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Abstract:

The cross-country growth literature commonly uses aggregate economy datasets such as the
Penn World Table (PWT) to estimate homogeneous production function or convergence re-
gression models. Against the background of a dual economy framework this paper investigates
the potential bias arising when aggregate economy data instead of sectoral data is adopted
in macro production function regressions. Using a unique World Bank dataset we estimate
production functions in agriculture and manufacturing for a panel of 41 developing and de-
veloped countries (1963-1992). We employ novel empirical methods which can accommodate
technology heterogeneity, variable nonstationarity and the breakdown of the standard cross-
section independence assumption. We then investigate the potential for biased estimates due
to aggregation and empirical misspecification, relying on both theory and Monte Carlo sim-
ulations. We confirm substantial bias in the technology coefficients using data for a stylised
aggregate economy made up of agricultural and manufacturing sectors and a matched PWT
dataset.
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1. INTRODUCTION

In the early literature on developing countries a distinction was made between the processes of eco-
nomic development and of economic growth. Economic development was seen to be a process of
structural transformation by which in Lewis’ frequently cited phrase an economy which was “previ-
ously saving and investing 4 or 5 percent of its national income or less, converts itself into an economy
where voluntary savings is running at about 12 to 15 percent of national income” (Lewis, 1954, p.155).
An acceleration in the investment rate was only one part of this process of structural transformation;
of equal importance was the process by which an economy moved from a dependence on subsistence
agriculture to one where an industrial modern sector absorbed an increasing proportion of the labour
force (e.g. Jorgensen, 1961; Kuznets, 1961; Ranis & Fei, 1961; Robinson, 1971). In contrast to these
models of “development for backward economies” (Jorgensen, 1961, p.309), where duality between
the modern and traditional sectors was a key feature of the model, was the analysis of economic
growth in developed economies.1 Here the processes of factor accumulation and technical progress
occur in an economy which is already ‘developed’, in the sense that it has a modern industrial sec-
tor and agriculture has ceased to be a major part of the economy (e.g. Solow, 1956, 1957; Swan, 1956).

Much of the early growth modelling work proceeded without close connection to observed data. The
models were in Solow’s classic exposition of growth theory inspired by stylised ‘Kaldor’ facts (Kaldor,
1957). The dual economy models of structural transformation used case studies (e.g. Paauw & Fei,
1973) and facts at least as stylised as those in the Solow-Swan growth context. The key papers which
brought modelling and data together were the contributions of Barro (1991) and Mankiw, Romer,
and Weil (1992), which initiated a major revival in the Solow-Swan model and effectively merged the
concerns of economic development with those of growth.

The literature begun in the early 1990s has yielded a large array of models in which there has been
increasing interaction between the theory and the empirics (see discussion in Durlauf & Quah, 1999;
Easterly, 2002; Durlauf, Johnson, & Temple, 2005). The latter continue to be dominated by an
empirical version of the aggregate Solow-Swan model (Temple, 2005) with much of the empirical de-
bate focusing on the roles of factor accumulation versus technical progress (Young, 1995; Klenow &
Rodriguez-Clare, 1997a, 1997b; Easterly & Levine, 2001; Baier, Dwyer, & Tamura, 2006). While
there is some new theoretical and empirical work using a dual economy model (e.g. Vollrath, 2009a,
2009b), this is largely absent from textbooks on economic growth and has not been the central focus of
attention for most of the empirical analyses (Temple, 2005). A primary reason for the focus has been
the availability of data. The Penn World Table (PWT) dataset (most recently, Heston, Summers,
& Aten, 2009) and the Barro-Lee data on human capital (most recently, Barro & Lee, 2010) have
supplied macro-data which ensure that the aggregate Solow-Swan model can be readily estimated.
However, somewhat underappreciated by the applied empirical literature, a team at the World Bank
has developed comparable sectoral data for agriculture and manufacturing (Crego, Larson, Butzer,
& Mundlak, 1998) that enables a closer matching between a dual economy framework and the data,
which we seek to exploit in this paper.

Cross-country growth regressions represent one of the most active fields of empirical analysis within
applied development economics, however the viability of this empirical approach has been seriously
questioned over the past decade and at present these methods are deeply unfashionable. We have
argued elsewhere that much can be learned from cross-country empirics provided the empirical setup

1A note on nomenclature: we refer to ‘duality’ or ‘dual economy models’ as representing economies with two stylised
sectors of production (agriculture and manufacturing). ‘Production technology’ and ‘technology parameters’ refer to the
coefficients on capital and labour in the production function model (elasticities with respect to capital and labour), not
Total Factor Productivity (TFP) or its growth rate (technical/technological progress).
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allows for greater flexibility in the estimation equation and recognises the salient data properties of
macro panel datasets (Eberhardt & Teal, 2010). Methods developed in the emerging panel time series
literature (Bai & Ng, 2002, 2004; Coakley, Fuertes, & Smith, 2006; Pesaran, 2006; Bai, 2009) can
go further in providing robust estimation and inference for nonstationary panel data where variable
series may be correlated across countries and where common shocks are likely to impact all countries
in the sample, albeit to a different extent.

This paper, providing empirical analysis of panel data for developing and developed economies, sets
out to address three main objectives: (i) rather than using a calibrated dual economy model for
quantitative analysis we provide empirical estimates for technology coefficients in sectoral production
functions. (ii) We estimate a stylised aggregate production function model from agriculture and man-
ufacturing data, and compare results with those from disaggregated regressions. This will allow us to
judge whether neglecting a dual economy structure leads to bias in the empirical technology coeffi-
cients. (iii) We use theoretical arguments and evidence from Monte Carlo simulations to investigate
the sources and manifestation of aggregation bias in cross-country growth analysis.

The remainder of the paper is organised as follows: Section 2 motivates technology heterogeneity
across sectors and countries. In Section 3 we introduce an empirical specification of our dual econ-
omy framework, discuss the data and briefly review the empirical methods and estimators employed.
Section 4 reports and discusses empirical findings at the sector-level. Section 5 then investigates the
potential sources of bias in aggregate economy data employing Monte Carlo simulations to provide
support and presents empirical findings from stylised and PWT aggregate data. Section 6 summarizes
and concludes.

2. TECHNOLOGY HETEROGENEITY

2.1 Technology Heterogeneity across Sectors

From a technical point of view, an aggregate production function only offers an appropriate construct
in cross-country analysis if the economies investigated do not display large differences in sectoral
structure (Temple, 2005), since a single production function framework assumes common produc-
tion technology across all ‘firms’ facing the same factor prices. Take two distinct sectors within this
economy, assuming marginal labour product equalisation and capital homogeneity across sectors, and
Cobb-Douglas-type production technology. Then if technology parameters differ between sectors, ag-
gregated production technology cannot be of the (standard) Cobb-Douglas form (Theil, 1954; Stoker,
1993; Temple & Wößmann, 2006; Córdoba & Ripoll, 2009). Finding differential technology parameters
in sectoral production function estimation thus is potentially a serious challenge to treating production
in form of an aggregated function.

An alternative motivation for a focus on sector-level rather than aggregate growth across countries
runs as follows: it is common practice to exclude oil-producing countries from any aggregate growth
analysis, since “the bulk of recorded GDP for these countries represents the extraction of existing
resources, not value added” (Mankiw et al., 1992, p.413). The underlying argument is that sectoral
‘distortions’, such as resource wealth, justify the exclusion of the country observations. By extension
of the same argument, we could suggest that given the large share of agriculture in GDP for coun-
tries such as Malawi (25-50%), India (25-46%) or Malaysia (8-30%) over the period 1970-2000, these
countries should be excluded from any aggregate growth analysis since a significant share of their
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aggregate GDP derives from a single resource, namely land.2 Sector-level analysis, in contrast, does
not face these difficulties, since sectors such as manufacturing or agriculture are defined closely enough
to represent a reasonably homogeneous conceptual construct.

Having already indicated the importance of agriculture for GDP for a number of countries, we complete
this section by providing some more data to highlight the importance and dynamics of agriculture in
a wider set of countries.

[Table I about here]

As can be seen in Table I the shift away from agriculture has been most dramatic in the East Asia
group, whereas the Sub-Saharan Africa has seen virtually no change over the same period.

2.2 Technology Heterogeneity across Countries

A theoretical justification for heterogeneous technology parameters across countries can be found in
the ‘new growth’ literature. This strand of the theoretical growth literature argues that production
functions differ across countries and seeks to determine the sources of this heterogeneity (Durlauf,
Kourtellos, & Minkin, 2001). As Brock and Durlauf (2001, p.8/9) put it: “. . . the assumption of pa-
rameter homogeneity seems particularly inappropriate when one is studying complex heterogeneous
objects such as countries . . . ”. The model by Azariadis and Drazen (1990) can be seen as the ‘grandfa-
ther’ for many of the theoretical attempts to allow for countries to possess different technologies from
each other (and/or at different points in time). Further theoretical papers lead to multiple equilibria
interpretable as factor parameter heterogeneity in the production function (e.g. Murphy, Shleifer, &
Vishny, 1989; Durlauf, 1993; Banerjee & Newman, 1993). A simpler justification for heterogeneous
production functions is offered by Durlauf et al. (2001, p.929): the Solow model was never intended
to be valid in a homogeneous specification for all countries, but may still be a good way to investigate
each country, i.e. if we allow for parameter differences across countries.

3. AN EMPIRICAL MODEL OF A DUAL ECONOMY

In seeking to understand processes of growth at the macro-level, empirical work has focused primarily
on an aggregate production specification (see surveys in Barro & Sala-i-Martin, 1995; Temple, 1999;
Aghion & Durlauf, 2005). While duality has featured prominently in theoretical developments there
has been only a very limited matching of this theory to empirical models. This disjunction between
theory and testing has reflected in large part the availability of data. In this paper we employ a large-
scale cross-country dataset made publicly available by the World Bank in 2003 (henceforth Crego et
al (1998), although the data is also described in detail in Larson, Butzer, Mundlak, & Crego, 2000)
which allows us to specify manufacturing and agricultural production functions and thus provides a
macro-model of a dual economy that can be compared with the single sector models dominating the
empirical literature. In the following we first present a general empirical specification for our sector-
specific analysis of agriculture and manufacturing. Next we review a number of empirical estimators,
focusing in particular on those arising from the recent panel time series literature, before we briefly
discuss the data.

2The quoted shares are from the World Development Indicators database (World Bank, 2008). For comparison,
maximum share of oil revenue in GDP, computed as the difference between ‘industry share in GDP’ and ‘manufacturing
share in GDP’ from the same database yields the following ranges for some of the countries omitted in Mankiw et al.
(1992): Iran (12-51%), Kuwait (15-81%), Gabon (28-60%), Saudi Arabia (29-67%).
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3.1 Empirical Specification

Our empirical setup adopts a common factor representation for a standard log-linearised Cobb-Douglas
production function model. Each sector/level of aggregation (agriculture, manufacturing, aggregate(d)
data) is modelled separately — for ease of notation we do not identify this multiplicity in our general
model. Let

yit = β′
i xit + uit uit = αi + λ′

i ft + εit (1)
xmit = πmi + δ′

mi gmt + ρ1mi f1mt + . . . + ρnmi fnmt + vmit (2)
ft = �′ft−1 + ωt and gt = κ′gt−1 + εt (3)

for i = 1, . . . , N , t = 1, . . . , T and m = 1, . . . , k, where f ·mt ⊂ ft and the error terms εit, vmit, ωt

and εt are white noise. Equation (1) represents the production function model, with y as sectoral or
aggregated value-added and x as a set of inputs: labour, physical capital stock, and a measure for
natural capital stock (arable and permanent crop land) in the agriculture specification (all variables
are in logs). We consider additional inputs (human capital, livestock, fertilizer) as robustness checks
for our general findings (results available on request). The output elasticities associated with each
input (βi) are allowed to differ across countries. For unobserved TFP we employ the combination
of a country-specific TFP level (αi) and a set of common factors (ft) with country-specific factor
loadings λi — TFP is thus in the spirit of a ‘measure of our ignorance’ (Abramowitz, 1956) and oper-
ationalised via an unobserved common factor representation.3 Equation (3) provides some structure
for the unobserved common factors, which are modelled as simple AR(1) processes, where we do not
exclude the possibility of unit root processes (� = 1, κ = 1) leading to nonstationary observables and
unobservables. Note that from this the potential for spurious regression results arises if the empirical
equation is misspecified. Equation (2) details the evolution of the set of m = 1, . . . , k regressors;
crucially, some of the common factors contained in the covariates are also assumed to be driving the
unobservables in the production function equation (uit). This setup leads to endogeneity whereby the
regressors are correlated with the unobservables, making it difficult to identify βi separately from λi

and ρi (Kapetanios et al., 2009).

Our empirical specification allows for a large degree of flexibility with regard to the impact of ob-
servables and unobservables on output. Empirical implementation will necessarily lead to different
degrees of restrictions on this flexibility, which will then be formally tested: the emphasis is on com-
parison of different empirical estimators allowing for or restricting the heterogeneity in observables
and unobservables outlined above. A conceptual justification for the pervasive character of unobserved
common factors is provided by the nature of macro-economic variables in a globalised world. In our
mind latent forces drive all of the variables in our model, and their presence makes it difficult to argue
for the validity of traditional approaches to causal interpretation of cross-country growth analyses.
Instrumental variable estimation in standard cross-section growth regressions or Arellano and Bond
(1991)-type lag-instrumentation in pooled panel models are both invalid in the face of common fac-
tors and/or heterogeneous equilibrium relationships (Pesaran & Smith, 1995; Lee, Pesaran, & Smith,
1997). In the next section we introduce a novel estimation approach developed by Pesaran (2006)
which allows us to bypass these issues.

3The parameters βi are unknown random coefficients with fixed means and finite variances. The same applies for
the unknown factor loadings. The random coefficient assumption is for convenience and coefficients could alternatively
be fixed but differing across countries — see Pesaran and Smith (1995, footnote 2, p.81) and Kapetanios, Pesaran, and
Yamagata (2009, p.6).
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3.2 Empirical Implementation

Our empirical approach emphasises the importance of parameter and factor loading heterogeneity
across countries. The following 2× 2 matrix indicates how the various estimators implemented below
account for these matters.4 Note that we confined results for the estimators marked with stars to the
Technical Appendix to save space.

Factor loadings:

homogeneous heterogeneous

Technology parameters: homogeneous POLS, 2FE, CCEP,
FD, GMM�, PMG� CPMG�

heterogeneous MG, FDMG CMG

We abstract from discussing the standard panel estimators here in great detail and refer to the overview
articles by Coakley et al. (2006), as well as the articles by Bond and Eberhardt (2009) and Bond (2002)
for more information. As a robustness check we also investigate the Pooled Mean Group (PMG) esti-
mator by Pesaran et al. (1999); for a detailed discussion of this approach in the context of cross-country
regressions refer to Arnold, Bassanini, and Scarpetta (2007). We further implement a simple extension
to the PMG where we include cross-section averages of the dependent and independent variables, as
suggested in Binder and Offermanns (2007).

