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1 Introduction

Recent empirical studies on structural vector autoregressions (SVAR) have shown that ag-

gregate prices respond di¤erently, depending on the type of shock. While the di¤erence in

the responses may be explained by the di¤erence in the stochastic processes across shocks

per se, some argue that the di¤erence occurs in a theoretically inconsistent way. This was

pointed out originally by Altig, Christiano, Eichenbaum and Evans (2005, ACEL). They

show that aggregate in�ation responds rapidly to an aggregate technology shock compared

with a monetary policy shock. Later, Dupor, Han, and Tsai (2009) �nd that the estimated

degree of price stickiness changes substantially when they use impulse response function

matching based on two shocks. On the other hand, recent studies have argued that dis-

aggregated prices respond di¤erently across sectors. In addition to the di¤erence in the

disaggregated price responses, existing studies �nd signi�cant cross-sectional heterogeneity

in the frequency of price changes in the micro data. 1 As a result, a number of current em-

pirical studies examine the cross-sectional relationship between the price responses and the

degree of nominal price rigidity, based on the sticky price model. Along this line of research,

however, little attention has been paid to the question of how di¤erently disaggregated prices

respond to aggregate technology and monetary policy shocks.2

In this paper, we study empirically and theoretically the disaggregated price responses

across shocks and across sectors. We estimate the responses of highly disaggregated prices

of personal consumption expenditure (PCE) items to a positive shock to the aggregate

technological growth rate and to a contractionary shock to the monetary policy rule. The

estimated disaggregated price responses indicate qualitative di¤erences between shocks and

large variations across sectors. We show that a standard multi-sector Calvo-type sticky price

1Examples of recent papers include: Blis and Klenow (2004), Klenow and Kryvtsov (2008), and Nakamura
and Steinsson (2008), who measured the frequency of price changes using micro-price data; and Balke and
Wynne (2007), Bils, Klenow, and Kryvtsov (2003), Boivin, Giannoni, and Mihov (2009), and Mackowiak,
Moench, and Wiederholt (2009), who used VAR analysis to investigate sector-speci�c impulse response
functions.

2Bils, Klenow, and Kryvtsov (2003) studied disaggregated in�ation responses to two aggregate shocks.
Using a two-sector model consisting of a sticky price sector and a �exible price sector, they evaluated their
sticky price model by examining the price response of sticky price goods relative to that of �exible price
goods to the two shocks. In contrast, we evaluate multi-sector models with much more disaggregated prices
by comparing simulated responses with the data.
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model cannot replicate these features for disaggregated price responses. We then explore

possible explanations for the di¤erence across shocks and across sectors by extending the

model.

Using a standard SVAR, we obtain the impulse response functions of disaggregated prices

to the two types of shocks. A comparison across shocks suggests that the bulk of disaggre-

gated prices show a quicker decline to a positive shock to technological growth rate than to

a contractionary monetary policy shock. In particular, nearly all of the disaggregated prices

fall immediately in response to technological improvement, whereas a substantial number of

disaggregated prices initially rise and then decline in response to a contractionary monetary

policy shock. On the other hand, a comparison across sectors indicates that cross-sectional

variations in nominal price rigidity play a limited role in accounting for the variations in

the disaggregated price responses. In particular, we observe statistically signi�cant nega-

tive correlations between the disaggregated price response and frequency of price changes,

in most periods after the shocks, but we also observe that the cross-sectional link is weak

quantitatively, regardless of the length of the period after the shocks.

We �nd that these features in the data cannot be explained well by a standard multi-

sector Calvo-type sticky price model à la Carvalho (2006) with heterogeneous price stickiness

across sectors. In the model, disaggregated prices exhibit qualitatively symmetric responses

to both shocks. That is, they fall immediately in response to both shocks. Furthermore, the

cross-sectional variation in price responses is strongly correlated with the frequency of price

adjustment.

To reconcile our �ndings with the data, we extend the multi-sector sticky price model

by introducing: (i) a cost channel of monetary policy; and (ii) heterogeneity of real rigidity

across sectors. The �rst helps generate the asymmetric responses of disaggregated prices

to the two shocks. The second helps weaken the cross-sectional correlation between the

disaggregated price response and the frequency of price adjustment.

When there is a cost channel of monetary policy, nominal marginal cost depends on the

nominal interest rate. In response to an unexpected rise in the federal funds rate, nominal

marginal cost increases initially. Consequently, disaggregated prices rise temporarily. In

contrast, in response to a positive technology shock, the federal funds rate is lowered by
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the monetary policy rule, which results in larger decreases in marginal cost. As a result,

disaggregated prices fall quickly.

Heterogeneity in real rigidity weakens the e¤ect of nominal price rigidity on variations in

disaggregated price responses. However, it is not necessarily the case that any real rigidities

can produce this outcome. We consider two types of real rigidity discussed by Chari, Kehoe

and McGrattan (2000): (i) sector-speci�c �xed factor in the production function; and (ii)

sector-speci�c kinked demand curve à la Kimball (1995). Our simulation exercise suggests

that the former is successful in explaining the data while the latter is not. This implies that

distinguishing real rigidities is important for understanding prices.

The rest of the paper is as follows. Section 2 describes our data and econometric method-

ology. Section 3 presents our empirical results. Section 4 discusses the predictions of the

standard multi-sector sticky price model and its extensions. Section 4 discusses the role of

heterogeneity in real rigidity. Section 5 concludes.

2 Econometric Methodology and Data

In this section, we estimate the e¤ect of aggregate technology and monetary policy shocks on

disaggregated prices. To this end, we �rst use macroeconomic variables to identify shocks to

technological growth rate and monetary policy by SVAR similar to ACEL. We then regress

disaggregated in�ation on its own lags and macroeconomic variables to estimate the impulse

response functions of disaggregated prices to the aggregate shocks.3

2.1 Identifying aggregate technology and monetary policy shocks

In the macro VAR, we formulate a 10-variable VAR with four lags. Let Yt be a vector of

macroeconomic variables that includes�log (Relative price of investmentt),�log(GDPt/Hourst),

� log(GDP de�atort), Capacity utilizationt, log(Hourst), log(GDPt/Hourst) - log(Real wagest),

log(Consumptiont/GDPt), log(Investmentt/GDPt), � log(Commodity price indext) and Fed-

eral funds ratet.4 We use the same set of macroeconomic variables as ACEL except that (i)

3This approach is essentially the same as Balke and Wynne (2007).
4While ACEL employed the price of investment used in Fisher (2006), we construct the price series of

investment, using the price de�ators and weights for durables, structures, equipment and software, residential
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we add the commodity price index into the system of equations; and (ii) we omit the velocity

of circulation from the system.5 The sample period is 1959:Q3�2008:Q3.

We identify aggregate technology shocks using long-run restrictions and monetary policy

shocks using short-run restrictions in the same spirit as ACEL. In particular, we identify the

aggregate technology shock by assuming that only innovations to the growth of total factor

productivity (and capital embodied technology) a¤ect the long-run level of labor productiv-

ity. When imposing this long-run restriction, we use the instrumental variable method of

Shapiro and Watson (1988). Furthermore, we identify the monetary policy shock using the

block recursive restrictions of Christiano, Eichenbaum, and Evans (1999): monetary policy

shocks do not contemporaneously a¤ect the �rst nine variables in Yt.

