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1 Introduction

In the twentieth century, people tended to retire earlier in most developed
countries, despite the fact that there was a steady and significant increase in
life expectancy. In the US, for example, the life expectancy at birth for men
who were born in 1900 was about 50 years. This figure increased substantially
to over 70 years for those who were born in the middle of the century, and
increased further to almost 80 years for those born in the 1990s.1 In spite of
increasing life expectancy, however, labor force participation rates for men
aged 65 and over steadily declined from over 60% in 1900 to around 20% at
the last decade of the century (Costa, 1998, Figure 2.1).2

Various reasons have been proposed to explain this seeming paradox.
For example, the important role of the generous benefits provided by the
social security system has been analyzed by Gruber and Wise (1998, 1999),
and the wealth effect associated with sustained economic growth has been
examined by Costa (1998). To complement these well-known explanations,
several researchers (such as Bloom et al., 2007; Kalemli-Ozcan and Weil,
2010) examine the relatively neglected question of how mortality decline
affects retirement age. In particular, Kalemli-Ozcan and Weil (2010) show
that people may retire earlier if the decrease in uncertainty about the age at
death associated with mortality decline is very significant. In this article, we
continue this line of inquiry by studying the differential incentives for early
retirement provided by mortality changes at different stages of demographic
transition.
A salient feature of mortality changes in many countries is that while

life expectancy has increased steadily over the last two centuries, mortal-
ity decline does not occur uniformly across age groups (Lee, 1994; Wilmoth
and Horiuchi, 1999; Cutler et al., 2006).3 In the earlier stage of mortality
transition, a decline in mortality pertains mainly to younger people, particu-

1The data, which are based on the life tables constructed by the Office of the Actuary
of the Social Security Administration, can be downloaded from the Berkeley Mortality
Database (http://www.demog.berkeley.edu/~bmd/). Obviously, some figures for these
cohort life tables reflect projected mortality.

2Similar conclusions are also obtained for slightly different age groups, countries and
time periods. For example, clear downward trends are observed in labor force participation
rates for men aged 60 to 64 in a larger set of developed countries (except perhaps Japan)
in the second half of the twentieth century (Gruber and Wise, 1999, Figure 1).

3Another feature of observed mortality decline, which is emphasized in Kalemli-Ozcan
and Weil (2010, p. 66), is that “as life expectancy has risen, uncertainty regarding the
date of death has fallen.” Both features have been mentioned in Wilmoth and Horiuchi
(1999). In Section 3 we will compare Kalemli-Ozcan and Weil (2010) with this article, and
link their differences to these two features of mortality decline.
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larly infants and children, whereas in the later stage, an “aging of mortality
decline” has occurred, characterized by “successively larger reductions in
mortality rates at older ages, and by smaller reductions at younger ages”
(Wilmoth and Horiuchi, 1999, pp. 484-5).4 An illustration of this pattern is
given in Figure 1, which is based on the survival data of different cohorts of
men in the US. The upper panel shows the survival curves of men born in
four different decades: the 1900s and 1910s in the beginning of the century,
and the 1980s and 1990s towards the end of the century. It is observed that
the improvement in survival probabilities at various ages is more substantial
from the 1900s to 1910s than from the 1980s to 1990s. Moreover, unlike the
later period, the mortality decline during the earlier period pertained mainly
to younger people. This is seen more clearly in the lower panel of Figure 1, in
which we plot the mortality rates (in log) at different ages, starting from age
20.5 The mortality decline occurred in greater concentration among people
aged 20 to 50 from the 1900s to 1910s.

[Insert Figure 1 here.]

Motivated by the stylized facts regarding the aging of mortality decline,
we study the effect on optimal retirement age of a change in mortality at an
arbitrary age. To examine this question, we use a method which contrasts
with most existing studies. Existing studies usually address the effect of mor-
tality decline by modeling the human mortality pattern using a parametric
approach and considering the derivative of retirement age with respect to a
change in the survival parameter. One characteristic of this approach is that
a change in the survival parameter usually affects mortality rates at different
ages simultaneously. For example, in an article examining whether an indi-
vidual’s saving level or retirement age adjusts more substantially when there
is a mortality decline, Bloom et al. (2007) show in a model with age-invariant
mortality rates (as in Blanchard, 1985) that the optimal response to a mor-
tality decline is to delay retirement, with zero (or possibly negative) effect on

4A related and more formal term is “epidemiologic transition”, which refers to the
transition “in which degenerative and man-made diseases displace pandemics of infection
as the primary causes of morbidity and mortality.” (Omran, 1971, p. 510). In this article,
we do not investigate the causes of mortality decline but rather take them as given, and
focus on the implications of the “aging of mortality decline” aspect of this transition.

5Note that age-specific mortality rate, μ (x), is related to the survival probability, l (x),
according to equation (1) below, or equivalently, μ (x) = − 1

l(x)
dl(x)
dx . Note also that in

Figure 1 we plot the data up to age 110 (instead of 120 in the original data set), because
the mortality rates for men aged above 105 or so are based on an extremely small number
of observations.
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saving rates. However, a change in the parameter of an age-invariant mor-
tality process affects mortality rates at all ages to the same extent.6 Thus,
although this widely used specification is helpful for analyzing some economic
phenomena (such as government debt policies), it is not appropriate if one’s
objective is to isolate the impact of mortality change at a particular age, as
we aim to do in this article. In other parametric specifications of the survival
curve (such as in Boucekkine et al., 2002), a mortality parameter change does
not go so far as to affect mortality rates at all ages to the same extent, but
it still affects mortality rates at different ages simultaneously. Thus, if there
are systematic differences in how changes in mortality at different ages affect
the retirement age, the differences are not clearly illuminated through these
methods. In order to study whether such systematic differences exist or not,
a different approach is called for.
In this article, we consider a life-cycle model of consumption and retire-

ment choice with lifetime uncertainty, and characterize the optimal retire-
ment age and consumption path. We then investigate the effect of a change
in age-specific mortality rate on the optimal retirement age. Since the optimal
retirement age is a function of mortality rates that are themselves dependent
on age, the appropriate method to use is the derivative of a functional. We
use the Volterra derivative (Volterra, 1959; Ryder and Heal, 1973) to show
that, while a mortality decline among older people unambiguously leads to
a delay in retirement, a mortality decline among young people may lead to
earlier retirement. We provide economic intuition of this systematic differ-
ence by decomposing the effect of a mortality change on retirement age into
the “years-to-consume” and “lifetime human wealth” effects. (More detailed
discussion of these effects will be provided in Section 3.) When a mortality
decline occurs among an older age group, as in the later phase of mortal-
ity transition, the increase in individuals’ expected lifetime human wealth is
usually negligible, and thus the years-to-consume effect dominates. On the
other hand, when a mortality decline occurs among a younger age group, as
in the early phase of mortality transition, it turns out that the increase in
individuals’ expected lifetime human wealth can be quite substantial, dom-
inating the years-to-consume effect. Our analysis thus provides a possible
explanation for the counterintuitive result that a mortality decline may lead
to earlier retirement if it occurs primarily among a younger cohort of the
population.
The remaining sections of this article are organized as follows. Section 2
6The survival probability of an age-invariant mortality process is given by l (x) = e−θx,

where θ is the instantaneous mortality rate at any age. Thus, a change in θ affects mortality
rates at all ages by the same extent.
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introduces the life-cycle model with lifetime uncertainty to examine consump-
tion and retirement decisions. Section 3 considers the effect of a mortality
decline at an arbitrary age on optimal retirement age. Since the effect of
mortality changes on retirement age is most clearly seen in a basic life-cycle
model in which perfect annuities are present and disutility of labor does not
depend on life expectancy, we first analyze this basic model in Sections 2
and 3. Section 4 extends the model to allow for the dependence of disutility
of labor on life expectancy to capture the “compression of morbidity” hy-
pothesis (as in Bloom et al., 2007), and to allow for imperfect annuities. We
demonstrate the robustness of the main results in the basic model vis-à-vis
these different specifications. Section 5 provides the concluding remarks.

