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Abstract

This paper presents some two-step estimators for a wide range of parametric panel
data models with censored endogenous variables and sample selection bias. Our ap-
proach is to derive estimates of the unobserved heterogeneity responsible for the en-
dogeneity/selection bias to include as additional explanatory variables in the primary
equation. These are obtained through a decomposition of the reduced form residuals.
The panel nature of the data allows adjustment, and testing, for two forms of endogeneity
and/or sample selection bias. Furthermore, it incorporates roles for dynamics and state
dependence in the reduced form. Finally, we provide an empirical illustration which
features our procedure and highlights the ability to test several of the underlying
assumptions. ( 1999 Elsevier Science S.A. All rights reserved.

JEL classification: C23; C33; C34

Keywords: Two-step estimation; Panel data; Endogenous regressors; Sample selection;
Conditional maximum likelihood

1. Introduction

Despite the frequent use of panel data in empirical work there are few suitable
estimators for panel data models with sample selection, truncation and limi-
ted dependent variables. While maximum likelihood can, under appropriate
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distributional assumptions, provide consistent estimators, its empirical use is
hampered by computational complexities such as local maxima and multi-
dimensional integrals. This paper proposes some two-step estimators,
for a range of parametric panel data models, which avoid these problems.
The models comprise a primary equation with an endogeneous explanatory
variable, or selection bias, and a reduced form for the endogenous explanator
or selection process. Following Heckman (1979), we argue that endogeneity
and sample selection bias result from the failure to account for unobserved
heterogeneity in the primary equation. We derive estimates of this hetero-
geneity from the reduced form residuals, to include as additional explanatory
variables.

We examine two classes of models. The first is characterized by a primary
equation with an uncensored dependent variable and an endogenous censored
explanator. This case includes the sample selection model. Given estimates of
the reduced form parameters, the primary equation parameters can be estimated
by ordinary least squares, based upon a conditional expectation, and we refer to
this as conditional moment estimation. The second class features a primary
equation with a censored dependent variable and an uncensored endogenous
explanatory variable. As the primary equation is estimated by maximum likeli-
hood, where the likelihood function corresponds to the conditional density
given the endogenous explanatory variable, we assign it an interpretation of
conditional maximum likelihood (Smith and Blundell, 1986).

Many panel data estimators assume that the endogeneity or selection bias is
due to time-invariant individual effects (see, for example, Hausman and Taylor,
1981; Amemiya and MaCurdy, 1986; Honoré, 1992, Honoré, 1993).1 We, how-
ever, also incorporate endogeneity/selectivity through an individual time speci-
fic component. This extends cross-sectional estimators (see, for example,
Heckman, 1978, Heckman, 1979; Smith and Blundell, 1986; Rivers and Vuong,
1988; Vella, 1993) by separating the individual effects from these individual
specific/time effects. We also capture state dependence in the process generating
the endogeneity/selection bias. Our approach also encompasses existing panel
data procedures for sample selection and attrition bias (see, for example, Ridder,
1990; Nijman and Verbeek, 1992).

Two-step procedures are generally inefficient (see, for example, Newey, 1987)
and thus the attraction of our approach, in contrast to maximum likelihood, is
its relative computational ease. In some instances, however, our two-step es-
timator is asymptotically efficient within a limited information framework
(LIML). Our method provides initial consistent estimators for a LIML

1A recent exception is Kyriazidou (1997) who provides a semi-parametric estimator for the
panel data sample selection model in which the selection bias also operates through time-varying
effects.
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approach so that asymptotically efficient estimators can be obtained in one
iteration.2

The following two sections consider conditional moment and conditional
maximum likelihood estimation, respectively. Section 4 presents an empirical
example, featuring the wage—hours relationship, which illustrates a non-conven-
tional form of sample selection bias where the endogenous explanatory variable,
which is also the basis of the selection rule, enters the conditional mean non-
linearly. This empirical example illustrates our procedure and highlights how
many of our assumptions can be tested. Concluding comments are contained in
Section 5.

2. Conditional moment estimation

Consider the following model where the parameters of Eq. (1) are of primary
focus while Eq. (2) is the reduced form for the explanatory variable which is
endogenous and/or the basis of the selection rule. The censoring and selection
rules are in Eqs. (3) and (4):
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where i indexes individuals (i"1,2, N) and t indexes time (t"1,2,¹); yH
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are latent endogenous variables with observed counterparts y
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The mapping from the latent to the observed form is through the censoring
functions h and g

t
noting that the former may depend on the unknown para-

meter vector h
3
. The function g

t
indicates that y
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is only observed for certain
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. This includes sample selection where y
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"1 or, alternatively in the balanced subsample case, if

z
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The equations’ errors comprise random individual effects, k
i

and a
i
, and

random individual specific time effects, g
it

and v
it
, which are assumed to be

2A potentially computationally attractive alternative is simulate maximum likelihood, in which
the integrals in the log-likelihood function are replaced by simulators (see Gourieroux and Monfort,
1993). Nevertheless, the use of consistent starting values reduces computational costs substantially.
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constants. Eq. (5) imposes normality and a strict error components structure on
the reduced form and excludes any form of autocorrelation in v
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for heteroskedasticity and autocorrelation in g
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but imposes the strict exogene-
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.