2.2 Disaggregated in�ation equation

Let �j;t be the quarterly change in the (log) price index for sector j. Our estimation equation

is designed to assess the dynamic e¤ects of the macroeconomic variables in Yt on �j;t

�j;t =
4X
`=1

�j;`�j;t�` +
4X
`=0

Y 0
t�`
j;` + "j;t; (1)

where "j;t is a regression error, which can be interpreted as an idiosyncratic shock. Fur-

thermore, �j;` denotes the `-th autoregressive parameter of disaggregated in�ation, and 
j;`

is a (10�1) parameter vector for the macroeconomic variables Yt�`. The constant term is

suppressed for expositional purposes. In this regression, we allow for the possibility that

disaggregated in�ation responds to shocks at the impact period. Furthermore, we assume

that the e¤ect of disaggregated in�ation on the macroeconomic variables is negligible.6

The disaggregated price data used in our estimation are the PCE price series for 1959:Q3�

investment, and government investment in the National Income and Product Accounts. Furthermore, we
use the commodity price index from the three-month average of the monthly CRB spot index, published by
the Commodity Research Bureau.

5We choose this particular set of macroeconomic variables for two practical reasons. First, a number of
empirical studies have included a commodity price index in a VAR to identify the monetary policy shock,
following the suggestion by Sims (1992). Second, when we include the velocity of circulation, the subsample
analysis using the period 1984:Q1�2008:Q3 reveals that the VAR system becomes explosive.

6Note that the endogeneity problem arises if disaggregated prices have a nonnegligible e¤ect on the
macroeconomic variables. However, the price series we use are highly disaggregated so that it would be
reasonable to assume that they barely a¤ect aggregate variables.
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2008:Q3, which are published by the Bureau of Economic Analysis (BEA). Because our macro

VAR is based on quarterly data, we use the quarterly price series, which is the three-month

average of the monthly price series that the BEA releases every month. Among the 363 price

series from the BEA�s underlying table for PCE prices, we choose highly disaggregated price

series to the extent possible. We thus remove price indices that overlap categories as a result

of aggregation (e.g., durables, nondurables, and services).

To see the relationship between the disaggregated price responses and the degree of

nominal price rigidity, we also use the frequencies of price changes excluding sales and product

substitutions measured by Nakamura and Steinsson (2008). They measure the good-speci�c

frequency of price changes from the CPI Research Database gathered by the Bureau of Labor

Statistics over 1988�1997 and 1998�2005. We match their frequencies over 1998�2005 with

the PCE price series as follows. When a price in the PCE data set corresponds to more than

one entry level item in their data set of frequency of price changes, we take the weighted

average of frequencies based on the expenditure weights. When a price in the PCE data set

does not correspond to the entry level item in their data set, we drop the price series. Using

this sample selection process, we obtain 134 price series for estimation.

3 Empirical Results

In this section, we aim to establish that aggregate technology and monetary policy shocks

have qualitatively asymmetric dynamic e¤ects on disaggregated prices and that disaggregated

price responses have a weak relationship to heterogeneity in nominal price stickiness.

3.1 Response of disaggregated prices

Figure 1 plots the impulse response functions to aggregate technology and monetary policy

shocks. The upper left panel shows the (unweighted) mean and median responses of dis-

aggregated prices to a one percent increase in the aggregate technology growth rate, and

the lower left panel shows those to a one percent increase in the federal funds rate. The

dashed lines represent cross-sectional variability in disaggregated price responses using the

10th�90th percentile ranges. The right panels plot the aggregated price responses to the two
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shocks for comparisons.

The �gure has two notable features. First, while a shock to aggregate technology growth

leads to an immediate decline in most disaggregated prices, a monetary policy shock appears

to have the delayed e¤ect on the disaggregated prices. In particular, unlike the response to the

aggregate technology shock, a large number of prices are above zero after the contractionary

monetary policy shock. Second, the 10th�90th percentile ranges appear to be wide, which

suggests considerable cross-sectional di¤erences in the disaggregated price responses. We

now look at these features in more detail.

3.1.1 How di¤erent are disaggregated prices across shocks?

Focusing on the �rst feature of the disaggregated price responses, we compute the shares of

the positive price responses to the total number of price responses for each of the shocks. The

shares are the white bars in Figure 2, while the shares of the signi�cantly positive responses

at the �ve percent signi�cance level are shown by the shaded bars. Here, the horizontal axis

measures the quarters after each of the shocks. The upper panel is for a positive aggregate

technology shock, whereas the lower panel is for a contractionary monetary policy shock.

In response to the technology shock, about 9.7�20.2 percent are positive for the �rst

four quarters, evaluated at the point estimate, but none of the responses is signi�cantly

positive at the �ve percent signi�cance level. In contrast, in response to the monetary policy

shock, about 45.5�55.2 percent of the 134 price series are positive for the �rst four quarters,

while only 1.5�9.7 percent of the 134 price series are signi�cantly positive at the �ve percent

signi�cance level.

This asymmetry across shocks observed at the sector level has an implication for the

asymmetry of the aggregated price responses between the two shocks, discussed in ACEL,

Dupor, Han, and Tsai (2009) and Paciello (2009a,b). In particular, the fact that most

disaggregated prices fall at once in response to a positive aggregate technology shock and a

large number of prices increases in response to a contractionary monetary policy shock implies

that the asymmetry of aggregated price responses stems from responses at the disaggregated

level and is not an artifact of the weights used for aggregating prices. Thus, the asymmetry

should be explained in the multi-sector sticky price model at the disaggregated level as well
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as the aggregate level.

3.1.2 How di¤erent are disaggregated prices across sectors?

We next evaluate variations in the disaggregated price responses across sectors, the second

feature of our impulse response analysis. The multi-sector sticky price model predicts that

frequently adjusted prices should respond more quickly to any shock than infrequently ad-

justed prices. Motivated by this prediction, we examine to what extent the frequency of

price changes can be cross-sectionally associated with the disaggregated price responses. In

other words, we examine the correlations between the disaggregated price responses esti-

mated from our SVAR and frequencies of regular price changes reported by Nakamura and

Steinsson (2008).

Let 	kj (�) be the impulse response of the disaggregated price of sector j in � quarters

after a price-reducing shock k. Using the monthly frequency of price changes frj, we cal-

culate the sample correlation coe¢ cients between 	kj (�) and frj across sectors, denoted

by Corrj
�
	kj (�); frj

�
, where we have 134 sectors for sector index j, and shock index k

corresponds to a positive shock to aggregate technology growth or a positive shock to the

federal funds rate. Furthermore, we consider quarters after shock � up to 24 quarters (i.e.,

� = 0; 1; 2; :::; 24). Note that the correlation should be negative because more frequently ad-

justed prices decrease by a larger amount in response to shock k. Thus, we examine whether

the signs of the correlation coe¢ cients are negative and see how the correlation coe¢ cients

evolve over � for each k.7

Overall, the correlation coe¢ cients are negative for both shocks, which is consistent with

the prediction of the standard sticky price model in terms of direction. The circular markers

in Figure 3 present the correlation coe¢ cients for various periods of � for each shock. Here

the length of each bar attached to a circular marker represents the 95 percent con�dence

intervals of Corrj
�
	kj (�); frj

�
. As shown in the upper panel of the �gure, the correlation

coe¢ cients take negative values over all periods of � , when the shock is a positive technology

shock. Moreover, these are signi�cantly negative in all quarters except for the �rst two

7As a robustness check, we also use the frequency of price changes including sales reported in Nakamura
and Steinsson (2008). We �nd that the results are unaltered qualitatively even if we change the frequency
of price changes.
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quarters. In contrast, the lower panel of the �gure shows that the correlation coe¢ cients for

a positive federal fund rate shock are negative in most periods although they are positive in

the �rst four quarters. These are signi�cantly di¤erent from zero only for � � 9:

However, the correlations are weak over the entire period after the shocks. The correlation

coe¢ cients for the technology shock range between -0.32 for � = 6 and -0.13 for � = 0, and

the average over the entire period is -.029. For the monetary policy shock, the correlation

coe¢ cients range between -0.31 for � = 24 and 0.08 for � = 2 and the average over the entire

period is -0.19.