2 The model

We consider a life-cycle model in which age is modeled as a continuous vari-
able between 0 and Ω (the maximum age).7 Lifetime uncertainty is captured
by a general specification of the survival function l (x), where

l (x) = e−
R x
0 μ(q)dq (1)

is the survival probability at age x, l (0) = 1, l (Ω) = 0, and μ (q) ≥ 0 (with
limq→Ω μ (q) =∞) is the instantaneous mortality rate at age q.
We make the convenient yet realistic assumptions that labor supply is

indivisible and retirement decision is irreversible. These assumptions follow
many articles such as Heijdra and Romp (2009) and Kalemli-Ozcan and Weil
(2010), and are consistent with the stylized description of retirement as “a
complete and permanent withdrawal from paid labor” in Costa (1998, p. 6).
In this model, an individual is assumed to choose a consumption path

and a retirement age to maximize expected lifetime utilityZ Ω

0

e−ρxl (x)U (c (x)) dx−
Z R

0

e−ρxl (x)φ (x) dx, (2)

subject to the law of motion

a0 (x) =
½
[r + μ (x)] a (x) + w (x)− c (x)
[r + μ (x)] a (x)− c (x)

if x ≤ R
if x > R

, (3)

7As in many studies examining the relation between life expectancy and retirement
age, we abstract from the childhood stage of the human life cycle. Thus, age in our model
refers to adult age (which can be conveniently interpreted as actual age minus 20), unless
specified otherwise.
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and boundary conditions

a (0) = 0, a (Ω) ≥ 0, (4)

where R ∈ [0,Ω] is the retirement age, ρ is the discount rate, r is the constant
(real) interest rate, w (x) is the (real) wage income at age x if the individual
is working, c (x) is consumption at age x, a (x) is financial wealth at age x,
and φ (x) is disutility of labor at age x.
In this model, it is assumed that individuals have no bequest motive, and

that annuities are perfect (as in Yaari, 1965). It is well known that in such an
environment, individuals will find it optimal to purchase annuity contracts.
As captured in (3), an individual of age x will surrender financial wealth
a (x) to the insurance company if death occurs, but will receive an extra
amount equal to μ (x) a (x) if death does not occur. We make the standard
assumption that marginal utility of consumption is positive and diminishing:

U 0 (c) > 0, U 00 (c) < 0. (5)

It is also assumed that disutility of labor is non-negative and non-decreasing
in age:

φ (x) ≥ 0, φ0 (x) ≥ 0. (6)

The assumption φ0 (x) ≥ 0 has also been used in Hazan (2009) and Heijdra
and Romp (2009).
The various specifications of this model are guided by related work and the

objective of this article. We first review several closely related articles exam-
ining the effect of mortality decline on retirement age, and organize their dif-
ferences along three aspects: survival function, annuity market and objective
function. As summarized in Table 1, researchers use different specifications
of the survival curves, including rectangular, exponential, a two-parameter
model suggested by Boucekkine et al. (2002), and a general specification
based on actual data. For the annuity market, it is assumed to be perfect
in most of these articles, but the alternative assumptions of no or imperfect
annuity market have also been used in Chang (1991), Heijdra and Mierau
(2009) and Kalemli-Ozcan and Weil (2010). For the objective function, all
of these articles assume time separability and no bequest motive, and all but
one of these articles assume that the instantaneous objective function is sep-
arable in consumption and labor (or leisure). Furthermore, a general concave
utility function of consumption, as well as special functional forms ranging
from linear, log and Constant Relative Risk Aversion (CRRA), have been
used. For disutility of labor function, researchers make various assumptions
such as being independent of age, depending on age only, or depending on
age and life expectancy.
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[Insert Table 1 here.]

Since our objective is to investigate the impact on retirement age of the
aging of mortality decline, we use a general non-parametric survival function
to isolate the impact of mortality decline at an arbitrary age.8 We assume
a perfect annuity market, and the reasons are as follows. Kalemli-Ozcan
and Weil (2010) focus on the decrease in uncertainty about the age at death
during the mortality transition, and show that mortality decline may lead to
earlier retirement. Their suggested mechanism depends crucially on a lack of
annuities, since the effect on retirement age of a decrease in the variability of
age at death is eliminated if perfect annuities exist, and other channels asso-
ciated with mortality decline lead to a delay in retirement (see the discussion
in pp. 76-7 of their paper). We make the opposite assumption of perfect an-
nuity market, so that the channel through the decrease in variability of age
at death is shut down, and any possible effect of mortality decline is purely
due to the aging of mortality decline.9

Following most researchers, we choose a time-additive objective function
with separability in consumption and labor. For the various specifications
about disutility of labor mentioned in Table 1, we obtain the same qualita-
tive results. Since the intuition is most clearly seen when disutility of labor
depends on age only, we make this assumption in the main model of this
section, and incorporate the role of life expectancy in the disutility of labor
function in Section 4.1. For utility of consumption, we start with a general
concave function and obtain unambiguous results about the impact on re-
tirement age of mortality decline after retirement. However, the effects of
mortality reductions before retirement are ambiguous in general. To obtain
sharper results, we make further assumptions on the utility function, and we
do so in two directions: (a) assuming CRRA, as in Heijdra and Romp (2009)
and Kalemli-Ozcan and Weil (2010); and (b) assuming r = ρ, as in Hazan
(2009) and Bloom et al. (2010). In either case, the stronger assumptions
allow us to provide interesting economic interpretations of the results.10

We obtain the individual’s optimal consumption and retirement choices
in two steps. First, conditional on a particular retirement age, we obtain
the optimal consumption path. Define the optimal consumption at age x,
conditional on retirement age R, as c (x,R). Second, based on the conditional

8We do not use a parametric specification of the survival function in this article, be-
cause, as discussed in the Introduction, a change in the survival parameter affects mortality
rates at different ages simultaneously.

9In Section 4.2, we conduct robustness analysis regarding annuity market imperfection.
10To summarize, our assumptions of the survival function, annuity market and objective

function turn out to be very similar to those in Heijdra and Romp (2009) and Bloom et
al. (2010).
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consumption choices in the first step, we obtain the optimal retirement age.
This two-step procedure has also been used in d’Albis and Augeraud-Véron
(2008) and Heijdra and Romp (2009).
In the following analysis, we assume that there exists an age x such that

ρ− r + w
0 (x)
w (x)

≤ 0 (7)

for all x ≥ x, and
e−rxw (x)U 0 (c (0, x))− e−ρxφ (x) > 0 (8)

for all x ≤ x.11 We also assume that
e−rΩw (Ω)U 0 (c (0,Ω))− e−ρΩφ (Ω) < 0. (9)

In Proposition 1, we characterize the optimal consumption path and re-
tirement age. We also show that the interior solution for retirement age,
R∗ ∈ (0,Ω), exists and is unique when (7) to (9) hold.12 The proof of Propo-
sition 1 is given in Appendix A.
Proposition 1. For the life-cycle model given by (1) to (6), the optimal path
of consumption, conditional on retirement age R, is characterized by

U 0 (c (x,R)) = e(ρ−r)xU 0 (c (0, R)) . (10)