The model features a potential role for state dependence in the reduced form.
This ensures that the error components do not incorrectly capture the dynamics
which should be attributed to lagged dependent variables. Unfortunately, we are
unable to incorporate dynamics operating through the lagged dependent vari-
able in the primary equation.3 To estimate this model we first consider condi-
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, and sample selection only depends on the
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, it is possible to condition upon z
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estimators on the corresponding conditional moments (see Wooldridge, 1995).
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Eq. (6) implies that the conditional expectation of e
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in Eq. (7) is a linear
function of the conditional expectation of u
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. To derive this latter expectation we
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(see Gourieroux et al., 1987) from Eq. (2) as, conditional on a
i
, the errors from

Eq. (2) are independent across observations. The conditional distribution of
a
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can be derived using the result4

f (a
i
DX

i
, z

i0
, z

i
)"

f (z
i
, z

i0
DX

i
, a

i
) f (a

i
)

f (z
i
, z

i0
D X

i
)

, (9)

3Arellano et al. (1997) present an estimator that allows for the lagged latent dependent variables
to enter both equations linearly. This approach is restricted to models with tobit types of censoring.

4We use f (.) as generic notation for any density/mass function.
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where we have used that a
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is the likelihood contribution of individual i in Eq. (2). Finally,
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in Eqs. (10) and (11) and obtain valid inferences neglect-
ing its distribution. In general, however, we require an expression for the
distribution of the initial value conditional on the exogenous variables and a

i
.

For most applications, the only practical solution will be a methodology,
suggested by Heckman (1981) for the random effects probit model, in which the
reduced form for z

i0
is approximated using all pre-sample information on the

exogenous variables. Apart from its dependence upon the unobserved compon-
ent a

i
, the specification of f (z

i0
DX

i
, a

i
) can be tested separately from the rest of the

model (see Labeaga, 1996).
The unknown parameters in Eq. (2) can be estimated consistently by max-

imum likelihood under the usual regularity conditions. With these values we can
estimate Eq. (8), which requires an expression for the likelihood contribution in
an i.i.d. context, the corresponding generalized residual, and the numerical
evaluation of two one-dimensional integrals.5 The estimate of Eq. (8) and its
average over time provide two additional terms to be included in the primary
equation, with coefficients q

1
and q

2
. These parameters can be estimated jointly

with h
1

in the second step from conditional moment restrictions such as least
squares based on Eq. (7). Under the null hypothesis of no endogeneity
q
1
"q

2
"0 standard errors can be computed in the usual way. Consequently,

the standard Wald test of the significance of the additional terms is an endogene-
ity test. In general, standard errors should be adjusted for heteroskedasticity,
autocorrelation, and for the estimation of the correction terms. This is discussed
in Appendix A. In the sample selection model the second step is estimated using
the subsample based upon g

t
(z

i
)"1 and the t-statistics on the correction terms

provide tests for sample selection bias.

5Evaluation of these integrals is straightforward using, for example, results from Butler and
Moffitt (1982).
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The model, in theory, can be estimated by maximum likelihood if we comp-
lement Eqs. (5) and (6) with additional distributional assumptions. If all error
components are assumed to be homoskedastic and jointly normal, excluding
autocorrelation in the time-varying components, it follows that Eq. (6) holds
with q

1
"pgv/p2g and q

2
"¹(pka!pgvp2a /p2g )/(p2

v
#¹p2a ), where pgv and pka de-

note the covariances between the corresponding terms. This shows that q
2

is
non-zero even when the individual effects a

i
and k

i
are uncorrelated. In contrast,

the two-step approach readily allows for heteroskedasticity and autocorrelation
in the primary equation. Moreover, the assumption in Eq. (6) can easily be
relaxed to, for example,
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By altering Eq. (6) our approach can be extended to multiple endogenous
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Computation of the generalized residuals, however, now requires the evaluation
of EMu

j,it
DX

i
, z

1,i
, z

2,i
N for j"1, 2. Unless z

1,i
and z
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tional upon X
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, the required expressions are different from those obtained from

Eqs. (8) and (9) and generally involve multi-dimensional numerical integration.
Many of the above assumptions can be tested empirically. While relaxing

normality in the reduced form is computationally difficult, except in special
cases for the h function, it is possible to test for departures from normality. It is
also possible to test for serial correlation and heteroskedasticity using condi-
tional moment tests. Also, we assume that the variables in X

i
are strictly

exogenous. This assumption excludes lagged dependent variables in the primary
equation as well as feedback from lagged values of y to current x’s. If compo-
nents of X
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are not strictly exogenous they should be included in z and excluded

from the reduced form. The conditional moment restriction given in Eq. (7)
would typically then be changed to
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for a vectorial instrument function f, depending upon the functional form of m
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Consequently, strict exogeneity of x
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could be tested through, for example, the
following moment condition:
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That is, if the last period’s values of y influence current x’s the strict exogeneity
condition would be violated.
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An important issue is identification. As in the standard non-linear regression
model we require that the matrix of first derivatives of m

j
with respect to h

j
,

evaluated at the observation points, has full column rank (j"1, 2). Then,
non-linearities in m

1
or m

2
, or a non-linear mapping from the reduced form

variables to the correction terms will identify the model. However, in instances
where we do not wish to rely on such an identification scheme we need an
exclusion restriction in m

1
for every endogenous variable. If the endogeneity is

restricted to the time-invariant component (q
1
"0) no exclusion restrictions are

required as, in the spirit of Hausman and Taylor (1981), the time variation in the
exogenous regressors is exploited.