The weak correlation might come from the fact that we do not consider broad cate-

gorizations in the PCE items such as durables, nondurables and services. To explore this

possibility, we regress the disaggregated responses for each � on frj together with a constant

and dummy variables for durables and services. The average of the R-squareds for technol-

ogy and monetary policy shocks are 15.1 and 7.1 percent, respectively. Without dummies

for durables and services, the average of the R-squareds over 24 quarters is only 8.7 percent

for the technology shock and 5.0 percent for the monetary policy shock, implying that the

increments in R-squared are marginal. Therefore, the role of the frequency of price changes

in accounting for variations in disaggregated price responses is limited, and most variations

remain unexplained even after consideration of broad categorizations in the PCE items.

3.2 Robustness

This subsection conducts sensitivity analysis based on di¤erent identi�cation schemes of

aggregate shocks and subsample analysis.

3.2.1 Identi�cation schemes

Our empirical results are obtained based on an SVAR. However, some argue that the SVAR

approach is problematic because identifying assumptions may not hold. Thus, we employ the

measure of aggregate shocks obtained under alternative identi�cation schemes: the monetary

policy shock developed by Romer and Romer (2004) and the quarterly version of the puri�ed
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total factor productivity series in Basu, Fernald, and Kimball (2006).8 These aggregate

shocks are convenient because the use of these �exogenous�shocks allows us to avoid the

di¢ cult task of �nding what identi�cation assumptions in the SVAR are plausible. Moreover,

we also use the factor-augmented VAR by Boivin, Giannoni, and Mihov (2009) to identify

the monetary policy shock.

To obtain the impulse responses of disaggregated prices based on the �rst two shocks,

we follow Romer and Romer�s (2004) approach. We regress disaggregated in�ation on its

own lags and contemporaneous and lagged values of the identi�ed aggregate shock. Our

regression is given by

�j;t =
8X
`=1

�kj;`�j;t�` +
16X
`=0


kj;`S
k
t�` + "kj;t; (2)

where �kj;` denotes the coe¢ cient of lagged disaggregated in�ation, 

k
j;` is the coe¢ cient of

the shock series and "kj;t is the error term. Again, the constant term is suppressed. The

number of lags ` is chosen according to Romer and Romer (2004). Here, Skt is either the

monetary policy shock measure by Romer and Romer (2004) or the quarterly measure of

puri�ed technology growth of Basu, Fernald and Kimball (2006). The former measure is

originally monthly data between January 1969 and December 1996. In running the above

regression, we convert the monthly series into a quarterly series by taking the sum of the

three monthly values of the original series. This results in con�ning the sample period to the

period over 1969:Q1 to 1996:Q4 to obtain the impulse responses of disaggregated in�ation.

The sample period of the puri�ed total factor productivity series is from 1959:Q3 to 2008:Q3,

which is the same as that of disaggregated in�ation.

Overall, the results are robust qualitatively to the use of the two aggregate shocks men-

tioned above. First, in terms of the di¤erence between shocks, the shares of the positive

responses to the total price responses for the monetary policy shock are quite similar to the

results based on the SVAR. The share of positive responses for the technology shock is some-

what larger than the baseline empirical results. For example, the share increases to 23.1�38.1

8These quarterly data of the puri�ed total productivity series were kindly provided by Miles S Kimball.
This data set is produced by John Fernald and roughly matches the original annual data set in Basu, Fernald,
and Kimball (2006) when converted from quarterly to annual data.
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percent from the benchmark SVAR results of 9.7�20.2 percent in the fourth quarter after

the shock. However, only a few of the responses are signi�cantly positive at the �ve percent

signi�cance level.

Second, the role of the frequency of price changes in explaining variations in price re-

sponses across sectors is also limited when we use the alternative measure of aggregate shocks.

Figure 5 indicates that the correlation coe¢ cients are negative for the technology shock, but

the absolute value of the correlation coe¢ cient is again low. The correlation coe¢ cients for

the price responses to the monetary policy shock are not signi�cantly di¤erent from zero up

to three years after the shock and then turn out to be signi�cantly negative.

Lastly, we report the estimation results when the factor-augmented VAR of Boivin, Gi-

annoni, and Mihov (2009) is used for identifying the monetary policy shock. To make

comparison easier with our previous results, we use the disaggregated price responses esti-

mated by Boivin, Giannoni, and Mihov (2009) and select the 134 price responses out of their

191 price responses. The price data are monthly from January 1976 to June 2005. Figure 6

displays the share of positive price responses in the 134 price responses to a contractionary

monetary policy shock (the upper panel) and correlation coe¢ cients with the frequency of

price changes (the lower panel). The upper panel shows that the shares of positive price

responses range between 16.4 and 68.7 percent for the �rst year after the shock and that

the shares of signi�cantly positive price responses at the �ve percent signi�cance level range

between 1.5 and 14.2 percent. Again, a large number of disaggregated prices rise temporarily

after a monetary tightening shock, consistent with the results based on the SVAR. Turning

to the correlation coe¢ cients, the point estimates are negative from the impact period, but

the absolute values remain small.

3.2.2 Subsample analysis

Up to this point, our results have been based on the period from 1959:Q3. However, recent

studies have pointed out changes in the time series properties of in�ation and the e¤ectiveness

of monetary policy since the early 1980s.9 To see the e¤ect of a change in the sample period

9See, for example, Boivin and Giannoni (2006) and Stock and Watson (2002) for evidence on the reduction
in the volatility of in�ation. Clark (2006) also documented the structural break in the disaggregate in�ation
series in the early 1980s.
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on our results, we reestimate (1) using data from 1984:Q1 to 2008:Q3.

The di¤erence across shocks in terms of the share is less clear than the full sample

estimation as shown in Figure 7. However, when we focus on the share of signi�cantly

positive price responses, the asymmetry across shocks is still observable. The share ranges

between 5.2 and 22.4 percent for the �rst year after the monetary policy shock while almost

no prices show a signi�cantly positive response after the technology shock.

The correlations coe¢ cients shown in Figure 8 again suggest that the cross-sectional

link is weak between the disaggregated price response and the frequency of price change.

Furthermore, compared with the full sample analysis, the correlation coe¢ cients display

clearer asymmetry across shocks. While the coe¢ cients under the technology shock are

signi�cantly negative, ranging between -0.54 and -0.33, the coe¢ cients under the monetary

policy shock are not signi�cantly di¤erent from zero for all � :

4 Multi-sector Sticky Price Models

In this section, we examine sticky price models for the two empirical features of the disag-

gregated price responses. We �rst study the baseline multi-sector sticky price model. In the

baseline model, �rms in the economy are identical except that the degree of price stickiness

di¤ers across sectors. The simulation exercises suggest that the baseline model needs to be

modi�ed in accounting for the two empirical features of the disaggregated prices. We then

discuss some extensions to make the model �t the data better.