Moreover, an interior optimal retirement age (R∗), which is defined by

e−rR
∗
w (R∗)U 0 (c (0, R∗)) = e−ρR

∗
φ (R∗) , (11)

exists and is unique if (7) to (9) are satisfied.
Equation (10) is the (continuous-time version of) Euler equation char-

acterizing the optimal consumption path. The retirement age decision is
determined by the two terms on the right-hand side of (A5) in Appendix A;
the first term is the marginal benefit of delaying the retirement age at age R,
the second term is the marginal cost, and both are discounted back to age
0.13 Equating the marginal benefit with marginal cost and simplifying gives
condition (11).
11Assumption (7), which may be restrictive for younger ages, is reasonable for older ages

(say, for ages above x = 50), since wage profile is usually hump-shaped. Assumption (8) is
reasonable for younger ages below x, since disutility of labor is quite low when compared
with the benefit of working at these ages. Together with assumption (9), they are sufficient
for Proposition 1 to hold.
12For a modern economy, corner solutions of retirement age are not very interesting.
13Equivalently, (11) can be expressed as w (R∗)U 0 (c (R∗, R∗)) = φ (R∗). This form

has been used, for example, in Sheshinski (2008, chapter 4). We use (11) because it is
more convenient to present our subsequent results in terms of the initial consumption level
c (0, R∗).
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3 Differential incentives for early retirement

We now use the life-cycle model to understand the differential incentives for
early retirement at different stages of the mortality transition. The use of a
general survival function (1) allows us to consider the derivative of optimal
retirement age with respect to a mortality change “around” an arbitrary age
x0 ∈ (0,Ω), holding mortality rates at other ages unchanged. Specifically,
we use the Volterra derivative of a functional (see, for example, Section 3 of
Ryder and Heal, 1973) to analyze the impact of a change in μ (x0). First,
using (1), we obtain

−∂l (x)
∂μ (x0)

=

½
0
l (x)

if x < x0
if x ≥ x0 . (12)

Note that we use −∂l(x)
∂μ(x0)

, which corresponds to the effect on survival proba-

bility of a mortality decrease, instead of that of a mortality increase, ∂l(x)
∂μ(x0)

.
Equation (12) has an intuitive interpretation that a mortality decline at age
x0 only increases the survival probability at ages above or equal to x0, but
has no effect on survival probability before that age.
To examine the impact on optimal retirement decision of a change in

mortality rate at age x0, we totally differentiating (11) with respect to R∗

and μ (x0) to obtain14

∂R∗

∂μ (x0)
=

1
σ(c(0,R∗))

1
c(0,R∗)

∂c(0,R∗)
∂μ(x0)h

ρ− r + w0(R∗)
w(R∗) − 1

σ(c(0,R∗))
1

c(0,R∗)
∂c(0,R∗)

∂R
− φ0(R∗)

φ(R∗)

i , (13)

where

σ (c) =
−U 0 (c)
cU 00 (c)

> 0 (14)

is the elasticity of intertemporal substitution when consumption level is c.
Combining (7), (13) and (14), we have

sign

∙ −∂R∗
∂μ (x0)

¸
= −sign

∙−∂c (0, R∗)
∂μ (x0)

¸
, (15)

which means that retirement age and initial consumption move in opposite
directions for the optimal solution. The intuition of (15) can be seen from
14Note that initial consumption depends on mortality rate at an arbitrary age x0 directly

as well as indirectly through R∗. While one may express this dependence explicitly as
c (0, R∗,μ (x0)) for the comparative static exercises in this section, we maintain the form
c (0, R∗) in the previous section for simplicity.
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(11). When an external shock (such as a mortality change) increases initial
consumption, the marginal utility of consumption, U 0 (c (0, R∗)), decreases.
Looking at the two terms in (11) from a marginal benefit and marginal cost
perspective, such a mortality change shifts the marginal benefit (of delaying
retirement age) schedule downward, but the marginal cost schedule remains
unchanged. As a result, optimal retirement age decreases.
The impact of mortality decline in this model is given in Proposition 2. In

particular, we obtain unambiguous result about the sign of the effects on the
consumption path and retirement age of mortality reductions at ages after
retirement. The proof is given in Appendix B.
Proposition 2. For the life-cycle model given by (1) to (6),
(a) the sign of −∂R∗

∂μ(x0)
is the same as that of a (x0), and

(b) when x0 ≥ R∗,
−∂c (x,R∗)
∂μ (x0)

< 0 (16)

for all x ∈ (0,Ω), and
−∂R∗
∂μ (x0)

> 0. (17)

The intuition of Proposition 2 (a) is as follows. A mortality decline at
an arbitrary age x0 affects lifetime earning and consumption. The effect on
lifetime earning, given in the right-hand side of (A6), is through changes in
survival probabilities. The effect on lifetime consumption, on the other hand,
are through changes in survival probabilities and in the consumption level;
see the left-hand side of (A6). Since mortality decline at x0 only induces
increases in survival probabilities at all ages above it, the two terms related
to changes in survival probabilities in (A6) turn out to be closely related
to the level of financial asset at x0, because of the intertemporal budget
constraint at x0. Combining with an implication of the Euler equation (10)
that −∂c(x,R

∗)
∂μ(x0)

must be of the same sign for all x, we can express −∂c(0,R
∗)

∂μ(x0)
in

terms of a (x0), as in (A10). Together with (15), we prove Proposition 2 (a).
Proposition 2 (b) is immediate since a (x0) must be positive for x0 ≥ R∗

to support post-retirement consumption. A further look at the proof of
Proposition 2 (b) provides interesting insights useful for subsequent analysis.
A mortality decline at x0 ≥ R∗ does not affect lifetime earning. Thus, the
two terms related to lifetime consumption, given in the left-hand side of (A6),
have to sum to zero. These two terms represent the effect of consumption
level changes (at unchanged survival probabilities) and survival probability
changes (at unchanged consumption level), respectively. It is easy to see
that the second term, related to survival probability changes, is positive.
This implies that the first term, related to consumption level changes, must
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be negative. According to (A9), −∂c(x,R
∗)

∂μ(x0)
has the same sign for all x, implying

that the new consumption path must be either all above or all below the old
consumption path. If the new consumption path is above the old one, the
first term on the left-hand side of (A6) is positive, and it is inconsistent with
the intertemporal budget constraint. Thus, this possibility is excluded, and
we obtain (16) and (17) in Proposition 2 (b).
It is observed from the proof of Proposition 2 (b) that it depends only on

the intertemporal budget constraint and the Euler equation, and it holds for
all functional forms of U(c). This proof works because a mortality decline at
x0 ≥ R∗ does not affect lifetime earning. On the other hand, when a mortality
decline happens before retirement, it affects lifetime earning, and Proposition
2 (a) shows that the impact on optimal retirement age depends on the sign of
a (x0), or equivalently, the relative magnitude of

R Ω

x0
e−rxl (x) c (x,R∗) dx andR R∗

x0
e−rxl (x)w (x) dx. It is difficult to obtain further results about the sign of

−∂R∗
∂μ(x0)

, and the source of difficulty is that with a general utility function, there
is no explicit solution for the endogenous consumption path c (x,R∗). For-
tunately, it is well known that the consumption path can be solved when (a)
the instantaneous utility function is CRRA, and (b) r = ρ. In the following,
we exploit this knowledge and examine these special cases.

