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EXISTENCE AND UNIQUENESS OF A FIXED-POINT FOR LOCAL
CONTRACTIONS

V. FILIPE MARTINS-DA-ROCHA AND YIANNIS VAILAKIS

This paper proves the existence and uniqueness of a fixed-point for local contractions with-
out assuming the family of contraction coefficients to be uniformly bounded away from 1.
More importantly it shows how this fixed-point result can apply to study existence and unique-
ness of solutions to some recursive equations that arise in economic dynamics.

KEYWORDS: Fixed-point theorem, Local contraction, Bellman operator, Koopmans operator,
Thompson aggregator, Recursive utility.

1. INTRODUCTION

Fixed-point results for local contractions turned out to be useful to solve recur-
sive equations in economic dynamics. Many applications in dynamic programming
are presented in Rincón-Zapatero and Rodríguez-Palmero (2003) for the determin-
istic case and in Matkowski and Nowak (2008) for the stochastic case. Applica-
tions to recursive utility problems can be found in Rincón-Zapatero and Rodríguez-
Palmero (2007). Previous fixed-point results for local contractions rely on a metric
approach.1 The idea underlying this approach is based on the construction of a met-
ric that makes the local contraction a global contraction in a specific subspace. The
construction of an appropriate metric is achieved at the cost of restricting the family
of contraction coefficients to be uniformly bounded away from 1. Contrary to the
previous literature, we prove a fixed-point result using direct arguments that do not
require the application of the Banach Contraction Theorem for a specific metric. The
advantage of following this strategy of proof is that it allows us to deal with a fam-
ily of contraction coefficients that has a supremum equal to 1. In that respect, the
proposed fixed-point result generalizes the fixed-point results for local contractions
stated in the literature. An additional benefit is that the stated fixed-point theo-
rem applies to operators that are local contractions with respect to an uncountable
family of semi-distances.

We exhibit two applications to illustrate that, from an economic perspective, it
is important to have a fixed-point result that encompasses local contractions asso-
ciated with a family of contraction coefficients that are arbitrarily close to 1. The
first application deals with the existence and uniqueness of solutions to the Bellman
equation in the unbounded case, while the second one addresses the existence and
uniqueness of a recursive utility function derived from Thompson aggregators.2 We
also present two applications to illustrate that, in some circumstances, it is relevant
not to restrict the cardinality of the family of semi-distances.

1See Rincón-Zapatero and Rodríguez-Palmero (2003), Matkowski and Nowak (2008) and Rincón-
Zapatero and Rodríguez-Palmero (2009).

2Contrary to Blackwell aggregators, Thompson aggregators may not satisfy a uniform contraction
property. See Marinacci and Montrucchio (2007) for details.
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2 V. F. MARTINS-DA-ROCHA AND Y. VAILAKIS

The paper is organized as follows: Section 2 defines local contractions and states
a fixed-point theorem. Sections 3 and 4 show how the fixed-point result can apply
to the issue of existence and uniqueness of solutions to the Bellman and Koopmans
equations respectively. In section 5 we present two applications that give rise to local
contractions associated with an uncountable family of semi-distances. The proofs of
all theorems and propositions are postponed to Appendices.

2. AN ABSTRACT FIXED-POINT THEOREM

In the spirit of Rincón-Zapatero and Rodríguez-Palmero (2007), we state a fixed-
point theorem for operators that are local contractions in an abstract space.3 Let F
be a set and D = (d j) j∈J be a family of semi-distances defined on F . We let σ be the
weak topology on F defined by the family D. A sequence ( fn)n∈N is said σ-Cauchy
if it is d j-Cauchy for each j ∈ J . A subset A of F is said sequentially σ-complete if
every σ-Cauchy sequence in A converges in A for the σ-topology. A subset A⊂ F is
said σ-bounded if diam j(A)≡ sup{d j( f , g): f , g ∈ A} is finite for every j ∈ J .

DEFINITION 2.1 Let r be a function from J to J . An operator T : F → F is a local
contraction with respect to (D, r) if for every j there exists β j ∈ [0, 1) such that

∀ f , g ∈ F, d j(T f , T g)¶ β jdr( j)( f , g).

