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A significant role for hypothesis testing in econometrics involves diagnostic

checking. When checking the adequacy of a chosen model, researchers typically

employ a range of diagnostic tests, each of which is designed to detect a particular

form of model inadequacy. A major problem is how best to control the overall

probability of rejecting the model when it is true and multiple test statistics

are used. This paper presents a new multiple testing procedure, which involves

checking whether the calculated values of the diagnostic statistics are consistent

with the postulated model being true. This is done through a combination of

bootstrapping to obtain a multivariate kernel density estimator of the joint den-

sity of the test statistics under the null hypothesis and Monte Carlo simulations

to obtain a p value using this kernel density. We prove that under some regularity

conditions, the estimated p value of our test procedure is a consistent estimate of

the true p value. The proposed testing procedure is applied to tests for autocor-

relation in an observed time series, for normality, and for model misspecification

through the information matrix. We find that our testing procedure has correct

or nearly correct sizes and good powers, particular for more complicated testing

problems. We believe it is the first good method for calculating the overall p

value for a vector of test statistics based on simulation.

Keywords: bootstrapping, consistency, information matrix test, Markov chain

Monte Carlo simulation, multivariate kernel density, normality, serial correlation,

test vector.

1. INTRODUCTION

Statistical hypothesis testing is an extremely important technique in the

practice of econometrics, particularly with respect to diagnostic checking
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of model specification. This is how econometricians are best able to com-

bat the severe problem of uncertainty in model specification. Such testing

procedures need to be as accurate as possible due to constraints on data

availability. Fortunately, advances in computer power and simulation based

methods have allowed greater scope in the design of high quality tests. The

purpose of any test is to accurately control the probability of wrongly re-

jecting the null hypothesis (known as the size of the test), while at the same

time ensuring a high probability of correctly rejecting the null hypothesis

(known as the power of the test).

There is a very large literature on diagnostic testing of all kinds of econo-

metric models. Therefore, in order to check the adequacy of a chosen model,

researchers can apply a range of diagnostic tests, each of which is designed

to detect a particular form of model inadequacy. A major problem is how

best to control the overall probability of rejecting the model when it is true.

For example, five statistically independent tests applied at the 5% level will

result in a 22.6% chance of at least one rejection when the null hypothesis

model is true. Of course, it is unlikely that five diagnostic tests applied to

the same model will be mutually independent, so in actual fact, this proba-

bility could be higher or lower than 22.6%. The major issue is how we should

conduct these tests in order to control the overall probability of rejecting

the model when it is true.

The aim of this paper is to develop a new procedure for testing based on

multiple test statistics in a way that controls the overall probability of a

false rejection. Let y denote a vector of T observations. A typical approach

to hypothesis testing is to construct the critical region via a test statistic

denoted by t(y) : RT −→ R, which is a mapping from the T -dimensional

sample space to the real line and follows, or at least asymptotically follows,

a known distribution under the null hypothesis. If the sample falls in the

critical region, the null hypothesis is rejected. Multiple hypothesis testing
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is the testing of two or more separate parameters or hypotheses simultane-

ously. Often, each parameter or hypothesis being tested gives rise to its own

statistic which is then combined with the other statistics to form one test

statistic in a way that gives a convenient asymptotic distribution under the

null hypothesis. Good examples are multidimensional Wald and Lagrange

multiplier (LM) tests. The method of combination of the component statis-

tics can be arbitrary and may involve an estimate of the asymptotic covari-

ance matrix of the component statistics that can be a rather poor estimate

of the actual covariance matrix. These problems can affect the small-sample

size and power properties of the resultant test.

This paper proposes an alternative approach to multiple hypothesis test-

ing based on a vector of test statistics, t(y): RT −→ Rd (T > d). It assumes

that each of the elements of t(y) has been chosen because individually they

have good power to detect a particular deviation from the null hypothesis.

It is further assumed that collectively t(y) provides a good summary of the

evidence contained in y that might point to the null hypothesis being false.

The approach involves asking the question based on the observed value of

t(y), do we think the null hypothesis is true? If we know the joint density

function for t(y) under the null hypothesis, then following Hyndman (1996)

we can calculate the p value for the observed value of t(y). Typically we do

not know this joint density function. Our approach is to simulate indepen-

dent values of t(y) under the null hypothesis and then use a multivariate

kernel density estimator to estimate the density. We prove that under some

regularity conditions, the estimated p value of our proposed test procedure

is a consistent estimate of the true p value.

The contribution we make in this paper can be viewed as a way to use

simulation methods to (approximately) control the probability of falsely

rejecting the null hypothesis based on a vector of test statistics. How this

can be done for a single statistic is well understood. To the best of our



4

knowledge, our test procedure is the first general method for calculating

p-values based on simulation.

The rest of the paper is organized as follows. Section 2 presents the new

testing procedure for invariant test statistics. In Section 3, we examine the

performance of the new testing procedure through Monte Carlo simulations,

where we provide comparisons of the performances in terms of size and

power between our testing procedure and some other commonly used test

statistics. In Section 4, we present the testing procedure for non-invariant

test statistics, where a bootstrapping procedure is used. Section 5 briefly de-

scribes the information matrix test and its limitations. We present a Monte

Carlo simulation study of the new testing procedures applied to the infor-

mation matrix test in Section 6. In Section 7, we analyze the simulation

results. Section 8 concludes the paper.

2. THE TEST PROCEDURE FOR INVARIANT TEST STATISTICS

2.1. Test procedure

We shall begin by first describing the main ideas behind our new testing

procedure. Assume that we are interested in testing the null hypothesis

that the T × 1 vector of observations y has a particular data generating

process using d test statistics denoted as ti, for i = 1, 2, · · · , d. Let t =

(t1, t2, · · · , td)′ represent the d×1 vector of the test statistics called the test

vector hereafter. At the moment, we assume that each of the component

tests is a two-sided test based on accepting the null hypothesis if

c1i < ti < c2i,

where c1i and c2i are critical values, for i = 1, 2, · · · , d. We also assume

ti, for i = 1, 2, · · · , d, are similar tests in the sense that their distribution

under the null hypothesis is invariant to nuisance parameters. Let t̂ denote

the calculated value of the test vector t using the available data.
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Essentially, we wish to ask the question, is the calculated value of our test

vector consistent with the null hypothesis being true? The p value is a useful

tool for answering this question. It is defined as the probability under the

null hypothesis of finding a value of the test vector as extreme as or more

extreme than the value we have found from the data, namely t̂. Thus, if we

have the joint density of t denoted by f(t), under the null hypothesis, the p

value of the test vector is the probability of obtaining a value of t such that

f(t) < f(t̂) holds. Once calculated, the p value can be used to conduct the

test at any level of significance. For example, at the 5% significance level, if

the p value is less than 0.05 then the null hypothesis is rejected. Otherwise,

it cannot be rejected. The resultant acceptance region is optimal in the sense

that by its construction, it is the smallest 95% acceptance region in the d-

dimensional sample space of t. If we believe t(y) provides a good summary

of the evidence contained in y that might point to the null hypothesis being

false then this is a desirable property to have.

Typically the d-dimensional density f(t) is unknown. We can estimate it

by applying a multivariate kernel density estimator to a sample of indepen-

dent drawings from f(t) which can be obtained by repeatedly simulating

the data generating process under the null hypothesis and then calculating

t for each simulated data set. Let {t1, t2, · · · , tm} denote such a sample.

The general form of the kernel density estimator of t is given by

(1) f̂m,H(t) =
1

m

m∑
i=1

|H|−1/2K(H−1/2(t− ti)),

where K(·) is a kernel function, and H is a positive definite matrix of

bandwidths known as the bandwidth matrix (see for example, Scott, 1992;

Wand and Jones, 1995).

There are two ways in which the new testing procedure can be imple-

mented in practice. The first involves two separate rounds of simulation as

follows:
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(i) Based on the data under test, calculate t̂.