4.1 The baseline model

4.1.1 Households

Consider a continuum of households, indexed by h 2 [0; 1]: The in�nitely lived households

are monopolistic suppliers of di¤erentiated labor services and set their nominal wage rates

in a staggered manner as in Erceg, Henderson, and Levin (2000). Their preferences are over

the aggregate consumption Ct, di¤erentiated labor service Lt (h), and real money balances

Mt=Pt; as described in the following expected utility function

11



max Et

1X
t=0

�t

"
log(Ct)� �L

Lt (h)
1+�

1 + �
+ �m log

�
Mt

Pt

�#
; (3)

where � denotes the discount factor of households satisfying � 2 (0; 1), � � 0 denotes the

inverse of the Frisch labor-supply elasticity, and �L � 0 and �m � 0 are utility weights on

labor disutility and the utility of real money balances, respectively. Aggregate consumption

is a composite aggregated over N goods

Ct �
NY
j=1

C
1=N
j;t ;

where aggregation weights are the same across sectors andCj;t is the household�s consumption

of goods produced in sector j: The aggregate price index Pt is given by

Pt =
NY
j=1

P
1=N
j;t ;

where Pj;t is the disaggregated price of good j:

The budget constraint for household h is

NX
j=1

Pj;tCj;t +Mt +
Bt

Rt

� Wt (h)Lt (h) +Bt�1 +�t +Mt�1 + Tt: (4)

In the right-hand side of the equation, the household earns the nominal wage rateWt (h) per

unit of labor supply Lt (h) and carries the nominal one-period bond Bt�1 and the nominal

money balancesMt�1 from the previous period to the current period. Households also receive

the total pro�ts of �rms �t and transfers Tt from the monetary authority. In the left-hand

side of (4), households purchaseN consumption goods and hold the nominal bond discounted

by the gross nominal interest rate on one-period bonds and cash for the next period. We

assume complete state-contingent markets and identical initial conditions for all households

so that we can drop the household index h from variables except for Wt(h) and Lt(h).

Let Lt be the composite of di¤erentiated labor service : Lt =
hR 1
0
Lt(h)

(�w�1)=�wdh
i�w=(�w�1)

;

where �w > 1 is the elasticity of substitution. The demand curve for di¤erentiated labor ser-

vices Lt (h) is Lt (h) = [Wt(h)=Wt]
��w Lt;whereWt denotes the aggregate wage index de�ned
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as Wt =
hR 1
0
Wt(h)

1��wdh
i1=(1��w)

:

In each period, the household can choose its nominal wage optimally with probability

1 � �w to maximize expected lifetime utility. When the household is allowed to reset its

nominal wage, its optimal wage rate W �
t satis�es

W �
t =

�w
�w � 1

Et
P1

s=0 (��w)
s

�
�L

h
W �
t

Wt+s

i��w
L1+�t+s

�
Et
P1

s=0 (��w)
s
h
W �
t

Wt+s

i��w
Lt+s

:

Under Calvo-type wage stickiness, the law of motion for the nominal aggregate wage index

is given by

Wt =
�
�wW

1��w
t�1 + (1� �w)W

�1��w
t

� 1
1��w : (5)

4.1.2 Firms

The economy has N sectors. In each sector, there is a continuum of �rms indexed by

f 2 [0; 1], each of which produces di¤erentiated products Yj;t(f). Let Yj;t be a composite of

di¤erentiated goods produced in sector j; for j = 1; :::N , that is de�ned as

Yj;t =

�Z 1

0

Yj;t (f)
�p�1
�p df

� �p
�p�1

; (6)

where �p > 1 denotes the elasticity of substitution between di¤erentiated products in each

sector. The demand function for di¤erentiated product Yj;t (f) is given by

Yj;t (f) =

�
Pj;t (f)

Pj;t

���p
Yj;t: (7)

The disaggregated price index Pj;t is de�ned as Pj;t =
hR 1
0
Pj;t (f)

1��p df
i1=(1��p)

:

Each �rm in sector j produces output using the following technology

Yj;t (f) = ZtLj;t (f)� FZt: (8)
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Here Zt represents the aggregate technology that is common to all �rms in the economy.10

Furthermore, Lj;t (f) is the labor demand used to produce output Yj;t (f), and F is the

�xed cost calibrated to guarantee the zero pro�ts of all �rms at the steady state. Given the

production function (8), the nominal marginal cost function MCt is

MCt =
Wt

Zt
; (9)

which is common across all �rms and sectors.

In each period, �rms are allowed to reset prices optimally with the probability of 1� �j

under monopolistic competition in the product market, and their prices remain �xed other-

wise. Given the demand function (7), the optimal reset price P �j;t solves the maximization

problem

max Pj;t(f)Et
1X
s=0

(��j)
s �t+s
�t

Dj;t;t+s (f)

Pj;t+s
; (10)

s:t: Dj;t;t+s (f) = Pj;t+s (f)Yj;t;t+s (f)�Wt+sLj;t;t+s (f) ; (11)

where Dj;t;t+s(f); Yj;t;t+s(f); and Lj;t;t+s(f) are the current period pro�ts of the �rm, the

output, and labor demand, conditional on the optimal reset price P �j;t , respectively. �t+s is

the Lagrange multiplier associated with the household�s budget constraint (4). The optimal

reset price P �j;t satis�es

P �j;t =
�p

�p � 1
Et
P1

s=0 (��j)
s
�
�t+s
�t

�
Yj;t;t+s (f)MCt+s=Pj;t+s

Et
P1

s=0 (��j)
s
�
�t+s
�t

�
Yj;t;t+s (f) =Pj;t+s

: (12)

Under Calvo-type price stickiness, the price index of the goods j evolves according to

Pj;t =
h
�jP

1��p
j;t�1 + (1� �j)P

�
j;t
1��p

i 1
1��p

: (13)

10Here we do not introduce sector-speci�c technology and �rm-speci�c technology in the production func-
tion because our interest is in the disaggregated price responses to aggregate shocks.
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4.1.3 Aggregate technology and monetary policy rule

We assume that the growth rate of the aggregate technology follows an AR(1) process of the

form

Zt
Zt�1

=

�
Zt�1
Zt�2

��z
exp(ez;t); (14)

where ez;t is i.i.d. and �z 2 [0; 1).

The nominal interest rate Rt is determined by the lagged nominal interest rate and the

aggregate in�ation rate

Rt = R
�r
t�1

�
Pt
Pt�1

�(1��r) 
exp (er;t) ; (15)

where �r is the autoregressive parameter of the policy rate,  > 1 is a policy weight on

in�ation and er;t is an i.i.d. monetary policy shock.

4.1.4 Equilibrium and market clearing conditions

The market clearing conditions for good j = 1; :::; N are given by

Cj;t = Yj;t =

�Z 1

0

Yj;t (f)
�p�1
�p df

� �p
�p�1

for j = 1; :::N: (16)

The labor market clearing condition is

Lt =

�Z 1

0

Lt (h)
�w�1
�w dh

� �w

�w�1
=

NX
j=1

Z 1

0

Lj;t (f) df: (17)

The bond market clearing condition implies Bt = 0 at all dates and states. Finally, the

pro�ts of �rms and transfers from the government are speci�ed as �t =
PN

j=1

R 1
0
Dj;t(f)df

and Tt =Mt �Mt�1, respectively.