The contribution of our approach is the following. First, it extends many
available cross-sectional estimators (see, for example Heckman, 1978; Heckman,
1979; Vella, 1993) by exploiting the panel nature of the data to isolate the form of
heterogeneity responsible for the endogeneity/selection bias. Second, while our
treatment of the sample selection model is not new (see Ridder, 1990; Nijman
and Verbeek, 1992), we generalize it to a wide range of selection rules. We also
extend the panel data dummy endogenous regressor model in Vella and Verbeek
(1998) by allowing for other forms of censored endogenous regressors. Finally,
our estimator represents first attempt to introduce dynamics into panel data
models involving general forms of sample selection and/or censored endogenous
regressors. This is particularly important as it exploits the panel nature of the
data and enables isolation of the individual effects from state dependence.

Our analysis also indicates how the estimation procedures proposed by
Wooldridge (1995) for the sample selection model, can be applied to more
general specifications. For example, one can estimate the primary equation
while allowing for fixed individual effects. This relaxes Eq. (6) to
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As the conditioning set in Eq. (17) is smaller than in Eq. (16), u
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is no longer
strictly exogenous in the second step and using a fixed effects or GLS estimator
is generally inconsistent (for fixed ¹). Thus a correlated random effects approach
(see Chamberlain, 1980) is required where the second step would include all

6Wooldridge only imposes that u
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) for each t, leaving the temporal dependence

in u
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unrestricted. The reduced form is estimated cross-section by cross-section. Clearly, this does
not allow for dynamics in the reduced form specification.
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exogenous variables from all periods as additional regressors. While Wool-
dridge restricts attention to sample selection models with tobit- or probit-type
censoring, the approach would be more generally valid. For general h functions,
EMu

it
DX

i
, z

it
N is the cross-sectional generalized residual from the reduced form

model, which can be included as additional regressor. Note that the assumption
in Eq. (17) excludes cases where attention is restricted to a balanced sub-panel of
the original data (the conditioning set is larger than z

it
), and when lagged

dependent variables appear in the reduced form.
Arellano et al. (1997) also discuss estimation of panel data models which allow

for lagged latent dependent variables in both equations, though only in a linear
additive way. They derive orthogonality conditions, based on first-differencing
the primary equation, that can be exploited in estimation provided there exist
subsets of the data for which the latent variables are observed. Obviously,
this seriously restricts the form of the censoring function h, and the functions
m

1
and m

2
.

3. Conditional maximum-likelihood estimation

We now consider where the dependent variable in the primary equation is
censored while the endogenous explanatory variable is fully observed. The
model has the following general form:
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When y
it
OyH

it
the model’s parameters cannot be estimated by exploiting the

conditional expectations of the random components only and the conditional
moment approach is not applicable. However, as the endogenous explanator is
fully observed the conditional distribution of the error terms in Eq. (18) given
z
i
is still normal and the error components structure is preserved. Thus we can

estimate the model in Eqs. (18) and (20) conditional on the estimated parameters
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from Eq. (19) using the random effects likelihood function, after making appro-
priate adjustments for the mean and noting that the variances now reflect the
conditional variances.
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These follow from straightforward matrix manipulations and show that the
error components structure is preserved and the conditional likelihood function
of Eqs. (18) and (20) has the same form as the marginal likelihood function
without endogenous explanatory variables.8 The asymptotic variance of the
conditional ML estimator, and the efficiency loss compared to the LIML
estimator, is provided in Appendix A.

The conditional maximum likelihood estimator can be easily extended to
account for multiple endogenous variables. For two endogenous regressors, for
example, this implies the imposition of Eq. (13), the conditional expectation of
which is easily obtained as all endogenous regressors are continuously observed.
Even if the reduced form errors of the endogenous regressors are correlated,

7When Eq. (19) is dynamic with an exogenous initial value z
i0
, Eq. (23) is valid if z

i0
is included in

X
i
. When the initial value is endogenous, we need to include z

i0
in z
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.

8The algebraic manipulations are simplified if p2
1

and p2
2

replace the unconditional variances
p2g and p2k in h(1). In this case, estimates for the latter two variances are easily obtained in a third step
from the estimates from the first stage for p2

v
and p2a , and the estimated covariances from the mean

function, using the equalities in Eqs. (25) and (26).
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provided they are characterized by an error components structure it can be
shown that the conditional distribution of k

i
#g

it
also has an error components

structure. Time-specific heteroskedasticity in g
it

does not affect the conditional
expectations and can be incorporated by having p2

1
vary over time. The model

can also be estimated, along the lines suggested above, over subsets of the data
chosen on the basis of z

it
.

In general the conditional maximum-likelihood estimator cannot be em-
ployed when z

it
OzH

it
. Thus the family of sample selection models considered in

the conditional moment section cannot be estimated by conditional maximum
likelihood. One exception is when the primary equation is estimated over the
subsample of individuals that have z

is
"zH

is
, for all s"1,2,¹.9 This follows

from the result that the error components structure is preserved when the
reduced form dependent variables are observed.