3.1 CRRA utility function

For the first special case, we assume that

U (c) =
c1−

1
σ − 1

1− 1
σ

, (18)

where σ > 0 is the constant elasticity of intertemporal substitution for the
CRRA utility function. In this case, it can further be shown that the initial
consumption level, conditional on retirement age R, is given by15

c (0, R) = m (0)h (0, R) , (19)

where

h (0, R) =

Z R

0

e−rxl (x)w (x) dx (20)

15When the instantaneous utility function is CRRA, (A1) can be simplified as

∂c (x,R)

∂x
= σ (r − ρ) c (x,R) . (A1a)

Using (A1a) and (A3), we obtain (19).
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is the individual’s human wealth (i.e., non-financial wealth) at age 0 condi-
tional on retirement age R, and

m (0) =

∙Z Ω

0

e−[(1−σ)r+σρ]xl (x) dx
¸−1

(21)

is the marginal (and average) propensity to consume with respect to human
wealth at age 0.
According to (19), initial consumption is equal to the product of marginal

propensity to consume and human wealth. Therefore, we can decompose the
impact of mortality change, measured in percentage, on initial consumption
as the sum of the impact of mortality change, again in percentage, on mar-
ginal propensity to consume and on human wealth according to

1

c (0, R∗)

µ−∂c (0, R∗)
∂μ (x0)

¶
=

1

m (0)

µ−∂m (0)
∂μ (x0)

¶
+

1

h (0, R∗)

µ−∂h (0, R∗)
∂μ (x0)

¶

= −
R Ω

x0
e−[(1−σ)r+σρ]xl (x) dxR Ω

0
e−[(1−σ)r+σρ]xl (x) dx

+
1

h (0, R∗)

µ−∂h (0, R∗)
∂μ (x0)

¶
. (22)

Note that 1
m(0)

³
−∂m(0)
∂μ(x0)

´
does not depend on R∗, and (12) and (21) have been

used in the second equality of (22).
A mortality decline leads to a higher expected number of years to live.

This translates into more years to consume, and thus the marginal propensity
to consume is reduced. This effect, which is always negative, is represented
by the first term on the right-hand side of (22), and we will refer it as the
“years-to-consume” effect. Initial consumption will be reduced if lifetime
human wealth remains unchanged. A mortality decline, however, generally
increases the expected lifetime human wealth. This effect, which is non-
negative, is represented by the second term on the right-hand side of (22),
and we refer to it as the “lifetime human wealth” effect.
We now apply this decomposition to the life-cycle model with CRRA

utility function. Obviously, Proposition 2 is applicable for this special case.
In particular, a mortality decline at an age x0 ≥ R∗ leads to a delay in
retirement age. For the CRRA utility function, our decomposition provides
an additional interpretation of the result in Preposition 2 (b). A mortality
decline at an age ≥ R∗ (after retirement) does not affect lifetime human
wealth (i.e., the second term on the right-hand side of (22) becomes zero).
As a result, there is only a years-to-consume effect for this mortality change.
This leads to a negative effect on initial consumption and thus, through (15),
a delay in optimal retirement age.
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The analysis for a mortality decline occurring at an age before retirement
is more complicated. In this case, there is a negative lifetime human wealth
effect and a positive years-to-consume effect on initial consumption. The
overall result is generally ambiguous, and (15) and (22) imply that the sign
of −∂R

∗
∂μ(x0)

is the same as that of

f (x0) ≡
R Ω

x0
e−[(1−σ)r+σρ]xl (x) dxR Ω

0
e−[(1−σ)r+σρ]xl (x) dx

−
R R∗
x0
e−rxl (x)w (x) dxR R∗

0
e−rxl (x)w (x) dx

. (23)

Equation (23) indicates that, when a mortality decline occurs at such an age
that there is a substantial increase in expected lifetime human wealth, the
lifetime human wealth effect dominates the years-to-consume effect, leading
to an increase in initial consumption. The substantial increase in lifetime
resources leads to an increase in optimal consumption initially, resulting in
earlier retirement according to (15).
The analysis up to this point only indicates that a mortality decline at a

younger age leading to an earlier retirement age is a possibility when the life-
time human wealth effect dominates the years-to-consume effect. This condi-
tion is consistent with a negative financial asset level according to Proposition
2 (a), which holds for a general concave utility function. With CRRA util-
ity function, however, the above decomposition allows us to find sufficient
conditions under which sharper results are obtained. They are stated in
Proposition 3.
Proposition 3. In the life-cycle model with CRRA utility function, if

w (0) <

R R∗
0
e−rxl (x)w (x) dxR Ω

0
e−[(1−σ)r+σρ]xl (x) dx

= c (0, R∗) , (24)

and
w0 (x)
w (x)

is a monotonic function of x for all x ∈ (0, R∗) , (25)

then there exists a critical age xc within the open interval (0, R∗) such that
(a) −∂c(x,R∗)

∂μ(x0)
> 0 for all x ∈ (0,Ω) and −∂R∗

∂μ(x0)
< 0 for all x0 ∈ (0, xc),

(b) −∂c(x,R∗)
∂μ(x0)

= 0 for all x ∈ (0,Ω) and −∂R∗
∂μ(x0)

= 0 when x0 = xc, and

(c) −∂c(x,R∗)
∂μ(x0)

< 0 for all x ∈ (0,Ω) and −∂R∗
∂μ(x0)

> 0 for all x0 ∈ (xc, R∗).
Proposition 3 can be understood by comparing the relative magnitude

of the lifetime human wealth and years-to-consume effects. In Figure 2, we
examine each of these effects as a function of x0, the age at which there is a
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mortality decline.16 It can be seen from (23) that each of the terms on the
right-hand side of (23) is downward sloping, with the first term (the years-to-
consume effect) decreasing from 1 at the beginning age to some value between
0 and 1 at age R∗ (point A in Figure 2) and then to 0 at age Ω, and the second
term (the lifetime human wealth effect) decreasing from 1 at the beginning
age to 0 at age R∗, thereafter remaining at 0. According to the proof of
Proposition 3, given in Appendix C, if the initial level of wage income, w (0),
is sufficiently low such that (24) holds, then there exists an interval within
which a mortality decline at a particular age will lead to earlier retirement.
Moreover, if the wage profile is such that the initial wage level satisfies (24)
and its growth rate satisfies the monotonicity properties (25), then there
exists a threshold age xc after which the years-to-consume effect dominates
the lifetime human wealth effect.17 As a result, a mortality decline after the
threshold age leads to a higher optimal retirement age. On the other hand, a
mortality decline before the threshold age leads to earlier retirement because
the lifetime human wealth effect dominates the years-to-consume effect.

[Insert Figure 2 here.]

3.2 With interest and discount rates are equal

For the second special case, we assume that

r = ρ. (26)

From (5), (10) and (26), it can be seen that c (x,R) is independent of age.
Because of this property, we can solve c (0, R) in a form similar to (19), such
that h (0, R) is given by (20) and

m (0) =

∙Z Ω

0

e−rxl (x) dx
¸−1

. (21a)

16Figure 2 is based on numerical calculations with parameter values set at r = 0.05,
ρ = 0.02 and σ = 0.5. The age-specific mortality rates are the average taken from the
1990 to 1999 cohorts of US men from the Berkeley Mortality Database. The wage profile
data are based on the average labor income for US men who are in the labor force from 1990
to 1999. The data source is the Current Population Survey (http://cps.ipums.org/cps/).
We have performed robustness check and obtained similar results when, for example, the
survival and wage data are from 1980 to 1989.
17Note that assumption (24) implies that the individual is in debt at young ages. It is

easy to see that either a constant or exponential wage profile satisfies the monotonicity
(of growth rate) assumption (25). An empirically more relevant hump-shaped wage profile
(where w00 (x) ≤ 0 in the relevant region with a strictly negative value for some x) also
satisfies (25), because d

dx

h
w0(x)
w(x)

i
=

w00(x)w(x)−[w0(x)]2
[w(x)]2

≤ 0.
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Following the analysis similar to that for the CRRA utility function, it
can be shown that18