The main technical contribution of this paper is the following existence and
uniqueness result of a fixed-point for local contractions.

THEOREM 2.1 Assume that the space F is σ-Hausdorff.4 Consider a function r : J → J
and let T : F → F be a local contraction with respect to (D, r). Consider a non-empty,
σ-bounded, sequentially σ-complete and T-invariant subset A ⊂ F. If the following
condition is satisfied

(2.1) ∀ j ∈ J , lim
n→∞

β jβr( j) . . .βrn( j) diamrn+1( j)(A) = 0

then the operator T admits a fixed-point f ? in A. Moreover, if h ∈ F satisfies

(2.2) ∀ j ∈ J , lim
n→∞

β jβr( j) . . .βrn( j)drn+1( j)(h, A) = 0

then the sequence (T nh)n∈N is σ-convergent to f ?.5

The arguments of the proof of Theorem 2.1 are very simple and straightforward.
The details are postponed to Appendix A.

3From now on we should write RZ-RP (2003) for Rincón-Zapatero and Rodríguez-Palmero (2003),
RZ-RP (2007) for Rincón-Zapatero and Rodríguez-Palmero (2007) and RZ-RP (2009) for Rincón-
Zapatero and Rodríguez-Palmero (2009).

4That is, for each pair f , g ∈ F , if f 6= g then there exists j ∈ J such that d j( f , g)> 0.
5If A is a non-empty subset of F then for each h in F , we let d j(h, A)≡ inf{d j(h, g) : g ∈ A}.
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REMARK 2.1 Theorem 2.1 generalizes a fixed-point existence result proposed in
Hadžić (1979). 6 To be precise, Hadžić (1979) imposed the additional requirement
that each semi-distance d j is the restriction of a semi-norm defined on a vector space
E containing F such that E is a locally convex topological vector space. Under such
conditions the existence result cannot be used for the two applications proposed in
Section 3 and Section 4. Moreover, Hadžić (1979) does not provide any criteria of
stability similar to condition (2.2). A detailed comparison of Theorem 2.1 with the
result established in Hadžić (1979) is presented in Appendix B.

REMARK 2.2 If h is a function in A then condition (2.2) is automatically satisfied,
implying that the fixed-point f ? is unique in A. Actually f ? is the unique fixed-point
on the set B ⊂ F defined by

B ≡
§

h ∈ F : ∀ j ∈ J , lim
n→∞

β jβr( j) . . .βrn( j)drn+1( j)(h, A) = 0
ª

.

REMARK 2.3 If the function r is the identity, i.e., r( j) = j then the operator T is
said to be a 0-local contraction and, in that case, conditions (2.1) and (2.2) are
automatically satisfied. In particular, if a fixed-point exists it is unique on the whole
space F .

REMARK 2.4 Assume that the space F is sequentially σ-complete and choose an
arbitrary f ∈ F . As in RZ-RP (2007), we can show that the set F( f ) defined by

F( f )≡
¦

g ∈ F : ∀ j ∈ J , d j(g, f )¶ [1/(1− β j)]d j(T f , f )
©

is non-empty, σ-bounded, σ-closed and T -invariant. Applying Theorem 2.1 by cho-
osing A≡ F( f ) we obtain the following corollary.

COROLLARY 2.1 Let T : F → F be a 0-local contraction with respect to a family
D = (d j) j∈J of semi-distances. Assume that the space F is sequentially σ-complete.
Then the operator T admits a unique fixed-point f ? in F. Moreover, for any arbitrary
f ∈ F the sequence (T n f )n∈N is σ-convergent to f ?.

Corollary 2.1 is a generalization of a result first stated in RZ-RP (2003) (see
Theorem 1).7 Unfortunately, the proposed proof in RZ-RP (2003) is not correct. As
Matkowski and Nowak (2008) have shown, an intermediate step (Proposition 1b)
used in their method of proof is false. RZ-RP (2009) have provided a corrigendum
of their fixed-point result but at the cost of assuming that the family (β j) j∈J of
contraction coefficients is uniformly bounded away from 1, i.e., sup j∈J β j < 1.8

6We are grateful to a referee for pointing out this reference.
7If the family J is assumed to be countable then Corollary 2.1 coincides with Theorem 1 in RZ-

RP (2007).
8Matkowski and Nowak (2008) also prove a similar fixed-point result under this additional assump-

tion.
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From an economic perspective, the main contribution of this paper is to show
that it is important to establish a fixed-point theorem that allows the contraction
coefficients to be arbitrarily closed to 1. The economic applications presented in
Section 3 and Section 4 aim to illustrate this fact.