(ii) Using any convenient form of the data generating process under the

null hypothesis, simulate the model m times and calculate m indepen-

dent values of t denoted as t1, t2, · · · , tm.

(iii) Use the sample generated in (ii) to estimate the joint density f(t) by

f̂m,H(t) via (1).

(iv) Repeat (ii) to generate a second sample of n values of t denoted as

t(1), t(2), · · · , t(n), which are independent of those originally calculated

in step (ii).

(v) Use this second sample to calculate f̂m,H(t(i)), for i = 1, 2, · · · , n. The

p value of the joint test is estimated by the relative frequency for which

f̂m,H(t(i)) < f̂m,H(t̂) holds.

The second test procedure involves only one round of simulation. After

completing steps (i) and (ii) above, the remaining steps are as follows:

(iii′) Use the sample generated in (ii) to estimate the joint density f(t) at

t1, t2, · · · , tm by the leave-one-out kernel density estimator

(2) ĝm,H(ti) =
1

m− 1

m∑
j=1;j 6=i

|H|−1/2K(H−1/2(ti − tj)).

(iv′) The p value of the joint test is estimated by the relative frequency for

which ĝm,H(ti) < f̂m,H(t̂) holds.

If the true density of the test vector t were known, the p value of the

proposed testing procedure would be

(3) p0 = Pr
{
t : f(t) < f(t̂)|f(t)

}
.

In our testing procedure, the p value denoted as p̂T,m, is defined via the

kernel density estimator under the probability measure implied by the true

density of t. This means that

(4) p̂T,m = Pr
{
t : f̂m,H(t) < f̂m,H(t̂)|f(t)

}
.
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In our proposed testing procedure, p̂T,m is approximated by p̂T,m,n that is

the relative frequency of observing f̂m,H(t) < f̂m,H(t̂) in the second-round

simulation of Step (v).

2.2. Bandwidth selection

The multivariate kernel density estimator depends on the choice of a

bandwidth matrix and the choice of a kernel function. It is generally ac-

cepted in the statistical literature that the performance of the kernel den-

sity estimator is mainly determined by the bandwidth matrix, and only in

a minor way by the choice of a kernel function. The bandwidth matrix can

be either a full matrix or a diagonal matrix. A full bandwidth matrix is

able to incorporate any possible correlation between any pair of the d di-

mensions. However, the number of nonzero bandwidths to be estimated in

a full bandwidth matrix grows dramatically as d increases. Consequently, a

full bandwidth matrix encounters more computing complexity in selecting

a bandwidth matrix that is optimal with respect to a chosen criterion than

a diagonal bandwidth matrix does. As discussed by Wand and Jones (1993)

in the situation of the bivariate kernel density estimation, a diagonal band-

width matrix allows for the flexibility of choosing a different bandwidth in

each dimension and is often appropriate. Therefore, we use a diagonal band-

width matrix in this new testing procedure, where the bandwidth matrix is

denoted as H = diag{h2
1, h

2
2, · · · , h2

d}.
According to Scott (1992) and Bowman and Azzalini (1997), when data

are observed from the multivariate normal density and the diagonal band-

width matrix is used, the optimal bandwidth matrix that minimizes the

mean integrated squared error (MISE) between the true density and its

estimator can be approximated by

hi = σi

{
4

(d+ 2)m

}1/(d+4)

,
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for i = 1, 2, . . . , d, where σi is the standard deviation of the ith variate and

can be replaced by its sample estimator in practice. We call this the normal

reference rule (NRR) which is also known as the rule-of-thumb method

in the literature. This bandwidth selection method is often used in many

applications of multivariate kernel density estimation in the absence of any

other practical bandwidth selection methods, despite the fact that the data

might not be Gaussian.

Zhang, King, and Hyndman (2006) presented a Bayesian sampling al-

gorithm to estimate the bandwidth matrix in multivariate kernel density

estimation. The bandwidth matrix chosen through this sampling algorithm

tends to produce a more accurate density estimator than that chosen through

the NRR. However, the Bayesian bandwidth selector is far more computa-

tional costly than the NRR. A general guideline for selecting one of the

two bandwidth selectors is as follows. When the required computing time is

not of serious concern in the testing procedure, one may use the Bayesian

bandwidth selector. Otherwise, one may use the NRR to choose bandwidths.

As the performance of the kernel density estimator is only slightly affected

by the choice of a kernel function, we will not investigate the issue about the

choice of kernel. Throughout this paper, we use the product of d univariate

Gaussian kernels in the kernel density estimator of f(t).

3. MONTE CARLO EXPERIMENTS FOR INVARIANT TEST STATISTICS

When a bootstrapping procedure is used to derive improved critical values

of test statistics in finite samples, it is often of particular concern on whether

the test statistics are invariant to unknown population parameters. Invari-

ant test statistics are pivotal in bootstrapping, and simple bootstrapping

procedures are able to provide improved approximations to the distributions

of such statistics (Horowitz, 1997).
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Horowitz (1997) explained why a bootstrap procedure provides an im-

proved approximation to the distributions of asymptotically pivotal test

statistics, because bootstrap can produce more accurate approximation to

the distribution of a pivotal (or asymptotically pivotal) test statistic than

the first-order asymptotic theory. It has been shown that bootstrap can

provide a higher-order approximation to the distribution of an asymptoti-

cally pivotal statistic in testing different hypotheses (see for example, Singh,

1981; Hall, 1986; Beran, 1987).

We conducted two separate Monte Carlo experiments in order to study

the small sample size and power performance of the new test procedure. The

testing problems involved are (i) testing for autocorrelation in a stationary

time series; and (ii) testing for normality in a simple random sample. In each

case we compared the performance of two versions of our test procedure,

one using the Bayesian bandwidth selector and the other using the NRR

bandwidth vector with an established benchmark test.

As simulations of simulations can be very time consuming, we used the

following approach to estimate the size and power of the test procedure.

(a) Simulate a convenient version of the data generating process under

the null hypothesis and calculate a simple random sample of m values

of t, denoted as t1, t2, · · · , tm.

(b) For the particular choice of bandwidth matrix, compute the value of

the leave-one-out kernel density ĝm,H(ti), for i = 1, 2, · · · ,m.

(c) Order the values of ĝm,H(ti) from the lowest to highest and for a test at

the α percent significance level, find the α percentile of these ĝm,H(ti)

values. Denote the α percentile value as ĝα(t). Essentially ĝα(t) acts

as a critical value for a test with f̂m,H(t̂) as the test statistic.

(d) Simulate the data generating process under which size or power is

to be estimated and calculate a second simple random sample of n

values of t denoted as t(1), t(2), · · · , t(n). The estimated probability of
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rejection of the null hypothesis is the relative frequency that

f̂m,H(t(i)) < ĝα(t),

holds for i = 1, 2, · · · , n.

Step (d) is repeated for a range of data generating processes using the

same set of model disturbances to allow good comparability.

3.1. Testing for serial correlation of unknown order and

form

3.1.1. The experimental design

The first Monte Carlo experiment involves the classical problem of testing

the null hypothesis that an observed time series is white noise against the

alternative that it contains serial correlation of unknown order and form

(see King, 1987). The null hypothesis is of the form

(5) yt = µ+ εt, for t = 1, 2, · · · , T,

where µ is an unknown parameter and εt are independent and identically

distributed as N(0, σ2). The alternative is that there is some serial correla-

tion in εt and it is assumed that it can best be detected by examining rk,

the kth order autocorrelation coefficient, for k = 1, 2, · · · , d, where

rk =

∑T
t=k+1 ε̂tε̂t−k∑T

t=1 ε̂
2
t

,

in which ε̂t, for t = 1, 2, · · · , T , are the ordinary least squares (OLS) resid-

uals from fitting (5) to the observed time series. In other words,

ti = ri, for i = 1, 2, · · · , d,

in this problem. Note that ri is invariant to the values of µ and σ2 under

(5).