Once again it is important to consider identification. In these models there is
no non-linearity induced in the correction terms, but the non-linearity of m

1
or

m
2

will identify the model. In the linear case, or if one does not want to rely on
non-linearities for identification, exclusion restrictions are required. More ex-
plicitly, for each endogenous explanatory variable we need one exclusion restric-
tion in the primary equation, unless, as before, the endogeneity can be restricted
to be related to the time-invariant components only (pgv"0).

This conditional maximum-likelihood approach generalizes the cross-sec-
tional estimators of Smith and Blundell (1986) and Rivers and Vuong (1988) to
panel data. As in the previous section the use of panel data allows the separation
of the error into two components and the incorporation of dynamics in the
reduced form. By excluding dynamics and assuming that there is a single-error
component one obtains the models considered by Smith and Blundell (1986) and
Rivers and Vuong (1988) as special cases.

4. Empirical example

We now provide an empirical example estimating the impact of weekly hours
worked on the offered hourly wage rate while accounting for the endogeneity of
hours. This issue has attracted attention in the labor economics literature (see,
for example, Moffitt, 1984; and Biddle and Zarkin, 1989). The model has the
form
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9A similar argument is exploited in Arellano et al. (1997).
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it
"0, w

it
not observed if hoursH

it
)0,

where w
it

represents the log of the hourly wage of individual i in time period t;
x
1,it

and x
3,it

are variables representing individual characteristics; x
2,it

are
characteristics of the individual’s work place; hoursH

it
and hours

it
represent

desired and observed number of hours worked, respectively; m denotes a poly-
nomial of known length with unknown coefficients b

3
, while b@"(b@

1
, b@

2
,b@

3
) and

h@"(h@
1
, h@

2
) are parameters to be estimated. The assumptions on the unobser-

vables are given in Eqs. (5) and (6) above. This example highlights several
aspects of our approach. First, as the wage equation is estimated over the
sub-sample reporting positive hours it illustrates our ability to control for
selection bias. Second, the inclusion of the correction terms enables the identi-
fication of the form of the endogeneity while their inclusion also corrects for the
endogeneity of experience via past labor supply. Finally, the inclusion of
a lagged dependent variable in the reduced form isolates the role of dynamics
and state dependence.

Note that the model is not easily estimated by existing procedures. First, as
the wage equation is only estimated over those reporting positive hours it is not
possible to use instrumental variables. Second, as the reduced form includes
a role for dynamics it is not appropriate to employ cross-sectional procedures
nor apply panel data estimators which ignore the presence of state dependence.
Third, as the primary equation is non-linear in hours, the approach of Arellano
et al. (1997) cannot be employed. Fourth, even with stronger distributional
assumptions (as given in Eq. (22)), non-linearities due to both the sample
selection problem and the non-linear appearance of hours in the wage equation,
substantially complicate analytical expressions for the joint likelihood function
(see Davidson and Mackinnon, 1993, Section 18.7). As two-dimensional numer-
ical integrals are involved, maximum likelihood does not appear to be a viable
approach. Moreover, the number of parameters in our most general specifica-
tion equals 79, so that the risk of computational problems will be high for any
one-step procedure.

To estimate the model we employ data for young females from the National
Longitudinal Survey (Youth Sample) for the period 1980—1987. For the period
examined there were 2300 observations for each of the eight years. From these
18,400 total observations there were 12,039 observations reporting positive
hours of work in a given period.10 The summary statistics are reported in
Table 1.

10Only 481 women report positive hours of work over all eight years.
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Table 1
Variable definitions and means

SCHOOL Years of schooling 11.91 1.55 11.67
HISP Dummy, 1 if hispanic 0.126 0.331 0.132
BLACK Dummy, 1 if black 0.189 0.189 0.208
AGE Age in years 24.08 2.73 23.89
MAR Dummy, 1 if married 0.386 0.487 0.415
WAGE Log of real hourly wage 1.285 0.640 —
EXPER Actual exp. in yr. 5.22 2.45 4.95
EX2 Actual exp. squared 33.27 29.09 30.33
HLTH Dummy, 1 if health disability 0.038 0.191 0.047
HOURS Hours of work per week 33.98 11.82 —
UNION Dummy, 1 if wage set by 0.168 0.374 —

collective bargaining
RUR Dummy, 1 if rural area 0.181 0.385 0.192
S Dummy, 1 if lives in South 0.370 0.483 0.370
NC Dummy, 1 if Northern Central 0.240 0.427 0.248
NE Dummy, 1 if North East 0.204 0.403 0.187

Industry dummies
PUB Public sector 0.048 0.215 —
AG Agricultural 0.008 0.087 —
MIN Mining 0.003 0.057 —
CON Construction 0.008 0.087 —
MAN Manufacturing 0.159 0.366 —
TRA Transportation 0.040 0.195 —
TRAD Trade 0.237 0.425 —
FIN Finance 0.097 0.296 —
BUS Business and repair service 0.045 0.206 —
PER Personal service 0.061 0.240 —
ENT Entertainment 0.013 0.115 —
PRO Professional and related services 0.281 0.450 —

Note: Averages in column 3 are based on observations over 2300 women over eight years
(1980—1987); averages and standard deviations in columns 1 and 2 are for the subsample of
observations with positive hours only (12,039 cases).