The Common Correlated Effects estimators developed in Pesaran (2006) and extended to nonstation-
ary variables in Kapetanios et al. (2009) augment the regression equation with cross-section averages of
the dependent (ȳt) and independent variables (x̄t) to account for the presence of unobserved common
factors. For the Mean Group version (CMG), the individual country regression is specified as

yit = ai + b′ixit + c0iȳt +
k∑

m=1

cmix̄mt + eit (4)

for m = 1, . . . , k observed covariates and eit white noise, whereupon the parameter estimates are
averaged across countries akin to the Pesaran and Smith (1995) Mean Group estimator. The pooled
version (CCEP) is specified as

yit = ai + b′xit +
N∑

j=1

c0i(ȳtDj) +
k∑

m=1

N∑
j=1

cmi(x̄mtDj) + eit (5)

where the Dj represent country dummies. Thus in the MG version we have N individual country
regressions with 2k + 2 RHS variables and in the pooled version we have a single regression equation
with k + (k + 2)N RHS variables.

4Abbreviations: POLS — Pooled OLS, 2FE — 2-way Fixed Effects, FD — OLS with variables in first differences,
GMM — Arellano and Bond (1991) Difference GMM and Blundell and Bond (1998) System GMM, MG — Pesaran and
Smith (1995) Mean Group with linear country trend, FDMG — dto. but with variables in first difference and country
drift, PMG — Pesaran, Shin, and Smith (1999) Pooled Mean Group estimator, CPMG — dto. but augmented with
cross-section averages following Binder and Offermanns (2007), CCEP/CMG — Pesaran (2006) Common Correlated
Effects estimators. Note that our POLS and FD models are augmented with T − 1 year dummies.
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In order to get an insight into the workings of this approach, consider the cross-section average of our
common factor model in equation (1): given ε̄t = 0

ȳt = ᾱ + β̄′x̄t + λ̄′f̄t (6)

which can be expressed as
f̄t = λ̄−1(ȳt − ᾱ − β̄′x̄t) (7)

Thus we can see that the unobserved common factors can be captured by the cross-sectional means
of y and x provided f̄t

p→ ft as N → ∞. Given the assumed heterogeneity in factor loadings across
countries (λi) the estimator is implemented in the fashion detailed above which allows for each country
i to have different parameter estimates on ȳt and the x̄t. Simulation studies (Pesaran, 2006; Coakley
et al., 2006; Kapetanios et al., 2009; Pesaran & Tosetti, 2010) have shown that this approach performs
well even when the cross-section dimension N is small, when variables are nonstationary, cointegrated
or not, subject to structural breaks and/or in the presence of ‘weak’ unobserved common factors (spa-
tial spillovers) and global/local business cycles. In the present study we implement two variants of
the CCE estimators in the sector-level regressions: a standard form as described above; and a variant
which includes the cross-section averages of the input and output variables in the own as well as the
other sector. The latter specification allows for cross-section dependence across sectors, albeit at the
cost of a reduction in degrees of freedom.

A number of alternative nonstationary panel estimators for the case of homogeneous factor loadings
are available in the literature (Pedroni, 2000, 2001), however given our emphasis on cross-section
dependence we do not consider them in this work. Finally, we do not adopt any empirical methods
accommodating unobserved factor via a two-step method where the number of significant factors in an
equilibrium relationship is determined first (Bai & Ng, 2002) before estimates of the factors, loadings
and slope parameters are determined jointly (Bai & Kao, 2006; Bai, Kao, & Ng, 2009). The reasons
for this choice are: firstly, the reliance of these methods on the Bai and Ng (2002) method, which is
suggested to overpredict the number of relevant factors (Pesaran, 2009); secondly, the failure of these
methods to account for cross-section dependence of the ‘weak’ type, e.g. local spillovers (Chudik,
Pesaran, & Tosetti, 2010); and thirdly, the difficulties arising from unbalancedness in the panel, in
which case the CCE estimators are most straightforward to implement.5

3.3 Data

Descriptive statistics and a more detailed discussion of the data can be found in the Appendix. Briefly,
we conduct all empirical analysis with four datasets:

(1) for the agricultural sector, building on the sectoral investment series developed by Crego et al.
(1998) and output from the World Development Indicators (WDI; World Bank, 2008), as well
as sectoral labour and land data from FAO (2007);

(2) for the manufacturing sector, building on the sectoral investment series developed by Crego et
al. (1998), output data from the WDI and labour data from UNIDO (2004);

(3) for a stylised aggregate economy made up of the aggregated data for the agriculture and manu-
facturing sectors;6

(4) for the aggregate economy, building on data provided by the Penn World Table (PWT; we use
version 6.2, Heston, Summers, & Aten, 2006).

5We do not account for missing observations in any way; recently Smith and Tasiran (2010) have investigated this issue
in the context of the Swamy (1970) random coefficient model (RCM). The preferred empirical specifications presented
below are based on heterogeneous parameter models, where arguably the unbalancedness (25% of observations in the
balanced panel are missing) comes less to bear than in the homogeneous models due to the averaging of estimates.

6We sum the values for value-added, capital stock (both in per worker terms) and labour and then take the logarithms.
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The capital stocks in the agriculture, manufacturing and PWT samples are constructed from invest-
ment series following the perpetual inventory method (see Klenow & Rodriguez-Clare, 1997b, for
details), for the aggregated sample we simple added up the sectoral capital stocks. Comparison across
sectors and with the stylised aggregate sector is possible due to the efforts by Crego et al. (1998) in
providing sectoral investment data for agriculture and manufacturing. All monetary values in the sec-
toral and stylised aggregated datasets are transformed into US$ 1990 values (in the capital stock case
this transformation is applied to the investment data), following the suggestions in Martin and Mitra
(2002). Given concerns that the stylised aggregate economy data may not represent a sound repre-
sentation of true aggregate economy data we have adopted the PWT data, which measures monetary
values in International $ PPP, as a benchmark for comparison — despite a number of vocal critics
(e.g. Johnson, Larson, Papageorgiou, & Subramanian, 2009) the latter is without doubt the most
popular macro dataset for cross-country empirical analysis. We are of course aware that the difference
in deflation between our sectoral and stylised aggregated data on the one hand and PWT on the other
makes them conceptually very different measures of growth and development: the former emphasise
tradable goods production whereas the latter puts equal emphasis on tradable and non-tradable goods
and services. However, we believe that these differences are comparatively unimportant for estima-
tion and inference in comparison to the distortions introduced by neglecting the sectoral makeup and
technology heterogeneity of economies at different stages of economic development.

Our sample is an unbalanced panel for 1963 to 1992 made up of 41 developing and developed countries
with a total of 928 observations (average T = 22.6) — our desired aim to compare estimates across the
four datasets requires us to match the same sample, thus reducing the number of observations to the
smallest common denominator. Only eight countries in our sample are in Africa, while around half
are present-day ‘industrialised economies’ — these numbers are however deceiving if one recalls that
structural change and development in many of the latter has been primarily achieved during our period
of study. For instance, it bears reminding that prior to 1964, GDP per capita was higher in Ghana
than in South Korea (Baptist & Teal, 2008). In 1970 the share of agricultural value-added in GDP for
Finland, Ireland, Portugal and South Korea amounted to 13%, 16%, 31% and 26% respectively, while
the 1992 figures are 5%, 8%, 7% and 8% — strong evidence of economies undergoing structural change.
A detailed description of our sample is available in Table A-I, descriptive statistics are provided in
Table A-II for each sample.

4. EMPIRICAL RESULTS

Preliminary data analysis (unit root and cross-section dependence tests) have been confined to the
Technical Appendix of the paper. We adopt the Pesaran (2007) CIPS panel unit root test which
assumes a single unobserved common factor. This is clearly restrictive, however given the data re-
strictions (unbalanced panel, relatively short T ) we were unable to implement the more recent CIPSM
version of this test (Pesaran, Smith, & Yamagata, 2009) which allows for multiple common factors.
Results (see Table TA-1) strongly suggest that variables in levels for the agriculture and manufactur-
ing data as well as the two aggregate economy representations are nonstationary.

A number of formal and informal procedures to investigate cross-section correlation in the data were
carried out. Results (see Table TA-2) indicate very high average absolute correlation coefficients for
the data in log levels, .6 to .95, and even in the data represented as growth rates (first difference of
log levels), where the same measure is between .2 and .5. Formal tests for cross-section dependence
(Pesaran, 2004; Moscone & Tosetti, 2009) reject cross-section independence in virtually all variable
series tested.
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In the following we discuss the empirical results from sectoral production function regressions for
agriculture and manufacturing respectively, first assuming technology parameter homogeneity (Section
4.1) and then allowing for differential technology across countries (Section 4.2). For all regression
models we report residual diagnostic tests including the Pesaran (2007) panel unit root test and the
Pesaran (2004) CD test for cross-section independence.

4.1 Pooled Models

Table II presents the empirical results for agriculture and manufacturing, Panel (A) for unrestricted
returns to scale and Panel (B) for the specification with CRS imposed. Beginning with agriculture, the
empirical estimates for the models [1],[2] and [5] neglecting cross-section dependence are quite similar,
with the capital coefficient around .63 and statistically significant decreasing returns to scale. The
land coefficients are insignificant except in the 2FE model, where it carries a negative sign. Diagnostic
tests indicate that the residuals in these models are cross-sectionally dependent, and that the levels
models (POLS, 2FE) have nonstationary residuals and thus may represent spurious regressions. It
is important to point out that in the presence of nonstationary residuals the t-statistics in the levels
models are invalid (Kao, 1999) and have commonly been found to vastly overstate the precision of the
estimates (Bond & Eberhardt, 2009). The two CCEP models yield stationary and cross-sectionally
independent residuals, capital coefficients of around .5 and insignificant land coefficients. Imposition
of CRS (Panel (B)) does not change these results substantially, with the exception of the 2FE esti-
mates, where the land variable (previously negative and significant) is now insignificant and the capital
coefficient has become further inflated.

In the manufacturing data the models [6], [7] and [10] ignoring cross-section dependence yield increasing
returns to scale and capital coefficients in excess of .85 for POLS and 2FE, and .72 in the FD model.
Residuals for the former two models again display nonstationarity but the CD tests now imply that they
are cross-sectionally independent. FD residuals are I(0) but cross-sectionally correlated. Surprisingly
the standard CCEP model in [8], with a capital coefficient of around .5 (like in agriculture) does not
pass the cross-section correlation test. However, further accounting for cross-sector dependence in [9]
yields favourable diagnostics and a similar capital coefficient. Following imposition of CRS all models
reject cross-section independence, while parameter estimates are more or less identical to those in the
unrestricted models. Based on these pooled regression results, the diagnostic tests seem to favour the
CCEP results in [3] and [4] for the agriculture data, while in the manufacturing data the unrestricted
CCEP model which accounts for cross-sectoral impact [9] emerges as preferred specification.

[Table II about here]

For the agriculture sample we conducted a number of robustness checks, including further covariates
(livestock per worker, fertilizer per worker) in the pooled regression framework. Results (available on
request) did not change from those presented above. We also conducted robustness checks including
human capital in the estimation equation of both sectors (linear and squared terms)7 — as a conse-
quence a number of countries drop out of our sample leading to marginally reduced samples (n = 860
in manufacturing, n = 830 in agriculture). Results (see Table TA-IV in the Technical Appendix)
for agriculture follow similar patterns to those in the unaugmented models, with the human capital
proxies insignificant in the preferred CCEP specifications (unrestricted and CRS). For manufacturing
the standard CCEP yields favourable diagnostics and significant human capital coefficients: returns
to eduction follow a concave function (wrt years of schooling) and for the mean education value across

7We follow the convention and pick the average years of schooling in the population as a proxy for Human Capital
stock. We assume that the aggregate economy data for schooling developed by Barro and Lee (2001), which is available
in 5-year intervals, is a sound reflection of the manufacturing sector. Simple interpolation to obtain annual data is not
ideal, however the evolution of this variable over time is commonly very stable (linear), s.t. we do not feel that linear
interpolation creates additional problems or distortions.
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countries are quite high in these models, around 8% and 11% per annum in the unrestricted and
restricted models respectively. In either case residuals are stationary and cross-sectionally indepen-
dent. The alternative CCEP may suffer from the large number of parameters to be estimated, yielding
insignificant human capital coefficients (capital .45) and unfavourable diagnostics.

In summary, based on diagnostics testing the alternative CCEP estimator arises as the preferred
estimator for both the agriculture and manufacturing samples — in the former case the imposition
of CRS seems valid, whereas in the latter case this is rejected by the data. Alternative specifications
incorporating a proxy for human capital did not yield any favourable results in the agriculture sector,
while resulting in large and positive returns to education (evaluated at the sample mean) in the case of
manufacturing. Essentially the results for the technology coefficients on land and capital qualitatively
did not change compared with the standard production function results. Across preferred specifications
it is notable that the mean capital coefficients for agriculture and manufacturing are quite similar,
around .5. Our shift to heterogeneous technology models in the next section will allow us to judge
whether these results are the outcome of empirical misspecification.

4.2 Averaged Country Regressions

Table III presents the robust means for each regressor across N country regressions for the unrestricted
(Panel (A)) and CRS models (Panel (B)) respectively. We adopt robust means8 as these are more
reliable than unweighted means, which are subject to greater distortion by outliers. The t-statistics re-
ported for each average estimate test whether the average parameter is statistically different from zero,
following Pesaran and Smith (1995); we also provide test statistics for the ‘panel t-statistic’ following
Pedroni (1999) — under the null both of these statistics are standard normal distributed.

[Table III about here]

Beginning with the unrestricted models in Panel (A), we can see that MG and FDMG suffer from high
imprecision in both agriculture and manufacturing equations. This aside, in the agriculture model
MG yields decreasing returns to scale that are nonsensical in magnitude. Monte Carlo simulations for
nonstationary and cross-sectionally dependent data (Coakley et al., 2006; Bond & Eberhardt, 2009)
frequently show that MG estimates are severely affected by their failure to account for cross-section
dependence. As in the pooled models, the standard CMG estimator yields an insignificant land coeffi-
cient in agriculture and in both sectors results are generally very much in line with the CCEP results
in Table II. All unrestricted models yield stationary residuals and cannot reject constant returns to
scale; in agriculture the alternative CMG does not result in a significant capital coefficient, whereas
in the manufacturing data this specification is preferable to the standard CMG, given that the latter
suffers from cross-sectionally dependent residuals. Moving on to the models where CRS is imposed
in Panel (B), we can see that MG and FDMG estimates are now somewhat more precise, while the
standard and alternative CMG estimates in agriculture are now virtually the same. The residual diag-
nostics are sound in these two cases, but all of the manufacturing models suffer from cross-sectionally
dependent residuals.