11

A standard testing procedure for this problem is to use the Portman-

teau test proposed by Box and Pierce (1970) and extended by Ljung and

Box (1978). It involves rejecting the null hypothesis for large values of the

Portmanteau test statistic given by

(6) Qd = T (T + 2)
d∑

k=1

r2
k

T − k
.

The Monte Carlo experiment involved comparing sizes and powers of the

Portmanteau test based on (6) applied using simulated critical values with

two forms of the new procedure, the first using NRR bandwidth parameters

and the second using MCMC bandwidth parameters for d = 4 and d = 6,

respectively.

Sizes were calculated by simulating the data generating process using (5)

with εt ∼ IN(0, 1) and µ = 1. Powers were calculated for four different data

generating processes for εt in (5), these being εt generated by

(i) the stationary first-order autoregressive (AR(1)) process given by

εt = ρεt−1 + ut,

or equivalently (1− ρL)εt = ut, where ρ = 0.25, ut ∼ IN(0, 1) and L

is the lag operator;

(ii) the stationary second-order autoregressive (AR(2)) process given by

(1− ρ1L)(1− ρ2L)εt = ut

with (ρ1, ρ2) = (0.05, 0.1) and (0.05, 0.2) and ut ∼ IN(0, 1);

(iii) the stationary third-order autoregressive (AR(3)) process given by

(1− ρ1L)(1− ρ2L)(1− ρ3L)εt = ut

with (ρ1, ρ2, ρ3) = (0.05, 0.1, 0.15) and (0.05, 0.1, 0.2) and ut ∼ IN(0, 1);

and
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(iv) the stationary fourth-order autoregressive (AR(4)) process given by

(1− ρ1L)(1− ρ2L)(1− ρ3L)(1− ρ4L)εt = ut

with (ρ1, ρ2, ρ3, ρ4) = (0.05, 0.1, 0.15, 0.15), (0.05, 0.1, 0.05, 0.05) and

(0.05, 0.05, 0.05, 0.05) and ut ∼ IN(0, 1).

All data generating processes were run for T = 50, 100, 200 and 500; all

tests were applied at the 10%, 5% and 1% significance levels and, for the

new test procedure, m and n were set to 20,000.

3.1.2. Simulation results

The size results are given in Table I, and the power results are presented

in Tables II and III. With respect to sizes, all three tests have appropriate

sizes and there are no discernible differences with respect to the three tests.

The new procedure using either method of bandwidth selection appears to

be doing an excellent job of controlling size.

Turning to the power results, an obvious feature is that for the new proce-

dure, the MCMC method of choosing bandwidths does seem to have a slight

edge in terms of power over the much simpler NRR method of bandwidth

selection.

Overall, the new procedure using MCMC bandwidth selection seems to

be the most powerful procedure, although there are a small number of sim-

ulations in which the Portmanteau test is most powerful. These tend to be

only for T = 500 when d = 4, but for d = 6, it can happen for a larger range

of sample sizes. In general, it does appear that the advantage of the new

test using MCMC bandwidth selection is greatest for d = 4 and declines

slightly as we move to the more complex case of d = 6. Also, the new pro-

cedure’s advantage seems to be greater for lower order alternatives (AR(1)

and AR(2)) although it should be acknowledged that this may be largely a

function of our choice of parameters values.
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3.2. Testing for normality

3.2.1. The experimental design

In many statistical situations, random observations are often assumed to

be normally distributed for the purpose of statistical inferences. Therefore,

it is important to be able to test for normality (see for example, Shapiro and

Wilk, 1965; D’Agostino, 1971, 1972; Bowman and Shenton, 1975; Pearson,

D’Agostino, and Bowman, 1977; Jarque and Bera, 1980, 1987; Spiegelhalter,

1980; Thode, 2002).

The second Monte Carlo experiment involved the problem of testing the

null hypothesis that a simple random sample is independently and identi-

cally normally distributed with unknown mean (µ) and unknown variance

(σ2) against the alternative that it is non-normally distributed. In other

words, (5) is the model for the null hypothesis. Evidence of non-normality

is often obtained from sample measures of skewness and kurtosis denoted

as
√
b1 and b2, respectively, where

b1 = µ̂2
3/µ̂

3
2, b2 = µ̂4/µ̂

2
2,

and µ̂i =
∑T

t=1(yt − µ̂)i/T , for i = 1, 2, 3, 4, with µ̂ =
∑T

t=1 yt/T . Jar-

que and Bera (1980, 1987), D’Agostino and Stephens (1986), Urzúa (1996),

and Thode (2002) have discussed omnibus tests for normality that combine

information from
√
b1 and b2.

This experiment involves comparing the small-sample properties of our

test procedure based on the test vector (
√
b1, b2)′ with the Jarque-Bera test

(Jarque and Bera, 1980, 1987) and the modified version of the normality

test proposed by Urzúa (1996). The respective test statistics are

(7) JB = T

[
(
√
b1 )2

6
+

(b2 − 3)2

24

]
,

and

(8) MJB =

[
(
√
b1 )2

Var(
√
b1 )

+
(b2 − E(b2))2

Var(b2)

]
,
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where E(b2) = 3(T − 1)/(T + 1), Var(
√
b1) = 6(T − 2)/[(T + 1)(T + 3)] and

Var(b2) = 24T (T − 2)(T − 3)/[(T + 1)2(T + 3)(T + 5)].

A small number of simulation studies have revealed that the size of the

JB test is incorrect for small- and moderate-sized samples particularly in

the context of the linear regression model. The MJB test provides a slight

improvement. A more straightforward solution is to use Monte Carlo simu-

lations to obtain correct critical values which are the approach we used in

this study (see for example, Dufour and Khalaf, 2001; Poitras, 2006).

Sizes were calculated by simulating (5) with εt ∼ IN(0, 1). Powers were

calculated for three alternative distributions for εt, these being the Stable

distribution with dispersion parameter 1.6 and skewness parameter 0 de-

noted Stable(1.6,0), the Student’s t distribution with 5 degrees of freedom

denoted t5 and the Chi-squared distribution with 3 degrees of freedom de-

noted χ2
3. The four tests were compared for sample sizes of T = 30, 50, 75,

and 100 with the values of m and n both being 20,000.

3.2.2. Simulation results

The size and power results are given in Table IV. All four tests have excel-

lent sizes, and just as for testing for autocorrelation, there is no discernible

difference between the estimated sizes of the four tests.

With regards to power, the results largely fall into two categories, those

for the symmetric distributions (Stable(1.6,0) and t5) and those for the

skewed distribution χ2
3. For the first set (Stable(1.6,0) and t5), there are

only small differences in power between the JB and MJB tests with the MJB

test being slightly more powerful. There are only small differences in power

between the two versions of the new procedure with the test using NRR

bandwidths providing a slight advantage, particularly for smaller samples.

Almost always, the new procedure has a small power advantage over both

the JB and MJB tests. Only in 3 out of 24 cases considered is the MJB test
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the most powerful test.

Under the χ2
3 distribution, the power results show some different patterns.

Now the JB test is more powerful than the MJB test. The MCMC based

new test is typically more powerful than the NRR based test for smaller

sample sizes with that advantage being lost as the sample size increases.

Almost always both versions of the new test are more powerful than the JB

and MJB tests with some very large improvements in power being evident

for smaller sample sizes at the 1% and 5% significance levels. Strangely, the

JB test has power being equal to or slightly better than both versions of

the new procedure at the 10% significance level.

