 0.10 -0.64
7 0.65 0.65 0.67 0.20 0.09 0.09 3.32
8 0.90 0.90 0.91 0.13 0.06 0.05 18.12
9 0.20 0.21 0.26 0.26 0.08 0.09 -19.13

10 2.85 2.86 2.77 0.75 0.04 0.18 -389.44
11 2.35 2.35 2.30 0.68 0.03 0.14 -382.39
12 3.14 3.14 3.04 0.76 0.04 0.21 -423.65

Similar Metrical and Dissimilar Nominal Variables
1 40.01 40.01 37.31 0.61 1.28 2.86 -123.24
2 1.00 0.98 1.04 0.61 0.18 0.22 -20.96
3 12.01 11.99 11.26 0.54 0.73 0.88 -20.96
4 11.87 11.68 11.44 0.36 1.13 1.63 -44.20
5 1301.22 1288.11 1239.52 0.37 115.23 170.71 -48.15
6 0.50 0.50 0.55 0.38 0.10 0.13 -34.37
7 0.65 0.65 0.67 0.35 0.09 0.12 -28.08
8 0.90 0.90 0.90 0.23 0.06 0.06 -3.80
9 0.20 0.20 0.29 0.40 0.08 0.13 -65.20

10 2.85 2.93 2.60 0.84 0.08 0.28 -253.02
11 2.35 2.45 2.11 0.88 0.10 0.25 -141.83
12 3.14 3.16 2.96 0.80 0.04 0.23 -470.86

Dissimilar Metrical and Nominal Variables
1 40.01 39.94 38.69 0.44 2.42 2.06 15.15
2 0.99 1.08 0.96 0.23 0.21 0.13 38.80
3 12.00 12.01 11.62 0.44 1.08 0.70 34.76
4 11.81 12.54 11.08 0.40 2.31 1.68 27.23
5 1297.48 1352.24 1229.10 0.45 244.86 183.59 25.02
6 0.50 0.50 0.54 0.23 0.10 0.10 4.08
7 0.65 0.65 0.68 0.22 0.10 0.09 9.71
8 0.90 0.90 0.92 0.18 0.06 0.05 15.51
9 0.20 0.20 0.27 0.27 0.08 0.10 -21.14

10 2.85 2.92 2.75 0.82 0.07 0.18 -172.85
11 2.35 2.49 2.21 0.89 0.14 0.17 -21.26
12 3.14 3.16 3.07 0.76 0.04 0.19 -343.52

Notes: see table 8.
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Table 10: Analysis of the Mahalanobis Distance

Average Values Bias
Variablesa Tb NTb Cb Test Resultsc before M. after M. Reduction

Similar Metrical and Nominal Variables
1 40.02 39.97 39.98 0.13 1.18 0.51 57.07
2 0.99 1.06 1.01 0.15 0.10 0.05 51.56
3 12.01 11.99 12.01 0.16 0.52 0.21 58.70
4 11.83 12.46 11.97 0.16 1.15 0.51 55.32
5 1300.00 1346.46 1310.95 0.14 120.36 50.79 57.80
6 0.50 0.50 0.51 0.05 0.10 0.02 76.18
7 0.65 0.65 0.66 0.03 0.09 0.02 76.49
8 0.90 0.90 0.91 0.01 0.06 0.02 69.91
9 0.20 0.20 0.20 0.00 0.08 0.02 80.37

10 2.86 2.86 2.89 0.44 0.04 0.06 -75.65
11 2.35 2.35 2.34 0.51 0.03 0.04 -50.29
12 3.14 3.15 3.22 0.45 0.04 0.10 -144.10

Dissimilar Metrical and Similar Nominal Variables
1 40.02 40.12 40.07 0.56 2.42 1.01 58.14
2 0.99 1.06 1.01 0.50 0.20 0.09 54.93
3 12.01 11.99 12.01 0.73 1.08 0.45 58.45
4 11.81 12.44 11.97 0.55 2.30 0.99 56.69
5 1298.03 1347.71 1310.10 0.57 240.39 101.80 57.65
6 0.50 0.50 0.50 0.05 0.10 0.02 74.74
7 0.65 0.65 0.66 0.05 0.09 0.02 74.69
8 0.90 0.90 0.91 0.01 0.06 0.02 66.87
9 0.20 0.21 0.20 0.01 0.08 0.02 77.76

10 2.85 2.86 2.90 0.44 0.04 0.07 -82.78
11 2.35 2.35 2.34 0.52 0.03 0.05 -65.58
12 3.14 3.14 3.22 0.45 0.04 0.09 -131.87