We further implemented an alternative specification for manufacturing which includes the level and
squared human capital terms (average years of schooling in the adult population) as additional co-
variates (see Table TA-V in the Technical Appendix).9 Results for the MG and FDMG mirror those
in the unaugmented models presented above. In the unrestricted models these estimators yield very
imprecise estimates, although if CRS is imposed the capital coefficients are estimated more precisely at

8We use robust regression to produce a robust estimate of the mean — see Hamilton (1992) for details.
9In the agriculture data augmentation with human capital did not lead to statistically significant results (available

on request).
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around .3; average estimates on the linear and quadratic eduction terms are insignificant and the im-
plied returns to education are negative albeit insignificant in the robust regression approach adopted.
For the standard CMG models we find capital coefficients somewhat below those in the unaugmented
models, but still within each other’s 95% confidence intervals.10 Average education coefficients are
significant and indicate rather high returns to eduction: 11% and 12% in the unrestricted and CRS
model respectively.

The shift from homogeneous to heterogeneous parameter models brought seemingly little change to
the estimated technology parameters in agriculture, where land remains insignificant, the capital
coefficient is around .5 and CRS cannot be rejected. For manufacturing we note a shift toward a lower
capital coefficient around .35, while the imposition of constant returns to scale leads to unfavourable
diagnostics. Given the aim of our study, we do not want to focus narrowly on the best estimate
what the ‘true’ sectoral technology coefficients could be, but instead want to highlight the discrepancy
between the results in the present section and those we turn to when analysing aggregate economy
data in the next section. Before we do so we discuss the issue of aggregation bias conceptually and
introduce some tentative evidence from a Monte Carlo simulation exercise.

5. AGGREGATION BIAS

In this section we ask what the implications of the dual economy model are for aggregate cross-country
growth analysis. First we discuss the econometric concerns arising from the aggregation of hetero-
geneous sectoral data created by separate technologies. We then formulate a number of production
technologies for agriculture and manufacturing which reflect our insights into the effects of parameter
heterogeneity, variable nonstationarity and cross-section dependence. The different technologies are
investigated using Monte Carlo simulations of stylised aggregate data constructed from two sectors of
production. We then investigate whether the assumption of an aggregate production function yields
biased estimation results in our dataset (stylised aggregate data from agriculture and manufacturing).
To the best of our knowledge this is the first paper to consider this issue empirically in a large number
of economies. As a robustness check we compare our results with those for a matched sample of
aggregate economy data from the Penn World Table.

5.1 Aggregation Bias — Conceptual Development

This section provides a brief insight into the problems for estimation arising from aggregation. Given
that we use annual data in our analysis and in the interest of space we abstract from issues surround-
ing temporal aggregation, although we acknowledge their importance for empirical analysis (Rossana
& Seater, 1992; Madsen, 2005). Much of the theoretical literature on ‘cross-sectional’ aggregation
considers issues across a moderate to large number of ‘individuals’ or ‘families’, as is conceptually
appropriate when investigating the micro-foundations of single aggregate/macro variables and the im-
plications for forecasting arising in this process (Granger, 1987; Biørn, Skjerpen, & Wangen, 2006).
In the applied literature, however, these concerns about aggregation bias and the ‘correct’ empirical
specification for aggregate data are largely ignored (van Garderen, Lee, & Pesaran, 2000; Blundell &
Stoker, 2005).

Perhaps most relevant for the present analysis of sectoral heterogeneity versus aggregation in a large
number of economies are the studies by van Garderen et al. (2000) and Hsiao, Shen, and Fujiki (2005).

10The ‘alternative CMG estimator’ addressing cross-sectoral correlation leads to a considerable increase in covariates,
resulting in a dimensionality problem where we have very few degrees of freedom in each country regression. As a result
we decided not to implement this estimator in the human capital specifications.
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The former derive expressions for the ‘optimal aggregate specification’ which in the case of log-linear
equations for the underlying micro units (e.g. sector-level production functions) and parameter het-
erogeneity across these units include both the aggregated variables and their cross-product terms (all
in logs). They illustrate their findings by estimating sectoral production functions for 8 UK indus-
tries (1954-1995) and providing estimates for various model specifications using the aggregated data,
including the ‘analogue form’ which simply uses the aggregated variables in the same empirical spec-
ification.11 Three of their findings are particularly noteworthy: firstly, the results for the aggregated
data differ considerably depending on the inclusion of productivity dummies (indicating shocks such
as the oil crisis, strikes and severe weather)12 and/or the cross-product terms: labour coefficients
range from .16 to .67. Secondly, the estimates from the aggregated models seem out of line with the
sector-based ones, regardless of the inclusion or exclusion of the cross-product terms and productivity
dummies. Thirdly, the cross-product terms included in two of their aggregate models, although having
considerable impact on the technology parameter estimates, turn out statistically insignificant.

Hsiao et al. (2005, p.579) note that the use of aggregate versus disaggregate (prefecture-level) data to
investigate money demand in Japan “can yield diametrically opposite results” if heterogeneity across
‘micro units’ is ignored. An interesting contribution of their paper is the discussion of nonstationarity
and cointegration in the context of cross-section aggregation: if variable series are nonstationary and
cointegrated at the micro unit level, then aggregation is only going to yield stable macro relations
if either all technology parameters are the same across units or provided there is no change in their
weighting to make up the aggregate economy series. With reference to our own empirical question of
interest the latter would imply the absence of any structural change in the economy over time!

It is difficult to draw any conclusions from this literature for our present empirical problem. Although
the discussion and empirical examples in van Garderen et al. (2000) and Hsiao et al. (2005) offer some
useful insights, they analyse data within single countries (UK, Japan) rather than in a large panel of
developing and developed economies. In terms of their theoretical contribution, it needs to be stressed
that they do not consider the arguably crucial question of cross-section dependence.

5.2 Aggregation Bias — Monte Carlo Experiments

This section provides simulation results based on a sample of stylised aggregate economies made up
of two heterogeneous sectors. We do not present all of the simulation results (see Table TA-3 in the
Technical Appendix) but limit our discussion to four scenarios for which we illustrate results using box
plots. Our data generating process (DGP), described in detail in Section A-2 of the Appendix, builds
on log-linear Cobb-Douglas production functions for agriculture and manufacturing respectively. We
limit our presentation to the dimensions T = 30, N = 50 so as to provide direct insights for the present
empirical case. In each Monte Carlo iteration the two sectoral datasets are created, aggregated and
estimated with the same estimators we employ throughout our study.13

11Given their primary interest in forecasting aggregate output the authors further provide prediction criteria and
misspecification tests based on mean squared forecast errors. This is developed in more detail in Pesaran (2003). It is
unclear how applicable these types of tests would be in a large panel of heterogeneous economies.

12Note that their formulation depends on detailed knowledge of sector-level productivity shocks — it is difficult to
see how one would go about formulating these productivity shocks in the agricultural and manufacturing sectors across
a large sample of economies. Our own empirical strategy encompasses this approach by the use of the common factor
framework (Chudik et al., 2010).

13Due to the log-linear structure of the sectoral production function model aggregation is defined as

Yit =
∑

j

Yijt Xit =
∑

j

Xijt where Yijt = eyijt and Xijt = exijt (8)
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We specify a single input with (initially) common slope coefficient across sectors. A number of het-
erogeneous trends drive the evolution of the single input and to begin with our DGP excludes any
common factors. Although our first model has homogeneous β across countries, the first results we
present (Model 4) already incorporate country-specific βi. Sectoral TFP levels differ across countries
and are systematically larger in manufacturing than in agriculture. Aggregation of the two sectors
should not create any problems under this scenario given the technology homogeneity across sectors.
In a second set of simulations we introduce common factors, first with homogeneous and then in
Model 6 with heterogeneous factor loadings across countries; these common factor differ between y-
and x-equations (no endogeneity) and across sectors. The heterogeneity introduced by the presence
of common factors and the data dependencies created when such data-series are aggregated have not
been previously studied in the literature. We then introduce endogeneity in the sectoral equation
(same common factor in y- and x-equations) and slope heterogeneity across sectors, with Model

8 having parameters differ following βm
i = 1 − βa

i . Ignoring common factors the existing literature
suggests that the ‘analogue form’ of an equation with aggregated data is now misspecified unless
cross-terms of the variables are included. Finally, in Model 10 we investigate the effect of having
the same common factors in input and output within but also across sectors. We further introduce
independent slope parameters between agriculture (mean .5) and manufacturing (.3) in this model.
Figure 1 presents boxplots for the slope coefficient distribution across 1,000 replications under the four
scenarios discussed above.

[Figure 1 about here]

The solid line in the middle of each box plot is the median, the area marked by the ‘box’ is that
from the 25th to the 75th percentile, and the ‘whiskers’ extend to the 1st and 99th percentile of the
distribution. Here we exclude outliers from the graph to aid comparison across estimators. The first
two box plots in each graph are for the CMG estimator applied to sectoral data. The third represents
not an estimate but a weighted average computed from the ‘true’ sectoral slope coefficients, where the
weights are the sectoral share in total output. All three of these are intended to act as benchmarks for
the remaining estimates from the aggregated data, namely the pooled OLS, fixed effects, first differ-
ence OLS and CMG estimators — we include year dummies in all pooled models. The MG estimator
with linear trend term is included in the simulation results but not in the box plots — the magnitude
of its bias would impact the readability of the figure. In all box plots we have recentred the estimates
around zero by subtracting the ‘true’ parameter mean.

As expected the aggregation of sectoral data in Model 4 does not create any bias in the estimates,
given that technology is identical across sectors. The 2FE estimator picks up the TFP-level hetero-
geneity and yields the most precise estimates, whereas the heterogeneous estimators (CMG) both in
the sectoral and aggregated data are less efficient. Once we introduce common factors in Model 6, all
estimators for the aggregated data are biased downward. The introduction of cross-sector parameter
heterogeneity in Model 8 increases imprecision of the estimates, but does so in the sectoral CMG
estimates as well as in all of the estimates using aggregate data. Once technology parameter differ
independently across sectors as in Model 10 and the same common factor drives both sectors the
estimates do not provide evidence of additional bias due to these features.14

At face value, these results suggest that estimates for the slope parameters derived from aggregate data
are biased, primarily due to the impact of unobserved common factors rather than that of cross-country
and/or cross-sector technology heterogeneity. The difference between Models 5 and 6 (see TA-III in

Thus we cannot simply add up the ya
it and ym

it but have to transform these values first.
14Note that in this model the average manufacturing share in total output is around .55 and that in 95% of the 1,000

replications this share lies between .4 and .7. Thus we have further confirmation measure that the manufacturing sector
does not dominate in each aggregate economy.
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the Technical Appendix) indicates that although more pronounced in the heterogeneous factor loading
case, this bias is already present when factors have the same impact across countries.

5.3 Aggregation Bias — Empirical Evidence

Our empirical results in Section 4 suggested fairly similar pooled and averaged capital coefficients for
manufacturing and agriculture across the various empirical models. This might lead one to suggest
that carrying out cross-country growth empirics may best be conducted taking the aggregate economy,
and thus the Penn World Table (PWT) data, as the basic unit of analysis. Our empirical approach
emphasised the importance of unobserved heterogeneity across countries, but did not test technology
parameter differences across sectors with any formal methods — our justification is that in our most
flexible specification (CMG) the individual country-estimates are not reliable (Pedroni, 2007) and
should not be the basis for comparison. In this section we will instead provide practical evidence that
the use of an aggregate production function will lead to seriously biased technology estimates, with the
focus on the empirical capital coefficient. We carry out this analysis by creating a stylised ‘aggregated
economy’ from our data on agriculture and manufacturing. Since it might be suggested that results
could be severely distorted by the overly simplistic nature of our setup, we compare results with those
from a matched sample of aggregate economy data from the PWT. Pre-estimation testing (panel unit
root estimation and cross-section correlation analysis) revealed that both datasets employed in this
section are made up of nonstationary series which are cross-sectionally correlated — see Tables TA-1
and TA-2 in the Technical Appendix for details.

We begin our discussion with the pooled models in Table IV. Across all specifications the estimated
capital coefficients in the stylised aggregated data far exceed those derived from the respective agri-
culture and manufacturing samples in Table II. Furthermore, the patterns across estimators are
replicated one-to-one in the PWT data, which also yields excessively high capital coefficients across
all models. All models suffer from cross-sectional dependence in the residuals, while there are also
indications that the residuals in the CCEP model for the aggregated data are nonstationary (those
in the two other levels specifications are always nonstationary). We also investigated the impact of
human capital (proxied via average years of schooling attained in the population over 15 years of age)
in these aggregate economy data models, but as Table TA-VI in the Technical Appendix reveals the
basic bias remains.

[Table IV about here]

In addition we estimated pooled dynamic models (introducing the PMG and CPMG estimators) in
Table TA-VIII in the Technical Appendix — all of these results more or less confirm the patterns
across sectoral and aggregated data described above.

[Table V about here]

Turning to the results from averaged country regressions in Table V: the MG and FDMG model
point to some differences between the aggregated and PWT data, whereby the capital coefficients in
the former are estimated very imprecisely but seem to centre around .3, whereas in the latter they
are considerably higher at around .7 to .9. Results for the conceptually superior CMG, however, are
again very consistent between the two samples and across unrestricted and CRS models, with capital
coefficients around .7. Residual testing suggests that all specifications yield stationary residuals —
this is somewhat surprising in the MG case, given the misspecification implicit in this equation.
Cross-section correlation tests reject independence in all residual series tests — in case of the stylised
aggregated data the CMG rejects marginally.
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As a further robustness check we ran regressions where rather than aggregate the data we forced
manufacturing and agriculture production to follow the same production technology, using a Seemingly
Unrelated Regression (SUR) model. Results (available on request) for homogeneous and heterogeneous
parameter models qualitatively did not differ from the aggregated results presented above. Thus across
a large number of empirical specifications we have found there to be a systematic difference between
results for the sectoral data on the one hand and those for the stylised aggregated and aggregate
economy data on the other.

6. CONCLUDING REMARKS

In this paper we employed unique panel data for agriculture and manufacturing to estimate sector-
level and aggregate production functions. Our empirical analysis emphasised the contribution of the
recent panel time-series econometrics literature and in particular the concerns over cross-sectional de-
pendence commonly found in macro panel data. In addition we took the nonstationarity of observable
and unobservable factor inputs into account and emphasised the importance of parameter heterogene-
ity — across countries as well as sectors. To the best of our knowledge this is the first time that these
matters are investigated empirically at this level of aggregation, with previous empirical work on the
dual economy model dominated by calibration and accounting exercises. Our analysis was enabled by
the unique data on agricultural and manufacturing investment compiled by Crego et al. (1998) — a
dataset which deserves far greater attention than it presently receives.