An additional difference of Theorem 2.1 with respect to the fixed-point results
of Matkowski and Nowak (2008) and RZ-RP (2009) is that the family J is not as-
sumed to be countable. Although in many applications it is sufficient to consider
a countable family of semi-distances, in some circumstances, it may be helpful not
to restrict the cardinality of the family of semi-distances. Two applications are pre-
sented in Section 5.

REMARK 2.5 An interesting observation about Theorem 2.1 is that its proof only
requires each β j to be non-negative. The requirement that β j belongs to [0,1) is
used only in the proof of Corollary 2.1.

3. DYNAMIC PROGRAMMING: UNBOUNDED BELOW CASE

We propose to consider the framework of Section 3.3 in RZ-RP (2003). The state
space is X ≡ R`+, there is a technological correspondence Γ : X → X , a return
function U : gphΓ→ Z ≡ [−∞,∞) where gphΓ is the graph of Γ and β ∈ (0,1) is
the discounting factor. Given x0 ∈ X , we denote by Π(x0) the set of all admissible
paths ex = (x t)t¾0 defined by

Π(x0)≡ {ex = (x t)t¾0 : ∀t ¾ 0, x t+1 ∈ Γ(x t)}.

The dynamic optimization problem consists of solving the following maximization
problem:

v?(x0)≡ sup{S(ex) : ex ∈ Π(x0)} where S(ex)≡
∑

t¾0

β t U(x t , x t+1).

We denote by C(X , Z) the space of continuous functions from X to Z , and we let
C?(X ) be the space of functions f in C(X , Z) such that the restriction of f to X ? ≡
X \ {0} takes values in R. Among others, we make the following assumptions.
DP1. The correspondence Γ is continuous with nonempty and compact values.
DP2. The function U : gph(Γ)→ [−∞,∞) is continuous on gph(Γ).
DP3. There is a continuous function q : X ? → X ? with (x , q(x)) ∈ gphΓ and

U(x , q(x))>−∞ for all x ∈ X ?.
We denote byB the Bellman operator defined on C(X , Z) as follows:

B f (x)≡ sup{U(x , y) + β f (y) : y ∈ Γ(x)}.

Under the previous assumptions, the functionB f belongs to C(X , Y ). Moreover, for
every f ∈ C?(X ), we have B f (x) ¾ U(x , q(x)) + β f (q(x)) > −∞ for all x ∈ X ?.
This implies that B maps C?(X ) into C?(X ). Under suitable conditions, the value
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function v? coincides with the fixed-point of the Bellman operator B . To establish
this relationship, we introduce the following assumptions.9

DP4. There exist three functions w−, w+, and w in C?(X ) such that

w− ¶ w+ < w and
w− −w

w+ −w
= O(1) at 0

together with

(a) Bw < w,Bw− ¾ w−,Bw+ ¶ w+
(b) (w+ −w)/(Bw−w) = O(1) at 0

(c) for any x0 ∈ X ?, the set Π0(x0) is non-empty10 and for each admissible
path ex = (x t)t¾0 in Π0(x0) it follows that

lim
t→∞

β t w−(x t) = 0 and lim
t→∞

β t w+(x t) = 0.

DP5. There exists a countable increasing family (K j) j∈N of non-empty and compact
subsets of X such that for any compact subset K of X , there exists j with
K ⊂ K j and such that Γ(K j)⊂ K j for all j ∈ N.