4. THE TESTING PROCEDURE FOR NON-INVARIANT TEST STATISTICS

4.1. Testing procedure

So far we have concentrated on test statistics that are invariant to nui-

sance parameters under the null hypothesis. In this case, there is no issue

of how to simulate t under the null hypothesis in order to estimate its den-

sity. When the distribution of t under the null hypothesis depends on the

value of one or more nuisance parameters which we denote by γ, simple

bootstrapping procedures cannot always provide improved approximation

to the true distribution of t. Such test statistics are called non-pivotal in

bootstrapping. Horowitz (1997) argued that bootstrap may also be applied

to non-pivotal test statistics, but it does not provide higher-order approxi-

mations to their distributions. However, one can obtain the maximum like-

lihood estimates of population parameters under the null hypothesis and

conduct bootstrapping with the estimated parameters. Horowitz (1994) ex-

plained how such a bootstrap is implemented for non-pivotal test statistics.

Thus, when test statistics are non-invariant or non-pivotal, we recommend

the following variation to Step (ii) in the procedure given in Section 2.1:

(ii′) Estimate γ assuming the null hypothesis is true and denote this es-
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timate as γ̂. Using γ = γ̂ and any convenient values of the remain-

ing parameters in the model under the null hypothesis, simulate the

model m times and calculate m independent values of t denoted as

t1, t2, · · · , tm.

The remainder of the procedure is as outlined in Section 2.1.

4.2. Consistency of the estimated p value

Assume that the distribution of the test vector t under H0 depends on

a parameter vector denoted as γ. Let f(t, γ) denote the true density of t,

where γ0 is the true value of γ under H0. Let f̂m(t, γ̂) denote the kernel den-

sity estimator of f(t, γ) obtained during the first-round simulation involving

m replications, where the bandwidth symbol H is omitted for simplicity. Let

p0 denote the p value defined through the true density of t as follows.

(9) p0 = Pr
{
t : f(t, γ0) < f(t̂, γ0)|f(t, γ0)

}
,

which in our testing procedure, is estimated by p̂T,m, the p value defined via

the kernel density estimator under the probability measure implied by the

true density of t. This means that

(10) p̂T,m = Pr
{
t : f̂m(t, γ0) < f̂m(t̂, γ̂T )|f(t, γ̂T )

}
.

In our testing procedure, p̂T,m is approximated by p̂T,m,n, the relative fre-

quency of observing f̂m(t(i), γ0) < f̂m(t̂, γ̂T ), for i = 1, 2, · · · , n, during the

second-round simulation of Step (v).

Assumption 1: γ̂T is a strongly consistent estimate of γ0 under H0.

Assumption 2: f(t, γ) is continuous in γ.

Assumption 3: f(t, γ) as a density function of t, meets the smoothness

conditions given in Masry (1996).

Theorem 1: Under the assumptions 1 to 3, as T → ∞, m → ∞ and

n→∞, the estimated p value denoted as p̂T,m,n is a consistent estimate of

the true p value of our testing procedure.
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Proof: The proof of Theorem 1 is given in the Appendix.

5. THE INFORMATION MATRIX TEST

It is often important to test whether a model is correctly specified. White

(1982) showed that when a model is correctly specified and estimated by

maximizing the likelihood function, the information matrix should be asymp-

totically equal to the negative Hessian matrix. The information matrix test

introduced by White (1982), aims to test the significance of the discrepancy

between the negative Hessian and the outer product of the score vector,

where the lower triangular components of the matrix of such differences are

organized into a vector which we call the test vector in this paper. Chesher

(1984) showed that the IM test can be viewed as a Lagrange multiplier

(LM) test for specification error against the alternative of parameter het-

erogeneity. Chesher (1983) and Lancaster (1984) presented an TR2 version

of the IM test, where T is the sample size and R2 is the goodness of fit

obtained through the ordinary least squares regression of a column of ones

on a matrix whose elements are functions of the first and second derivatives

of the log-likelihood function. For the normal fixed regressor linear model,

Hall (1987) showed that the LM version of the IM test can be asymptoti-

cally decomposed into the sum of three components, where one is general

test proposed by White (1982) for heteroscedasticity, and the other two

components aim to test certain forms of normality.

The use of the IM test in applied econometrics is limited because its actual

size obtained according to the asymptotic critical value often differs greatly

from its nominal size. This phenomenon has been evidenced by the Monte

Carlo experiments reported in Taylor (1987), Orme (1990), Chesher and

Spady (1991) and Davidson and MacKinnon (1992). Davidson and MacK-

innon (1992) proposed to deal with this problem by using the double-length

artificial regressions to compute a variant of the IM test statistic, but mod-
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els for discrete, censored or truncated data cannot be dealt with via this

method. Chesher and Spady (1991) proposed to obtain the critical value

for the IM test from the Edgeworth expansion through order O(T−1) of the

finite-sample distribution of the test statistic. Their Monte Carlo investi-

gation indicates that such a critical value provides a good approximation

to the true critical value obtained through the exact distribution of the IM

test, and such an approximation was found to be superior to the usual χ2

approximation in some cases. In the examples considered by Chesher and

Spady (1991), the Edgeworth expansions are independent of the parame-

ters of the models being tested, and therefore, the IM test statistic is pivotal

(Horowitz, 1994). However, this is not a general case, and it is often very

difficult to decide whether the IM test statistic is pivotal. Nonetheless, the

boostrapping procedure described in Section 4 is applicable to non-pivotal

tests as well as pivotal ones.

Horowitz (1994) proposed a bootstrapping procedure to obtain critical

values for the IM test and demonstrated the capability of bootstrapping

to overcome the incorrect-size problem in finite samples. He showed that

in many important circumstances, one can easily obtain good finite-sample

critical values for the IM test through bootstrapping rather than through

Edgeworth expansions or other algebraically complicated manipulations.

Moreover, he discussed the power performance of three versions of the IM

test through Monte Carlo simulation. His results showed that all three ver-

sions of the IM test considered have much lower powers computed according

to size-corrected critical values than those computed according to asymp-

totic critical values. Therefore, it seems that getting the size right and

achieving higher power are different tasks.

Most existing versions of the IM test rely on the estimate of the asymp-

totic covariance matrix of the test vector. The analytical form of the asymp-

totic covariance of the test vector is complicated and involves the third
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derivative of the log-likelihood function. Lancaster (1984) showed that the

covariance matrix of White (1982) IM test can be estimated without cal-

culating the third derivative of the log-likelihood. Dhaene and Hoorelbeke

(2004) indicated that the incorrect-size problem results from the inaccu-

rate estimate of the covariance matrix of the test vector. They proposed

to estimate the covariance matrix of the test vector through parametric

bootstrapping.

Let f(y|θ) denote the density for a postulated model where θ is a d × 1

vector of parameters. Let y = (y1, y2, · · · , yT )′ be the vector of observations,

and `(y|θ) = log f(y|θ) the logarithmic density. We introduce the following

notation.

A(θ) = E

[
∂2`(y|θ)
∂θ∂θ′

]
, AT (y, θ) =

1

T

T∑
t=1

∂2`(yt|θ)
∂θ∂θ′

,

B(θ) = E

[
∂`(y|θ)
∂θ

∂`(y|θ)
∂θ′

]
, BT (y, θ) =

1

T

T∑
t=1

∂`(yt|θ)
∂θ

∂`(yt|θ)
∂θ′

,

where expectations are taken with respect to the true density. When the

model is correctly specified, the true density is f(y|θ). Let θ0 be the true

value of θ.

The information matrix procedure is based on the information-matrix

equality, which states that A(θ0) + B(θ0) = 0 when the model is cor-

rectly specified. Given the vector of T independent observations, y, the

information-matrix test investigates the statistical significance of AT (y, θ̂)+

BT (y, θ̂), where θ̂ is the maximum likelihood estimator of θ.