We draw the following conclusions from our first, crude attempts at highlighting the importance of
structural makeup and change in the empirical analysis of cross-country growth and development:
firstly, empirical analysis of growth and development at the cross-country level — most commonly
conducted using the Penn World Tables — gains considerably from the separate consideration of
modern and traditional sectors that make up the economy. Our analysis of agriculture and manufac-
turing versus a stylised aggregated economy suggests that the latter yields severely distorted empirical
results. Across multiple empirical specifications and estimators we could show that the capital co-
efficient for aggregated data far exceeds that obtained from separate sector regressions, with serious
implications for estimates of TFP derived from aggregate analysis. Analysis of PWT data in parallel
with the aggregated data suggested that this finding is not an artefact of our stylised empirical setup.

Secondly, our toy model Monte Carlo simulations seem to suggest that the source of distortion in
the aggregate data is primarily the presence of unobserved common factors. Much of the mainstream
growth empirics literature still assumes away the presence of global economic shocks and spillovers
across country borders; arguably, with the experience of the recent global financial crisis it is now
more evident than ever that economic performance in a globalised world is highly interconnected, that
domestic markets cannot ‘de-couple’ from the global financial and goods markets and, in economet-
ric terms, that latent forces drive all of the observable and unobservable variables and processes we
are trying to model. One implication is that commonly applied instruments in cross-country growth
regressions are invalid — a sentiment echoed in recent work by Clemens and Bazzi (2009). The cross-
country growth empirics literature is deeply unfashionable in a time that sees randomised control
trials and country-level growth diagnostics as providing the answers to many development questions.
We argue that recent contributions to the panel time series literature allow us to develop a new type
of cross-country empirics, which is more informative and more flexible in the problems that it can
address than its critics have allowed.

Thirdly, we are aware of the serious data limitations for sectoral data from developing economies,
in particular regarding the high data requirements of panel time series methods. For instance the
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analysis in the present paper is carried out for a mere 41 countries, of which around half could be
seen as ‘developed’ in the present day, and for which the time series dimension of the data is relatively
short. The Crego et al. (1998) dataset allowed us to make sectoral analysis directly comparable
between manufacturing and agriculture, however for alternative research questions the use of data
from one or the other sector may be sufficient. There are at least two existing data sources, namely
FAO (2007) data for agriculture and UNIDO (2004) data for manufacturing, ideally suited to carry
out this type of analysis at the sector-level, for a large number of countries and over a substantial time
period. A recent example in this vein is the work on aid, Dutch Disease and manufacturing exports
by Rajan and Subramanian (2010).
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Tables and Figures

Table I: Evolution of agricultural VA- and employment-share

Agricultural VA †
(in % of GDP; Decadal Medians)

1960s 1970s 1980s 1990s 2000s
Canada & US 4.3 3.0 2.3 1.3
Europe (Euro area) 6.2 4.3 2.9 2.2
Latin America & Caribbean 14.0 12.8 10.2 7.5 6.6
Middle East & North Africa 21.7 15.2 15.2 15.2 12.4
Australia & New Zealand 9.0 6.7 5.3 4.0
East Asia & Pacific 37.8 32.0 27.6 19.0 13.2
Sub-Saharan Africa 26.2 21.5 20.1 19.4 17.5
South Asia 42.3 38.6 31.6 27.5 21.6

Employment in Agriculture ‡
(% of total employment; Means, Medians for 2000s �)

1960 1970 1980 1990 2000s
United States 6.6 4.3 3.5 2.8 2.6
Europe 31.0 21.1 15.9 12.2 4.8
Latin America & Caribbeans 49.0 42.0 34.2 25.4 16.8
Australia & New Zealand 11.9 8.7 7.3 6.3 6.0
Eastern Asia 76.8 70.9 66.9 64.8 45.4
Africa 79.6 75.8 68.7 62.8

Notes: † World Bank (2008) World Development Indicators. ‡ ILO decadal estimates 1950-1990,
‘economically active population in agriculture’. � World Bank (2008) WDI; here: ‘employment in
agriculture’ and Europe = Euro Area. 2000s includes the most recently available data, which differs
somewhat by region but typically includes data up to 2006.
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Table II: Pooled regression models for agriculture and manufacturing

Panel (A): Unrestricted returns to scale

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
POLS 2FE CCEP CCEP� FD POLS 2FE CCEP CCEP� FD

log labour -0.059 -0.205 -0.203 -0.080 -0.113 0.043 0.069 0.089 0.022 0.125
[7.06]∗∗ [10.03]∗∗ [1.73] [0.40] [3.13]∗∗ [3.56]∗∗ [3.68]∗∗ [1.77] [0.39] [6.81]∗∗

log capital pw 0.618 0.654 0.484 0.533 0.633 0.897 0.855 0.511 0.497 0.720
[74.18]∗∗ [42.29]∗∗ [11.24]∗∗ [6.88]∗∗ [21.00]∗∗ [55.53]∗∗ [32.93]∗∗ [8.90]∗∗ [8.93]∗∗ [23.95]∗∗

log land pw 0.012 -0.151 -0.092 0.094 -0.001
[1.07] [4.89]∗∗ [0.64] [0.45] [0.01]

Implied RS† DRS DRS CRS CRS DRS IRS IRS CRS CRS IRS
Implied βL

‡ 0.323 0.346 0.516 0.467 0.254 0.146 0.214 0.489 0.503 0.405
ê integrated� I(1) I(1) I(0) I(0) I(0) I(1) I(1) I(0) I(0) I(0)
CD test p-value� 0.00 0.00 0.57 0.38 0.00 0.44 0.55 0.00 0.59 0.00
R-squared 0.94 0.86 1.00 1.00 - 0.84 0.67 1.00 1.00 -
Observations 928 928 928 928 879 928 928 928 928 879

Panel (B): Constant returns to scale imposed

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
POLS 2FE CCEP CCEP� FD POLS 2FE CCEP CCEP� FD

log capital pw 0.644 0.724 0.493 0.514 0.660 0.920 0.865 0.510 0.499 0.767
[85.54]∗∗ [48.86]∗∗ [11.84]∗∗ [8.61]∗∗ [22.70]∗∗ [71.30]∗∗ [34.11]∗∗ [11.75]∗∗ [11.22]∗∗ [25.60]∗∗

log land pw 0.009 -0.005 0.108 0.123 0.002
[0.70] [0.15] [1.57] [1.15] [0.02]

Implied βL
‡ 0.348 0.281 0.399 0.486 0.338 0.080 0.135 0.490 0.501 0.233

ê integrated� I(1) I(1)/I(0) I(0) I(0) I(0) I(1) I(1) I(0) I(0) I(0)
CD test p-value� 0.00 0.00 0.71 0.58 0.00 0.00 0.00 0.00 0.00 0.00
R-squared 0.94 0.85 1.00 1.00 - 0.84 0.66 1.00 1.00 -
Observations 928 928 928 928 879 928 928 928 928 879

Notes: Dependent variable: value-added per worker (in logs). All variables are suitably transformed in the 2FE and FD equations. Estimators:
POLS — pooled OLS, 2FE — 2-way Fixed Effects, CCEP — Common Correlated Effects Pooled version (see below), FD — pooled OLS with
variables in first difference. We omit reporting the estimates on the intercept term. t-statistics reported in brackets are constructed using White
heteroskedasticity-robust standard errors. ∗, ∗∗ indicate significance at 5% and 1% level respectively. N = 41, average T = 22.6 (21.4 for FD).
Time dummies are included explicitly in [1], [5], [6] and [10] or implicitly in [2] and [7]. Cross-section average augmentation in [3],[4],[8] and [9].
� The model includes cross-section average for both the agricultural and manufacturing sector variables respectively. † Returns to scale, based on
significance of log labour estimate. ‡ Based on returns to scale result. � Order of integration of regression residuals, determined using Pesaran
(2007) CIPS (full results available on request). � Pesaran (2004) CD-test (full results for this and other CSD tests available on request).
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Table III: Heterogeneous parameter models (robust means)

Panel (A): Unrestricted returns to scale

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8]
MG FDMG CMG CMG� MG FDMG CMG CMG�

log labour -1.936 -0.414 -0.533 0.009 -0.125 -0.154 0.094 0.012
[2.50]∗ [0.48] [0.91] [0.01] [0.90] [1.36] [1.12] [0.14]

log capital pw -0.053 0.135 0.526 0.292 0.214 0.139 0.545 0.341
[0.28] [0.61] [2.76]∗∗ [1.32] [1.38] [0.84] [6.34]∗∗ [4.30]∗∗

log land pw -0.334 -0.245 -0.352 -0.318
[1.09] [0.85] [1.12] [1.01]

country trend/drift 0.018 0.010 0.014 0.019
[1.81] [1.22] [2.54]∗ [3.35]∗∗

Implied RS† DRS CRS CRS CRS CRS CRS CRS CRS
Implied βL

‡ n/a n/a 0.474 0.708 n/a n/a 0.455 0.659
reject CRS (10%) 27% 12% 20% 12% 44% 12% 39% 15%
panel-t Labour -3.17∗∗ -0.93 -1.02 -1.34 -2.98∗∗ -2.92∗∗ 4.68∗∗ 1.24
panel-t Capital 0.89 0.95 8.10∗∗ 3.57∗∗ 4.14∗∗ 0.09 16.15∗∗ 6.64∗∗

panel-t Land -0.32 0.23 -0.02 0.95
panel-t trend/drift 14.95∗∗ 5.41∗∗ 16.23∗∗ 8.35∗∗

sign. trends/drifts (10%) 20 7 19 10
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)
avg. abs. correl. coeff. 0.23 0.22 0.25 0.25 0.24 0.22 0.23 0.23
CD-test (p)� 0.00 0.00 0.51 0.63 0.00 0.00 0.01 0.09
Observations 928 879 928 928 928 879 928 928

Panel (B): Constant returns to scale imposed

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8]
MG FDMG CMG CMG� MG FDMG CMG CMG�

log capital pw -0.012 0.297 0.547 0.578 0.320 0.388 0.550 0.424
[0.07] [2.14]∗ [4.66]∗∗ [3.00]∗∗ [2.74]∗∗ [4.02]∗∗ [6.33]∗∗ [6.43]∗∗

log land pw 0.360 0.138 0.163 0.208
[1.30] [0.71] [0.90] [1.04]

country trend/drift 0.016 0.014 0.011 0.011
[2.89]∗∗ [3.09]∗∗ [2.63]∗ [3.06]∗∗

Implied βL
‡ 1.012 0.703 0.453 0.422 0.680 0.612 0.450 0.567

panel-t Capital 5.42∗∗ 2.65∗∗ 13.68∗∗ 9.05∗∗ 10.58∗∗ 6.36∗∗ 20.03∗∗ 13.58∗∗

panel-t Land 6.74∗∗ 1.53 1.24 1.42
panel-t trend/drift 14.87∗∗ 5.61∗∗ 22.65∗∗ 8.39∗∗

sign. trends/drifts (10%) 22 6 31 15
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)
avg. abs. correl. coeff. 0.23 0.22 0.26 0.26 0.29 0.22 0.26 0.23
CD-test (p)� 0.00 0.00 0.90 0.76 0.00 0.00 0.00 0.00
Observations 928 879 928 928 928 879 928 928

Notes: Dependent variable: value-added per worker (in logs). All variables are suitably transformed in the FD equations. Estimators: MG —
Mean Group, FDMG — MG with variables in first difference, CMG — Common Correlated Effects Mean Group version. We report robust means;
estimates on intercept terms are not shown. t-statistics in brackets following Pesaran and Smith (1995). Panel-t statistic following Pedroni (2004).
∗, ∗∗ indicate significance at 5% and 1% level respectively. N = 41, average T = 22.6 (21.4 for FD). Estimates on cross-section averages in
[3],[4],[7] and [8] not reported.
� The model includes cross-section average for both the agricultural and manufacturing sector variables respectively. † Returns to scale, based on
significance of log labour estimate. ‡ Based on returns to scale result. � Order of integration of regression residuals, determined using Pesaran
(2007) CIPS (full results available on request). � Based on Pesaran (2004) CD-test (full results for this and other CSD tests available on request).
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Table IV: Pooled regression models for aggregated and PWT data

Panel (A): Unrestricted returns to scale

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD POLS 2FE CCEP FD

log labour 0.011 -0.096 0.036 -0.013 0.034 -0.138 -0.201 0.019
[1.50] [4.49]∗∗ [0.52] [0.54] [7.43]∗∗ [4.74]∗∗ [1.75] [0.94]

log capital pw 0.829 0.792 0.655 0.820 0.742 0.700 0.684 0.729
[108.41]∗∗ [64.71]∗∗ [21.71]∗∗ [66.28]∗∗ [114.77]∗∗ [49.71]∗∗ [16.90]∗∗ [50.08]∗∗

Implied RS† CRS DRS CRS CRS IRS DRS CRS CRS
Implied βL

‡ 0.171 0.111 0.345 0.180 0.292 0.162 0.316 0.271
ê integrated� I(1) I(1) I(1)/I(0) I(0) I(1) I(1) I(1)/I(0) I(0)
CD test p-value� 0.98 0.01 0.07 0.00 0.02 0.00 0.02 0.00
R-squared 0.96 0.88 1.00 - 0.96 0.82 1.00
Observations 928 928 928 879 922 922 922 873

Panel (B): Constant returns to scale imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD POLS 2FE CCEP FD

log capital pw 0.825 0.823 0.672 0.821 0.730 0.745 0.656 0.726
[120.85]∗∗ [72.25]∗∗ [23.14]∗∗ [66.91]∗∗ [130.53]∗∗ [62.33]∗∗ [20.61]∗∗ [50.88]∗∗

Implied βL
‡ 0.175 0.177 0.328 0.179 0.270 0.256 0.344 0.274

ê integrated� I(1) I(1) I(1)/I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value� 0.91 0.86 0.05 0.00 0.00 0.00 0.03 0.00
R-squared 0.96 0.88 1.00 - 0.96 0.81 1.00
Observations 928 928 928 879 922 922 922 873