Proposition 4. In the life-cycle model with r = ρ, if

w (0) <

R R∗
0
e−rxl (x)w (x) dxR Ω

0
e−rxl (x) dx

(24a)

and (25) hold, then there exists a critical age xc∈ (0, R∗) such that
(a) −∂c(x,R∗)

∂μ(x0)
> 0 for all x ∈ (0,Ω) and −∂R∗

∂μ(x0)
< 0 for all x0 ∈ (0, xc),

(b) −∂c(x,R∗)
∂μ(x0)

= 0 for all x ∈ (0,Ω) and −∂R∗
∂μ(x0)

= 0 when x0 = xc, and

(c) −∂c(x,R∗)
∂μ(x0)

< 0 for all x ∈ (0,Ω) and −∂R∗
∂μ(x0)

> 0 for all x0 ∈ (xc, R∗).
As for the CRRA utility function, the impact of mortality decline on re-

tirement age for this special case can be decomposed into the lifetime human
wealth and years-to-consume effects.

3.3 Comparisons with Kalemli-Ozcan and Weil (2010)

The result that a mortality decline (at some young ages before retirement)
may lead to an earlier retirement age is quite counterintuitive, and has not
been emphasized much in the literature, except by Kalemli-Ozcan and Weil
(2010).19 Kalemli-Ozcan and Weil (2010) argue that, when mortality is high,
people who plan to save for retirement have a high risk of dying young and
wasting their savings. As a result, the optimal plan is to work until a very
old age or even until death. On the other hand, when mortality is low and
the uncertainty of death is reduced, people may become more willing to plan,
and save for, a longer retirement period.
Despite some similarities in the results, our analysis differs significantly

from theirs. There are three major aspects that these two articles differ.
First, as discussed in Section 2, Kalemli-Ozcan and Weil (2010) assume no
18It is easy to see that when r = ρ, (21) becomes (21a), and (24) becomes (24a). As a

result, the proof of Proposition 4 is essentially the same as that of Proposition 3.
19Chang (1991) also suggests that early retirement may emerge when there is a mortality

decline if the individual saves in old age or if the annuity market is imperfect. However,
he obtains the results in either a deterministic model or a model in which lifetime uncer-
tainty is captured by an age-invariant mortality process. The assumption of no lifetime
uncertainty or the age-invariant mortality rate assumption is rather unrealistic, and we,
as well as Kalemli-Ozcan and Weil (2010), use a model with lifetime uncertainty cap-
tured by a general survival function. Heijdra and Romp (2009) also show that a mortality
decline may lead to early retirement in an open-economy overlapping-generations model.
However, they do not emphasize this possibility, but rather point out that, for realistic
scenarios, a mortality decline will lead to a delay in retirement.
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annuities but we assume that perfect annuities exist. Second, these two arti-
cles decompose the effect of mortality decline on retirement age in different
ways. Kalemli-Ozcan and Weil (2010) use a model with rectangular survival
(as well as a model with exponential survival and perfect annuity market) to
show that a mortality decline leads to a delay in retirement, an outcome they
call the “horizon effect”, which is similar to the years-to-consume effect dis-
cussed above. They then use models with more general mortality processes
and no annuities, and identify the effect of a mortality decline on retirement
age as the sum of the horizon effect and what they call the “uncertainty
effect”. On the other hand, we emphasize the lifetime human wealth effect
instead of the uncertainty effect. Third, they analyze simultaneous mortal-
ity changes at all ages, but we analyze the effect of mortality decline at an
arbitrary age, holding mortality rates at other ages unchanged.
The different features in Kalemli-Ozcan and Weil (2010) and this article

can be traced to the fact that these two articles emphasize different aspects
of mortality decline. Kalemli-Ozcan and Weil (2010) focus on a decrease
in the uncertainty of age at death, and we focus on the aging of mortality
decline. They show that mortality decline may lead to early retirement if
the uncertainty effect is very strong. Moreover, they examine the impact
of mortality reductions at all ages, since a decrease in the variability of age
at death is more meaningful when one considers mortality reductions at all
ages. On the other hand, we focus on the aging of mortality decline and
find that the lifetime human wealth effect is important for this channel. We
examine mortality decline at an arbitrary age (instead of a mortality decline
process consisting of mortality changes at all ages) to highlight that mortality
reductions at different ages have systematically different effects on lifetime
human wealth, and thus on retirement age.
Both the decrease in variability of age at death and the aging of mortality

decline are associated with the mortality transition; see, for example, Figure
1 of Wilmoth and Horiuchi (1999).20 Kalemli-Ozcan and Weil (2010) and
this article are complementary, since they focus on one aspect of mortality
decline and we focus on the other, and both show that mortality decline may
lead to early retirement.
20Interestingly, Figures 1 and 2 in Kalemli-Ozcan and Weil (2010) are similar to Figures

1b and 1c of Wilmoth and Horiuchi (1999), and the two panels in Figure 1 of this article
are similar to Figures 1a and 1c of Wilmoth and Horiuchi (1999).
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4 Extension

In the previous section, we obtain the systematic difference between the
effects on retirement age of a mortality decline at younger and older ages in a
life-cycle model with the most essential features. The roles of some features of
this basic model are as follows. By assuming that disutility of labor depends
only on age and not on life expectancy, a mortality change shifts the marginal
benefit schedule of delaying retirement, but not the marginal cost schedule.
By assuming a perfect annuity market, the survival probability l (R) has the
same effect on the marginal benefit and marginal cost of delaying retirement,
as seen in (A5). These assumptions enable us to obtain the sharp results in
Section 3 and to provide intuitive interpretation.
We now demonstrate that the results in the previous section continue to

hold when various assumptions are relaxed. Specifically, we consider: (a)
a dependence of disutility of labor on both current age and life expectancy,
which affects the marginal cost of delaying retirement; and (b) the possibility
of imperfect annuities, which affects the marginal benefit and marginal cost
of delaying retirement differently.21

4.1 A more general disutility of labor function

One feature associated with the phenomenon of mortality decline is that,
besides living longer, individuals also tend to remain healthy for a longer du-
ration, as demonstrated by the average sixty-year-old today, who is healthier
than a typical sixty-year-old a century ago. To capture this phenomenon,
Bloom et al. (2007) assume that both health status and disutility of labor
depend on age relative to life expectancy. They argue that this assumption
is consistent with the hypothesis of compression of morbidity, in which the
relative, or even absolute, length of time spent in chronic ill-health toward
the end of life declines when life expectancy increases (Bloom et al., 2007, p.
94). We follow their logic in this sub-section, but allow for a slightly more
general specification in which disutility of labor depends on age positively
and on life expectancy negatively.
In this case, the objective function (2) is replaced byZ Ω

0

e−ρxl (x)U (c (x)) dx−
Z R

0

e−ρxl (x)φ (x, ε (x)) dx, (27)

21We have also considered the presence of a social security system and found that our
results continue to hold in that environment. These analyses are not presented to save
space, but they are available to interested readers upon request.
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where

ε (x) =

R Ω

x
l (q) dq

l (x)
(28)

is life expectancy at age x, and φ01 (x, ε (x)) > 0 and φ02 (x, ε (x)) < 0 are the
partial derivatives of the disutility function φ (x, ε (x)) with respect to age
and life expectancy, respectively. There is no change in the budget constraint
(3). It can be shown that the optimal retirement age is characterized by

e−rR
∗
w (R∗)U 0 (c (0, R∗)) = e−ρR

∗
φ (R∗, ε (R∗)) . (29)