Similar Metrical and Dissimilar Nominal Variables
1 40.01 40.01 40.03 0.18 1.28 0.59 54.25
2 1.00 0.98 0.97 0.34 0.18 0.07 59.22
3 12.01 11.99 12.00 0.37 0.73 0.30 59.07
4 11.87 11.68 11.62 0.17 1.13 0.56 50.22
5 1301.22 1288.11 1285.29 0.17 115.23 55.01 52.26
6 0.50 0.50 0.50 0.05 0.10 0.02 75.68
7 0.65 0.65 0.66 0.03 0.09 0.02 75.96
8 0.90 0.90 0.91 0.01 0.06 0.02 67.90
9 0.20 0.20 0.20 0.01 0.08 0.02 77.92

10 2.85 2.93 2.93 0.47 0.08 0.08 -2.10
11 2.35 2.45 2.33 0.48 0.10 0.06 41.17
12 3.14 3.16 3.22 0.46 0.04 0.10 -138.49

Dissimilar Metrical and Nominal Variables
1 40.01 39.94 39.99 0.59 2.42 1.03 57.37
2 0.99 1.08 1.02 0.53 0.21 0.10 54.81
3 12.00 12.01 12.02 0.75 1.08 0.45 58.18
4 11.81 12.54 12.03 0.55 2.31 0.98 57.45
5 1297.48 1352.24 1313.38 0.61 244.86 105.67 56.84
6 0.50 0.50 0.51 0.05 0.10 0.03 74.03
7 0.65 0.65 0.66 0.06 0.10 0.03 73.55
8 0.90 0.90 0.92 0.02 0.06 0.02 65.81
9 0.20 0.20 0.20 0.02 0.08 0.02 77.47

10 2.85 2.92 2.92 0.47 0.07 0.08 -17.82
11 2.35 2.49 2.38 0.64 0.14 0.06 58.47
12 3.14 3.16 3.22 0.48 0.04 0.10 -128.08

Notes: see table 8.
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Table 11: Analysis of the Mahalanobis Matching Distance

Average Values Bias
Variablesa Tb NTb Cb Test Resultsc before M. after M. Reduction

Similar Metrical and Nominal Variables
1 40.02 39.97 40.10 0.15 1.18 1.00 15.21
2 0.99 1.06 1.02 0.20 0.10 0.07 27.71
3 12.01 11.99 12.06 0.22 0.52 0.38 26.96
4 11.83 12.46 12.33 0.21 1.15 1.00 12.37
5 1300.00 1346.46 1346.94 0.21 120.36 125.44 -4.22
6 0.50 0.50 0.50 0.00 0.10 0.01 89.95
7 0.65 0.65 0.66 0.00 0.09 0.01 87.31
8 0.90 0.90 0.93 0.13 0.06 0.03 48.80
9 0.20 0.20 0.18 0.06 0.08 0.02 71.44

10 2.86 2.86 2.88 0.00 0.04 0.03 4.43
11 2.35 2.35 2.33 0.03 0.03 0.04 -26.20
12 3.14 3.15 3.20 0.00 0.04 0.06 -42.00

Dissimilar Metrical and Similar Nominal Variables
1 40.02 40.12 40.20 0.73 2.42 2.05 15.38
2 0.99 1.06 1.02 0.54 0.20 0.14 30.57
3 12.01 11.99 12.06 0.73 1.08 0.76 29.48
4 11.81 12.44 12.32 0.62 2.30 1.94 15.40
5 1298.03 1347.71 1346.13 0.69 240.39 238.98 0.59
6 0.50 0.50 0.50 0.00 0.10 0.01 89.71
7 0.65 0.65 0.66 0.01 0.09 0.01 87.39
8 0.90 0.90 0.93 0.12 0.06 0.03 50.20
9 0.20 0.21 0.18 0.06 0.08 0.02 72.78

10 2.85 2.86 2.88 0.00 0.04 0.03 3.25
11 2.35 2.35 2.33 0.03 0.03 0.04 -33.75
12 3.14 3.14 3.19 0.00 0.04 0.05 -33.40

Similar Metrical and Dissimilar Nominal Variables
1 40.01 40.01 39.96 0.24 1.28 1.14 11.12
2 1.00 0.98 0.95 0.43 0.18 0.12 32.88
3 12.01 11.99 11.93 0.46 0.73 0.53 26.29
4 11.87 11.68 11.52 0.19 1.13 1.07 4.88
5 1301.22 1288.11 1288.56 0.18 115.23 118.65 -2.97
6 0.50 0.50 0.50 0.00 0.10 0.01 89.53
7 0.65 0.65 0.66 0.01 0.09 0.01 85.69
8 0.90 0.90 0.93 0.19 0.06 0.03 44.26
9 0.20 0.20 0.18 0.09 0.08 0.02 69.58

10 2.85 2.93 2.89 0.00 0.08 0.04 45.83
11 2.35 2.45 2.34 0.05 0.10 0.03 67.77
12 3.14 3.16 3.20 0.00 0.04 0.06 -52.13