Notes: Dependent variable: value-added per worker (in logs). All variables are suitably transformed in the 2FE and FD equations. Estimators:
POLS — pooled OLS, 2FE — 2-way Fixed Effects, CCEP — Common Correlated Effects Pooled version, FD — pooled OLS with variables in
first difference. We omit reporting the estimates for the intercept term. t-statistics reported in brackets are constructed using White
heteroskedasticity-robust standard errors. Time dummies are included explicitly in [1], [4], [5] and [8] or implicitly in [2] and [6]. Cross-section
average augmentation in [3] and [7]. ∗, ∗∗ indicate significance at 5% and 1% level respectively. N = 41, average T = 22.6 (21.4 for FD).
† Returns to scale, based on significance of log labour estimate. ‡ Based on returns to scale result. � Order of integration of regression residuals,
determined using Pesaran (2007) CIPS (full results available on request). � Pesaran (2004) CD-test (full results for this and other CSD tests
available on request).
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Table V: Heterogeneous parameter models (robust means)

Panel (A): Unrestricted returns to scale

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -0.233 -0.169 0.057 -0.442 -1.089 -0.172
[0.55] [0.51] [0.31] [0.74] [2.35]∗ [0.45]

log capital pw 0.233 0.289 0.651 0.625 0.976 0.715
[1.28] [1.71] [7.00]∗∗ [4.64]∗∗ [6.40]∗∗ [5.49]∗∗

country trend/drift 0.026 0.022 0.011 -0.005
[2.93]∗∗ [2.57]∗ [1.12] [0.83]

Implied RS† CRS CRS CRS CRS DRS CRS
Implied βL

‡ n/a n/a 0.349 0.375 n/a 0.285
reject CRS (10%) 56% 15% 29% 74% 26% 51%
panel-t Labour -0.77 -0.16 4.12∗∗ -0.65 -4.42∗∗ -4.36∗∗

panel-t Capital 5.97∗∗ 1.83 22.39∗∗ 24.66∗∗ 18.12∗∗ 26.16∗∗

panel-t trend/drift 23.44∗∗ 9.31∗∗ 16.65∗∗ 7.41∗∗

sign. trends/drifts (10%) 27 13 30 12
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.24 0.23 0.23 0.25 0.19 0.24
CD-test (p)� 0.00 0.00 0.00 0.00 0.00 0.00
Observations 928 928 879 922 922 873

Panel (B): Constant returns to scale imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log capital pw 0.324 0.222 0.745 0.681 0.892 0.785
[2.12]∗ [2.09]∗ [11.78]∗∗ [8.38]∗∗ [7.47]∗∗ [12.59]∗∗

country trend/drift 0.013 0.018 0.001 -0.004
[2.69]∗ [4.65]∗∗ [0.23] [1.24]

Implied βL
‡ 0.676 0.778 0.255 0.319 0.108 0.215

panel-t Capital 11.61∗∗ 2.68∗∗ 40.06∗∗ 34.32∗∗ 18.49∗∗ 51.35∗∗

panel-t trend/drift 21.26∗∗ 8.72∗∗ 19.33∗∗ 8.75∗∗

sign. trends/drifts (10%) 25 11 27 12
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.29 0.23 0.26 0.32 0.23 0.30
CD-test (p)� 0.00 0.00 0.07 0.00 0.00 0.00
Observations 928 928 879 922 922 873

Notes: Dependent variable: value-added per worker (in logs). All variables are suitably transformed in the FD
equations. Estimators: MG — Mean Group, FDMG — MG with variables in first difference, CMG — Common
Correlated Effects Mean Group version. We report robust means; estimates for intercept terms are not shown.
t-statistics in brackets following Pesaran and Smith (1995). Panel-t statistic following Pedroni (2004). ∗, ∗∗
indicate significance at 5% and 1% level respectively. N = 41, average T = 22.6 (21.4 for FDMG). Estimates on
cross-section averages in [3] and [6] not reported.
† Returns to scale, based on significance of log labour estimate. ‡ Based on returns to scale result. � Order of
integration of regression residuals, determined using Pesaran (2007) CIPS (full results available on request). �
Based on Pesaran (2004) CD-test (full results for this and other CSD tests available on request).
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Figure 1: Box plots — Simulation results

Notes: We present box plots for the M = 1, 000 estimates using various estimators under 4 DGP setups. In all cases the true coefficient is
subtracted from the estimates, such that the plots are centred around zero.
The estimators are as follows: ‘CMG Agri’ and ‘CMG Manu’ — Pesaran (2006) CMG regressions on the sector-level data; Weighted — this is not

an estimator but the weighted average βasa
i + βmsm

i with βj the mean sectoral slope coefficient and sj the sectoral share of total output; the
remaining four estimators use the aggregated data: OLS — pooled OLS with T − 1 year dummies; 2FE — OLS with country and time dummies;
FD — OLS with variables in first differences (incl. time dummies); CMG — Pesaran (2006) CMG. We omit the results for the Pesaran and Smith
(1995) MG estimator as these are very imprecise and would counter the readability of the graphs. The MC setups are described in detail in
Section A-2 of the Appendix.
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Appendix

A-1 Data construction and descriptives

We use a total of four datasets in our empirical analysis, comprising data for agriculture and manu-
facturing (Crego et al., 1998; UNIDO, 2004; FAO, 2007), an ‘aggregated dataset’ where the labour,
output and capital stock values for the two sectors are added up, and finally a Penn World Table
(PWT 6.2) dataset (Heston et al., 2006) for comparative purposes. It is important to stress that
the former three datasets differ significantly in their construction from the latter, primarily in the
choice of exchange rates and deflation: the former use international (US$-LCU) exchange rates for the
year 1990, whereas the Penn World Table dataset comprises Purchasing Power Parity (PPP) adjusted
International Dollars taking the year 2000 as the comparative base. The former thus put an emphasis
on traded goods, whereas the latter are generally perceived to account better for non-tradables and
service. Provided that all monetary values making up the variables used in each regression are com-
parable (across countries, times), and given that the comparison of sectoral and aggregated data with
the PWT is for illustrative purposes, we do not feel there is an issue in presenting results from these
two conceptually different datasets.

In all cases the results present are for matched observations across datasets: the four datasets are
identical in terms of countries and time-periods — we prefer this arrangement for direct comparison
despite the fact that more observations are available for individual data sources (e.g. the PWT are
now available in the latest version 6.3, covering up to 188 countries for 1950 to 2007, see Heston et al.,
2009), which may improve the robustness of empirical estimates. We provide details on the sample
makeup in Table A-I. The next two subsections describe data construction. Descriptive statistics for
all variables in the empirical analysis are presented in Table A-II.

Table A-I: Descriptive statistics: Sample makeup for all datasets

# wbcode country obs # wbcode country obs

1 AUS Australia 20 22 JPN Japan 28
2 AUT Austria 22 23 KEN Kenya 29
3 BEL Belgium-Luxembourg 22 24 KOR South Korea 29
4 CAN Canada 30 25 LKA Sri Lanka 17
5 CHL Chile 20 26 MDG Madagascar 20
6 COL Colombia 26 27 MLT Malta 23
7 CRI Costa Rica 10 28 MUS Mauritius 16
8 CYP Cyprus 18 29 MWI Malawi 23
9 DNK Denmark 26 30 NLD Netherlands 23

10 EGY Egypt 24 31 NOR Norway 22
11 FIN Finland 28 32 NZL New Zealand 19
12 FRA France 23 33 PAK Pakistan 24
13 GBR United Kingdom 22 34 PHL Philippines 24
14 GRC Greece 28 35 PRT Portugal 20
15 GTM Guatemala 19 36 SWE Sweden 23
16 IDN Indonesia 22 37 TUN Tunisia 17
17 IND India 29 38 USA United States 23
18 IRL Ireland 23 39 VEN Venezuela 19
19 IRN Iran 25 40 ZAF South Africa 26
20 ISL Iceland 20 41 ZWE Zimbabwe 25
21 ITA Italy 21 Total 928
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Table A-II: Descriptive statistics

AGRICULTURE DATA MANUFACTURING DATA

Panel (A): Variables in untransformed level terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 1.74E+10 5.91E+09 2.95E+10 3.54E+07 2.24E+11 Output 7.47E+10 8.31E+09 2.07E+11 7.20E+06 1.43E+12
Labour 9.51E+06 1.21E+06 3.45E+07 3.00E+03 2.33E+08 Labour 1.73E+06 4.75E+05 3.42E+06 9.56E+03 1.97E+07
Capital 6.42E+10 1.01E+10 1.45E+11 2.90E+07 8.64E+11 Capital 1.33E+11 1.91E+10 2.97E+11 1.41E+07 1.81E+12
Land 1.73E+07 3.50E+06 4.06E+07 6.00E+03 1.91E+08

in logarithms
Output 22.369 22.500 1.737 17.382 26.134 Output 22.812 22.840 2.292 15.790 27.991
Labour 13.984 14.006 2.011 8.006 19.267 Labour 13.081 13.072 1.653 9.166 16.794
Capital 22.933 23.037 2.276 17.183 27.485 Capital 23.619 23.675 2.269 16.462 28.222
Land 15.089 15.068 1.986 8.700 19.066

in growth rates
Output 1.75% 1.94% 10.36% -41.54% 53.86% Output 4.45% 3.83% 10.09% -40.91% 84.23%
Labour -0.63% 0.00% 3.00% -28.77% 13.35% Labour 1.96% 1.13% 6.83% -38.84% 78.12%
Capital 1.89% 1.25% 3.61% -5.13% 31.40% Capital 4.84% 3.62% 4.97% -5.10% 53.03%
Land 0.06% 0.00% 2.17% -23.06% 13.57%

Panel (B): Variables in per worker terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 12,615.6 6,419.6 13,130.6 44.2 57,891.3 Output 26,898.2 20,212.6 22,071.3 753.0 101,933.8
Capital 51,847.1 9,661.9 63,427.8 13.1 222,396.5 Capital 63,080.3 42,543.9 64,355.0 1,475.5 449,763.4
Land 9.57 2.94 20.25 0.29 110.00

in logarithms
Output 8.385 8.767 1.817 3.788 10.966 Output 9.731 9.914 1.084 6.624 11.532
Capital 8.950 9.176 2.694 2.573 12.312 Capital 10.538 10.658 1.083 7.297 13.016
Land 1.105 1.078 1.404 -1.244 4.701

in growth rates
Output 2.33% 2.52% 10.49% -43.67% 55.98% Output 2.51% 2.48% 9.00% -66.95% 73.01%
Capital 2.47% 2.00% 4.17% -7.83% 31.12% Capital 2.90% 2.91% 6.59% -71.65% 42.44%
Land 0.70% 0.50% 3.40% -18.37% 28.77%

AGGREGATED DATA PENN WORLD TABLE DATA

Panel (A): Variables in untransformed level terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 9.22E+10 1.69E+10 2.31E+11 1.14E+08 1.55E+12 Output 4.24E+11 1.27E+11 1.01E+12 1.34E+09 7.98E+12
Labour 1.12E+07 2.31E+06 3.55E+07 2.23E+04 2.40E+08 Labour 5.05E+07 1.30E+07 1.19E+08 2.12E+05 8.54E+08
Capital 1.97E+11 2.79E+10 4.31E+11 1.02E+08 2.25E+12 Capital 1.21E+12 3.25E+11 2.93E+12 3.30E+09 2.27E+13

in logarithms
Output 23.470 23.553 2.016 18.552 28.069 Output 25.423 25.564 1.716 21.018 29.708
Labour 14.640 14.653 1.736 10.011 19.297 Labour 16.469 16.380 1.627 12.266 20.565
Capital 24.078 24.052 2.213 18.438 28.442 Capital 26.359 26.506 1.801 21.918 30.753

in growth rates
Output 3.17% 3.15% 7.37% -33.87% 42.14% Output 4.00% 4.00% 4.96% -37.12% 26.63%
Labour 0.19% 0.49% 2.56% -11.39% 19.30% Labour 1.56% 1.43% 1.14% -1.87% 4.82%
Capital 3.57% 2.73% 3.62% -5.00% 25.14% Capital 4.60% 4.19% 2.84% -1.30% 16.43%

Panel (B): Variables in per worker terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
in levels
Output 19,327.1 10,736.2 19,174.0 72.5 76,031.1 Output 11,396.7 10,308.1 8,162.3 594.3 31,074.1
Capital 49,187.4 22,087.4 55,406.5 52.7 236,312.1 Capital 36,832.4 32,026.3 31,668.2 660.8 136,891.2

in logarithms
Output 8.830 9.281 1.845 4.284 11.239 Output 8.945 9.241 1.016 6.387 10.344
Capital 9.438 10.003 2.191 3.964 12.373 Capital 9.868 10.374 1.365 6.493 11.827

in growth rates
Output 2.95% 3.30% 7.04% -31.02% 44.49% Output 2.44% 2.57% 4.96% -41.22% 23.19%
Capital 3.38% 3.14% 3.74% -18.43% 22.16% Capital 3.04% 2.77% 2.87% -4.23% 14.26%

Notes: We report the descriptive statistics for value-added (in US$1990 or PPP I$2000), labour (headcount), capital stock (same monetary values
as VA in each respective dataset) and land (in hectare) for the full regression sample (n = 928; N = 41).
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A-1.1 Sectoral and aggregated data

Investment data Data for agricultural and manufacturing investment (AgSEInv, MfgSEInv) in
constant 1990 LCU, the US$-LCU exchange rate (Ex Rate, see comment below) as well as sector-
specific deflators (AgDef, TotDef) were taken from Crego et al. (1998).15 Note that Crego et al.
(1998) also provide capital stock data, which they produced through their own calculations from the
investment data. Following Martin and Mitra (2002) we believe the use of a single year exchange rate
is preferrable to the use of annual ones in the construction of real output (see next paragraph) and
capital stock (see below).

Output data For manufacturing we use data on aggregate GDP in current LCU and the share of
GDP in manufacturing from the World Bank World Development Indicators (WDI) (World Bank,
2008). For agriculture we use agricultural value-added in current LCU from the same source. We
prefer the latter over the share of GDP in agriculture for data coverage reasons (in theory coverage
should be the same, but it is not). The two sectoral value-added series are then deflated using the
Crego et al. (1998) sectoral deflator for agriculture and the total economy deflator for manufacturing,
before we use the 1990 US$-LCU exchange rates to make them comparable across countries.

Note that the currencies used in the Crego et al. (1998) data differ from those applied in the WDI
data for a number of European countries due to the adoption of the Euro: for the latter we therefore
need to use an alternative 1990 US$-LCU exchange rate for these economies.16

Labour data For agriculture we adopt the variable ‘economically active population in agriculture’
from the FAO’s PopSTAT (FAO, 2007). Manufacturing labour is taken from UNIDO’s INDSTAT
(UNIDO, 2004).