We denote by [w−, w+] the order interval in C?(X ), i.e., the space of all functions
f ∈ C?(X ) satisfying w− ¶ f ¶ w+. The following theorem is analogous to the main
result of Section 3.3 (see Theorem 6) in RZ-RP (2003).11

THEOREM 3.1 Assume (DP1)–(DP5). Then the following statements hold:
(a) The Bellman equation has a unique solution f in [w−, w+]⊂ C?(X ).
(b) The value function v? is continuous in X ? and coincides with the fixed-point f .
(c) For any function g in [w−, w+], the sequence (Bn g)n∈N converges to v? for the

topology associated with the family (d j) j∈N of semi-distances defined on the space
[w−, w+] by

d j( f , g)≡ sup
x∈K?j

�

�

�

�

ln
�

f −w

w+ −w
(x)
�

− ln
�

g −w

w+ −w
(x)
�
�

�

�

�

where K?j = K j \ {0}.

Using the convexity property of the Bellman operator, RZ-RP (2003) proved (refer
to page 1553) that the operatorB is a 0-local contraction with respect to the family
(d j) j∈N where the contraction coefficient β j is defined by

β j ≡ 1− exp{−µ j} with µ j ≡ sup{d j( f ,Bw): f ∈ [w−, w+]}.
9Given two functions f and g in C?(X ) with g(x) 6= 0 in a neighborhood of 0, we say that f /g = O(1)

at x = 0 if there exists a neighborhood V of 0 in X such that f /g is bounded in V \ {0}.
10Π0(x0) is the subset of Π(x0) of all admissible paths ex in Π(x0) such that S(ex) exists and satisfies

S(ex)>−∞.
11Our set of assumptions is slightly different from the one used by RZ-RP (2003). In particular con-

dition DP4(b) is not imposed in RZ-RP (2003). We make this assumption to ensure that the distance
d j( f ,Bw) is well-defined. See Appendix C for details.
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Observe that for each j and each pair of functions f , g in [w−, w+] we have

d j( f , g) = sup
x∈K?j

�

�

�

�

ln
�

f −w

g −w
(x)
�
�

�

�

�

implying that

µ j =max
§





lnθ+






K?j
,




lnθ−






K?j

ª

where θ+ ≡ (w−w+)/(w−Bw) and θ− ≡ (w−w−)/(w−Bw).12 Since the family
(K j) j∈N covers the space X , we get

sup
j∈J
µ j =max

¦



lnθ+






X ? ,




lnθ−






X ?

©

.

If either the function lnθ+ or the function lnθ− is unbounded, then the supremum
sup j∈J β j of the contraction coefficients is 1. In this case, the fixed-point results
of Matkowski and Nowak (2008) and RZ-RP (2009) cannot apply to prove The-
orem 3.1. In contrast, Theorem 2.1 makes possible to provide a straightforward
proof of Theorem 3.1. To illustrate that it is possible to exhibit economic applica-
tions that give rise to an unbounded sequence (µ j) j∈J we borrow two examples
from RZ-RP (2003).

3.1. Logarithmic utility function and technology with decreasing returns

We consider Example 10 in RZ-RP (2003). Fix a function F : [0,∞) → R con-
tinuous and strictly increasing with F(0) = 0. Moreover, assume that there exists
x > 0 with F(x) = x , F(x) > x for all x < x and F(x) < x for all x > x . We
consider the Bellman operator where the action space X is R+; the correspondence
Γ is defined by Γ(x) = [0, F(x)] for all x ∈ X ; and the utility function U is defined
by U(x , y) = ln(F(x)− y) for all (x , y) ∈ gphΓ.

We follow RZ-RP (2003) and pose

w−(x) =















1

(1− β)2
ln

1

2
+

1

1− β
ln x if x ¶ x

1

(1− β)2
ln

1

2
+

1

1− β
ln x if x > x .

There exists σ > 0 small enough such that x1−σxσ ¾ F(x) for every x in [0, x]. We
then pose

w+(x) =















σ

1− βσ
ln x +

1−σ
(1− β)(1− βσ)

ln x if x ¶ x

1

1− β
ln x if x > x .

12If f is a function in C(X , Y ) and K is a subset of X , we let




 f






K ≡ sup{| f (x)|: x ∈ K}.
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Finally, the function w is defined by w(x) = a+ (1− β)−1 ln x if x ¶ x and w(x) =
a+w+(x) if x ¾ x where a > 0. We claim that the sequence (µ j) j∈J is not bounded.

PROPOSITION 3.1 We have

lim inf
x→∞

θ+(x) = 0 or limsup
x→∞

θ−(x) =∞.

