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Abstract

This paper investigates the price for contingent claims in a dual ex-

pected utility theory framework, the dual price, considering complete

arbitrage-free �nancial markets. In this framework this dual price is ob-

tained, for the �rst time in the literature, without any comonotonicity

hypothesis and for contingent claims written on n underlying assets fol-

lowing generic Itô processes. An application is also considered assuming

geometric brownian motion for the underlying assets and the Wang trans-

form as distortion function.
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1 Introduction

After Wang [11] and Wang [12], a uni�ed approach to evaluate insurance and
�nancial risks has emerged in the literature. The common mathematical tool
is that of the Choquet integral or, from an economics perspective, that of the
dual expected utility (DEU) theory, a particular class of the non expected utility
theory, presented in Yaari [13]. As shown in Quiggin [8], an important advantage
in using the DEU theory is the absence of paradoxes such as Allais [1] and
Ellsberg [4], originating from the interpretation of the choices by the classical
expected utility (EU) theory presented by von Neumann and Morgenstern [9].

In the DEU framework �attitudes toward risks are characterized by a distor-
tion applied to probability distribution functions, in contrast to expected utility
in which attitudes toward risks are characterized by a utility function of wealth�
(Wang and Young [10]).

In Wang [11] andWang [12] an expression for the risk-adjusted premium for a
risk R, H[R,α], is given in terms of a Choquet integral. The assumption that the
assets can be priced applying such risk-adjusted premium to the present value of
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the future asset price and that the European option pay-o� is comonotone1 with
the terminal underlying stock price, allows the derivation of an implied value of
the parameter α. Such an approach has been adopted for European call option
pricing and the standard Black and Scholes [2] and Merton [7] formula has been
recovered.

In Hamada and Sherris [5], the approach developed in Wang [11] and Wang
[12] is formally considered in a complete arbitrage-free �nancial market with one
risk asset. In particular a pricing formula for a contingent claim whose pay-o�
is comonotone with the terminal value of the underlying asset is obtained and
is consistent with the Black-Scholes-Merton option pricing formula.

In Cenci et al. [3] a general dynamic framework for optimal portfolio se-
lection is set in the context of Yaari's DEU theory. In particular, using the
Wang transform as distortion function, the problem has been explicitly solved
in complete arbitrage-free markets with a risk-free and two risky assets.

In this paper the price in the DEU theory framework for a contingent claim,
named in this paper as �dual price�, is obtained in complete arbitrage-free �-
nancial markets. Such pricing formula holds also for a claim contingent on n
underlying assets following generic Itô processes, without any comonotonicity
hypothesis between its pay-o� and the underlying assets.

An application is also considered using the Wang transform as distortion
function and a geometric brownian motion for the underlying assets dynam-
ics. In this case the dual price of a contingent claim is equivalent to the stan-
dard Black-Scholes-Merton option pricing formula in a complete unconstrained
arbitrage-free market.

The remainder of the paper is structured as follows. Outlines of EU and
DEU theories are given in section 2. In section 3 the �nancial market model
is described. In section 4 the concept of dual price is introduced and a pricing
formula for a contingent claim is obtained. In section 5 the Wang transform is
used as distortion operator and the corresponding pricing formula is obtained.
In the �nal section the conclusions are drawn.

2 DEU Decision Theory

The EU theory by von Neumann and Morgenstern [9] is the most frequently used
approach to solve problems of choice under uncertainty. The main disadvantage
in using such an approach is that, as shown by several authors since the sixties,
actual decisions are not fully consistent with all EU theory axioms.