Additional data The land variable is taken from ResourceSTAT and represents arable and perma-
nent crop land (originally in 1000 hectare) (FAO, 2007). For the robustness checks (results available
on request): the livestock variable is constructed from the data for asses (donkeys), buffalos, camels,
cattle, chickens, ducks, horses, mules, pigs, sheep & goats and turkeys in the ‘Live animals’ section
of ProdSTAT. Following convention we use the below formula to convert the numbers for individual
animal species into the livestock variable:

livestock = 1.1∗camels + buffalos + horses + mules + 0.8∗cattle + 0.8∗asses
+0.2∗pigs + 0.1∗(sheep+goats) + 0.01∗(chickens+ducks+turkeys)

The fertilizer variable is taken from the ‘Fertilizers archive’ of ResourceSTAT and represents agricul-
tural fertilizer consumed in metric tons, which includes ‘crude’ and ‘manufactured’ fertilizers. For
human capital we employ years of schooling attained in the population aged 25 and above from Barro
and Lee (2001).

Capital stock We construct capital stock in agriculture and manufacturing by applying the perpet-
ual inventory method described in detail in Klenow and Rodriguez-Clare (1997b) using the investment
data from Crego et al. (1998), which is transformed into US$ by application of the 1990 US$-LCU

15Data is available in excel format on the World Bank website at http://go.worldbank.org/FS3FXW7461. All data
discussed in this appendix are linked at http://sites.google.com/site/medevecon/devecondata.

16In detail, we apply exchange rates of 1.210246384 for AUT, 1.207133927 for BEL, 1.55504706 for FIN, 1.204635181
for FRA, 2.149653527 for GRC, 1.302645017 for IRL, 1.616114954 for ITA, 1.210203555 for NLD and 1.406350856 for
PRT. See Table A-I for country codes.
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exchange rate. For the construction of sectoral base year capital stock we employ average sector value-
added growth rates gj (using the deflated sectoral value-added data), the average sectoral investment
to value-added ratio (I/Y )j and an assumed depreciation rate of 5% to construct

(
K

Y

)
0j

=
IYj

gj + 0.05

for sector j. This ratio is then multiplied by sectoral value-added in the base year to yield K0j . Note
that the method deviates from that discussed in Klenow and Rodriguez-Clare (1997b) as they use
per capita GDP in their computations and therefore need to account for population growth in the
construction of the base year capital stock.

Aggregated data We combine the agriculture and manufacturing data to produce a stylised ‘ag-
gregate economy’: for labour we simply add up the headcount, for the monetary representations of
output and capital stock we can do so as well. We are afforded this ability to simply add up variables
for the two sectors by the efforts of Crego et al. (1998), who have built the first large panel dataset
providing data on investment in agriculture for a long timespan.

A-1.2 Penn World Table data

As a means of comparison we also provide production function estimates using data from PWT version
6.2. We adopt real per capita GDP in International $ Laspeyeres (rgdpl) as measure for output and
construct capital stock using investment data (derived from the investment share in real GDP, ki,
and the output variable, rgdpl) in the perpetual inventory method described above, adopting again
5% depreciation (this time we need to use the data on population from PWT, pop, to compute the
average annual population growth rate).

A-2 Monte Carlo Simulations: Data Generating Process

We run M = 1, 000 replications of the following DGP for N = 50 cross-section elements and T = 30
time periods. Our basic setup for the DGP closely follows that of Kapetanios et al. (2009), albeit
with a single rather than two regressors. For notational simplicity we do not identify the different
sectors (agriculture and manufacturing) in the following, but all processes and variables are created
independently across sectors, unless otherwise indicated.

yit = βixit + uit uit = αi + λy
i1f1t + λy

i2f2t + εit (9)
xit = ai1 + ai2dt + λx

i1f1t + λx
i3f3t + vit (10)

for i = 1, . . . , N unless indicated below and t = 1, . . . , T .
The common deterministic trend term (dt) and individual-specific errors for the x-equation are zero-
mean independent AR(1) processes defined as

dt = 0.5dt−1 + υdt υdt ∼ N(0, 0.75) t = −48, . . . , 1, . . . , T d−49 = 0
vit = ρvivi,t−1 + υit υit ∼ N(0, (1 − ρ2

vi)) t = −48, . . . , 1, . . . , T vi,−49 = 0

where ρvi ∼ U [0.05, 0.95]. The common factors are nonstationary processes

fjt = μj + fj,t−1 + υft j = 1, 2, 3 υft ∼ N(0, 1) t = −49, . . . , 1, . . . , T (11)
μa

j = {0.01, 0.008, 0.005}, μm
j = {0.015, 0.012, 0.01} fj,−50 = 0
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where we deviate from the Kapetanios et al. (2009) setup by including drift terms. Unless indicated
the sets of common factors differ between sectors.
Innovations to y are generated as a mix of heterogeneous AR(1) and MA(1) errors

εit = ρiεεi,t−1 + σi

√
1 − ρ2

iεωit i = 1, . . . , N1 t = −48, . . . , 0, . . . , T

εit =
σi√

1 + θ2
iε

(ωit + θiεωi,t−1) i = N1 + 1, . . . , N t = −48, . . . , 0, . . . , T

where N1 is the nearest integer to N/2 and ωit ∼ N(0, 1), σ2
i ∼ U [0.5, 1.5], ρiε ∼ U [0.05, 0.95], and

θiε ∼ U [0, 1]. ρvi, ρiε, θiε and σi do not change across replications. Initial values are set to zero and
the first 50 observations are discarded for all of the above.
Regarding parameter values, αi ∼ N(2, 1) and ai1, ai2 ∼ iidN(0.5, 0.5) do not change across replica-
tions. To begin with TFP levels αi are specified to be the same across sectors. The slope coefficient
β can vary across countries and across sectors (see below). In case of cross-country heterogeneity we
have βi = β + ηi with ηi ∼ N(0, 0.04). If the mean of the slope coefficient β is the same across sectors
we specify β = 0.5, otherwise βa = 0.5 and βm = 0.3 for agriculture and manufacturing respectively.
For the factor loadings may be heterogeneous and are distributed

λx
i1 ∼ N(0.5, 0.5) and λx

i3 ∼ N(0.5, 0.5) (12)
λy

i1 ∼ N(1, 0.2) and λy
i2 ∼ N(1, 0.2) (13)

The above represents our basis DGP for the simulations carried out. We investigate the following ten
models (the focus of the main text is on those marked with stars):

(1) Cross-country homogeneity (β) and no factors. We set all λi to zero such that x and y are
stationary and cross-sectionally independent; technology is the same across countries and sectors.

(2) As Model (1) but now we have heterogeneous β across countries.

(3) As Model (2) but with substantially larger heterogeneity in TFP levels across countries.

(4) � As Model (2) but with TFP levels in manufacturing are now 1.5 times those in agriculture.
We keep this feature for the remainder of setups.

(5) This sees the introduction of common factors (f2t and f3t) albeit with homogeneous factor
loadings across countries. Both factors and loadings are independent across sectors. The absence
of f1t means there is no endogeneity problem.

(6) � As Model (5) but now we have factor loading heterogeneity across countries.

(7) As Model (6) but with factor-overlap between x and y equations: f1t is contained in both of
these, inducing endogeneity in a sectoral regression.

(8) � As Model (7) but slope coefficients now differ across countries and sectors — for the latter
we specify βm

i = 1 − βa
i .

(9) As Model (8) except we now have independent slope coefficients across sectors with means
βm = 0.3 and βa = 0.5.

(10) � As Model (9) but we now have the same factor f1t contained in y and x-equations of both
sectors, although with differential (and independent) factor loadings.

Models (1) to (4) analyse a homogeneous parameter world without common factors, where aggregation
should lead to no problems for estimation. Models (5) to (7) show what happens when factors are
introduced. Models (8) and (9) introduce parameter heterogeneity across sectors and Model (10) adds
factor-overlap between sectors (on top of overlap across variables within sector).
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TECHNICAL APPENDIX

TA-1 Time-series properties of the data

Table TA-I: Second generation panel unit root tests

Panel (A): Agriculture data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 -0.662 (.25) 7.869 (1.00) 7.182 (1.00) 0 -16.230 (.00) -2.829 (.00) -1.550 (.06)
1 -0.326 (.37) 5.392 (1.00) 3.871 (1.00) 1 -9.960 (.00) 3.394 (1.00) -0.359 (.36)
2 2.911 (1.00) 7.550 (1.00) 5.490 (1.00) 2 -4.970 (.00) 5.639 (1.00) 4.161 (1.00)
3 4.817 (1.00) 9.859 (1.00) 5.417 (1.00) 3 -1.474 (.07) 6.238 (1.00) 5.171 (1.00)

Land pw Land pw
lags Ztbar (p) lags Ztbar (p)

0 9.432 (1.00) 0 -9.704 (.00)
1 7.223 (1.00) 1 -3.433 (.00)
2 6.069 (1.00) 2 1.324 (.91)
3 3.266 (1.00) 3 3.132 (1.00)

Panel (B): manufacturing data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 0.903 (.82) 2.539 (.99) 1.668 (.95) 0 -18.029 (.00) -11.824 (.00) -9.259 (.00)
1 2.631 (1.00) 1.971 (.98) 0.667 (.75) 1 -8.603 (.00) -6.586 (.00) -4.928 (.00)
2 2.513 (.99) 4.240 (1.00) 2.060 (.98) 2 -3.585 (.00) -3.700 (.00) -2.263 (.01)
3 4.022 (1.00) 4.066 (1.00) 3.240 (1.00) 3 -1.059 (.14) -0.176 (.43) 0.847 (.80)

Panel (C): Aggregated data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 2.558 (.99) 6.950 (1.00) 5.920 (1.00) 0 -15.283 (.00) -5.625 (.00) -4.489 (.00)
1 3.112 (1.00) 4.292 (1.00) 3.668 (1.00) 1 -8.185 (.00) -2.324 (.01) -1.073 (.14)
2 5.190 (1.00) 4.906 (1.00) 4.177 (1.00) 2 -3.429 (.00) 0.035 (.51) 1.154 (.88)
3 5.361 (1.00) 5.131 (1.00) 4.307 (1.00) 3 -0.640 (.26) 2.637 (1.00) 3.472 (1.00)

Panel (D): Penn World Table data

Variables in levels Variables in growth rates

log VA pw log Labour log Cap pw VA pw Labour Cap pw
lags Ztbar (p) Ztbar (p) Ztbar (p) lags Ztbar (p) Ztbar (p) Ztbar (p)

0 4.544 (1.00) -1.069 (.14) 2.802 (1.00) 0 -14.287 (.00) 0.711 (.76) -4.690 (.00)
1 6.126 (1.00) 7.647 (1.00) 6.097 (1.00) 1 -6.603 (.00) -1.977 (.02) -2.437 (.01)
2 6.581 (1.00) 7.215 (1.00) 7.215 (1.00) 2 -4.112 (.00) 1.784 (.96) -1.801 (.04)
3 7.772 (1.00) 6.475 (1.00) 7.576 (1.00) 3 -1.050 (.15) 2.205 (.99) -0.468 (.32)

Notes: We report test statistics and p-values for the Pesaran (2007) CIPS panel unit root test of the variables in our four datasets. In
all cases we use N = 41, n = 928 for the levels data.
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TA-2 Cross-section dependence in the data

Table TA-II: Cross-section correlation analysis

Variables in levels Variables in first diff.

Agriculture data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.41 0.57 57.65 74.45 0.05 0.23 6.57 6.59
(p) (.00) (.00) (.00) (.00)

log Labour -0.01 0.76 -1.10 0.45 0.12 0.52 14.50 22.60
(p) (.27) (.65) (.00) (.00)

log Cap pw 0.41 0.72 56.06 97.01 0.08 0.40 9.09 11.26
(p) (.00) (.00) (.00) (.00)

log Land pw 0.02 0.72 2.90 3.49 0.04 0.28 4.96 5.67
(p) (.00) (.00) (.00) (.00)

Manufacturing data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.43 0.63 66.34 84.24 0.05 0.21 6.27 6.49
(p) (.00) (.00) (.00) (.00)

log Labour 0.26 0.60 38.19 54.53 0.14 0.25 17.82 18.98
(p) (.00) (.00) (.00) (.00)

log Cap pw 0.61 0.77 86.11 136.03 0.07 0.22 8.22 9.04
(p) (.00) (.00) (.00) (.00)

Aggregated data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.61 0.69 83.57 118.17 0.08 0.23 10.65 11.23
(p) (.00) (.00) (.00) (.00)

log Labour 0.01 0.72 1.36 6.42 0.06 0.31 8.24 9.47
(p) (.18) (.00) (.00) (.00)

log Cap pw 0.76 0.85 97.16 188.46 0.07 0.29 7.99 9.81
(p) (.00) (.00) (.00) (.00)

Penn World Table data ρ̄ |ρ̄| CD CDZ ρ̄ |ρ̄| CD CDZ

log VA pw 0.72 0.74 111.55 170.81 0.14 0.20 21.89 19.07
(p) (.00) (.00) (.00) (.00)

log Labour 0.95 0.95 149.58 298.19 0.11 0.38 16.80 17.57
(p) (.00) (.00) (.00) (.00)

log Cap pw 0.76 0.86 116.84 219.82 0.26 0.38 39.69 38.66
(p) (.00) (.00) (.00) (.00)

Notes: In all cases we use N = 41, n = 928 for the levels data. We report the average correlation coefficient across the N(N − 1)
variable series ρ̄, as well as the average absoulte correlation coefficient |ρ̄|. CD and CDZ are formal cross-section correlation tests
introduced by Pesaran (2004) and Moscone and Tosetti (2009). Under the H0 of cross-section independence both statistics are
asymptotically standard normal. We investigated two further tests introduced by Moscone and Tosetti (2009), namely CDLM and
CDABS, which yield the same conclusions as the tests presented (detailed results available on request).
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TA-3 Monte Carlo simulations: detailed results

Table TA-III: Simulation results

Model 1 Model 2

mean median ste• ste� mean median ste• ste�

CMG Agri 0.4999 0.4990 0.0318 0.0324 CMG Agri 0.5007 0.4996 0.0425 0.0424
CMG Manu 0.4999 0.4990 0.0318 0.0324 CMG Manu 0.5007 0.4996 0.0425 0.0424
Weighted 0.5000 0.5000 0.0000 Weighted 0.5007 0.4998 0.0289
POLS 0.5054 0.5064 0.0462 0.0298 POLS 0.5058 0.5065 0.0572 0.0304
2FE 0.5002 0.5005 0.0248 0.0226 2FE 0.5014 0.5007 0.0392 0.0232
FD 0.5000 0.5007 0.0295 0.0257 FD 0.5014 0.5014 0.0441 0.0262
CCEP 0.4996 0.4997 0.0292 0.0271 CCEP 0.5008 0.5001 0.0424 0.0276
MG 0.4993 0.4987 0.0276 0.0283 MG 0.5001 0.4993 0.0389 0.0399
CMG 0.4999 0.4990 0.0318 0.0324 CMG 0.5007 0.4996 0.0425 0.0424