PROOF OF PROPOSITION 3.1: We denote by ξ the function in C(X ?) defined by ξ ≡
w −Bw. For each x ∈ X ? we have ξ(x) > 0. We split the proof in two cases. First
we assume that there exists M ∈ (0,∞) such that ξ(x) ¶ M for x large enough.
Observe that for every x ¾ x we have

θ−(x) =
1

ξ(x)

�

a+
1

1− β
ln x −w−(x)

�

.

This implies that limx→∞ θ−(x) =∞.
Assume now that lim supx→∞ ξ(x) =∞. For every x ¾ x we have θ+(x) = a/ξ(x)

implying that lim infx→∞ θ+(x) = 0. Q.E.D.

3.2. Homogenous utility function and technology with decreasing returns

We consider Example 11 in RZ-RP (2003). There is a function F : [0,∞) → R
strictly increasing and continuously differentiable on (0,∞) with F(0) = 0 and
F ′(0+) > 1. Moreover, there exists x > 0 with F(x) = x and F(x) < x for all
x > x . We consider the Bellman operator where the action space X is R+; the
correspondence Γ is defined by Γ(x) = [0, F(x)] for all x ∈ X ; the utility function
U is defined by U(x , y) = (F(x)− y)θ/θ for all (x , y) ∈ gphΓ where θ < 0.

We follow RZ-RP (2003) and pose w ≡ 0 and w+ ≡ ψ where ψ ≡ B0. In this
example we have ψ(x) = F(x)θ/θ . There exists x1 ∈ (0, x) such that x < F(x)
for every x ¶ x1. Then we pose w−(x) ≡ (1− β)−1(F(x)− x)θ/θ if x ¶ x1 and
w−(x)≡ w−(x1) if x ¾ x1. We claim that the sequence (µ j) j∈J is not bounded when
F is unbounded.

PROPOSITION 3.2 If F is unbounded then limx→∞ θ−(x) =∞.

PROOF OF PROPOSITION 3.2: Observe that for this example we have θ− = w−/ψ. It
follows that for all x ¾ x1

θ−(x) =
(F(x1)− x1)θ

1− β
F(x)−θ .

Since F is not bounded, we must have limx→∞ F(x) = ∞ and we get the desired
result. Q.E.D.
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4. RECURSIVE PREFERENCES FOR THOMPSON AGGREGATORS

Consider a model where an agent chooses consumption streams in the space `∞+
of non-negative and bounded sequences x = (x t)t∈N with x t ¾ 0. The space `∞

is endowed with the sup-norm ‖x‖∞ ≡ sup{|x t |: t ∈ N}. We propose to investi-
gate whether it is possible to represent the agent’s preference relation on `∞+ by a
recursive utility function derived from an aggregator

W : X × Y → Y

where X = R+ and Y = R+. The answer obviously depends on the assumed proper-
ties of the aggregator function W .

After the seminal contribution of Lucas and Stokey (1984), there has been a wide
literature dealing with the issue of existence and uniqueness of a recursive util-
ity function derived from aggregators that satisfy a uniform contraction property
(Blackwell aggregators). We refer to Becker and Boyd III (1997) for an excellent ex-
position of this literature.13 In what follows we explore whether a unique recursive
utility function can be derived from Thompson aggregators.

Throughout this section, we assume that W satisfies the following conditions:

ASSUMPTION 4.1 W is a Thompson aggregator as defined by Marinacci and Mon-
trucchio (2007), i.e., the following conditions are satisfied:
W1. The function W is continuous, non-negative, non-decreasing and satisfies the

condition W (0, 0) = 0.
W2. There exists a continuous function f : X → Y such that W (x , f (x))¶ f (x).14

W3. The function W is concave in the second variable at 0.15

W4. For every x > 0 we have W (x , 0)> 0.

REMARK 4.1 We can find in Marinacci and Montrucchio (2007) a list of exam-
ples of Thompson aggregators that do not satisfy a uniform contraction property.
For instance, one may consider W (x , y) = (xη + β yσ)1/ρ where η, σ, ρ, β > 0
together with the following conditions: σ < 1 and either σ < ρ or σ = ρ and
β < 1. Another example is the aggregator introduced by Koopmans, Diamond, and
Williamson (1964): W (x , y) = (1/θ) ln(1+ ηxδ + β y) with θ , β , δ, η > 0. This
aggregator is always Thompson but it is Blackwell only if β < θ .