The first-order condition (29) is similar to (11), except that disutility of labor
now depends on life expectancy as well.
Because a mortality change can affect life expectancy according to (28),

we can use (1) and (28) to obtain

−∂ε (x)
∂μ (x0)

=

(
ε(x0)l(x0)
l(x)

0

if x < x0
if x ≥ x0 . (30)

Note that life expectancy at a particular age is the expectation of further
life beyond that age. Therefore, a mortality decline at x0 only affects life
expectancy before that age, but has no effect on life expectancy at an age
above or equal to x0.
It can be shown from (29) and (30) that

sign

∙ −∂R∗
∂μ (x0)

¸
= −sign

∙−∂c (0, R∗)
∂μ (x0)

¸
(31)

for x0 ≤ R∗, and

sign

∙ −∂R∗
∂μ (x0)

¸
= −sign

∙
1

c (0, R∗)

µ−∂c (0, R∗)
∂μ (x0)

¶
+ σ (c (0, R∗))

φ02 (R
∗, ε (R∗))

φ (R∗, ε (R∗))
ε (x0) l (x0)

l (R∗)

¸
> 0 (32)

for x0 > R∗.
A mortality decline at an age ≤ R∗ will have no effect on life expectancy

at R∗, according to (30). As a result, (31) states that there is no change in
the marginal cost schedule, as in the analysis of Section 3. It is clear that
the results in that section continue to hold when disutility of labor depends
also on life expectancy.
When x0 > R∗, both 1

c(0,R∗)

³
−∂c(0,R∗)
∂μ(x0)

´
and σ (c (0, R∗)) φ02(R∗,ε(R∗))

φ(R∗,ε(R∗))
ε(x0)l(x0)
l(R∗)

in (32) are negative, and their effects on the marginal benefit and marginal
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cost schedules of delaying retirement are as follows. Since a mortality decline
after retirement does not affect lifetime earning, a higher consumption path
is inconsistent with the (unchanged) budget constraint. Therefore, c (0, R∗)
decreases and the marginal utility of consumption increases, leading to an
upward shift of the marginal benefit (of delaying retirement) schedule. Thus,
the first term is negative, and the intuition is the same as in Section 3. For
the second term, a mortality decline at x0 > R∗ will affect life expectancy at
the optimal retirement age, ε (R∗), positively. Thus, it affects the marginal
cost of delaying retirement negatively because φ02 (x, ε (x)) < 0. As a result,
the marginal cost schedule shifts downward. Combining the two effects, the
overall effect is an increase in the optimal retirement age.
We conclude that the qualitative results of Section 3 are also applicable

when disutility of labor depends on both age and life expectancy.

4.2 Allowing for imperfect annuities

As mentioned in Section 2, we assume a perfect annuity market so as to
focus on the effect due to the aging of mortality decline. Because the effect
on retirement age of a decrease in uncertainty of age at death is eliminated
by perfect annuities (Kalemli-Ozcan and Weil, 2010), the perfect annuity
assumption guarantees that any possible effect obtained in our model is not
caused by the uncertainty effect.
While the perfect annuity market has been a useful theoretical bench-

mark in many articles (including Bloom et al. (2010), Bloom et al. (2007),
Boucekkine et al. (2002) and Heijdra and Romp (2009), which are reviewed
in Table 1) since Yaari (1965), there are imperfections in actual annuity mar-
kets. One may question whether the results in earlier sections will continue
to hold or not in imperfect annuity markets. We now examine this question
by using a tractable specification commonly used in the literature to model
annuity market imperfection.22

The objective function of the life-cycle model is not affected by the as-
sumptions of the annuity market, and is given by (2). On the other hand,
22Different reasons such as adverse selection and bequest motive have been suggested

to explain why many people purchase no or only a small amount of annuities. Providing
detailed analysis regarding different sources of annuity market imperfection, while inter-
esting, would be a distraction from this article’s primary objective. We simply follow
the approach used by Hu (1999), Hansen and İmrohoroğlu (2008) and Heijdra and Mierau
(2009) to capture the “mis-pricing” of annuities in an imperfect market. This specification
allows us to use the methods in earlier sections and extend the economic intuitions there.
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the budget constraint (3) becomes

a0 (x) =
½
[r + αμ (x)] a (x) + w (x)− c (x)
[r + αμ (x)] a (x)− c (x)

if x ≤ R
if x > R

, (33)

where α (0 < α ≤ 1) measures the degree of imperfection of the annuity
market. Hu (1999) and Heijdra and Mierau (2009) assume that all assets
have the same rate of return, which is a weighted average of the rate of return
with no annuities and that with perfect annuities. On the other hand, Hansen
and İmrohoroğlu (2008) assume that a fraction of assets is annuitized with a
higher rate of return and the remaining fraction is not. Either interpretation
is consistent with (33). The annuity market is perfect when α = 1, and
imperfect when α < 1.
It can be shown that the optimal retirement age is characterized by

e−rR
∗
l (R∗)−(1−α)w (R∗)U 0 (c (0, R∗)) = e−ρR

∗
φ (R∗) . (34)

The effect of annuity market imperfection is reflected in the term l (R∗)−(1−α)

in (34). The reason of its presence is as follows. When deciding whether
to delay retirement or not, the benefit is the marginal utility of the labor
income earned, which is discounted back to age 0. Since the rate of re-
turn of holding financial asset at age x is r + αμ (x) , the discount factor

is given by e−
R R∗
0 [r+αμ(x)]dx = e−rR

∗
l (R∗)α, and thus the marginal benefit is

e−rR
∗
l (R∗)αw (R∗)U 0 (c (0, R∗)). The term l (R∗) is also present in the cost

side (through the disutility of labor), as seen in (A5). After cancellation of
terms, l (R∗)−(1−α) appears on the left-hand side of (34). In the limiting case
of perfect annuities (α = 1), the two effects related to the survival probability
at R∗ cancel out exactly. To summarize, relative to perfect annuities, market
imperfection reduces the rate of return of accumulating financial asset. As
a result, the importance of the survival probability at R∗ on the marginal
benefit of delaying retirement is less than that on the marginal cost, leading
to a net effect of l (R∗)−(1−α) on the marginal benefit schedule.
From (34), we obtain

sign

∙ −∂R∗
∂μ (x0)

¸
= sign

∙ −1
σ (c (0, R∗))

1

c (0, R∗)

µ−∂c (0, R∗)
∂μ (x0)

¶
− (1− α)

1

l (R∗)

µ−∂l (R∗)
∂μ (x0)

¶¸
.

(35)
Following steps similar to those in Appendix B, it can be shown that when
the annuity market is imperfect,

−∂c (0, R∗)
∂μ (x0)

=
αe−rx0l (x0)

α a (x0) + (1− α)
R Ω

x0
e−rxl (x)α

³
−U 0(c(x,R∗))
U 00(c(x,R∗))

´
dxh

U 00(c(0,R∗))
U 0(c(0,R∗))

i R Ω

0
e−rxl (x)α

³
−U 0(c(x,R∗))
U 00(c(x,R∗))

´
dx

.