We estimate three variants of the random effects tobit model in Eq. (28). To
highlight the differences which may arise from misspecifying the dynamics we
estimate the model with and without the lagged dependent variable. Given the
presence of the individual effects a

i
it is unlikely that one can validly assume that

hours worked in the first period are truly exogenous. Therefore, the dynamic
model is estimated either treating initial hours worked as exogenous, which
ignores the initial conditions problem, or modelling the initial value in the spirit
of Heckman (1981). For this last approach, we approximated the reduced form
for hours

io
by a tobit function using all pre-sample information on the
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exogenous variables.11 The results of all three specifications are presented in
Table 2. Column 1 represents the specification without the lagged dependent
variable while Columns 2 and 3 include it. The specification does not include
any work-related variables as these characteristics are not recorded for the
non-participants and their inclusion, while assigning values of zero for the
non-participants, would produce a spurious statistical relationship between
these characteristics and hours of work.

Several points are worth noting. First, the parameter estimates in all columns
are generally in keeping with expectations and most variables have a statistically
significant impact on hours worked. Second, the impact of lagged hours of work,
in Columns 2 and 3, is highly significant and indicates the presence of ‘state’
dependence. The inclusion of this variable has a relatively small impact on the
coefficients of the other variables although it generally reduces their magnitude.
This is expected as their effect now partially operates through lagged hours.
Third, the coefficients on the time dummies indicate an increasing trend in hours
worked over the period examined in both specifications. Comparing the col-
umns with the exogenous [A] and endogenous [B] treatment of the initial value,
we see that exogeneity of initial hours of work is strongly rejected. The para-
meter m measures to what extent the individual-specific heterogeneity enters the
initial equation’s error, given by ma

i
#v

i0
, and does not differ significantly from

unity. We found no statistical evidence that m varies with age.12 Despite
the rejection of exogeneity, the estimates of the tobit coefficients do not appear
to be very sensitive with respect to the treatment of the initial condition. A final
point is related to the contribution of the error components to the total variance.
The model which omits a lagged dependent variable attributes approximately
39% of the total variance to the individual effects. The specifications in columns
2 and 3, where the contribution of the individual effects reduces to approxim-
ately 13 percent, indicate that this may be due to the failure to account for
dynamics.

We noted above that many of the assumptions of the model are testable. The
first we consider is normality of the two error components. We test this via
Lagrange Multiplier tests using a parameterization suggested by Ruud (1984).
Unfortunately, these tests reject normality of both the individual specific com-
ponent and the idiosyncratic component for each of the specifications.13 This is

11More details of treatment of the initial value are provided in Appendix B. The estimation results
for the initial period are not presented here.

12A likelihood ratio test against the alternative that m is a linear function of age produced a test
statistic of 0.02.

13The LM test statistics (s2
2
) for testing normality of a

i
and g

it
in Column 3 are 119.52 and 535.28,

respectively. For Column 2 they are 244.64 and 436.60, while the corresponding values for the
Column 1 specification are 297.6 and 814.5.
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Table 2
Maximum likelihood estimation results hours of work equation

Dynamic model

Variable Static model [A] [B]

Dummy 1981 1.816 4.549 4.483
(0.777) (0.646) (0.650)

Dummy 1982 1.697 3.457 3.436
(0.845) (0.736) (0.739)

Dummy 1983 3.807 5.505 5.476
(1.017) (0.817) (0.822)

Dummy 1984 6.561 7.205 7.238
(1.241) (0.923) (0.931)

Dummy 1985 8.592 8.029 8.124
(1.475) (1.036) (1.047)

Dummy 1986 11.849 10.300 10.418
(1.679) (1.121) (1.136)

Dummy 1987 14.313 11.016 11.188
(1.922) (1.245) (1.268)

Age 13.368 6.073 6.297
(0.796) (0.988) (0.982)

Age-squared !0.291 !0.139 !0.143
(0.015) (0.020) (0.020)

Married !5.682 !4.737 !4.946
(0.384) (0.398) (0.396)

Black !6.419 !4.016 !4.154
(0.940) (0.578) (0.591)

Hispanic !0.510 !0.349 !0.350
(1.113) (0.679) (0.694)

Rural !1.893 !1.289 !1.434
(0.534) (0.495) (0.493)

Health !3.870 !4.760 !4.783
(0.285) (0.752) (0.749)

School 4.172 2.481 2.546
(0.285) (0.168) (0.172)

Lagged hours — 0.616 0.594
(0.014) (0.013)

p2a 259.09 55.406 60.81
(12.36) (4.53) (4.74)

p2
v

402.87 398.32 395.51
(4.93) (5.78) (5.69)

m 0 0.939
(0.099)

Loglikelihood !59,856.13 !58,731.91
with initial period !66,074.19 !66,019.24

Note: Models also include regional dummies. Dynamic Model [A] assumes exogenous initial
labor supply, while [B] employs a specification for the initial distribution.
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not surprising given the large number of observations. However, as this example
is primarily illustrative we continue despite this rejection.