Denoting with χ the opportunity set and with capital letters the opportuni-
ties which can be degenerate or not degenerate random variables, the EU theory
axioms are:

A.1) Completeness � ∀X, Y ∈ χ it is either X � Y or X � Y
A.2) Transitivity � if X � Y and Y � Z then X � Z
A.3) Continuity � if X � Y � Z ⇒ ∃p ∈ [0, 1] : Y ∼ pX + (1− p)Z

1The random variables X and Y are comonotone if there exist a random variable Z and
two not decreasing real functions f and h such that X = f(Z) and Y = h(Z).
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A.4) Independence � if X � Y ⇒ ∀p ∈ [0, 1] pX+(1−p)Z � pY +(1−p)Z,
where X � Y is short for Y not preferred to X and X ∼ Y is short for X

indi�erent to Y.
As shown, for example, in Allais [1] and Ellsberg [4], the independence axiom

is violated in several empirical tests. In order to avoid this problem, theories of
choice alternative to the EU theory, called non-expected utility theories, have
been presented in the literature. In particular the DEU theory is a non-expected
utility theory whose axioms are A.1, A.2, A.3 and axiom A.4 is replaced with

A.4*) Comonotonicity � if X, Y , Z are pairwise comonotonic and X � Y

⇒ ∀p ∈ [0, 1] pX + (1− p)Z � pY + (1− p)Z.

As shown in Yaari [13], under axioms A.1, A.2, A.3 and A.4*, there exists
a non-decreasing function g : [0, 1] → [0, 1], with g(0) = 0 and g (1) = 1, such
that

• X � Y ⇔ Eg[X] ≥ Eg[Y ];

• X � Y ⇔ Eg[X] ≤ Eg[Y ];

• X ∼ Y ⇔ Eg[X] = Eg[Y ],

with

Eg[X] =
∫ +∞

−∞
xdg (FX(x)) ,

where FX(x) is the probability distribution functions of the random variables
X.

The analytical form of the so called distortion function g, embeds the degree
of aversion towards risk of the decision maker. In particular, if g is increasing
and concave, as shown in Quiggin [8], the decision maker is risk-averse and the
resulting ordering of preferences is consistent with the �rst and second order
stochastic dominance principles. It can be shown that the following properties
hold2:

P.1) if g(F (x)) = F (x) ⇒ Eg[X] = E[X]
P.2) Eg[aX + b] = aEg[X] + b ∀a > 0, b ≥ 0
P.3) if X and Y are comonotonic ⇒ Eg[X + Y ] = Eg[X] + Eg[Y ]
P.4) if g is concave ⇒ Eg[X] ≤ E[X] and Eg[X + Y ] ≥ Eg[X] + Eg[Y ]

3 Financial Market Model

3.1 The Assets

In this paper a complete and arbitrage-free �nancial market with a risk-free and
n risky traded assets is considered. The price at time s ∈ [t, T ] of the risky assets
and that of the risk-free asset are respectively denoted by {Pi(s), i = 1, ..., n}
and P0(s).

2See, for instance, Wang and Young [10].
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The n independent risk sources are represented through a standard Wiener
vector process W = (W1, ...,Wn)∗ in Rn, while the dynamics of the risky assets
is described by the following Itô stochastic di�erential equations:

dPi(s) = Pi(s)

µi(s, P (s))ds+
n∑
j=1

σij(s, P (s))dWj(s)

 , i = 1, ..., n, s ∈ [t, T ],

(1)
where µi(s, Pi(s)) is the instantaneous return rate of the i-th risky asset and
{σij(s, P (s)), s ∈ [t, T ]} is the volatility matrix.

The deterministic evolution of the risk-free asset price is:

dP0(s) = P0(s)r(s)ds

where r(s) is the risk-free rate and P0(0) = 1. In the remainder of the paper it
is obviously assumed that µi(s, P (s)) > r(s), ∀s ∈ [t, T ],∀i = 1, ...n.