In order to define formally the concept of a recursive utility function we need
to introduce some notations. We denote by π the linear functional from `∞ to R

13See also: Epstein and Zin (1989), Boyd III (1990), Duran (2000), Duran (2003), Le Van and Vailakis
(2005) and Rincón-Zapatero and Rodríguez-Palmero (2007).

14Marinacci and Montrucchio (2007) assume that there is a sequence (xn, yn)n∈N in R2
+ with (xn)n∈N

increasing to infinite and W (xn, yn)¶ yn for each n. This assumption, together with the others, implies
that for each x ∈ X , there exists yx ∈ Y such that W (x , yx )¶ yx . We require that we can choose x 7→ yx
continuous.

15In the sense that W (x ,αy)¾ αW (x , y) + (1−α)W (x , 0) for each α ∈ [0, 1] and each x , y ∈ R+.
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defined by πx= x0 for every x= (x t)t∈N in `∞. We denote by σ the operator of `∞

defined by σx= (x t+1)t∈N.

DEFINITION 4.1 Let X be a subset of `∞ stable under the shift operator σ.16 A
function u : X→ R is a recursive utility function on X if

∀x ∈ X, u(x) =W (πx, u(σx)).

We propose to show that we can use the Thompson metric introduced by Thomp-
son (1963) to prove the existence of a continuous recursive utility function when
the space X is the subset of all sequences in `∞+ which are uniformly bounded away
from 0, i.e., X ≡ {x ∈ `∞ : inft∈N x t > 0}.17 The topology on X derived from the
sup-norm is denoted by τ. This space of feasible consumption patterns also appears
in Boyd III (1990).

4.1. The operator

In the spirit of Marinacci and Montrucchio (2007) we introduce the following
operator. First, denote by V the space of sequences V = (vt)t∈N where vt is a τ-
continuous function from X to R+. The real number vt(x) is interpreted as the
utility at time t derived from the consumption stream x ∈ X. For each sequence of
functions V = (vs)s∈N and each period t, we denote by [T V ]t the function from X
to R+ defined by

∀x ∈ X, [T V ]t(x)≡W (x t , vt+1(x)).

Since W and vt+1 are continuous the function [T V ]t is continuous. In particular,
the mapping T is an operator on V , i.e., T (V )⊂ V .

We denote by K the family of all sets K = [a1, b1] with 0 < a < b <∞.18 We
consider the subspace F of V composed of all sequences V such that on every set
K = [a1, b1] ∈ K the family V = (vt)t∈N is uniformly bounded from above and
away from 0, i.e., V = (vt)t∈N belongs to F if for every 0 < a < b <∞ there exist v
and v such that

∀t ∈ N, ∀x ∈ [a1, b1], 0< v ¶ vt(x)¶ v <∞.

Observe that T maps F into F since W is monotone with respect to both variables.19

The objective is to show that T admits a unique fixed-point V ? in F . The reason is
that if V ? = (v?t )t∈N is a fixed-point of T then the function v?0 is a recursive utility

16I.e., for every x ∈ X we have σx still belongs to X.
17See also Montrucchio (1998) for another reference where the Thompson metric is used.
18We denote by 1 the sequence x = (x t )t∈N in `∞ defined by x t = 1 for every t. The order interval

[a1, b1] is the set {x ∈ `∞+ : a ¶ x t ¶ b, ∀t ∈ N}.
19We can easily check that for every V = (vt )t∈N in F and for every K≡ [a1, b1], we have W (a, v)¶

[T V ]t (x)¶W (b, v).
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function. Indeed, we will show that for each consumption stream x ∈ X and every
time t, we have limn→∞[T n0]t(x) = v?t (x). Since [T n0]t(σx) = [T n0]t+1(x) and

[T n0]t(x) =W (x t , W (x t+1, . . . , W (x t+n, 0) . . .)),

passing to the limit we get that v?t (σx) = v?t+1(x). This property is crucial in order
to prove that v?0 is a recursive utility on X. Indeed, we have v?0(x) = [T V ?]0(x) =
W (x0, v?1(x)) =W (x0, v?0(σx)).