An equilibrium of the economy is a collection of allocations and prices, fCj;t; Yj;t; Yj;t (f) ;

Lt (h) ; Lj;t(f); Pj;t; Pj;t (f) ; Wt; Bt g1t=0; for j = 1; :::N; which satisfy the following condi-

tions: (i) the households�allocations and wages solve the utility-maximization problem; (ii)

producers�allocations and prices solve the pro�t-maximization problem taking the wage rate

as given; (iii) markets for the composite goods, composite labor, and bonds all clear; and
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(iv) monetary policy and pro�ts are as speci�ed above.

4.1.5 Calibration

We calibrate the parameters based on existing studies. We set the discount factor of house-

holds � to 1.04�1=4 and the Frisch labor supply � to unity. The weight for labor disutility �L

is calibrated so that the labor services supplied by households are equal to 0.3 in the steady

state. We set the weight for utility from real money balances �m to 0.05.

The elasticity of demand among di¤erentiated labor services �w is 21, which is borrowed

from Christiano, Eichenbaum, and Evans (2005). We follow the literature in setting �p to

11. Regarding the aggregate technology shock, we set �z = 0:9, consistent with ACEL,

who estimate this parameter over the sample period between 1959:Q2 and 2001:Q4. We

parameterize the Taylor rule (15) as �r = 0:9 and  = 1:1. We set the degree of nominal

wages stickiness �w to 0:85, according to Barattieri, Basu, Gottschalk (2009), who estimate

the probability of nominal wage adjustment to be approximately 14�16 percent per quarter.11

To calibrate the frequency of price changes 1� �j in each sector j, we use the frequency

of regular price changes reported by Nakamura and Steinsson (2008). The number of sectors

N is set to 134 for comparison purpose. Because Nakamura and Steinsson (2008) report the

monthly frequency of price changes, we transform them to obtain the quarterly frequency as

follows: �j = (1� frj)
3.12

4.2 Simulation results

4.2.1 The baseline model

In this subsection, we evaluate the baseline model in replicating the features of the disag-

gregated price responses using the impulse response functions to a positive shock to the

11They also found little heterogeneity in the probability of nominal wage adjustment across industries as
well as across occupations. This fact provides a rationale to not introduce heterogeneity in wage settings
across sectors into the model.
12In evaluating the model, we calculate the weighted average of the monthly frequency of price changes

based on the entry-level items (ELIs) to match the PCE item price indices. Using the weighted average
of frequencies might in�uence our simulation results for the disaggregated price dynamics. As a sensitivity
analysis, we also simulate a model consisting of a larger number of sectors than the baseline model, where
the frequency of price changes is calibrated at the level of ELIs. The simulation results on the disaggregated
price responses to the two shocks is qualitatively unaltered.
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aggregate technology ez;t and contractionary shock to the monetary policy rule er;t.

The rectangular markers in Figure 9 show the share of positive price responses to the two

shocks. The share is zero over the entire period after the shocks, because all disaggregated

prices fall immediately after both shocks. In this sense, the disaggregated price responses are

symmetric across shocks. This symmetry comes from (9) and (12). Because both unexpected

technological improvement and contractionary monetary policy shocks lead to a decline

in the nominal marginal cost common to all sectors, there is no reason that some of the

disaggregated prices increase, resulting in a zero share of positive price responses to both

shocks.

The model predicts a negative correlation between the disaggregated price responses and

the frequency of price changes, but the cross-sectional link in the model is quantitatively

much stronger than the data suggest. The rectangular markers in Figure 10 compare the

correlation coe¢ cients in the model with those in the data. The correlation coe¢ cients

amount to -0.75 at the impact period under both shocks, which suggests a stronger link

than the data (-0.13 for the technology shock and 0.05 for the monetary policy shock). The

correlation coe¢ cient increases to -0.43 for both shocks until six years after the shock and

becomes close to the data (-0.31 for the technology shock and -0.28 for the monetary policy

shock). However, the magnitude is inconsistent with the data because almost all correlation

coe¢ cients are located at a lower value than the 95 percent con�dence intervals. Because

the nominal marginal cost is equal in all sectors in the baseline model, all cross-sectional

variations in disaggregated price responses originate only from heterogeneity in nominal price

stickiness. As a consequence, the cross-sectional link is very strong.13

4.2.2 Cost channel of monetary policy

We now modify the baseline model to account for the asymmetric disaggregated price re-

sponses by introducing a cost channel of monetary policy. Some existing studies have argued

that a cost channel explains the temporary increase in the aggregate prices after a monetary

13This result can be obtained under various parameterizations. For example, we simulate the model under
a wide range of degrees of nominal wage stickiness �w or of values of the persistence of the monetary policy
rule �r: Our result is also robust even when the expenditure share of 1=N for each good or elasticity of
substitution among goods �p varies across sectors.

17



tightening shock.14 A cost channel may be useful in breaking the symmetry in disaggregated

price responses because marginal cost temporarily increases in response to a contractionary

monetary policy shock but not to a positive technology shock.

Suppose that �rms must borrow the wage bill from �nancial intermediaries in advance

at the interest rate Rt. We replace the nominal marginal cost (9) with

MCt = Rt
Wt

zt
: (18)

As a result, the nominal marginal cost depends on the nominal interest rate.15

Figure 9 shows that the cost channel helps generate asymmetric price responses across

shocks. The share of positive price responses is zero over the entire period after the technology

shock (shown by the triangular markers in the upper panel). In contrast, the share of

positive disaggregated price responses ranges between 23.9 and 66.4 percent over the �rst

year after the contractionary monetary policy shock (shown in the lower panel). Although the

theoretical share is somewhat larger than the empirical share of 45.5�55.2 percent, the cost

channel successfully produces asymmetric responses of disaggregated prices across shocks.

To see the intuition behind the asymmetry across shocks, note that the nominal interest

rate responds to the two shocks in opposite directions. For a positive technology growth

shock, the improved technology negatively a¤ects nominal marginal cost immediately. This

direct e¤ect on marginal cost tends to dominate the indirect e¤ect of sticky nominal wage

increases coming from the increased labor demand. Hence, on average, disaggregated prices

should decrease, implying decreased aggregate in�ation. Because of the decreased aggregate

in�ation, the nominal interest rate is lowered according to the monetary policy rule (15),

which leads to a further fall in nominal marginal cost and disaggregated prices.

In contrast, the contractionary monetary policy shock directly increases the nominal

interest rate and temporarily increases, rather than decreases, the nominal marginal cost

14For instance, Christiano, Eichenbaum and Evans (2005) suggested that when a cost channel exists along
with sticky wages, the aggregate prices can initially rise in response to a contractionary monetary policy
shock. Empirically, several papers argue for the presence of a cost channel (Barth and Ramey, 2001; Ravenna
andWalsh, 2006; Chowdhury, Ho¤mann, and Schabert, 2006; and Tillmann, 2008). One exception is Rabanal
(2007), who estimated a medium-sized New Keynesian model by Bayesian estimation.
15In addition to the replacement of the marginal cost function, we also need to modify the households�

budget constraint (4) because they have deposits with the �nancial intermediaries.
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because of (18) together with a gradual decrease in wages Firms that produce goods with

a low frequency of price changes decrease their prices because they put a large weight on

the future decreased marginal cost. However, �rms producing goods with a high frequency

of price changes increase their prices based on the temporary increase in marginal cost

because they have plenty of opportunities to reset prices. For this reason, about a half of

the disaggregated prices show positive responses to a contractionary monetary policy shock.