In order to obtain the existence of a unique solution of Eq. (1) it is also
assumed that, ∀s ∈ [t, T ],

H.1) The processes r(s), µ(s, P (s)) = (µ1(s, P (s)), ..., µn(s, P (s)))∗ and the
matrix σ(s, Pi(s)) = {σij(s, P (s))} are adapted to the �ltration Fs = σ(W (u), u ∈
[t, s])

H.2) σ(s, P (s)) is not degenerate in strong form so that if

D(s, P (s)) = σ∗(s, P (s))σ(s, P (s))⇒

∀ε > 0 : ξ∗D(s, P (s))ξ ≥ ε ‖ξ‖2 a.s.∀ (s, ξ) ∈ [t, T ]× Rn

H.3) r(s) ≥ −η, η > 0

3.2 The Portfolio

At time t a price-taker agent I with an initial wealth X(t) = x > 0 is con-
sidered. At time s ∈ [t, T ] the agent I selects the quantity of each risky as-
set (φ1(s), ..., φn(s)) and the quantity of the risk-free asset φ0(s) = (X(s) −∑n
i=1 φi(s)Pi(s))/P0(s) to hold over the in�nitesimal time interval [s, s+ ds).
The trading strategy of I is representable by the process (φ0(s), ..., φn(s))∗

which is assumed to be adapted to the current information Fs and such that∫ T
t

[φi(s)]
2
ds < +∞ ∀i = 1, ..., n a.s.. In order to have a self-�nancing trading

strategy the following relation must hold:

n∑
i=0

φi(s)Pi(s) = X(t) +
n∑
i=0

∫ s

t

φi(u)dPi(u) ,∀s ∈ [t, T ]

or, in di�erential form,

d

n∑
i=0

φi(s)Pi(s) =
n∑
i=0

φi(s)dPi(s) ,∀s ∈ [t, T ].
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Under these hypotheses the wealth of the agent I at time s is:

X(s) =
n∑
i=0

φi(s)Pi(s).

where

φi(s) =

{
X(s)πi(s)
Pi(s)

i = 1, ..., n
X(s)[1−

∑n
i=1 πi(s)]

P0(s)
i = 0

,

having de�ned the portfolio process

π(s) = (π1(s), ..., πn(s))∗.

The resulting wealth evolution can be expressed through the following rela-
tion3:

dX(s) = X(s)[r(s) + µ̂(s, P (s)) · π(s)]ds+X(s)π(s) · σ(s, P (s))dW (s) (2)

with X(t) = x and µ̂i = µi − r, ∀i = 1, ...n.
In the remainder of the paper the solution of Eq. (2) relative to the portfolio

process π and initial condition X(t) = x is denoted with Xt,x,π
s , s ∈ [t, T ], and

the associated conditional probability function of the �nal wealth Prob[Xt,x,π
T ≤

y|X(t) = x] with Fπt,x(y).

4 Dual Price

The optimal portfolio choice requires, within the DEU theory, the solution of
the following optimal stochastic control problem:{

v(t, x) = supπ∈K Eg[Xt,x,π
T ]

v(T, x) = x
, (3)

where K is the feasible set, the vector π(s) = (π1(s), π2(s), ..., πn(s))∗, s ∈
[t, T ], represents the control variables and the �nal wealth Xt,x,π

T is determined
by the solution of Eq. (2).

In an arbitrage-free market the price homogeneity is valid4:

Xt,λx,π
T = λXt,x,π

T , λ > 0, (4)

and the following proposition holds:
Proposition 4.1 In a complete arbitrage-free market the dual price p̂t at

time t of a contingent claim with pay-o� YT = Y (P1(T ), P2(T ), ..., Pn(T )) at
maturity time T is

3For a, b ∈ Rn the inner product between the vector a and b is denoted with a · b ≡∑n
i=1 aibi.
4See, for instance, Karatzas and Kou [6].
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p̂t =
x

v(t, x)
Eg[YT ],

where v(t, x) is the solution of Eq. (3).
Proof

In a complete market any contingent claim with pay-o� YT at maturity time
T, can be replicated by a (hedging) self-�nancing portfolio Xt,x̃,π̃

T for some initial
wealth x̃ and portfolio process π̃:

YT = Xt,x̃,π̃
T a.s.⇒ YT ∼ Xt,x̃,π̃

T .

The law of one price implies that x̃ = p̂t, where p̂t is supposed to be the
contingent claim dual price at time t for the agent I:

YT ∼ Xt,p̂t,π̃
T .