Model 3 Model 4

mean median ste• ste� mean median ste• ste�

CMG Agri 0.4999 0.4990 0.0318 0.0324 CMG Agri 0.4999 0.4990 0.0318 0.0324
CMG Manu 0.4999 0.4990 0.0318 0.0324 CMG Manu 0.4999 0.4990 0.0318 0.0324
Weighted 0.5000 0.5000 0.0000 Weighted 0.5000 0.5000 0.0000
POLS 0.5310 0.5280 0.1968 0.1128 POLS 0.5119 0.5112 0.0593 0.0365
2FE 0.5002 0.5005 0.0248 0.0226 2FE 0.5002 0.5005 0.0248 0.0226
FD 0.5000 0.5007 0.0295 0.0257 FD 0.5000 0.5007 0.0295 0.0257
CCEP 0.4996 0.4997 0.0292 0.0271 CCEP 0.4996 0.4997 0.0292 0.0271
MG 0.4993 0.4987 0.0276 0.0283 MG 0.4993 0.4987 0.0276 0.0283
CMG 0.4999 0.4990 0.0318 0.0324 CMG 0.4999 0.4990 0.0318 0.0324

Model 5 Model 6

mean median ste• ste� mean median ste• ste�

CMG Agri 0.4993 0.4987 0.0299 0.0298 CMG Agri 0.5005 0.5002 0.0238 0.0233
CMG Manu 0.5000 0.5014 0.0311 0.0321 CMG Manu 0.4994 0.5004 0.0253 0.0246
Weighted 0.5000 0.5000 0.0000 Weighted 0.5000 0.5000 0.0000
POLS 0.4936 0.4936 0.0753 0.0432 POLS 0.4558 0.4669 0.1059 0.0197
2FE 0.4563 0.4571 0.0331 0.0266 2FE 0.4382 0.4450 0.0588 0.0176
FD 0.4427 0.4416 0.0418 0.0268 FD 0.4181 0.4224 0.0517 0.0219
CCEP 0.4516 0.4502 0.0327 0.0278 CCEP 0.4231 0.4326 0.0522 0.0186
MG 0.4663 0.4687 0.3257 0.0369 MG 0.4305 0.4333 0.1816 0.0496
CMG 0.4498 0.4497 0.0362 0.0379 CMG 0.4161 0.4226 0.0516 0.0342

Model 7 Model 8

mean median ste• ste� mean median ste• ste�

CMG Agri 0.5000 0.4998 0.0448 0.0436 CMG Agri 0.5009 0.5020 0.0528 0.0520
CMG Manu 0.4979 0.4972 0.0454 0.0445 CMG Manu 0.4986 0.4978 0.0550 0.0528
Weighted 0.5000 0.5000 0.0000 Weighted 0.5007 0.4998 0.0289
POLS 0.4405 0.4469 0.1212 0.0236 POLS 0.4459 0.4452 0.1299 0.0248
2FE 0.4143 0.4161 0.0700 0.0210 2FE 0.4217 0.4234 0.0807 0.0220
FD 0.4027 0.4011 0.0541 0.0238 FD 0.4106 0.4073 0.0635 0.0245
CCEP 0.3956 0.3987 0.0619 0.0227 CCEP 0.4040 0.4047 0.0702 0.0233
MG 0.6759 0.6585 0.2510 0.0782 MG 0.6826 0.6644 0.2532 0.0828
CMG 0.3897 0.3928 0.0584 0.0496 CMG 0.3985 0.3976 0.0650 0.0560

Model 9 Model 10

mean median ste• ste� mean median ste• ste�

CMG Agri 0.5009 0.5020 0.0528 0.0520 CMG Agri 0.5009 0.5020 0.0528 0.0520
CMG Manu 0.2961 0.2972 0.0543 0.0526 CMG Manu 0.2961 0.2972 0.0543 0.0526
Weighted 0.3924 0.3928 0.0391 Weighted 0.3939 0.3946 0.0391
POLS 0.3383 0.3388 0.1324 0.0246 POLS 0.3400 0.3415 0.1322 0.0246
2FE 0.3151 0.3127 0.0814 0.0217 2FE 0.3163 0.3144 0.0816 0.0217
FD 0.3074 0.3053 0.0625 0.0242 FD 0.3086 0.3071 0.0626 0.0242
CCEP 0.2963 0.2973 0.0666 0.0229 CCEP 0.2976 0.2986 0.0667 0.0229
MG 0.5793 0.5562 0.2558 0.0814 MG 0.5796 0.5561 0.2558 0.0815
CMG 0.2956 0.2962 0.0625 0.0543 CMG 0.2970 0.2976 0.0627 0.0544

Notes: See Section A-2 in the Appendix for details on the estimators and the DGP in each of the experiments.

ste• marks the empirical standard error and ste� the mean standard error from 1,000 replications. ‘CMG Agri’ and
‘CMG Manu’ employ the sector-level data, ‘Weighted’ calculates the aggregate slope coefficient based on the size
(output) and slope of the respective sector, the remaining six estimators use the aggregated data.
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TA-4 Additional tables and figures

Table TA-IV: Pooled regression models (HC-augmented)

Panel (A): Unrestricted returns to scale

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
POLS 2FE CCEP CCEP� FD POLS 2FE CCEP CCEP� FD

log labour -0.079 -0.151 -0.457 -0.557 -0.085 0.005 0.029 0.121 -0.048 0.162
[11.71]∗∗ [4.35]∗∗ [1.54] [1.46] [1.46] [0.62] [0.88] [1.91] [0.47] [4.62]∗∗

log capital pw 0.471 0.671 0.554 0.676 0.595 0.692 0.851 0.533 0.446 0.654
[61.84]∗∗ [27.20]∗∗ [4.51]∗∗ [4.32]∗∗ [12.60]∗∗ [44.38]∗∗ [22.14]∗∗ [8.00]∗∗ [4.52]∗∗ [14.56]∗∗

log land pw 0.018 -0.020 -0.154 -0.174 0.111
[1.17] [0.48] [0.56] [0.50] [1.14]

Education 0.241 0.087 0.007 -0.068 0.101 0.226 -0.006 0.152 -0.017 0.095
[9.95]∗∗ [3.12]∗∗ [0.07] [0.40] [1.30] [11.91]∗∗ [0.21] [2.04]∗ [0.16] [1.53]

Educationˆ2 -0.010 -0.007 -0.003 0.005 -0.006 -0.009 0.002 -0.006 -0.004 -0.005
[4.73]∗∗ [4.15]∗∗ [0.49] [0.50] [1.23] [6.22]∗∗ [1.39] [1.32] [0.66] [1.10]

Implied RS† CRS CRS CRS CRS IRS CRS CRS CRS IRS
Implied βL

‡ 0.529 0.329 0.446 0.324 0.321 0.308 0.149 0.467 0.508
ê integrated� I(1) I(1) I(0) I(1)/I(0) I(0) I(1) I(1) I(0) I(0) I(0)
CD test p-value� 0.11 0.09 0.14 0.21 0.00 0.87 0.18 0.58 0.84 0.00
Mean Education 5.82 5.82 5.82 5.82 5.94 5.82 5.82 5.82 5.82 5.94
Returns to Edu 13.3% 0.7% -2.9% -0.7% 3.0% 12.3% 1.9% 8.5% -6.6% 4.1%

[t-statistic]� [15.71]∗∗ [0.50] [0.68] [0.11] [0.78] [19.88]∗∗ [1.30] [3.11]∗∗ [1.56] [1.54]
R-squared 0.91 0.57 1.00 1.00 - 0.91 0.57 1.00 1.00 -
Observations 830 830 830 775 793 860 860 860 775 817

Panel (B): Constant returns to scale imposed

Agriculture Manufacturing

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
POLS 2FE CCEP CCEP� FD POLS 2FE CCEP CCEP� FD

log capital pw 0.502 0.720 0.592 0.709 0.611 0.695 0.839 0.472 0.463 0.558
[59.09]∗∗ [33.18]∗∗ [5.32]∗∗ [5.08]∗∗ [13.29]∗∗ [49.18]∗∗ [24.30]∗∗ [8.87]∗∗ [5.59]∗∗ [13.85]∗∗

log land pw 0.014 0.078 0.144 0.122 0.124
[0.71] [2.23]∗ [0.99] [0.69] [1.27]

Education 0.278 0.069 -0.003 -0.031 0.107 0.226 0.014 0.234 0.036 0.220
[11.54]∗∗ [2.48]∗ [0.03] [0.23] [1.38] [11.80]∗∗ [0.71] [3.67]∗∗ [0.38] [3.91]∗∗

Educationˆ2 -0.012 -0.005 0.000 0.002 -0.006 -0.009 0.001 -0.010 -0.007 -0.010
[6.17]∗∗ [3.19]∗∗ [0.06] [0.28] [1.26] [6.11]∗∗ [0.98] [2.55]∗ [1.22] [2.41]∗

Implied βL
‡ 0.498 0.202 0.408 0.291 0.389 0.305 0.162 0.528 0.537 0.443

Mean Education 5.82 5.82 5.82 5.82 5.94 5.82 5.82 5.82 5.82 5.94
Returns to Edu 13.9% 0.8% -0.7% -0.3% 3.4% 12.3% 2.7% 11.7% -4.3% 10.5%

[t-statistic]♠ [16.25]∗∗ [0.52] [0.18] [0.07] [0.90] [20.20]∗∗ [2.30]∗ [5.25]∗∗ [1.18] [4.62]∗∗

ê integrated� I(1) I(1) I(0) I(1)/I(0) I(0) I(1) I(1) I(0) I(1)/I(0) I(0)
CD test p-value� 0.29 0.23 0.07 0.23 0.00 0.88 0.04 0.08 0.02 0.00
R-squared 0.91 0.57 1.00 1.00 - 0.91 0.57 1.00 1.00 -
Observations 830 830 830 775 793 860 860 860 775 817

Notes: We include our proxy for education in levels and as a squared term. Returns to Education are computed from the sample mean (Ē) as
βE + 2βE2Ē where βE and βE2 are the coefficients on the levels and squared education terms respectively. ♠ computed via the delta-method.
For more details see Notes of Table II of the main text.
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Table TA-V: Heterogeneous Manufacturing models (HC-augmented)

Panel (A): Unrestricted Panel (B): CRS imposed

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -0.305 -0.293 0.097
[1.20] [1.50] [0.62]

log capital pw 0.059 0.144 0.426 0.352 0.347 0.386
[0.22] [0.74] [3.73]∗∗ [3.25]∗∗ [3.66]∗∗ [3.95]∗∗

Education -0.478 0.237 1.248 -0.228 0.085 0.668
[1.02] [0.81] [2.66]∗ [0.62] [0.29] [2.43]∗

Education squared 0.050 0.011 -0.098 0.005 -0.019 -0.042
[1.38] [0.35] [2.67]∗ [0.13] [0.67] [1.95]

country trend/drift 0.016 0.020 0.008 0.013
[1.55] [2.44]∗ [1.16] [2.23]∗

reject CRS (10%) 38% 8% 38%
Implied βL

‡ n/a 0.857 0.574 0.648 0.653 0.614
Mean Education 5.82 5.91 5.82 5.87 5.94 5.87
Returns to Edu -6.3% -1.3% 10.9% -6.2% -2.1% 11.9%
[t-statistic]� [1.01] [0.25] [1.89] [1.00] [0.47] [1.70]
panel-t Labour 4.49∗∗ -2.51∗ 1.81
panel-t Capital 0.30 -0.25 8.62∗∗ 7.52∗∗ 5.48∗∗ 10.19∗∗

panel-t Edu 2.08∗ 0.93 3.58∗∗ 3.08∗∗ 0.88 3.38∗∗

panel-t Eduˆ2 1.93 -0.91 3.31∗∗ 2.47∗ 0.97 2.67∗∗

panel-t trend/drift 12.59∗∗ 6.41∗∗ 13.89 7.05
sign. trends (10%) 15 9 17 7
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0)
abs correl. coeff. 0.21 0.22 0.22 0.22 0.22 0.22
CD-test (p)� 0.00 0.00 0.71 0.00 0.00 0.27
Obs (N) 775 (37) 732 (37) 775 (37) 775 (37) 732 (37) 775 (37)

Notes: All averaged coefficients presented are robust means across i. � The returns to education and associated
t-statistics are based on a two-step procedure: first the country-specific mean education value (Ēi) is used to
compute βi,E + 2βi,E2Ēi to yield the country-specific returns to education. The reported value then represents the
robust mean of these N country estimates, s.t. the t-statistic should be interpreted in the same fashion as that for
the regressors, namely as a test whether the average parameter is statistically different from zero, following Pesaran
et al. (2009). For other details see Notes for Tables III (main text) and TA-IV above.
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Table TA-VI: Aggregate & PWT data: Pooled models (HC-augmented)

Panel (A): Unrestricted returns

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD POLS 2FE CCEP FD

log labour -0.001 -0.058 0.566 0.083 0.040 -0.064 -0.193 -0.032
[0.14] [1.97]∗ [4.13]∗∗ [2.50]∗ [8.99]∗∗ [3.27]∗∗ [1.49] [1.11]

log capital pw 0.662 0.782 0.677 0.766 0.725 0.680 0.601 0.676
[97.95]∗∗ [31.50]∗∗ [7.25]∗∗ [25.24]∗∗ [72.79]∗∗ [24.79]∗∗ [9.12]∗∗ [18.96]∗∗

Education 0.243 -0.004 0.086 0.065 0.041 0.043 0.032 0.103
[16.97]∗∗ [0.15] [1.24] [1.22] [3.42]∗∗ [2.86]∗∗ [0.80] [3.41]∗∗

Education squared -0.010 0.003 -0.007 -0.003 -0.001 -0.002 -0.002 -0.006
[8.05]∗∗ [1.82] [1.57] [0.77] [1.77] [2.97]∗∗ [0.83] [2.94]∗∗

Implied RS† CRS DRS CRS CRS CRS DRS CRS CRS
Implied βL

‡ 0.337 0.160 0.890 0.318 0.315 0.256 0.206 0.292
Mean Education 5.824 5.824 5.824 5.885 5.822 5.822 5.822 5.883
Returns to Edu 12.9% 2.5% 1.0% 3.4% 2.4% 1.9% 0.9% 3.3%
[t-statistic]� [22.35]∗∗ [1.68] [0.37] [1.40] [6.82]∗∗ [2.02]∗ [0.56] [2.26]∗