A by-product of this mechanism is a positive relationship between the disaggregated

price responses and the frequency of price changes for the monetary policy shock. When

the monetary tightening shock occurs, the responses of frequently adjusted prices should be

larger than those of infrequently adjusted prices, implying a positive correlation between

responses and frequencies. Triangular markers in the lower panel of Figure 10 con�rm this

conjecture. Unfortunately, the theoretical correlation coe¢ cients are signi�cantly larger

than the empirical correlation coe¢ cients for the absolute values and lie outside the 95

percent con�dence intervals obtained from the empirical analysis. This result suggests that

a further modi�cation is required to account for cross-sectional variations in disaggregated

price responses.

4.2.3 Heterogeneous real rigidities

To weaken the correlation between price responses and the frequency of price changes, we

introduce heterogeneous real rigidities into the model with the cost channel from the view

point of strategic complementarity. Carvalho (2006) argues that strategic complementarity

matters for aggregate price dynamics using a multi-sector sticky price model. We also adopt

strategic complementarity, but assume that its degree varies across sectors, because such

real rigidities may work as an additional factor that causes variations in disaggregated price

responses compared with the case of no real rigidities. In what follows, we consider two

forms of real rigidities: (i) a sector-speci�c �xed factor in the production function and (ii) a

sector-speci�c kinked demand curve.

Sector-speci�c �xed factor of production We �rst discuss the role of a sector-speci�c

factor in the production function. Suppose that the production function for sector j is given
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by

Yj;t(f) = ZtLj;t(f)
�j �H

1��j
j � FjZt; (19)

rather than (8), where �j is a sector-speci�c parameter for returns to labor satisfying 0 <

�j � 1. Here �Hj denotes a sector-speci�c factor, and Fj is a sector-speci�c �xed cost that

ensures the long-run zero pro�t condition. Chari, Kehoe, and McGrattan (2000) assume

that goods are produced with a �xed factor in addition to labor and capital. Here we follow

Chari, Kehoe and McGrattan (2000) to interpret �Hj as an inelastically supplied factor, such

as land. The sector-speci�c factor generates real rigidities because of decreasing-returns-

to-scale technology, but the degrees of real rigidities are di¤erent across sectors because of

�j.

By normalizing �Hj to unity for all sectors for simplicity, we obtain the marginal cost

function

MCj;t(f) =

�
1

�j
Lj;t (f)

1��j
�
Rt
Wt

Zt
: (20)

Because �j varies across sectors, marginal cost �uctuates heterogeneously.

To simulate the model with heterogeneous real rigidity, we need to assign �j to the

production function in each sector j. Because there seems no comprehensive micro evidence

on �j, we randomly draw
�
�j
	N
j=1

from a distribution. Note that the moments simulated

from a particular set of �j critically depend on the combination of the observed �j and the

generated �j. Hence, we evaluate the model by taking the average of the theoretical moments

obtained from 100 repeated simulations. Evaluating the model with the moments averaged

over simulations permits us to see how much heterogeneity the model requires in terms of

the degree of real rigidities rather than how the model should assign the value of �j to each

�j.

While we leave the detail of computations to the appendix of the paper, the simulation

method is as follows. First, we draw �j from a linear function of �j = �+(1��)xj; where xj is

a random variable that follows a beta distribution with a probability density of fx(xj;�x; �x)
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and � is a lower bound for �j.
16 Second, we choose �x and �x by minimizing the quadratic

form of the distance between the simulated and actual moments from the data. Here our

target moments are the averages of correlation coe¢ cients Corrj
�
	kj (�); frj

�
over di¤erent

� = 0; 1; :::; 24 for a positive shock to the technology growth rate and a positive shock to the

federal funds rate. The resulting parameters imply that E(�j) = 0:90; std(�j) = 0:18, and

skewness of -1.87. Thus, �j is highly diverse but is highly concentrated on a range of values

near unity. Indeed, approximately 70.5 percent of �j is more than 0.95.

The circular markers in Figure 11 show the simulated share of positive price responses

for each shock. Because of the cost channel of monetary policy, the simulated shares of price

responses in the lower panel are positive up to one year after the monetary policy shock.

Nevertheless, the heterogeneity in real rigidities improves the �t of the model to the data. In

comparison with the lower panel of Figure 9, the shares for the �rst year after the shock shift

downward from the range of 23.9�66.4 percent to a range of 9.0�44.8 percent, falling in the

range of the data expressed by the white bars. Moreover, the upper panel of Figure 11 shows

that the share of positive price responses is no longer equal to zero for several quarters after

the positive technology shock. The simulated shares of positive price responses are 1.5�4.5

percent for the �rst year after the shock, which is comparable to the data.

Turning to the correlation coe¢ cients, the model with heterogeneity in �j fares much

better in weakening the correlation between the disaggregated price response and the fre-

quency of price changes than the models previously discussed. The correlation coe¢ cients

depicted by circular markers in Figure 12 are now much closer to the data for both shocks.

Almost all correlation coe¢ cients now lie inside the 95 percent con�dence intervals for each

period and each shock.

To see the role of heterogeneity in �j in the production function, note that the New

Keynesian Phillips curve at the sector level is given by

�j;t = �jDjmc
R
j;t � �jDjqj;t + �Et�j;t+1; (21)

16We set the lower value of � to 1/3 in the simulations. Without this lower bound, the beta distribution
may generate �j close to zero and may make the computation impossible because of the in�nitely large
steady-state value of marginal cost (See (20).)
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where mcRj;t denotes the log-deviation of the average sectoral real marginal cost from the

steady state, and qj;t is the log-deviation of the relative price (Pj;t=Pt) from the steady state.

Furthermore, �j � (1� �j)(1� �j�)=�j and Dj � �j=(�j + (1� �j)�p). The heterogeneity

in the nominal price stickiness a¤ects �j;t through the slope parameter �j. In contrast, the

heterogeneity in real rigidities a¤ects �j;t through the other slope parameter Dj and the

movements in the sector-speci�c real marginal cost mcRj;t. Note that in the baseline model

and the model with the cost channel, �j = 1 for all j, Dj = 1 and mcRj;t is common to all

sectors.

In the model with heterogeneous real rigidities, however,Dj andmcRj;t di¤er across sectors,

resulting in breaking a strong cross-sectional link between the disaggregated price responses

and the frequency of price changes. Therefore, the portion of variations in disaggregated

price responses attributed to heterogeneity in the frequency of price changes is reduced

signi�cantly.

Sector-speci�c kinked demand curve The reason that the model with the above het-

erogeneous real rigidities can replicate the weak correlation between the disaggregated price

responses and the frequency of price changes comes from two sources: the sector-speci�c

slope coe¢ cient Dj and the sector-speci�c �uctuations of real marginal cost mcRj;t. We argue

that the latter is much more important than the former.

To illustrate this, we next consider the kinked demand curve of Kimball (1995), another

type of strategic complementarity. As the existing literature emphasizes, the kinked demand

curve is another useful device in generating real rigidities.17 However, an important di¤erence

from the sector-speci�c factor in the production function is that this type of real rigidity can

produce the heterogeneity in real rigidity from the demand function. As a result, the sector-

speci�c kinked demand curve a¤ects the slope parameter in the New Keynesian Phillips

curve but does not a¤ect the marginal cost �uctuations.