Supposing that π̃ 6= π, where π is the optimal control:

Eg[YT ] = Eg[Xt,p̂t,π̃
T ] < Eg[Xt,p̂t,π

T ],

therefore the opportunity Xt,p̂tπ
T is preferred to the opportunity YT . Hence

the agent I always invests his initial wealth p̂t in the optimal portfolio Xt,p̂t,π
T

rather than in the contingent claim which, therefore, should be valued less than
p̂t, contrarily to the hypothesis that p̂t is the contingent claim dual price for the
agent I. Hence π̃ = π and

YT ∼ Xt,p̂t,π
T ⇔ Eg[YT ] = Eg[Xt,p̂t,π

T ]. (5)

Using (4), Xt,p̂t,π
T = X

t,
p̂t
x x,π

T = p̂t

x X
t,x,π
T , the relation (5) becomes, using

property P.2:

Eg[YT ] = Eg[
p̂t
x
Xt,x,π
T ] =

p̂t
x

Eg[Xt,x,π
T ] =

p̂t
x
v(t, x)⇒

p̂t =
x

v(t, x)
Eg[YT ]. (6)

It is interesting to note that the pricing formula above holds also for contin-
gent claims whose pay-o� is not comonotone with the underlying assets. �

Eq. (6) resembles the one obtained in the EU theory. In fact, whitin the EU
framework, the optimization problem is

v(t, x) = sup
π∈K

E[U(Xt,x,π
T )],

where U(·) is the utility function, and the price of a contingent claim Y is5

p̂t =
1

∂v(t, x)/∂x
E[U

′
(Xt,x,π

T )YT ].

5See, for instance, Karatzas and Kou [6].
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5 Dual Price and the Wang Transform: an Ap-

plication

In Wang [11] and Wang [12] a general framework for pricing insurance and
�nancial risks has been introduced. The methodology consists of using a par-
ticular distortion function, known now in the literature as the Wang transform.
If FX(x) denotes the probability distribution function of the random variable
X, the Wang transform is

g(FX(x)) = Φ(Φ−1(FX(x)) + α), α > 0, (7)

where Φ is the normal cumulative distribution function,

Φ(x) =
∫ x

−∞
e−

u2
2
du√
2π
,

and α is a parameter. The e�ect of the Wang transform is a horizontal
translation of the probability distribution FX(x) with an overweighting of the
left tail and an underweighting of the right one. Since the Wang function g(·) is
increasing and concave, it characterizes a risk-averse agent and the resulting or-
der preferences are compatible with �rst and second order stochastic dominance
principles.

In the remainder of this section it is assumed that the distortion function
is given by Eq. (7) and that the risky asset prices follow a geometric brownian
motion with constant coe�cients. The portfolio stochastic evolution is therefore
described by Eq. (2) with constant coe�cients:

dXs = Xs(r + µ̂ · π)ds+Xsπ · σdWs, s ∈ [t, T ], (8)

with Xt = x.
In Cenci et al. [3]6 it is shown that in this case v(t, x) ∝ x, thus Eq. (3)

leads to a non standard Bellman equation, being ∂v/∂x
∂2v/∂x2 ill de�ned. Hence

Eq. (3) must be solved using a non standard Bellman equation for any given
distortion function g(·). It has been shown also that using the Wang transform
as distortion function and a price dynamics described by a geometric brownian
motion with constant coe�cients, the optimal control is determined solving the
static non linear programming problem

sup
π∈K

f(π) = µ̂ · π − β
√
π ·Dπ, (9)

where K = Rn in the unconstrained case, D = σ∗σ and the parameter β,
the Wang parameter, is de�ned as β = α/

√
T − t. The solution of Eq. (3) is

v(t, x) = xer(T−t)ef(π)(T−t), (10)

where π is the optimal control.