ê integrated� I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(1)/I(0)
CD test p-value� 0.00 0.02 0.59 0.00 0.34 0.22 0.01 0.00
R-squared 0.98 0.87 1.00 - 0.97 0.78 1.00 -
Observations 775 775 775 732 769 769 769 726

Panel (B): Constant returns to scale imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE CCEP FD POLS 2FE CCEP FD

log capital pw 0.662 0.798 0.485 0.744 0.694 0.706 0.611 0.691
[102.10]∗∗ [35.45]∗∗ [7.03]∗∗ [25.48]∗∗ [73.08]∗∗ [27.73]∗∗ [10.05]∗∗ [21.13]∗∗

Education 0.243 -0.016 0.210 0.111 0.043 0.037 0.016 0.092
[16.98]∗∗ [0.62] [3.00]∗∗ [2.21]∗ [3.30]∗∗ [2.44]∗ [0.48] [3.22]∗∗

Education squared -0.010 0.004 -0.013 -0.005 -0.001 -0.002 -0.002 -0.006
[8.17]∗∗ [2.75]∗∗ [2.92]∗∗ [1.37] [0.97] [2.12]∗ [0.95] [2.79]∗∗

Constant 1.586 1.843
[21.62]∗∗ [20.44]∗∗

Implied βL
‡ 0.338 0.203 0.515 0.256 0.306 0.294 0.390 0.309

Mean Education 5.824 5.824 5.824 5.885 5.822 5.824 5.824 5.883
Returns to Edu 12.9% 2.6% 6.5% 5.8% 3.3% 2.0% -0.6% 2.7%
[t-statistic]� [22.41]∗∗ [1.68] [2.56]∗∗ [2.56]∗∗ [8.62]∗∗ [1.99]∗ [0.42] [1.98]∗

ê integrated� I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value� 0.00 0.00 0.65 0.00 0.25 0.57 0.02 0.00
R-squared 0.98 0.86 1.00 0.97 0.78 1.00
Observations 775 775 775 732 769 769 769 726

Notes: We include our proxy for education in levels and as a squared term. Returns to Education are computed from the sample mean (Ē) as
βE + 2βE2Ē where βE and βE2 are the coefficients on the levels and squared education terms respectively. � computed via the delta-method. For
more details see Notes for Tables IV (in the main text) and (for the education variables) TA-IV above.
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Table TA-VII: Aggregate & PWT data: Heterogeneous models with HC

Panel (A): Unrestricted returns to scale

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log labour -0.066 0.269 -0.428 -1.609 -2.478 -1.324
[0.16] [0.57] [1.22] [1.97] [3.76]∗∗ [2.79]∗∗

log capital pw -0.070 -0.021 0.453 0.963 1.245 1.122
[0.26] [0.07] [2.47]∗ [4.44]∗∗ [5.99]∗∗ [5.52]∗∗

Education 0.601 0.637 0.489 0.123 0.004 -0.012
[1.29] [1.75] [0.98] [0.52] [0.02] [0.05]

Education squared -0.089 -0.065 -0.063 -0.002 0.004 -0.001
[1.76] [1.70] [1.48] [0.11] [0.25] [0.03]

country trend/drift 0.005 0.005 0.021 0.008
[0.33] [0.29] [2.25]∗ [0.77]

Mean Education 5.72 5.84 5.72 5.72 5.84 5.72
Returns to edu -7.1% -3.2% -11.1% -4.5% 0.5% 1.3%
[t-statistic]� [1.33] [0.65] [1.24] [1.33] [0.18] [0.43]
Implied RS† CRS CRS CRS CRS DRS DRS
Implied βL

‡ n/a n/a 0.547 n/a n/a n/a
reject CRS (10%) 38% 3% 19% 38% 18% 33%
panel-t Labour -1.77 0.16 -1.42 -6.37∗∗ -5.60∗∗ -7.30∗∗

panel-t Capital 0.58 0.94 2.79∗∗ 15.62∗∗ 13.48∗∗ 14.39∗∗

panel-t Edu 0.26 1.21 0.86 0.89 0.23 0.68
panel-t Edu ˆ2 -1.07 -1.87 -1.26 -1.55 -0.35 -0.72
panel-t trends 14.73∗∗ 10.93∗∗ 11.09∗∗ 5.83∗∗

# sign. trends 18 13 18 4
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.24 0.24 0.22 0.23 0.24 0.22
CD-test (p)� 7.23(.00) 7.88(.00) -0.50(.61) 7.59.00) 9.29.00) 0.98(.33)

Panel (B): CRS imposed

Aggregated data Penn World Table data

[1] [2] [3] [4] [5] [6]
MG FDMG CMG MG FDMG CMG

log capital pw 0.093 0.151 0.528 0.779 1.052 0.906
[0.49] [0.90] [4.90]∗∗ [5.75]∗∗ [6.43]∗∗ [5.86]∗∗

Education 0.075 0.260 0.683 -0.215 -0.134 0.089
[0.18] [0.99] [1.73] [1.25] [0.84] [0.42]

Education squared -0.023 -0.023 -0.075 0.013 0.014 -0.023
[0.65] [0.89] [1.57] [0.82] [1.13] [1.16]

country trend/drift 0.017 0.015 -0.001 -0.010
[1.96] [1.33] [0.21] [2.08]∗

Implied βL
‡ n/a n/a 0.472 0.221 n/a 0.094

Mean Education 5.79 5.84 5.79 5.79 5.84 5.79
Returns to edu -9.3% -4.0% 3.2% -1.4% 0.3% -0.2%
[t-statistic]� -1.34 -0.88 0.50 0.50 0.16 0.05
panel-t Capital 2.96∗∗ 1.84 7.63∗∗ 16.24∗∗ 11.99∗∗ 15.70∗∗

panel-t Edu -2.05∗ 1.97∗ 3.78∗∗ -1.80 -1.23 0.74
panel-t Edu ˆ2 0.79 -2.77∗∗ -3.83∗∗ 1.20 0.96 -1.11
panel-t trends 15.65∗∗ 12.21∗∗ 11.57∗∗ 7.84∗∗

# sign. trends 15 13 15 14
ê integrated� I(0) I(0) I(0) I(0) I(0) I(0)
abs correl.coeff. 0.24 0.24 0.23 0.26 0.24 0.22
CD-test (p)� 8.05(.00) 8.59(.00) 0.11(.92) 9.75(.00) 10.84(.00) 3.12(.00)

Notes: All averaged coefficients presented are robust means across i. � The returns to education and
associated t-statistics are based on a two-step procedure: first the country-specific mean education
value (Ēi) is used to compute βi,E + 2βi,E2Ēi to yield the country-specific returns to education.
The reported value then represents the robust mean of these N country estimates, s.t. the t-statistic
should be interpreted in the same fashion as that for the regressors, namely as a test whether the
average parameter is statistically different from zero, following Pesaran et al. (2009). For other
details see Notes for Tables III (in the main text) and TA-V above.
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Table TA-VIII: Alternative dynamic panel estimators

Panel (A): Agriculture

Dynamic FE PMG CPMG� DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.293 -0.312 -0.300 -0.460 -0.459 -0.624 -0.466 -0.482 -0.503 -0.455 -1.087 -0.432

[11.80]∗∗ [12.43]∗∗ [11.91]∗∗ [10.63]** [9.34]∗∗ [14.29]∗∗ [10.44]∗∗ [10.06]∗∗ [9.74]∗∗ [9.34]∗∗ [2.60]∗∗ [5.38]∗∗

capital pw 0.672 0.684 0.582 0.652 0.714 0.036 0.132 0.501 0.464 0.530 1.135 0.776
[12.47]∗∗ [12.69]∗∗ [7.50]∗∗ [20.16]∗∗ [18.52]∗∗ [0.57] [3.01]∗∗ [10.78]∗∗ [11.05]∗∗ [10.83]∗∗ [2.85]∗∗ [12.59]∗∗

land pw 0.124 0.121 0.135 0.136 0.367 0.867 0.361 0.247 0.494 0.228 0.083 -0.247
[1.30] [1.29] [1.45] [2.90]∗∗ [6.43]∗∗ [8.27]∗∗ [8.05]∗∗ [5.03]∗∗ [8.95]∗∗ [4.73]∗∗ [0.35] [1.17]

trend(s)† 0.001 0.008 0.012
[1.59] [3.36]∗∗ [12.26]∗∗

Constant 0.667 0.679 0.896 1.072 0.644 4.273 3.084 1.545 1.402 1.298 0.714
[5.03]∗∗ [4.75]∗∗ [4.58]∗∗ [10.48]∗∗ [7.53]∗∗ [13.11]∗∗ [10.27]∗∗ [10.38]∗∗ [9.69]∗∗ [9.94]∗∗ [4.21]∗∗

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.328 0.316 0.418 0.212 -0.081 0.098 0.507 0.253 0.042 0.242 -0.135 0.224
obs 894 857 894 894 857 894 894 894 857 872 857 894

Panel (B): Manufacturing

Dynamic FE PMG CPMG� DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.196 -0.195 -0.195 -0.219 -0.181 -0.543 -0.214 -0.245 -0.194 -0.272 -2.196 -0.041

[9.40]∗∗ [9.16]∗∗ [9.31]∗∗ [6.59]∗∗ [5.97]∗∗ [4.04]∗∗ [4.13]∗∗ [7.16]∗∗ [6.45]∗∗ [7.33]∗∗ [0.72] [0.65]
capital pw 0.711 0.708 0.637 1.016 1.044 0.298 1.379 0.598 1.264 0.505 1.866 -1.515

[12.96]∗∗ [12.34]∗∗ [6.85]∗∗ [29.64]∗∗ [33.09]∗∗ [5.34]∗∗ [26.80]∗∗ [11.58]∗∗ [22.28]∗∗ [9.47]∗∗ [3.25]∗∗ [0.40]
trend(s)† 0.001 0.001 -0.010

[1.00] [0.24] [6.77]∗∗

Constant 0.452 0.456 0.588 -0.212 -0.228 3.493 -0.977 0.225 -0.434 0.372 1.042
[3.87]∗∗ [3.73]∗∗ [3.29]∗∗ [5.43]∗∗ [4.95]∗∗ [3.87]∗∗ [4.18]∗∗ [5.68]∗∗ [5.77]∗∗ [6.48]∗∗ [1.80]

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.289 0.292 0.363 -0.016 -0.044 0.702 -0.379 0.402 -0.264 0.495 -0.866 2.515
obs 902 880 902 902 880 902 902 902 880 879 880 902

Panel (C): Aggregated data

Dynamic FE PMG CPMG� DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.172 -0.176 -0.173 -0.279 -0.277 -0.429 -0.284 -0.292 -0.294 -0.317 -0.380 -0.243

[8.59]∗∗ [8.39]∗∗ [8.59]∗∗ [6.89]∗∗ [7.25]∗∗ [9.55]∗∗ [6.72]∗∗ [6.98]∗∗ [7.38]∗∗ [7.48]∗∗ [0.71] [4.21]∗∗

capital pw 0.705 0.709 0.668 0.974 1.015 0.128 0.899 0.891 0.949 0.905 0.271 0.896
[15.25]∗∗ [14.65]∗∗ [8.17]∗∗ [36.86]∗∗ [37.38]∗∗ [1.90] [21.11]∗∗ [24.84]** [24.92]∗∗ [27.54]∗∗ [0.27] [22.80]∗∗

trend(s)† 0.000 0.011 0.004
[0.54] [6.07]∗∗ [2.42]∗

Constant 0.390 0.393 0.446 -0.100 -0.200 3.061 0.082 -0.062 -0.169 -0.145 0.120
[4.96]∗∗ [4.62]∗∗ [3.42]∗∗ [3.73]∗∗ [5.18]∗∗ [9.30]∗∗ [4.20]∗∗ [2.53]∗ [4.97]∗∗ [4.58]∗∗ [1.44]

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.295 0.292 0.332 0.026 -0.015 0.872 0.102 0.109 0.051 0.095 0.729 0.104
obs 879 836 879 879 836 879 879 879 836 879 836 879

Panel (D): Penn World Table data

Dynamic FE PMG CPMG� DGMM SGMM

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
EC [yt−1] -0.098 -0.101 -0.107 -0.333 -0.138 -0.567 -0.392 -0.338 -0.081 -0.347 0.835 0.031

[5.82]∗∗ [6.01]∗∗ [6.22]∗∗ [6.70]∗∗ [4.37]∗∗ [12.63]∗∗ [7.88]∗∗ [6.63]∗∗ [2.56]∗ [8.24]∗∗ [1.07] [0.49]
capital pw 0.538 0.553 0.356 0.923 0.916 0.698 0.652 0.903 -0.125 0.731 0.604 0.863

[8.14]∗∗ [8.66]∗∗ [3.44]∗∗ [130.34]∗∗ [71.72]∗∗ [65.10]∗∗ [67.96]∗∗ [52.90]∗∗ [1.81] [86.83]∗∗ [0.60] [1.88]
trend(s)† 0.001 0.002 0.006

[2.44]∗ [2.57]∗ [19.84]∗∗

Constant 0.363 0.360 0.567 -0.122 -0.020 1.085 0.935 -0.071 0.456 0.504 0.010
[5.38]∗∗ [5.29]∗∗ [5.28]∗∗ [4.44]∗∗ [1.63] [13.05]∗∗ [7.79]∗∗ [3.47]∗∗ [2.99]∗∗ [8.29]∗∗ [0.07]

lags [trends]‡ 1 2 1 [l-r] 1 2 1 [s-r] 1 [l-r] 1 2 1 i: 2-3 i: 2-3
impl. labour 0.462 0.447 0.645 0.077 0.084 0.302 0.349 0.097 1.125 0.270 0.396 0.137
obs 914 904 914 914 904 914 914 904 873 904 914

Notes: We report the long-run coefficients on capital per worker (and in the agriculture equations also land per worker). EC [yt−1] refers to the
Error-Correction term (speed of adjustment parameter) with the exception of Models [11] and [12], where we report the coefficient on yt−1 —
conceptually, these are the same, however in the latter we do not impose common factor restrictions like in all of the former models. Note that in
the PMG and CPMG models the ECM term is heterogeneous across countries, while in the Dynamic FE and GMM models these are common
across i. † In model [6] we include heterogeneous trend terms, whereas in [7] a common trend is assumed (i.e. linear TFP is part of cointegrating
vector). ‡ ‘lags’ indicates the lag-length of first differenced RHS variables included, with the exception of Models [11] and [12]: here ‘i:’ refers to
the lags (levels in [11], levels and differences in [12] used as instruments. � In the models in [8] and [9] the cross-section averages are only included
for the long-run variables, whereas in the model in [10] cross-section averages for the first-differenced dependent and independent variables
(short-run) are also included. Note that in the agriculture equation for Model [10] we drop CRI (n = 7) as otherwise no convergence would occur.