Before focusing on the primary equation consider our exclusion restrictions.
First, given the form of the correction terms we are unable to estimate the model
unless we exclude at least one variable from the wage equation which appears in
the hours equation. The variables we employ are the health measure and lagged
hours. Health is excluded on the basis that while health will influence one’s
ability to seek employment it is increasingly difficult for employers to offer
different wage levels on the basis of an individual’s health. The lagged hours
variable is excluded on the basis that we believe that the variable has no direct
effect but rather operates through its impact on current hours. As this implies
that the model is overidentified, we can test this latter restriction.

We estimate the wage equation for the subsample of working women, specify-
ing m as a fourth order polynomial. The order of the polynomial is guided by the
results of Newey et al. (1998) which provides a semi-parametric estimate of the
wage/hours profile. Using this result as a starting point we were unable to
identify a dominating alternative specification. The OLS results reported in
Column 1 of Table 3, without corrections for the potential endogeneity of hours,
reveal a significant non-linear relationship between the number of weekly hours
worked and the weekly wage rate. The remaining coefficients in this column are
reasonable in sign and magnitude although the coefficient reflecting the returns
to schooling is rather high. As it is well known that wage inequality increased
over this period it is likely that the error terms are heteroskedastic. The
estimated standard errors in Table 3 allow for unknown forms of time-related
heteroskedasticity.

Column 2 of Table 3 reports the results from estimating the wage equation
while correcting for the endogeneity of hours and sample selection through the
inclusion of correction terms based upon the static hours model. The results in
Columns 3 and 4 incorporate a role for dynamics in the reduced form hours
equation, treating the initial value as exogeneous or endogeneous, respectively.
The inclusion of the correction terms simultaneously accounts for the endogene-
ity of the participation decision and hours worked. As the decision to not
participate corresponds to a zero value for hours

it
, the inclusion of the correc-

tion terms also account for the selection bias from estimating over the sub-
sample of workers.

A number of features are worth noting from a comparison of the unadjusted
estimates, in Column 1, to those from our preferred specification in Column 4.14
Both correction terms are statistically significant indicating that the two forms

14We refer to the specification in Column 4 as preferred in spite of the evidence of non-normality
in the reduced form. We choose this specification on the basis of the statistically significant role of
lagged hours and the strong rejection of exogeneity of the initial value.
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Table 3
Wage equation results

Method OLS OLS OLS OLS
Correction No Yes Yes Yes
Hours equation — Static Dynamic Dynamic
Initial value — — Exogenous Endogenous

Married !0.018 0.043 0.017 0.025
(0.011) (0.018) (0.011) (0.011)

Black !0.147 !0.103 !0.133 !0.124
(0.015) (0.022) (0.015) (0.015)

Hispanic !0.029 !0.024 !0.024 !0.023
(0.017) (0.017) (0.017) (0.017)

Rural !0.116 !0.102 !0.111 !0.109
(0.014) (0.015) (0.014) (0.04)

School 0.096 0.064 0.080 0.076
(0.004) (0.010) (0.004) (0.004)

Union 0.116 0.120 0.118 0.118
(0.013) (0.013) (0.013) (0.013)

Exper 0.037 0.009 !0.009 !0.010
(0.009) (0.009) (0.009) (0.009)

Exper2 !0.0010 !0.0005 0.0004 0.0006
(0.0007) (0.0007) (0.0007) (0.0007)

Hours/100 !5.062 !4.130 !4.474 !4.334
(1.378) (1.379) (1.360) (1.360)

(Hours/100)2 31.925 30.509 30.296 30.206
(6.118) (6.017) (6.000) (6.006)

(Hours/100)3 !61.275 !58.647 !58.780 !58.672
(10.986) (10.755) (10.710) (10.720)

(Hours/100)4 34.586 33.383 33.742 33.688
(6.835) (6.658) (6.621) (6.627)

u
it

— !0.0121 !0.0084 !0.0095
(0.0022) (0.0006) (0.0006)

uN
i

— !0.0016 0.0145 0.0109
(0.0087) (0.0018) (0.0016)

adj R2 0.249 0.271 0.279 0.279
Observations 12,039 12,039 12,039 12,039

Note: All specifications also include regional, industry and time dummies.

of endogeneity/selectivity are present. The positive coefficient on the individual
effect indicates that the time-invariant unobserved individual effects which
increase the number of hours worked also increase the wage level. In constrast,
the time varying effects generating the simultaneity of wages to hours appears to
increase hours and decrease wages. Note, however, that as the reduced form is
estimated by tobit it is possible that the unobserved effects are affecting the
probability of participation in addition to the number of hours worked. The

254 F. Vella, M. Verbeek / Journal of Econometrics 90 (1999) 239–263



inclusion of the correction terms induces a number of changes in the results.
First, the time effects, which are not reported, appear to be much stronger in
this adjusted equation in comparison to the unadjusted equation. However,
this increased time effect is partially due to the reduced experience effects.
Second, the inclusion of the correction terms substantially reduces the impact
of schooling from almost 10% to a more reasonable 7.6%. Finally, the hours/
wage profile appears to have noticeably changed from that implied in the
Column 1.

For our preferred specification in column 4 we tested the assumption in
Eq. (6) against several alternatives. In particular, we tested whether q

1
and

q
2

were time-invariant. Both tests resulting in a marginal rejection without
noticeable changes in the estimated coefficients of the model. Further, we tested
Eq. (6) against a restricted version of Eq. (12) which specifies

EMe
it
D u

i
N"q

1
u
it
#j

1
u
i1
#2#j

T
u
iT

.