Let t denote the vector of indicators (test vector) whose elements are Dij,

for i = 1, 2, · · · , d, and j = 1, · · · , i, where

Dij =
1

T

T∑
t=1

[
∂`(yt|θ̂)
∂θ̂i

∂`(yt|θ̂)
∂θ̂j

+
∂2`(yt|θ̂)
∂θ̂i∂θ̂j

]
.(11)

White (1982) shows that under regularity conditions, the IM test statistic

is of the form

ξ = nt′V̂ −1t.(12)
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where V̂ is the consistent estimator of the covariance matrix of t under

H0. Under the null hypothesis, ξ is distributed asymptotically χ2
q with q =

d(d + 1)/2, and this is based on the asymptotic null distribution of t ∼
N(0, V (θ)). The IM test statistic depends on the estimate of the covariance

matrix which in turn depends on the estimate of θ. Our proposed testing

procedure aims to estimate the joint density of the vector of indicators, t,

and does not depend on V̂ .

Since AT (y, θ̂)+BT (y, θ̂) is a symmetric matrix, a test of the complete IM

identity can be based on the lower triangular elements of AT (y, θ̂)+BT (y, θ̂)

(or Dij). However, according to White (1982), in many situations it is inap-

propriate to base the test on all q indicators because some indicators may be

identically zero, furthermore, some indicators may be linear combinations of

other indicators. In either case, it is appropriate to ignore such indicators.

In the remainder of this paper, the IM tests are based on the maximum

number of linearly independent non-zero indicators.

6. SIMULATION STUDY OF THE NEW TEST PROCEDURES APPLIED TO THE
IM TEST

This section reports a Monte Carlo simulation study which aims to com-

pare the sample size and power performance of the proposed method with

the Lancaster (1984) form of the IM test denoted by IML and the Dhaene

and Hoorelbeke (2004) form of the IM test denoted by IMDH . The study

covers two different settings. The null hypothesis in the first setting is the

normal linear regression model given by

(13) yt = x′tβ + ut,

for t = 1, 2, · · · , T , where ut ∼ IN(0, σ2), xt is a d× 1 vector of regressors,

and β is a d × 1 vector of parameters. Following Dhaene and Hoorelbeke

(2004), we examine the power of the IM test under the heteroscedastic
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alternative of

yt = x′tβ + ut, ut ∼ N(0,
√
|x′tβ|), for t = 1, 2, · · · , T.(14)

The null model in the second setting is the Tobit model given by

(15) yt =

 x′tβ + ut if x′tβ + ut > 0

0 if x′tβ + ut ≤ 0
,

for t = 1, 2, · · · , T , ut ∼ N(0, σ2), xt is a d × 1 vector of regressors, and β

is a d× 1 vector of parameters. It will be convenient to re-parameterize the

model as

(16) hyt =

 x′tb+ vt if x′tb+ vt > 0

0 if x′tb+ vt ≤ 0
,

where h = 1/σ, b = β/σ, and vt ∼ N(0, 1), for t = 1, 2, · · · , T .

Following Horowitz (1994), we examine the power of the IM tests under

the models given by

yt = max(0, x′tβ + ut), ut ∼ N
(

0,
√

exp(0.5 x′tβ)
)
,(17)

and

yt = max (0, x′tβ + 0.75xt,2xt,3 + ut) , ut ∼ N(0, 1),(18)

for t = 1, 2, · · · , T , where xt,2 and xt,3 are the two non-intercept components

of xt. Note that model (17) involves a heteroscedastic alternative while

model (18) has an incorrect mean function.

For the linear regression model (13), the IM test statistic is pivotal and the

proposed method of testing is therefore based on the procedure outlined in

Section 2. In the case of the Tobit model, the IM test statistic is not pivotal

under the null hypothesis and therefore the proposed testing procedure is

based on the bootstrapping approach outlined in Section 4.

The experiments consist of applying both forms of IM tests along with

the proposed method of testing to the linear regression model and the Tobit

model. In both models, xt, a vector of explanatory variables, consists of an

intercept component and either one or two additional variables. The values
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of xt are fixed in repeated samples. The values of the β parameters are

(0.75, 1)′ when xt consists of an intercept and one regressor, and (0.75, 1, 1)′

when xt consists of an intercept and two regressors. The non-intercept com-

ponents of xt are sampled independently either from the standard normal

distribution or from the uniform distribution on (-1,1). The value of σ2 is 1

in all of the experiments. The sample sizes are 50, 100, 200 and 300. Size-

corrected critical values, which were obtained via simulation under the null

hypothesis with known true parameters, were used for computing the sizes

and powers of the IML and IMDH tests. For the IMDH test statistic, we

used 50 parametric bootstrap samples to estimate the covariance matrix, V̂ ,

following Dhaene and Hoorelbeke (2004). It should be noted that when the

IM test statistic is not pivotal (i.e. for the Tobit model), these size-corrected

critical values for the IML and IMDH tests cannot be calculated in a practi-

cal application because the true parameter values under the null hypothesis

are unknown. We have used these critical values in the simulation so that

the powers of the respective tests can be compared fairly.

7. SIMULATION RESULTS

7.1. Results from the linear model

The results for the linear model and the case where xt are sampled in-

dependently from standard normal distribution presented in Tables V and

VI for sizes and powers, respectively. From Table V, we see that the sizes

derived through the proposed test and both versions of IM test are very

close to their corresponding nominal sizes for both one-regressor and two-

regressors models. The sizes obtained through all methods appear not to be

significantly different from the corresponding nominal sizes. From Table VI,

we see that the power of the proposed method of testing is always higher

and often vastly higher than both IML and IMDH tests for all sample sizes

and nominal sizes. In term of accuracy, the proposed method of testing not
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only can produce correctly estimated sizes but also has much higher powers

than the both versions of IM tests.

We obtained similar results when xi are sampled independently from

uniform distribution on (-1,1), and in the interest of space, these results

are not presented here.

7.2. Results from the Tobit model

The size and power results for the Tobit model are presented in Ta-

bles VII, VIII and IX. In Table VII, we see that the sizes derived through

the proposed testing procedure are very close to the corresponding nomi-

nal sizes for both one-regressor and two-regressors models, and whether the

regressor vector xt is generated through standard normal distribution or

uniform distribution. On the other hand, the sizes for IML and IMDH tests

have mixed behavior. At the 1% level, the sizes seem to be over rejecting

the null hypothesis, while at 5% and 10%, levels, the sizes are close to their

nominal sizes. This behavior is consistent for both regressor vectors as well

as for both one-regressor and two-regressor models. However, the sizes de-

rived through all tests do not appear to be significantly different from their

corresponding nominal sizes.

Table VIII presents the estimated powers of the tests, where model (17)

is used as a true alternative hypothesis. We found that the proposed test

has higher powers than both versions of the IM test. This is consistent

for both one-regressor and two-regressor models, and whether the regres-

sor vector xi is generated through the standard normal distribution or the

uniform distribution. Moreover, the powers obtained through one-regressor

model are smaller than those derived through the two-regressors model for

almost all sample sizes and all nominal sizes. This is likely to be because

the two-regressor model has a higher degree of heteroscedasticity. Thus, the

simulation study shows that the proposed test produce correct sizes and has
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higher powers than the Lancaster and DH versions of IM test.

Table IX presents the estimated powers of the IML and our proposed

test when model (18) is the true model. We see our proposed test almost

always having a considerable power advantage over the IML test — the

only exceptions being for smaller sample sizes and α = 0.01 which may be

caused by the size differences of the two tests in this setting. Again, our

proposed test always has higher powers than the IMDH test for any sample

size and any significant levels considered.

8. CONCLUSION

This paper presents a new testing procedure, in which we estimate the

density of the test vector whose components are the multiple test statistics

through simulation and kernel density estimation rather than constructing

a critical region through a scalar test statistic. Using the estimated den-

sity, we are then able to approximate the overall p value of the multiple

test statistics. In the case where the joint distribution of the test statistics

depends on nuisance parameters under the null hypothesis, they are first es-

timated, and then the model is simulated for these estimated values of the

nuisance parameters to allow kernel density estimation to take place. We

have proved that the estimated p value in our proposed testing procedure

is a consistent estimate of the true p value defined under a known density

of the test vector.