(36)
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Note that both integrals on the right-hand side of (36) are positive for x0 ∈
(0,Ω), and the denominator on the right-hand side is negative.
A mortality decline after retirement does not affect the survival proba-

bility at age R∗. Therefore, −∂l(R
∗)

∂μ(x0)
= 0 and the sign of −∂R∗

∂μ(x0)
is opposite to

that of −∂c(0,R
∗)

∂μ(x0)
, according to (35). Furthermore, we know that a (x0) after

retirement is positive. As a result, we conclude that when x0 > R∗,

= sign

∙ −∂R∗
∂μ (x0)

¸
= −sign

∙−∂c (0, R∗)
∂μ (x0)

¸
> 0. (37)

A mortality decline after retirement also leads to a delay in retirement age
when the annuity market is imperfect.
For a mortality decline before retirement, −∂l(R

∗)
∂μ(x0)

= l (R∗). Thus, (35)
leads to

sign

∙ −∂R∗
∂μ (x0)

¸
= sign

∙
αe−rx0l (x0)

α a (x0)− (1− α)

Z x0

0

e−rxl (x)α
µ−U 0 (c (x,R∗))
U 00 (c (x,R∗))

¶
dx

¸
(38)

for x0 ≤ R∗. Since a (x0) may be positive or negative before retirement, a
mortality decline before retirement may or may not lead to earlier retirement.
Moreover, the effect of annuity market imperfection on retirement age can be
seen by comparing (38) with Proposition 2 (a). For a perfect annuity market,
Proposition 2 (a) indicates that −∂R∗

∂μ(x0)
is negative if and only if a (x0) is nega-

tive. On the other hand, (38) implies that with annuity market imperfection,
−∂R∗
∂μ(x0)

may still be negative even if a (x0) is zero or slightly positive. In this
sense, imperfect annuities strengthen the result of earlier retirement when
x0 ≤ R∗. Intuitively, we know from (34) that the annuity market imperfec-
tion reduces the return of holding financial asset, leading to a downward shift
of the marginal benefit (of delaying retirement) schedule. Other things being
equal, this annuity market imperfection effect tends to reduce the optimal
retirement age when mortality decline occurs before retirement.
We conclude that when annuities are imperfect according to (33), a mor-

tality decline after retirement always leads to a delay in retirement, but a
mortality decline before retirement may lead to earlier or later retirement.
The results for the basic life-cycle model in Section 3 continue to hold when
there is annuity market imperfection.

5 Conclusion

An important feature of mortality transition is that a mortality decline affects
mainly younger people in its early phase but pertains to older people in the
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later phase. Motivated by these stylized facts, we examine the effect on
optimal retirement age of a change in mortality at an arbitrary age.
This article makes two significant contributions. First, we show that

mortality declines at younger and older ages have different effects on optimal
retirement age, and provide economic intuition of this systematic difference.
We first study a basic life-cycle model and show that a mortality decline at
older ages (above the optimal retirement age) will always result in a delay in
retirement, while a mortality decline at younger ages may or may not lead
to early retirement. The intuition of this result is that there are two effects
of a mortality decline on retirement age: the years-to-consume effect and
the lifetime human wealth effect. When a mortality decline occurs among
older people, the lifetime human wealth effect is absent and thus the years-
to-consume effect always leads to a delay in retirement. For mortality decline
at younger ages, we find that, under some general conditions about the wage
profile, there is a threshold age before which the lifetime human wealth ef-
fect dominates and the optimal retirement age decreases when there is a
mortality decline, and after which retirement age increases with a mortality
decline. We further show that this systematic difference is also present when
the model is extended to incorporate compression of morbidity and annuity
market imperfection. In particular, the compression of morbidity effect re-
inforces the tendency of later retirement for mortality decline at older ages,
and the annuity market imperfection effect reinforces the tendency of earlier
retirement for mortality decline at younger ages.
Our analysis of the effect on retirement age of mortality decline at an arbi-

trary age is complementary to the study by Kalemli-Ozcan and Weil (2010),
who focus on another important feature of mortality transition: the decrease
in uncertainty of the age at death. Interestingly, both articles show that a
mortality decline (or equivalently, an increase in life expectancy) may lead
to early retirement under some conditions (the uncertainty effect dominates
the horizon effect in their model, and the lifetime human wealth effect domi-
nates the years-to-consume effect in our model). The counterintuitive result
emphasized in these two articles, which is obtained under different modeling
assumptions corresponding to the two salient aspects of mortality transition,
should be given more serious attention.23

23Since our objective in this article is to isolate the effect of mortality change on retire-
ment age, we analyze this effect in an environment in which other potentially important
factors, such as wealth of different cohorts, remain unchanged. However, we share with
Kalemli-Ozcan and Weil’s (2010, p. 89) view that while mortality decline is an important
factor affecting average retirement age, it is not the only major factor. One possible future
work is to incorporate all relevant factors determining retirement age (such as increases
in wealth due to technological progress, changing social security benefit, and mortality
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The second contribution of this article is methodological. Existing stud-
ies analyzing the relation between mortality change and retirement age often
use indexes or parameters to represent mortality changes, and consider the
derivative(s) of the optimal retirement age with respect to the mortality para-
meter(s). However, such a change in the mortality parameter usually affects
the instantaneous mortality rates (and thus the survival probabilities) at dif-
ferent ages. We show that the more fundamental question about the effect
on retirement age of a mortality decline at an arbitrary age can be achieved
by using the Volterra derivative. As mortality changes at different ages may
also have systematically different effects on other important variables such
as growth rate of output per capita (e.g., Boucekkine et al., 2002; Zhang et
al., 2003), the analysis in this article leads us to believe that the use of the
Volterra derivative will be helpful in other economic-demographic studies in
the future.

6 Appendix A: Proof of Proposition 1

Using standard dynamic optimization methods, it can be shown that

U 00 (c (x,R))
∂c (x,R)

∂x
= (ρ− r)U 0 (c (x,R)) . (A1)

Since the left-hand side of (A1) equals to ∂U 0(c(x,R))
∂x

, solving (A1) gives (10).
Substitute c (x,R), which is characterized by (10), into (2) to express the

objective function in terms of R only. Denote it by V (R). Differentiating it
with respect to R, we obtain

V 0 (R) =
Z Ω

0

e−ρxl (x)U 0 (c (x,R))
∂c (x,R)

∂R
dx− e−ρRl (R)φ (R) . (A2)

Integrating (3) and using (1), (4) and (5), we obtain the intertemporal
budget constraint at age 0 as:Z Ω

0

e−rxl (x) c (x,R) dx =
Z R

0

e−rxl (x)w (x) dx. (A3)

Differentiating (A3) with respect to R leads toZ Ω

0

e−rxl (x)
∂c (x,R)

∂R
dx = e−rRl (R)w (R) . (A4)

changes) and to examine the relative contributions of these factors at different stages of
the mortality transition.
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Substituting (10) and (A4) into (A2), we obtain

V 0 (R) = e−rRl (R)w (R)U 0 (c (0, R))− e−ρRl (R)φ (R) . (A5)

Setting V 0 (R) to 0 and simplifying, the first-order condition for an interior
optimal retirement age is given by (11).
Assumption (8) implies that for x ∈ [0, x], the individual’s marginal ben-

efit of delaying retirement exceeds the marginal cost. Assumption (9) states
that marginal cost of delaying retirement until Ω exceeds marginal benefit.
When (8) and (9) hold, the existence of an interior optimal solution for R∗

in the interval (x,Ω) is guaranteed. Also, R∗ does not exist in the interval
[0, x].
When (7) holds, the second order condition of the maximization problem

is satisfied, because
V 00 (R)|R=R∗ =

l (R∗) e−ρR
∗
φ (R∗)

∙
ρ− r + w

0 (R∗)
w (R∗)

+
U 00 (c (0, R∗))
U 0 (c (0, R∗))

∂c (0, R∗)
∂R

− φ0 (R∗)
φ (R∗)

¸
< 0.