6For more details on Eqs. (9)-(??), see [3].
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In the unconstrained case it has been shown that the solution of Eq. (9) is

f(π) =


0 if β >

√
µ̂ ·D−1µ̂ → π = 0

0 if β =
√
µ̂ ·D−1µ̂ → π = cD−1µ̂, c ≥ 0

@ if 0 < β <
√
µ̂ ·D−1µ̂

. (11)

From Eq. (11) it is clear that in order to obtain a well diversi�ed optimal

portfolio the Wang parameter must be β =
√
µ̂ ·D−1µ̂, which implies

π = cD−1µ̂ (12)

with c ≥ 0 and
f(π) = 0.

Previous analysis shows that in order to have a fully diversi�ed optimal
portfolio solution, the Wang parameter must be chosen as β =

√
µ̂ ·D−1µ̂. The

corresponding optimal control is given by Eq. (12), f(π) = 0 and, from Eq.
(10),

v(t, x) = xer(T−t). (13)

Using the market price of risk vector q de�ned as

µi − r =
n∑
j=1

σijqj , (14)

it can be easily shown that the Wang parameter coincides with the norm of
the market price of risk vector given in Eq. (14), β = ||q||.

The following proposition holds:
Proposition 5.1 The Wang transform with parameter β =

√
µ̂ ·D−1µ̂ is

equivalent to a Girsanov transformation with kernel θ = q.
Proof

The portfolio dynamics is given by Eq. (8) and after a Wang transform

with parameter β =
√
µ̂ ·D−1µ̂, as shown in appendix A, the dynamics of the

optimal portfolio is determined by the following stochastic di�erential equations:

dXs = rXsds+Xsπ · σdW s, s ∈ [t, T ], (15)

where dW s is the Wiener processes associated with the transformed measure,
hereafter named as the Wang measure. Under the measure dW

′

s generated by
a Girsanov transformation with kernel θ,

dWs → dW
′

s = dWs + θsds, s ∈ [t, T ],

the optimal portfolio dynamics is

dX
′

s = X
′

s(r + µ̂ · π)ds+X
′

sπ · σ(dW
′

s − θsds)⇒

8



dX
′

s = X
′

s(r + µ̂ · π − π · σθs)ds+X
′

sπ · σdW
′

s. (16)

Comparing Eq. (15) with Eq. (16) it can be argued that the previous
Girsanov transformation will coincide with the Wang transform if and only if

µ̂ · π − π · σθs = 0.

The thesis follows from the de�nition of the market price of risk given in Eq.
(10),

µ̂ = σq ⇔ q = σ−1µ̂,

and taking θs = q.
�

From proposition 5.1 the e�ect of the Wang transform with β =
√
µ̂ ·D−1µ̂

over the risky assets price dynamics can be inferred:
Proposition 5.2 After the Wang transform with parameter β =

√
µ̂ ·D−1µ̂

the dynamics of the n risky assets is described by the stochastic di�erential
equations

dP i(s) = rP i(s)ds+ P i(s)
n∑
j=1

σijdW j , i = 1, ..., n, s ∈ [t, T ],

where dW s is the Wiener processes associated with the Wang measure.
In other words the measure after the Wang transform with parameter β =√
µ̂ ·D−1µ̂ is the well known risk-neutral measure Q.
Proof

The dynamics of the n risky assets is described in the �real world� by the
stochastic di�erential equations

dPi(s) = µiPi(s)ds+ Pi(s)
n∑
j=1

σijdWj , i = 1, ..., n, s ∈ [t, T ].

From proposition 5.1. it can be argued that the Wang transform on the n
assets dynamics is a Girsanov transformation with kernel given by the market
price of risk q: for i = 1, ..., n , s ∈ [t, T ]

dPi(s)→ dP i(s),

where

dP i(s) = µiP i(s)ds+ P i(s)
n∑
j=1

σij(dW j − qjds)⇒

dP i(s) = (µi −
∑
j

σijqj)P i(s)ds+ P i(s)
n∑
j=1

σijdW j
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or, using the de�nition of the market price of risk given in Eq. (14),

dP i(s) = rP i(s)ds+ P i(s)
n∑
j=1

σijdW j .