In order to examine the size and power of the proposed testing proce-

dure, we have conducted a two-stage procedure of Monte Carlo simulations,

where the first-stage simulation aims to estimate the density of the test

vector, while the second-stage simulation involves estimating the size and

powers of the testing procedure by the relative frequency of rejecting the

null hypothesis. Our testing procedure has been compared with respectively,

the Portmanteau test for testing autocorrelations, two versions of the Jarque



25

and Bera (1980) test for normality, and two versions of the White (1982)

information matrix test for model misspecification. The simulation studies

have shown that our testing procedure has correct or nearly correct sizes,

and that the power of our testing procedure is better than, or in some cases

as good as, any of the competing tests.

It appears that for relatively simple testing problems with few nuisance

parameters, such as testing for autocorrelation and non-normality in a ran-

dom sample, the new procedure typically has a slight advantage in terms

of power. We see evidence of that advantage increasing as we turn to the

more difficult problem of testing for misspecification via the information

matrix in the linear regression model and the Tobit model. The standard

approach in this more complicated setting is to derive the asymptotic distri-

bution of the vector of statistics, estimate the asymptotic covariance matrix

and calculate the usual quadratic form that has an asymptotic Chi-squared

distribution under the null hypothesis. Each of the steps involves an ap-

proximation that has the potential to affect the power of the resultant test.

Our approach focuses directly on the small-sample null distribution of the

vector of statistics in order to estimate the overall p value. We believe it is

the first good method for calculating the overall p value for a vector of test

statistics, based on simulation.

An important step in our procedure is the selection of bandwidth values

for kernel density estimation. We found that the MCMC based approach is

slightly better than the NRR although there is a very big difference in the

computational time required. So if this is an issue then the use of the NRR

can provide very acceptable results.
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APPENDIX: PROOF OF THEOREM 1

For multivariate kernel density estimation, Li and Racine (2007) showed

that under the smoothness conditions on the true density given in Masry

(1996), the kernel density estimator is uniformly consistent on a bounded

set, in which the true density is greater than zero. This implies that for any

γ value of interest,

(19) sup |f̂m(t, γ)− f(t, γ)| → 0, almost surely,

as m→∞.

Let

I1 =
{
t : f(t, γ0) < f(t̂, γ0)

}
, and I2 =

{
t : f̂m(t, γ̂T ) < f̂m(t̂, γ̂T )

}
.

Then

p0 =

∫
I1

f(t, γ0)dt, and p̂T,m,n =
∑

t(i)∈ I2

1/n,

where t(i), i = 1, 2, · · · , n, are n simulated values of t from f(t, γ̂T ). Note

that as n→∞,

p̂T,m,n → p̂T,m,

where

p̂T,m =

∫
I2

f(t, γ̂T )dt.

Hence we need to show that p̂T,m → p0 as T →∞ and m→∞.

We have

p0 − p̂T,m(20)

=

∫
I1∩I2

(f(t, γ0)− f(t, γ̂T ))dt +

∫
I1∩I2

f(t, γ0)dt−
∫
I1∩I2

f(t, γ̂T )dt

∆
= A1,T,m + A2,T,m − A3,T,m.
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Let Is = ∪T,m(I1 ∩ I2). It follows that

|A1,T,m| = |
∫
I1∩I2

(f(t, γ0)− f(t, γ̂T ))dt |

≤
∫
I1∩I2

| f(t, γ0)− f(t, γ̂T ) | dt

≤
∫
Is

| f(t, γ0)− f̂m(t, γ̂T ) | dt

→ 0, almost surely,

as T → ∞ because of strong consistency of γ̂T and because f(t, γ) is con-

tinuous in γ.

Now consider A2,T,m. When t ∈ I1 ∩ I2, then

α1 = f(t̂, γ0)− f(t, γ0) > 0,

α2 = f̂m(t, γ̂T )− f̂m(t̂, γ̂T ) ≥ 0.

Note that

0 < α1 + α2 = f(t̂, γ0)− f(t, γ0) + f̂m(t, γ̂T )− f̂m(t̂, γ̂T )

= f(t̂, γ0)− f(t̂, γ̂T ) + f(t̂, γ̂T )− f̂m(t̂, γ̂T )

+f̂m(t, γ̂T )− f(t, γ̂T ) + f(t, γ̂T )− f(t, γ0)

≤ |f(t̂, γ0)− f(t̂, γ̂T )|+ |f(t̂, γ̂T )− f̂m(t̂, γ̂T )|

+|f̂m(t, γ̂T )− f(t, γ̂T )|+ |f(t, γ̂T )− f(t, γ0)|
∆
= B1,T,m +B2,T,m +B3,T,m +B4,T,m

→ 0, almost surely,

as m→∞ and T →∞, because B1,T,m → 0 and B4,T,m → 0 almost surely

as T → ∞ as a result of γ̂T being a strongly consistent estimator of γ0

and f(t, γ) being continuous in γ, and because B2,T,m → 0 and B3,T,m → 0

almost surely as m→∞ as a consequence of (19). Therefore,

A2,T,m =

∫
I1∩I2

f(t, γ0)dt→ 0, almost surely,

as m→∞ and T →∞.
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Finally consider A3,T,m in (20). When t ∈ I1 ∩ I2, then

α3 = f(t, γ0)− f(t̂, γ0) ≥ 0,

α4 = f̂m(t̂, γ̂T )− f̂m(t, γ̂T ) > 0.

Note that

0 < α3 + α4 = f(t, γ0)− f(t̂, γ0) + f̂m(t̂, γ̂T )− f̂m(t, γ̂T )

= f(t, γ0)− f(t, γ̂T ) + f(t, γ̂T )− f̂m(t, γ̂T )

+f̂m(t̂, γ̂T )− f(t̂, γ̂T ) + f(t̂, γ̂T )− f(t̂, γ0)

≤ |f(t, γ0)− f(t, γ̂T )|+ |f(t, γ̂T )− f̂m(t, γ̂T )|

+|f̂m(t̂, γ̂T )− f(t̂, γ̂T )|+ |f(t̂, γ̂T )− f(t̂, γ0)|
∆
= C1,T,m + C2,T,m + C3,T,m + C4,T,m

→ 0, almost surely,

as m→∞ and T →∞, because C1,T,m → 0 and C4,T,m → 0 almost surely

as T → ∞ as a result of γ̂T being a strongly consistent estimator of γ0

and f(t, γ) being continuous in γ, and because C2,T,m → 0 and C3,T,m → 0

almost surely as a consequence of (19).

Therefore,

(21)

∫
I1∩I2

f(t, γ0)dt→ 0, almost surely,

as m→∞ and T →∞.

Let

DT,m =

∫
I1∩I2

f(t, γ0)dt− A3,T,m =

∫
I1∩I2

{f(t, γ0)− f(t, γ̂T )} dt

We have

|DT,m| ≤
∫
I1∩I2

|f(t, γ0)− f(t, γ̂T )|dt.

For any small ε > 0 and any small δ > 0, we can find a T1 such that

Pr {|DT,m| > ε} < δ,
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for all T > T1 because of the continuous mapping theorem by Mann and

Wald (1943), f(t, γ) being continuous in γ and γ̂T being a strongly consistent

estimator of γ.