The Wald test statistic for the hypothesis j
1
"2"j

T
resulted in a value of

60.52, which is highly significant for a s2 distribution with seven degrees of
freedom. Despite this rejection, the estimated coefficients were only marginally
different from those for our preferred specification in column 4 of Table 3 and
we choose not to report them.15

Human capital accumulation suggests that lagged hours of work positively
affect current wages. As our model conditions upon the entire vector of labor
supply, this hypothesis can be directly tested by our two-step procedure by
including lagged hours as additional explanatory variables in columns 1 to 4.
This resulted in t-ratios of 15.3, 11.2, !0.18 and !3.16, respectively.16 These
results indicate that ignoring the endogeneity of hours or incorrectly imposing
a static hours equation, lead to a spurious finding of a statistically significant
human capital accumulation effect. Apparently, the effect of lagged hours upon
current wages operates through its effect on current hours. This provides
support for our exclusion restriction.

Our approach assumes strict exogeneity of the explanatory variables. For
time-varying variables this can be tested by including values of the particular
exogeneous variable from other time periods in the mean function, and testing
for a zero coefficient. This is restricted to time-varying variables as those which
are time invariant are imposed to be uncorrelated with the error components in
estimation. For the current application union status is a natural candidate of
a time-varying regressor which may violate the strict exogeneity assumption.

15The estimated coefficients for the hours variables in this specification were !4.339,
30.282,!58.870, 33.831, respectively, implying a very similar wage-hours profile.

16The estimated coefficients ranged from !0.004 to 0.006 indicating that the lagged hours effect
was small.
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We tested its strict exogeneity by including next period’s union status in the
wage equation. The coefficient on this lead value of the variable had a t-statistic
of 7.29 leading one to reject that union status is strictly exogenous. Another
candidate is the schooling variable but as this is time invariant in our sample we
cannot test its exogeneity. Recall that we allow experience to be endogenous
through lagged hours and that age and age-squared are included in the reduced
form.

It is also useful to contrast our preferred estimates to those in Column 2 to
highlight the effect of including a lagged dependent variable in the reduced
form. First, the failure to account for dynamics in Column 2 has led to the
inclusion of the incorrect correction terms. This has resulted in an incorrect
inference regarding the presence of individual effects. Second, the inclusion of
dynamics in the reduced form has resulted in more precise estimates for a num-
ber of the regressors. Third, while the estimates across the two columns are
generally similar the coefficient capturing the returns to schooling is quite
different. This coefficient is expected to be affected by the treatment of the
individual effects as it is likely to be sensitive to unobserved ability. Also note
that the estimate of this coefficient, in our preferred specification, is notably
more precise than its counterpart in Column 2. Finally, despite the differences
across Columns 2 and 4 the coefficients on the hours variables appear to be
similar.

To examine the effect of weekly hours worked on the wage rate we employ the
wage equation estimates to plot the implied relationships. We do this by plotting
the hours effect, relative to the sample average of 34 h per week in 1987, against
hours worked. The four plots corresponding to the results from columns 1—4 are
shown in Fig. 1. Several important points are worth noting. First, all of the
profiles indicate that the hourly wage rate is responsive to changes in the hours
of weekly work. For each of the profiles the wage rate appears to either initially
slightly increase or slightly decrease before showing a notable increase in the
range of around 15 to approximately 42 to 45 h. The point at which the wage
rate stops increasing depends on the specification. After wages peak they tend to
show a dramatic decrease. Note, however, that the profile at higher hours is
dominated by relatively few observations.17 Second, for the values of hours at
which the majority of the observations are located, the unadjusted figure clearly
reveals less response in wages to changes in hours worked. This suggests that the
impact of endogeneity is reducing the estimated hours effect on wages. Third,
the adjusted profiles peak to the right of that for the unadjusted equation. While
the unadjusted results suggest that hours peak in the 35—40 range the adjusted

17The hours distribution in the sample of workers is as follows: 0—10h (4.4%); 10—20 h (10.7%);
20—30h (15.0%); 30—40h (49.9%); 40—50 h (15.6%); 50#h (4.4%).
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Fig. 1. The Estimated effect of hours on wages, relative to average of 34 hours.

results indicate that the overtime effects are stronger and lead to wages peaking
at approximately 42h per week, for the dynamic specifications, and at approx-
imately 45 h for the static model. Fig. 1 reveals that the profiles for the two
dynamic specifications are located between the OLS and adjusted static model.
This highlights the importance of incorporating dynamics. In the absence of the
lagged dependent variable we are assigning too much importance to the error
components. This results in overadjusting for endogeneity. Finally, consider the
implied increase in wages over the interval revealed by our preferred specifica-
tion to feature an increasing effect of hours. Over the hours interval 10—41,
comprising 82% of the data, the unadjusted estimates imply a wage increase of
34%. The corresponding increase implied by our preferred specification is 43%,
while correcting with a static labor supply equation produces a number of
almost 65%.