We assume that the elasticity and curvature of the demand function for di¤erentiated

goods vary across sectors. Here, we use (18) rather than (20) to isolate the role of the

sector-speci�c kinked demand curve. The aggregator of di¤erentiated products in sector j is

17A few examples are: Chari, Kehoe, and McGrattan (2000), Dotsey and King (2005), Eichenbaum and
Fisher (2007) and Coenen, Levin, and Christo¤el (2007).
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de�ned as

Z 1

0

Gj

�
Yj;t(f)

Yj;t

�
df = 1;

where Gj (�) satis�es G0j(�) > 0; G00j (�) < 1, and Gj (1) = 1.18 Here, the standard CES

aggregator (6) corresponds to the special case where Gj (Yj;t(f)=Yj;t) = (Yj;t(f)=Yj;t)
(�p�1)=�p :

Denoting the elasticity of demand for goods Yj(f) around the steady state by �j; the slope

of the sector-speci�c elasticity of demand �j is given by

�j �
�
Pj(f)=Pj
�j

@�j

@ (Pj(f)=Pj)

�
Yj(f)=Yj=1

= �j

�
G000j (1)

G00j (1)

�
+�j + 1:

Firms�pricing behavior is in�uenced by the parameter �j. For a higher value of �j; the �rm

in sector j faces a greater demand and pro�t decline when it raises its price Pj(f). As a

result, the pass-through of marginal cost to the price becomes moderate.19

Under the production function of (8) and the sector-speci�c kinked demand curve, the

New Keynesian Phillips curve for sector j is

�j;t = �jAjmc
R
t � �jAjqj;t + �Et�j;t+1; (22)

where the coe¢ cient Aj is given by

Aj �
�p � 1

�p + �j � 1
:

Here, mcRt is the log-deviation of real marginal cost that is common to all sectors. The

coe¢ cient Aj decreases with �j, reducing the pass-through from marginal cost to in�ation.

To evaluate the model with the sector-speci�c kinked demand curve, we assign randomly

drawn
�
�j
	N
j=1

to each sector j. Here, we parameterize �j randomly from the gamma dis-

tribution. We again choose parameters of the gamma distribution to match the averages

18Here we follow Eichenbaum and Fisher�s (2007) speci�cation for the nonconstant elasticity of demand.
19Note that the CES aggregator with heterogeneous elasticity of demand alone is incapable of weakening

the correlation. To see this, under linear technology, the elasticity of demand �p does not enter the coe¢ cients
for real marginal cost in the New Keynesian Phillips curve and thus it has no e¤ect on disaggregated in�ation
dynamics.
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of correlation coe¢ cients Corrj
�
	kj (�); frj

�
over � = 0; 1; :::; 24 for the two shocks. The

resulting gamma distribution has E(�j) = 79 and std(�j) = 333.
20

The triangular markers in Figure 11 depict the simulated results under the model with

the sector-speci�c kinked demand curve. The upper panel of the �gure shows that the model

generates no positive price response to a positive shock to the aggregate technology growth

as in the model without heterogeneous real rigidities. For the monetary tightening shock

shown in the lower panel, the share of positive price responses for the �rst year after the

shocks ranges between 20.8 and 54.5 percent, which is close to the 9.0�44.8 percent range

in the model with the sector-speci�c factor of production. Hence, the model of the sector-

speci�c kinked demand curve is as good as the model with a sector-speci�c �xed factor

of production in accounting for the positive disaggregated price responses to a monetary

tightening shock. In contrast, even though we freely choose the parameters for the gamma

distribution to match the target moments, the e¤ects of introducing the sector-speci�c kinked

demand curve on the weak correlation are rather limited as suggested by Figure 12. The

correlation coe¢ cients depicted by the triangular markers in Figure 12 show that most of

them lie outside the 95 percent con�dence intervals, regardless of shock k.

To summarize, the sector-speci�c marginal cost responses are more important in gener-

ating the weak correlations than the sector-speci�c slope coe¢ cient. Our analysis suggests

that the di¤erence between these two models with heterogeneous real rigidities stems from

the marginal cost responses. Therefore, heterogeneous �uctuations in the marginal cost are

a key to understanding heterogeneity in the disaggregated price responses to shocks.

5 Concluding Remarks

In the light of growing interest in highly disaggregated price dynamics in recent research, this

paper studied the responses of disaggregated prices to aggregate technology shocks compared

with monetary policy shocks, focusing on the di¤erence across both shocks and sectors.

20The calibrated values of the mean and standard deviation appear to be di¢ cult to interpret. Regarding
the calibrated value of homogeneous �; Eichenbaum and Fisher (2007) and Coenen, Levin, and Christo¤el
(2007) set homogeneous � to 10 and 33, respectively. Kimball (1995) sets � to 471 and Chari, Kehoe, and
McGrattan (2000) set � to 385. In other words, the literature has used a very wide parameter range for
homogeneous �.
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Using the disaggregated price data in the US, we empirically found two features related

to the disaggregated price responses. First, a substantial number of disaggregated prices

tend to rise temporarily in response to a contractionary monetary policy shock, but such a

pattern is not observed in response to an aggregate technological improvement. Second, the

disaggregated price responses are weakly correlated with the frequency of price changes.

The standard multi-sector sticky price model fails to replicate these two features. Namely,

the model generates symmetric price responses across shocks and stronger correlation with

the frequency of price changes than the data. We extended the model and found that the

model with a cost channel of monetary policy and heterogeneous real rigidities in the form

of a sector-speci�c �xed factor of production can explain these features. The introduction of

the cost channel allows marginal cost to depend on the nominal interest rate that responds

in the opposite direction, resulting in asymmetric responses across shocks. The heteroge-

neous real rigidity that stems from the sector-speci�c �xed factor of production generates a

large cross-sectional variation in the marginal cost, weakening the correlation between the

frequency of price changes and disaggregated price responses. Thus, we conclude that mod-

eling the marginal cost structure and its �uctuations that change across sectors is important

for understanding disaggregated prices.

Extending the standard multi-sector model to other dimensions is possible and could be

explored to overcome the shortcomings of the standard model. For example, heterogeneity

in �nancial market imperfection and in households�preferences, and heterogeneous beliefs of

economic agents about shocks might be a possible explanation. Furthermore, our �nding on

the di¤erences in the disaggregated price responses across shocks may be explained by the

rational inattention model in a sticky price environment.21 These lines of research would be

promising avenues for future research.

21For a discussion of the rational inattention model, see Mackowiak andWiederholt (2009), Paciello (2009b)
and Sims (2003).
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A Appendix

A.1 Calibrating heterogeneous real rigidities

In this appendix, we explain how to calibrate �j in the production function and �j in the

kinked demand curve. Let us consider the case of calibrating �j. Our parameterization takes

several steps similar to the indirect inference. First, we draw a random variable xj 2 [0; 1]

from a beta distribution f(x;�x; �x) for each sector j. We randomly assign �j to each sector

j by �j = (1 � �)xj + � where � 2 [0; 1] is a lower bound for �j. The lower bound for �j
is required to avoid having the in�nitely large steady-state marginal cost. The upper bound

for �j is unity to rule out the possibility of increasing returns to labor. Thus, the support

for �j is [�; 1]. Second, we compute the simulated moments that are of interest. Because the

simulated moments depend critically on the particular combination of �j and the randomly

drawn value of �j, we mitigate the e¤ect on the simulation results by taking S sets of

random parameterizations. In particular, we compute the vector of the simulated moments

ms(�;�x; �x) for s = 1; 2; :::; S, where � is a vector of calibrated parameters including �j

and �. Here we set S = 30. Third, we choose the parameters for the beta distribution �x

and �x to minimize 
mdata �

1

S

1X
s=1

ms(�;�x; �x)

!0



 
mdata �

1

S

1X
s=1

ms(�;�x; �x)

!
;

where mdata is the moment from the data.