Hence we have proved that DT,m → 0 and therefore from (21) that

A3,T,m → 0. Thus

p0 − p̂T,m = A1,T,m + A2,T,m − A3,T,m → 0, almost surely,

as T →∞ and m→∞ as required.
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TABLE I

The estimated sizes of the new test procedures and the Portmanteau

test when d = 4 and d = 6

Dimension T New test (NRR) New test (MCMC) Portmanteau

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

d = 4 50 0.010 0.051 0.100 0.010 0.051 0.099 0.010 0.052 0.100

100 0.009 0.048 0.098 0.009 0.049 0.101 0.011 0.051 0.102

200 0.010 0.050 0.101 0.011 0.050 0.102 0.010 0.052 0.102

500 0.009 0.045 0.097 0.009 0.046 0.095 0.009 0.045 0.095

d = 6 50 0.010 0.054 0.104 0.010 0.054 0.103 0.010 0.053 0.104

100 0.010 0.049 0.099 0.010 0.050 0.100 0.011 0.050 0.103

200 0.012 0.052 0.101 0.011 0.052 0.100 0.010 0.051 0.103

500 0.008 0.044 0.092 0.008 0.045 0.092 0.009 0.046 0.094
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TABLE II

Estimated powers of the new test procedures and the Portmanteau test

when d = 4.

Alternative Coefficients T New test (NRR) New test (MCMC) Portmanteau

hypothesis 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

AR(1) ρ = 0.25 50 0.091 0.230 0.342 0.094 0.236 0.349 0.072 0.218 0.319

100 0.230 0.460 0.589 0.241 0.467 0.598 0.231 0.448 0.579

200 0.592 0.805 0.880 0.606 0.808 0.881 0.589 0.801 0.877

500 0.980 0.997 0.999 0.984 0.997 0.999 0.987 0.997 0.999

AR(2) ρ1 = 0.05 50 0.023 0.093 0.162 0.025 0.093 0.163 0.019 0.082 0.139

ρ2 = 0.10 100 0.042 0.133 0.218 0.044 0.136 0.223 0.037 0.120 0.201

200 0.082 0.219 0.324 0.085 0.222 0.330 0.082 0.212 0.312

500 0.262 0.494 0.621 0.274 0.500 0.624 0.278 0.492 0.615

AR(2) ρ1 = 0.05 50 0.078 0.195 0.296 0.079 0.199 0.301 0.054 0.167 0.254

ρ2 = 0.20 100 0.171 0.360 0.486 0.176 0.365 0.493 0.153 0.326 0.448

200 0.402 0.645 0.755 0.417 0.651 0.760 0.392 0.624 0.733

500 0.901 0.975 0.987 0.913 0.976 0.988 0.911 0.971 0.987

AR(3) ρ1 = 0.10 50 0.062 0.162 0.250 0.064 0.162 0.253 0.048 0.138 0.211

ρ2 = 0.10 100 0.141 0.295 0.404 0.145 0.301 0.410 0.145 0.284 0.382

ρ3 = 0.10 200 0.316 0.535 0.646 0.334 0.542 0.654 0.356 0.551 0.651

500 0.781 0.919 0.955 0.802 0.925 0.957 0.843 0.932 0.960

AR(3) ρ1 = 0.05 50 0.071 0.187 0.284 0.071 0.187 0.283 0.047 0.154 0.234

ρ2 = 0.05 100 0.177 0.372 0.490 0.183 0.373 0.493 0.153 0.327 0.446

ρ3 = 0.20 200 0.422 0.678 0.780 0.441 0.684 0.786 0.417 0.653 0.758

500 0.926 0.980 0.991 0.933 0.980 0.991 0.932 0.978 0.991

AR(4) ρ1 = 0.05 50 0.137 0.273 0.380 0.138 0.274 0.382 0.102 0.227 0.306

ρ2 = 0.10 100 0.331 0.538 0.647 0.344 0.544 0.652 0.316 0.492 0.594

ρ3 = 0.15 200 0.676 0.846 0.902 0.699 0.851 0.905 0.684 0.830 0.887

ρ4 = 0.15 500 0.987 0.997 0.999 0.990 0.998 0.999 0.992 0.997 0.999

AR(4) ρ1 = 0.05 50 0.058 0.154 0.235 0.058 0.154 0.237 0.043 0.125 0.191

ρ2 = 0.10 100 0.116 0.267 0.378 0.121 0.272 0.383 0.114 0.241 0.334

ρ3 = 0.05 200 0.248 0.470 0.592 0.265 0.480 0.602 0.277 0.467 0.572

ρ4 = 0.10 500 0.698 0.868 0.924 0.718 0.877 0.925 0.743 0.871 0.919

AR(4) ρ1 = 0.05 50 0.023 0.087 0.152 0.024 0.090 0.155 0.018 0.072 0.126

ρ2 = 0.05 100 0.039 0.126 0.209 0.040 0.128 0.210 0.038 0.111 0.183

ρ3 = 0.05 200 0.078 0.205 0.303 0.082 0.208 0.308 0.086 0.200 0.286

ρ4 = 0.05 500 0.127 0.292 0.406 0.234 0.457 0.576 0.135 0.287 0.387
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TABLE III

Estimated powers of the new test procedures and the Portmanteau test

when d = 6.

Alternative Coefficients T New test (NRR) New test (MCMC) Portmanteau

hypothesis 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

AR(1) ρ = 0.25 50 0.068 0.196 0.293 0.075 0.208 0.304 0.062 0.190 0.288

100 0.178 0.378 0.508 0.193 0.402 0.529 0.183 0.383 0.516

200 0.522 0.734 0.825 0.533 0.752 0.837 0.500 0.742 0.833

500 0.967 0.991 0.997 0.971 0.993 0.998 0.972 0.994 0.998

AR(2) ρ1 = 0.05 50 0.007 0.056 0.125 0.009 0.065 0.133 0.017 0.076 0.134

ρ2 = 0.10 100 0.023 0.109 0.189 0.025 0.113 0.197 0.031 0.105 0.180

200 0.070 0.187 0.280 0.070 0.195 0.287 0.065 0.187 0.278

500 0.211 0.421 0.550 0.218 0.438 0.568 0.219 0.430 0.559

AR(2) ρ1 = 0.05 50 0.052 0.167 0.260 0.055 0.172 0.264 0.044 0.146 0.227

ρ2 = 0.20 100 0.128 0.301 0.418 0.134 0.316 0.433 0.117 0.274 0.394

200 0.337 0.562 0.680 0.345 0.583 0.696 0.318 0.560 0.675

500 0.850 0.947 0.974 0.863 0.957 0.979 0.862 0.955 0.976

AR(3) ρ1 = 0.10 50 0.048 0.137 0.217 0.051 0.143 0.221 0.040 0.120 0.188

ρ2 = 0.10 100 0.112 0.253 0.355 0.116 0.265 0.364 0.115 0.244 0.341

ρ3 = 0.10 200 0.271 0.469 0.587 0.277 0.487 0.600 0.296 0.497 0.602

500 0.722 0.872 0.927 0.739 0.890 0.938 0.790 0.906 0.943

AR(3) ρ1 = 0.05 50 0.056 0.159 0.247 0.057 0.164 0.249 0.039 0.130 0.211

ρ2 = 0.05 100 0.141 0.311 0.429 0.141 0.317 0.436 0.118 0.276 0.391

ρ3 = 0.20 200 0.362 0.588 0.704 0.373 0.608 0.723 0.346 0.588 0.702

500 0.884 0.959 0.981 0.892 0.966 0.983 0.894 0.965 0.982

ρ2 = 0.10 100 0.272 0.469 0.577 0.277 0.482 0.591 0.268 0.437 0.540

ρ3 = 0.15 200 0.609 0.789 0.862 0.622 0.809 0.872 0.624 0.790 0.852

ρ4 = 0.15 500 0.976 0.994 0.997 0.980 0.996 0.998 0.985 0.996 0.998

AR(4) ρ1 = 0.05 50 0.041 0.126 0.202 0.042 0.129 0.206 0.034 0.108 0.171

ρ2 = 0.10 100 0.090 0.224 0.329 0.091 0.232 0.338 0.088 0.205 0.298

ρ3 = 0.05 200 0.208 0.405 0.530 0.212 0.423 0.545 0.230 0.412 0.522

ρ4 = 0.10 500 0.630 0.809 0.881 0.647 0.829 0.894 0.683 0.833 0.891

AR(4) ρ1 = 0.05 50 0.013 0.056 0.102 0.014 0.061 0.112 0.015 0.067 0.120

ρ2 = 0.05 100 0.026 0.098 0.173 0.027 0.104 0.182 0.029 0.096 0.166

ρ3 = 0.05 200 0.066 0.173 0.266 0.066 0.182 0.273 0.068 0.175 0.260

ρ4 = 0.05 500 0.190 0.376 0.503 0.098 0.395 0.523 0.219 0.405 0.519
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TABLE IV