Ideally we would estimate the model by maximum likelihood to explore
the efficiency loss that occurs in this particular example by employing our
two step approach. Unfortunately, the complicated form of the likelihood
function made such a comparison impractical. While this failure to make
efficiency comparisons is disappointing it highlights a major attraction of our
approach, namely the ability to estimate models which would otherwise not
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be estimable. We also considered other methods of obtaining asymptotically
efficient standard errors in order to make comparisons. However, due to the
complicated nature of the model we were unable to do so. The one piece of
information we are able to provide is how much the standard errors increased in
the second step by having to estimate the parameters in the first step. We found
that, depending on the specification employed, the standard errors increased by
up to 10%.

5. Concluding remarks

This paper presents a two-step approach to estimating panel data models
with censored endogenous variables and sample selection. In contrast to
maximum likelihood estimation our procedure is computationally simple be-
cause only one-dimensional numerical integration is required, while a closed-
form solution for the second step estimator is available. The cost is a loss of
efficiency, which partially depends upon the magnitude of the covariances
responsible for the endogeneity/selectivity. Our approach can handle a large
variety of models. In particular it allows for truncation, censoring and sample
selection. In addition, it is straightforward to extend the current framework to
switching regressions models with endogenous switching and observed regimes.
Moreover, the two-step method identifies an additional number of parameters
that may have economic appeal, including two potential sources of endogene-
ity/selectivity and state dependence. Direct test for endogeneity/selectivity are
also provided.
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Appendix A. Covariance matrix estimation

First consider conditional moment estimation. The estimator is JN consis-
tent and asymptotically normal under weak regularity conditions. The asymp-
totic covariance matrix can be obtained using the results in Newey (1984). Let
h(2) denote the parameter vector from the reduced form (2) and (3) and let its

JN consistent estimator be given by hK (2) with asymptotic covariance matrix »
2
.

Furthermore, let h(1) denote the vector of parameters characterizing the condi-
tional mean in the second step, i.e:
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the asymptotic covariance matrix of the second step estimator for h(1) is given by
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which can be consistently estimated by replacing expectations with sample
moments and unknown parameters by their estimators. The second part within
brackets for »

1
is due to the generated regressors problem and equals zero if

q"0. A heteroskedasticity- and autocorrelation-consistent estimator for »
N

is
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given by
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where eL
i
is the ¹-dimensional vector of residuals.

Finally, if conditioning upon z
i
implies that certain observations are excluded

from the second stage estimation, the dimensions of all vectors and matrices
should be adjusted to include only those observations used in estimation.

Now consider conditional maximum likelihood estimation. Let hK (2) denote
the (marginal) ML estimator for h(2) with asymptotic covariance matrix »

2
and

hK (1) the conditional ML estimator obtained from maximizing Eq. (24). Let
f
1

denote the conditional density of y
i
given z

i
. Define
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Using the result that the two terms in square brackets are asymptotically
independent (see Pierce, 1982; Parke, 1986) it follows that the conditional ML
estimator is asymptotically normal with covariance matrix:
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is estimated by standard ML programs. In two cases hK (1) attains the
Cramér—Rao lower bound. The first corresponds to the null hypothesis of
exogeneity (pka"pgv"0) and is characterized by F

12
"0. The second case is

given by
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Note that J summarizes all information on h(2) contained in the conditional
distribution f

1
. We refer to J"0 as the exactly identified case (see Rivers and

Vuong, 1988, for an example). In general, the efficiency loss due to the two-step
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nature is given by
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Appendix B. Treatment of initial conditions

As the hours process for different individuals may have different starting
dates, and as some of the explanatory variables are likely to be non-stationary, it
is not tractable to derive an exact and estimable form of the marginal distribu-
tion of hours

i0
consistent with the conditional model in Eq. (28) (see Heckman,

1981). Our first approach ignores this problem and assumes that the initial value
hours

i0
can be treated as exogenous, i.e. independent of all error components in

the model (including the unobserved heterogeneity (a
i
) in the hours process for

t"1 onwards). In this case, all inferences are conditional upon hours
i0
, the

marginal distribution of which is not needed for consistency. In our second
approach we approximate the distribution of hours

i0
by a reduced form tobit

using presample (1979) information. With different starting dates, as indicated
by different levels of age or experience, it can be expected that the tobit
parameters are heterogeneous with respect to these two variables. Similarly, the
error terms are likely to exhibit heteroskedasticity. The specification of this
reduced form is determined, and empirically tested, independently of the rest of
the model.

Starting from a linear additive specification with the explanatory variables
from Table 2, we experimented with interaction terms and heteroskedasticity.
We arrived at a specification for initial hours that included, besides the
exogenous variables from Table 2, age-cubed and age interacted with years
schooling and the two racial dummies. For this specification there was no
statistical evidence of omitted interaction terms or heteroskedasticity related to
age. Normality, however, was rejected. This is similar to the finding for the other
periods. In the next step, this specification for the initial period was estimated
jointly with the dynamic model for the other periods. This requires one to
specify how the error terms are related. We chose to allow for different error
variances for this initial period. In particular, we modelled the initial error as
ma

i
#v

i0
, where v

i0
is i.i.d. normal with unrestricted variance and m is an

unknown parameter.
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Honoré, B, 1992. Trimmed LAD and least squares estimation of truncated and censored regression
models with fixed effects. Econometrica 60, 533—565.
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