�
From the latter proposition the dual price of a generic contingent claim can

be explicitely deduced. Such a result is expressed in the following proposition:
Proposition 5.3 The dual price at time t of a contingent claim with pay-o�

YT = Y (P1(T ), P2(T ), ..., Pn(T )) at maturity time T is

p̂t = e−r(T−t)EQ[YT ],

where Q is the risk-neutral measure.
Proof

Eq. (6) gives the dual price in the context of the DEU theory:

p̂t =
x

v(t, x)
Eg[YT ].

Using the Wang transform with parameter β =
√
µ̂ ·D−1µ̂ as distortion

function, the solution of Eq. (3) is given by Eq. (13),

v(t, x) = xer(T−t).

The thesis follows from proposition 5.2: the transformed measure is the
risk-neutral one,

Eg[YT ] = EQ[YT ].

�

6 Final Remarks

In this paper the price for contingent claims consistent with the DEU theory,
the dual price, has been investigated for the �rst time in a complete arbitrage-
free market for n underlying assets following generic Itô processes and without
any comonotonicity hypothesis. Using the results of a recent paper on dynamic
portfolio selection in a DEU theory framework the dual price for contingent
claims has been deduced. In particular it has been shown that if the n underlying
follows geometrical brownian motion, using the Wang transform as distortion
operator, the standard Black-Scholes-Merton valuation formula, based on the
discounted contingent claim expected pay-o� under the risk-neutral measure, is
obtained.

10



A Portfolio Dynamics After the Wang Transform

If the price process follows a geometric brownian motion with constant coe�-
cients, the �real world� portfolio dynamics is given by Eq. (8),

dXs = Xs(r + µ̂ · π)ds+Xsπ · σdWs,

with s ∈ [t, T ] and Xt = x. Hence lnXt,x,π
T ∼ Normal(m,Σ2), where

m = lnx+ [r + µ̂ · π − 1
2
π ·Dπ](T − t), (17)

Σ2 = π ·Dπ(T − t), (18)

with D = σ∗σ.
The conditional probability function of the �nal wealth, Fπt,x(y) = Prob(Xt,x,π

T ≤
y|Xt,x,π

t = x) is

Fπt,x(y) = Φ(
ln y −m

Σ
),

where Φ(·) is the normal cumulative distribution function. After the Wang
transform the conditional probability function of the �nal wealth is distorted:

g(Fπt,x(y)) = Φ[Φ−1(Fπt,x(y)) + α] = Φ(
ln y −m+ αΣ

Σ
). (19)

Using expressions (17) and (18) for m and Σ it can be easily shown that

ln y −m+ αΣ
Σ

=
ln y − lnx− {r + [µ̂ · π − β

√
π ·Dπ]− 1

2π ·Dπ}(T − t)
Σ

.

(20)

For β =
√
µ̂ ·D−1µ̂ and π = cD−1µ̂, c ≥ 0, results

µ̂ · π − β
√
π ·Dπ =

µ̂ · cD−1µ̂−
√
µ̂ ·D−1µ̂

√
cD−1µ̂ ·DcD−1µ̂ =

cµ̂ ·D−1µ̂− cµ̂ ·D−1µ̂ = 0

hence Eq. (20) becomes

ln y −m+ αΣ
Σ

=
ln y − lnx− {r − 1

2π ·Dπ}(T − t)
Σ

. (21)

Substituting the right hand side of Eq. (21) into Eq. (19) gives

g(Fπt,x(y)) = Φ[Φ−1(Fπt,x(y)) + α] = Φ(
ln y −mW + αΣ

Σ
),
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where

mW = lnx+ [r − 1
2
π ·Dπ](T − t). (22)

The comparison of Eq. (22) and Eq. (17) shows that after the Wang trans-
form the portfolio dynamics at the optimum value π = cD−1µ̂, c ≥ 0 is

dXs = rXsds+Xsπ · σdW s,

where dW s is the Wiener process associated with the Wang measure.
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