The estimated sizes and powers of the new test procedures, JB and MJB

tests

Size T New test (NRR) New test (MCMC) JB MJB

and power 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

Size 30 0.010 0.049 0.098 0.010 0.048 0.099 0.010 0.049 0.096 0.009 0.048 0.097

50 0.008 0.047 0.095 0.008 0.046 0.094 0.009 0.045 0.095 0.008 0.047 0.098

75 0.008 0.049 0.097 0.008 0.048 0.097 0.008 0.049 0.097 0.008 0.050 0.097

100 0.009 0.045 0.096 0.008 0.046 0.095 0.009 0.047 0.098 0.009 0.048 0.097

Power

Stable(1.6, 0) 30 0.468 0.599 0.671 0.468 0.598 0.671 0.464 0.587 0.651 0.467 0.596 0.665

50 0.670 0.778 0.824 0.670 0.778 0.824 0.665 0.764 0.809 0.667 0.771 0.819

75 0.815 0.889 0.918 0.817 0.890 0.918 0.811 0.884 0.907 0.812 0.888 0.913

100 0.899 0.945 0.960 0.899 0.945 0.960 0.896 0.942 0.957 0.897 0.944 0.960

t5 30 0.175 0.323 0.425 0.174 0.322 0.423 0.176 0.314 0.396 0.178 0.319 0.414

50 0.276 0.451 0.543 0.276 0.450 0.542 0.273 0.429 0.523 0.274 0.442 0.540

75 0.370 0.564 0.659 0.372 0.564 0.661 0.370 0.548 0.629 0.370 0.559 0.648

100 0.470 0.650 0.734 0.468 0.650 0.734 0.461 0.640 0.715 0.465 0.651 0.728

χ2
3 30 0.472 0.742 0.840 0.486 0.754 0.846 0.391 0.688 0.850 0.359 0.629 0.790

50 0.821 0.952 0.979 0.824 0.953 0.979 0.634 0.905 0.980 0.595 0.872 0.963

75 0.976 0.997 0.999 0.974 0.996 0.999 0.840 0.990 0.999 0.804 0.982 0.998

100 0.998 1.000 1.000 0.998 1.000 1.000 0.951 0.999 1.000 0.935 0.999 1.000
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TABLE V

Estimated sizes of the IM tests with samples generated from the linear

regression model

Test Sample One-regressor Two-regressor

size 0.01 0.05 0.10 0.01 0.05 0.10

50 0.010 0.051 0.100 0.011 0.048 0.098

New test 100 0.009 0.046 0.095 0.010 0.050 0.099

200 0.009 0.051 0.097 0.008 0.049 0.099

300 0.010 0.050 0.102 0.009 0.048 0.097

50 0.011 0.052 0.103 0.010 0.051 0.102

IML 100 0.011 0.050 0.100 0.011 0.051 0.100

200 0.008 0.051 0.103 0.011 0.052 0.101

300 0.011 0.050 0.103 0.009 0.048 0.103

50 0.010 0.053 0.102 0.011 0.051 0.102

IMDH 100 0.011 0.049 0.097 0.010 0.049 0.098

200 0.010 0.051 0.101 0.009 0.050 0.101

300 0.010 0.054 0.107 0.010 0.048 0.096

TABLE VI

Estimated powers of the IM tests with samples generated from the

linear model

Tests Sample One-regressor Two-regressor

size 0.01 0.05 0.10 0.01 0.05 0.10

50 0.106 0.363 0.533 0.030 0.121 0.216

New test 100 0.491 0.801 0.913 0.243 0.572 0.743

200 0.975 0.998 1.000 0.738 0.944 0.976

300 0.999 1.000 1.000 0.927 0.991 0.998

50 0.017 0.074 0.154 0.014 0.055 0.107

IML 100 0.034 0.268 0.475 0.022 0.130 0.263

200 0.422 0.803 0.914 0.202 0.500 0.680

300 0.751 0.962 0.993 0.396 0.781 0.911

50 0.025 0.133 0.281 0.020 0.104 0.219

IMDH 100 0.078 0.473 0.713 0.051 0.287 0.500

200 0.580 0.948 0.986 0.196 0.649 0.832

300 0.910 0.993 0.999 0.485 0.873 0.952
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TABLE VII

Estimated sizes of the IM tests with samples generated from the Tobit

model

Tests Sample One-regressor Two-regressor

size 0.01 0.05 0.10 0.01 0.05 0.10

50 0.011 0.055 0.109 0.009 0.049 0.104

New test 100 0.009 0.048 0.097 0.009 0.055 0.112

200 0.011 0.057 0.106 0.012 0.046 0.098

300 0.013 0.047 0.087 0.011 0.054 0.107

50 0.018 0.058 0.105 0.012 0.047 0.089

IML 100 0.016 0.056 0.108 0.015 0.051 0.092

200 0.016 0.052 0.100 0.013 0.049 0.098

300 0.014 0.049 0.100 0.017 0.065 0.124

50 0.020 0.052 0.102 0.016 0.056 0.100

IMDH 100 0.020 0.060 0.100 0.019 0.053 0.107

200 0.016 0.055 0.112 0.010 0.045 0.116

300 0.015 0.057 0.111 0.015 0.054 0.107

TABLE VIII

Estimated powers of the IM tests with samples generated from (17)

Test Sample One-regressor Two-regressor

size 0.01 0.05 0.10 0.01 0.05 0.10

50 0.156 0.362 0.503 0.120 0.330 0.471

New test 100 0.247 0.501 0.629 0.259 0.598 0.726

200 0.454 0.782 0.866 0.647 0.926 0.951

300 0.699 0.917 0.948 0.818 0.992 1.000

50 0.054 0.128 0.197 0.052 0.103 0.187

IML 100 0.062 0.198 0.320 0.120 0.234 0.351

200 0.196 0.425 0.572 0.311 0.652 0.766

300 0.396 0.674 0.782 0.706 0.841 0.952

50 0.043 0.167 0.307 0.029 0.110 0.223

IMDH 100 0.112 0.349 0.536 0.097 0.315 0.506

200 0.365 0.712 0.858 0.475 0.795 0.930

300 0.622 0.891 0.943 0.762 0.976 1.000
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TABLE IX

Estimated powers of the IM tests with samples generated from (18)

Test Sample Significance level

size 0.01 0.05 0.10

New test 50 0.025 0.115 0.201

100 0.041 0.184 0.320

200 0.222 0.580 0.742

300 0.476 0.844 0.930

IML 50 0.033 0.077 0.144

100 0.056 0.117 0.182

200 0.139 0.291 0.395

300 0.258 0.440 0.578

IMDH 50 0.022 0.074 0.135

100 0.029 0.120 0.238

200 0.142 0.422 0.589

300 0.428 0.752 0.872


	Introduction
	The test procedure for invariant test statistics
	Test procedure
	Bandwidth selection

	Monte Carlo experiments for invariant test statistics
	Testing for serial correlation of unknown order and form
	The experimental design
	Simulation results

	Testing for normality
	The experimental design
	Simulation results


	The testing procedure for non-invariant test statistics
	Testing procedure
	Consistency of the estimated p value

	The information matrix test
	Simulation study of the new test procedures applied to the IM test
	Simulation results
	Results from the linear model
	Results from the Tobit model

	Conclusion