Dissimilar Metrical and Nominal Variables
1 40.01 39.94 40.04 0.71 2.42 2.05 15.41
2 0.99 1.08 1.04 0.54 0.21 0.14 31.74
3 12.00 12.01 12.08 0.74 1.08 0.78 27.77
4 11.81 12.54 12.43 0.63 2.31 2.00 13.29
5 1297.48 1352.24 1356.49 0.70 244.86 243.20 0.68
6 0.50 0.50 0.50 0.00 0.10 0.01 88.57
7 0.65 0.65 0.66 0.01 0.10 0.01 85.71
8 0.90 0.90 0.93 0.14 0.06 0.03 49.49
9 0.20 0.20 0.18 0.07 0.08 0.02 70.77

10 2.85 2.92 2.89 0.00 0.07 0.04 32.94
11 2.35 2.49 2.35 0.00 0.14 0.03 78.53
12 3.14 3.16 3.21 0.00 0.04 0.06 -54.01

Notes: see table 8.
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Table 12: Analysis of the Gower Distance

Average Values Bias
Variablesa Tb NTb Cb Test Resultsc before M. after M. Reduction

Similar Metrical and Nominal Variables
1 40.02 39.97 40.01 0.09 1.18 0.23 80.47
2 0.99 1.06 0.99 0.08 0.10 0.02 78.23
3 12.01 11.99 12.01 0.10 0.52 0.11 78.35
4 11.83 12.46 11.83 0.07 1.15 0.23 79.51
5 1300.00 1346.46 1298.80 0.11 120.36 24.94 79.28
6 0.50 0.50 0.50 0.14 0.10 0.10 0.59
7 0.65 0.65 0.64 0.15 0.09 0.09 -0.79
8 0.90 0.90 0.90 0.11 0.06 0.06 -2.04
9 0.20 0.20 0.20 0.13 0.08 0.08 -2.69

10 2.86 2.86 2.86 0.64 0.04 0.08 -135.03
11 2.35 2.35 2.36 0.60 0.03 0.07 -166.17
12 3.14 3.15 3.14 0.61 0.04 0.09 -122.06

Dissimilar Metrical and Similar Nominal Variables
1 40.02 40.12 40.04 0.28 2.42 0.40 83.58
2 0.99 1.06 0.99 0.29 0.20 0.04 79.91
3 12.01 11.99 11.99 0.40 1.08 0.22 79.52
4 11.81 12.44 11.81 0.31 2.30 0.46 79.95
5 1298.03 1347.71 1299.55 0.34 240.39 45.68 81.00
6 0.50 0.50 0.50 0.13 0.10 0.10 0.96
7 0.65 0.65 0.64 0.13 0.09 0.09 0.49
8 0.90 0.90 0.90 0.11 0.06 0.06 -2.21
9 0.20 0.21 0.21 0.13 0.08 0.08 -0.82

10 2.85 2.86 2.86 0.64 0.04 0.08 -123.32
11 2.35 2.35 2.35 0.59 0.03 0.08 -176.37
12 3.14 3.14 3.14 0.66 0.04 0.09 -123.86

Similar Metrical and Dissimilar Nominal Variables
1 40.01 40.01 40.02 0.10 1.28 0.22 82.85
2 1.00 0.98 0.98 0.23 0.18 0.04 80.07
3 12.01 11.99 12.01 0.23 0.73 0.15 79.38
4 11.87 11.68 11.70 0.12 1.13 0.28 75.23
5 1301.22 1288.11 1289.68 0.11 115.23 25.57 77.81
6 0.50 0.50 0.49 0.14 0.10 0.10 -2.35
7 0.65 0.65 0.65 0.13 0.09 0.09 0.28
8 0.90 0.90 0.90 0.12 0.06 0.06 -2.70
9 0.20 0.20 0.20 0.12 0.08 0.08 1.63

10 2.85 2.93 2.93 0.69 0.08 0.10 -31.96
11 2.35 2.45 2.44 0.81 0.10 0.12 -22.56
12 3.14 3.16 3.15 0.64 0.04 0.09 -120.63

Dissimilar Metrical and Nominal Variables
1 40.01 39.94 40.00 0.30 2.42 0.42 82.88
2 0.99 1.08 0.99 0.31 0.21 0.04 80.67
3 12.00 12.01 12.00 0.45 1.08 0.22 79.33
4 11.81 12.54 11.85 0.35 2.31 0.46 80.09
5 1297.48 1352.24 1302.10 0.34 244.86 45.33 81.49
6 0.50 0.50 0.50 0.17 0.10 0.10 1.57
7 0.65 0.65 0.65 0.14 0.10 0.10 0.59
8 0.90 0.90 0.90 0.13 0.06 0.06 -0.49
9 0.20 0.20 0.20 0.15 0.08 0.08 -2.62

10 2.85 2.92 2.92 0.73 0.07 0.10 -47.25
11 2.35 2.49 2.49 0.86 0.14 0.15 -6.43
12 3.14 3.16 3.15 0.66 0.04 0.09 -112.25

Notes: see table 8.
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