We pick the two averages of correlation coe¢ cients over � as the moment from the data.

Namely, the moment from the data is

mdata =
1

25

24X
�=0

�
Corrj(	

Tech
j (�); �j)

Corrj(	MP
j (�); �j)

�
;

where Tech refers to a positive shock to the technology growth rate and MP refers to a

positive shock to the federal funds rate. We set 
 to a (2� 2) identity matrix.

Next consider the case of the sector-speci�c kinked demand curve. The parameter �j is

generated from the gamma distribution. Let g�(�j; k�; ��) be the probability density of �j.

We choose the parameters k� and �� to match the simulated moments ms(�; k�; ��) in the
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same way as the case of the sector-speci�c �xed factor of production. Because the mean and

the standard deviation of �j have a one-to-one relationship to the parameters k� and ��, we

report the mean and the standard deviation in the main text.
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Figure 1: Impulse response functions of disaggregated and aggregate prices to di¤erent shocks

Notes: The upper panels plot the impulse response functions to a one percent increase in the total factor

productivity estimated from the SVAR. The lower panels plot the impulse response function to a one percent

increase in the federal funds rate (expressed as an annual rate). In the left panels, a dotted line denotes the

mean response of disaggregated prices (cumulative sum of in�ation), a solid line denotes the median response

of disaggregated prices and a dashed line de�nes the 10th�90th percentile range of responses to express the

variability. A solid line in the right panels is the aggregate price response obtained from the SVAR.
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Figure 2: Shares of positive price responses after aggregate shocks that lower prices

Notes: The upper panel shows the share of positive disaggregated price responses to all price responses to a

one percent increase in aggregate technology growth. The lower panel is the share of positive disaggregated

price responses to all price responses for a contractionary shock to the federal fund rate. The two shocks are

identi�ed using the SVAR. The height of the shaded bar measures the share of positive price responses that

are signi�cantly positive at the �ve percent signi�cance level.
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Figure 3: Correlation coe¢ cients between disaggregated price responses and the frequency
of price changes

Notes: The circular markers indicate the point estimate of the correlation coe¢ cients between the disaggre-

gated price responses after a shock and the frequency of price changes measured by Nakamura and Steinsson

(2008). The length of each bar indicates the 95 percent con�dence intervals of the correlation coe¢ cients.

The upper panel is the case of the responses to a one percent increase in aggregated technology growth,

while the lower panel is the case of the responses to a one percent increase in the federal funds rate.
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Figure 4: Shares of positive price responses to a shock to technology growth identi�ed by
Basu, Fernald, and Kimball (2006) and to a contractionary monetary policy shock identi�ed
by Romer and Romer (2004)

Notes: The shares are calculated based on the impulse response functions estimated by (2). The shock series

used here are the quarterly version of the puri�ed total factor productivity growth by Basu, Fernald and

Kimball (2006) over the period 1959:Q3�2008: Q3 and the monetary policy shock measure by Romer and

Romer (2004) over the period 1969:Q1�1996:Q4. The height of the shaded bar measures the share of positive

price responses that are signi�cantly positive at the �ve percent signi�cance level.
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Figure 5: Correlation coe¢ cients between the disaggregated price responses and the fre-
quency of price changes based on aggregate shocks by Basu, Fernald, and Kimball (2006)
and Romer and Romer (2004)

Notes: The disaggregated price responses are estimated from (2). The upper panel is based on the shock

series identi�ed by Basu, Fernald, and Kimball (2006) and the lower panel is based on the shock series based

on Romer and Romer (2004). See the notes of Figure 3 for further details.
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Figure 6: Shares of positive price responses to a contractionary shock to the federal fund
rate and correlation coe¢ cients between the disaggregated price and the frequency of price
changes, based on by the factor-augmented VAR in Boivin, Giannoni, and Mihov (2009)

Notes: For both panels, the impulse response functions of the disaggregated prices are obtained from the

estimates of Boivin, Giannoni, and Mihov�s (2009) factor-augmented VAR. The shaded bars in the upper

panel represent the share of signi�cantly positive price responses at the �ve percent signi�cance level. The

lower panel is the correlation coe¢ cient (circular markers) between the disaggregated price responses to

a monetary policy shock and the frequency of price changes. The length of the bars attached to circular

markers in the lower panel measures the 95 percent con�dence intervals.
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Figure 7: Shares of positive disaggregated price responses to all disaggregated price responses
to aggregated shocks that reduce prices: Based on the subsample periods from 1984:Q1�
2008:Q3

Notes: The shares are calculated from the impulse response functions estimated over the period 1984:Q1�

2008:Q3. See the notes of Figure 2 for further detail.
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Figure 8: Correlation coe¢ cients between the disaggregated price responses and the fre-
quency of price changes: Post 1984 samples

Notes: The correlation coe¢ cients are calculated based on the impulse response functions estimated using

the subsample periods after 1984:Q1. See the notes of Figure 3 for further detail.
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Figure 9: The simulated shares of positive price responses to all price responses to a one
percent increase in aggregate technology growth and a contractionary shock in the federal
fund rate.

Notes: The rectangular markers in both panels indicate the shares of positive disaggregated price responses

to all disaggregated price responses under the baseline model. The triangular markers are the corresponding

share under the model with the cost channel of monetary policy. The �gure repeats the estimation results

shown in Figure 2 for comparisons.
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Figure 10: The simulated correlation coe¢ cients between the disaggregated price responses
and the frequency of price changes based on the baseline model and the model with a cost
channel of monetary policy

Notes: The rectangular markers are the correlation coe¢ cients between the disaggregated price responses

and the frequency of price changes under the baseline model. The triangular markers are the correlation

coe¢ cients under the model with the cost channel of monetary policy. The �gure repeats the estimation

results shown in Figure 3 for comparisons.
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Figure 11: The average of the simulated shares of positive price responses to all disaggregated
price responses to di¤erent shocks: The model with heterogeneous real rigidity

Notes: The circular markers represent the average of the simulated shares of positive disaggregated price

responses to all disaggregated price responses to a positive technology shock and a contractionary monetary

policy shock under the sector-speci�c factor of production (19). The triangular markers are the average of

the simulated shares under the sector-speci�c kinked demand curve. Each simulation is based on a randomly

drawn parameterization of �j or �j: The number of simulations is 100.
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Figure 12: The average of the simulated correlation coe¢ cients between the disaggregated
price responses and the frequency of price changes: The model with the sector-speci�c factor
of production and the model with the sector-speci�c kinked demand curve

Notes: The circular markers show the averages of the simulated correlation coe¢ cients between the disaggre-

gated price and the frequency of price changes based on the model with heterogeneous real rigidities coming

from the sector-speci�c factor of production. The triangular markers are based on the model with hetero-

geneous real rigidities coming from the sector-speci�c kinked demand curve. The average of the correlation

coe¢ cients are taken over a randomized parameterization of �j or �j . Both models incorporate the cost

channel of monetary policy. The �gure repeats the estimation results shown in Figure 3 for comparison. The

number of simulations is 100.
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