Since ∂c(0,R∗)
∂R

> 0 and φ0 (x) ≥ 0, condition (7) implies that when the net
difference of marginal benefit and marginal cost equals to zero, this net differ-
ence function is always downward sloping at the interior solution. Therefore,
it eliminates the possibility of multiple solutions that satisfy (11).

7 Appendix B: Proof of Proposition 2

Differentiating (A3) atR = R∗ with respect to μ (x0), and simplifying, gives24Z Ω

0

e−rxl (x)
∙−∂c (x,R∗)

∂μ (x0)

¸
dx+

Z Ω

0

e−rx
∙−∂l (x)
∂μ (x0)

¸
c (x,R∗) dx

=

Z R∗

0

e−rx
∙−∂l (x)
∂μ (x0)

¸
w (x) dx. (A6)

Similar to (A3), the intertemporal budget constraint at age x0 can be
expressed as

e−rx0l (x0) a (x0) =

( R Ω

x0
e−rxl (x) c (x,R∗) dx− R R∗

x0
e−rxl (x)w (x) dxR Ω

x0
e−rxl (x) c (x,R∗) dx

if x0 < R∗

if x0 ≥ R∗ .
(A7)

24Because of (A4),
R Ω
0
e−rxl (x) ∂c(x,R

∗)
∂R

∂R∗
∂μ(x0)

dx = e−rR
∗
l (R∗)w (R∗) ∂R∗

∂μ(x0)
. We ob-

tain (A6) after these two terms are cancelled out. A similar cancellation of terms due to
the indirect effects through a change in R∗ is also used in (A9) below.
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Substituting (12) and (A7) into (A6), we obtainZ Ω

0

e−rxl (x)
∙−∂c (x,R∗)

∂μ (x0)

¸
dx+ e−rx0l (x0) a (x0) = 0. (A8)

Differentiating (10) at R = R∗ with respect to μ (x0), and simplifying,
gives

U 00 (c (x,R∗))
∙−∂c (x,R∗)

∂μ (x0)

¸
=
U 0 (c (x,R∗))
U 0 (c (0, R∗))

U 00 (c (0, R∗))
∙−∂c (0, R∗)

∂μ (x0)

¸
.

(A9)
Substituting (A9) into (A8) gives

−∂c (0, R∗)
∂μ (x0)

=
e−rx0l (x0) a (x0)h

U 00(c(0,R∗))
U 0(c(0,R∗))

i R Ω

0
e−rxl (x)

³
−U 0(c(x,R∗))
U 00(c(x,R∗))

´
dx
. (A10)

Combining (5), (15) and (A10), we have

sign

∙ −∂R∗
∂μ (x0)

¸
= −sign

∙−∂c (0, R∗)
∂μ (x0)

¸
= sign [a (x0)] .

This proves Proposition 2 (a).
Proposition 2 (b) is immediate from Proposition 2 (a) since a (x0) must

be positive for x0 ∈ [R∗,Ω) at the optimal solution.

8 Appendix C: Proof of Proposition 3

From (23), we obtain f (0) = 0, f (R∗) > 0,

f 0 (x0) =
−e−[(1−σ)r+σρ]x0l (x0)R Ω

0
e−[(1−σ)r+σρ]xl (x) dx

+
e−rx0l (x0)w (x0)R R∗
0
e−rxl (x)w (x) dx

, (A11)

and

f 00 (x0) =
[(1− σ) r + σρ+ μ (x0)] e

−[(1−σ)r+σρ]x0l (x0)R Ω

0
e−[(1−σ)r+σρ]xl (x) dx

−
h
r + μ (x0)− w0(x0)

w(x0)

i
e−rx0l (x0)w (x0)R R∗

0
e−rxl (x)w (x) dx

. (A12)

Therefore, a sufficient condition for f (x0) < 0 in some interval within (0, R∗)
is f 0 (0) < 0. It can be shown from (A11) that f 0 (0) < 0 iff

1R Ω

0
e−[(1−σ)r+σρ]xl (x) dx

>
w (0)R R∗

0
e−rxl (x)w (x) dx

,
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which is equivalent to (24). Since f (.) is continuous in [0, R∗], f (0) = 0,
f 0 (0) < 0 and f (R∗) > 0 imply that there exists a critical age xc within
(0, R∗) such that f (xc) = 0 and f (x0) is negative for all x0 < xc.
Moreover, the above properties imply that at least one local extremum

must exist between (0, R∗). At a local extremum (denoted by ex0, with
f 0 (ex0) = 0), we can use (A11) and (A12) to obtain

f 00 (ex0) =
h
w0(ex0)
w(ex0) − σ (r − ρ)

i
e−rex0l (ex0)w (ex0)R R∗

0
e−rxl (x)w (x) dx

. (A13)

Arrange the n extrema (where n ≥ 1) in an ascending order as a sequence
{ex0,i}, i = 1, 2, ..., n. Since (24) implies that the first local extremum is a
minimum, this sequence has the property that f 00 (ex0,i) > 0 for all i which are
odd and f 00 (ex0,i) < 0 for all i which are even. According to (A13), the sign
of f 00 (ex0,i) is the same as that of w0(ex0)w(ex0) − σ (r − ρ). There are three distinct

cases for (25): (i) d
dx

h
w0(x)
w(x)

i
= 0 for all x, (ii) d

dx

h
w0(x)
w(x)

i
≥ 0 for all x with

a strictly positive value for some x, and (iii) d
dx

h
w0(x)
w(x)

i
≤ 0 for all x with a

strictly negative value for some x. When (24) and either (i) or (ii) hold, then
w0(ex0)
w(ex0) − σ (r − ρ) is always positive and n must be 1. When (24) and (iii)
hold, then n may be either 1 or 2. (The shape of function f (x0) in the lower
panel of Figure 2 is based on this case, with n = 2.) In each of the above
cases, there is only one xc such that f (xc) = 0 and f (x0) is positive for all
x0 > xc. This proves Proposition 3.
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Figure 1: Survival Curves and Mortality Rates (US Males)
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Figure 2:  The lifetime human wealth and years-to-consume effects 
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market 

Separability 
in 
consumption 
and labor (or 
leisure) 

Instantaneous 
utility of 
consumption 
function 

Instantaneous 
disutility of 
labor function 

d’Albis and 
Augeraud-
Véron (2008) 

Rectangular / Yes CRRA Independent 
of age 

Bloom, 
Canning, 
Mansfield and 
Moore (2007) 

Exponential 
 

Perfect  Yes Log 
 

Depending on 
age and life 
expectancy 

Bloom, 
Canning and 
Moore (2010) 

General Perfect  Yes Concave Depending on 
age and life 
expectancy 

Boucekkine, de 
la Croix and  
Licandro 
(2002) 

BCL (2002) Perfect   Yes Linear Depending on 
age 

Chang (1991) Rectangular 
/ 
Exponential 

No annuities 
/ 
Perfect 
annuity 
market 

No / / 

Hazan (2009) Rectangular / Yes Concave Depending on 
age 

Heijdra and 
Mierau (2009) 

Exponential 
/  
BCL  

Perfect  
/ 
Imperfect  

Yes Log Independent 
of age 

Heijdra and 
Romp (2009) 

General Perfect Yes CRRA Depending on 
age 

Kalemli-Ozcan 
and Weil 
(2010) 

Rectangular 
/ 
Exponential 
/  
BCL (2002) 
/ 
General 

No annuities 
/ 
Perfect 
annuity 
market 

Yes Log  
/ 
CRRA 

Independent 
of age 
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