20

4.2. The Thompson metric

Fix a set K in K . We propose to introduce the semi-distance dK on F defined as
follows:21

dK(V, V ′)≡max{ln MK(V |V ′), ln MK(V
′|V )}

where

MK(V |V ′)≡ inf{α > 0 : ∀x ∈K, ∀t ∈ N, vt(x)¶ αv′t(x)}.

Let V∞ ∈ V be the sequence of functions (v∞t )t∈N defined by v∞t (x) ≡ f (‖x‖∞).
Observe that [T V∞]t(x) ¶ v∞t (x) for every t ∈ N and every x in X. We de-
note by V 0 the sequence of functions T0 = ([T0]t)t∈N, i.e., V 0 = (v0

t )t∈N with
v0

t (x) = W (x t , 0). The monotonicity of T then implies that T maps the order in-
terval [V 0, V∞] into [V 0, V∞]. Moreover, both V 0 and V∞ belong to F .22 We can
then adapt the arguments of Theorem 9 in (Marinacci and Montrucchio, 2007, Ap-
pendix B) to show that T is a 0-local contraction on [V 0, V∞] with respect to the
family D = (dK)K∈K . More precisely, we can prove that

dK(T V, T V ′)¶ βKdK(V, V ′)

where βK ≡ 1− [µK]−1 and µK ≡ MK(V∞|V 0). Recall that

MK(V
∞|V 0)≡ inf{α > 0 : ∀x ∈K, ∀t ∈ N, f (‖x‖∞)¶ αW (x t , 0)}

implying that

µK = sup
x∈K

sup
t∈N

f (‖x‖∞)
W (x t , 0)

= sup
x∈K

f (‖x‖∞)
inft∈NW (x t , 0)

=
f (b)

W (a, 0)
.

The set [V 0, V∞] is sequentially complete with respect to the family D.23 Therefore,
we can apply Corollary 2.1 to get the existence of a unique fixed-point V ? = (v?t )t∈N

20Observe that the time t utility v?t (x) of the consumption stream x does not depend on the past
consumption since v?t (x) = v?t−1(σx) = . . .= v?0(σ

tx).
21The function dK is well-defined, we refer to Appendix D for details.
22See Appendix D for details.
23See Appendix D for details.
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of T in [V 0, V∞].24 The function u? ≡ v?0 : X→ R+ is then a recursive utility function
associated with the aggregator W and continuous for the sup-norm topology.25 We
have thus provided a sketch of the proof of the following result.26

THEOREM 4.1 Given a Thompson aggregator W, there exists a recursive utility func-
tion u? : X→ R which is continuous on X for the sup-norm. Moreover, this function is
unique among all continuous functions which are bounded on every order interval of
K .

REMARK 4.2 In the spirit of Kreps and Porteus (1978), Epstein and Zin (1989), Ma
(1998), Marinacci and Montrucchio (2007) and Klibanoff, Marinacci, and Mukerji
(2009), we can adapt the arguments above in order to deal with uncertainty.

REMARK 4.3 Consider the KDW aggregator

W (x , y) = (1/θ) ln(1+ηxδ + β y)

for any θ ,β ,δ,η > 0. Applying Theorem 4.1 we get the existence of a recursive
utility function defined on X and continuous for the sup-norm. When β < θ the
aggregator W is Blackwell and the existence of a continuous recursive utility func-
tion can be established by applying the Continuous Existence Theorem in Boyd III
(1990) or Becker and Boyd III (1997). We propose to show that the case β ¾ θ
is not covered by the Continuous Existence Theorem. Observe first that the lowest
α > 0 satisfying the uniform Lipschitz condition

|W (x , y)−W (x , y ′)|¶ α|y − y ′|

for all x > 0 and y, y ′ ¾ 0, is α = β/θ . Assume by way of contradiction that
the conditions of the Continuous Existence Theorem are met. Then there exists a
positive continuous function ϕ : X→ (0,∞) such that

M ≡ sup
x∈X

W (πx, 0)
ϕ(x)

<∞ and χ ≡ sup
x∈X
α
ϕ(σx)
ϕ(x)

< 1.

For every x ∈ X and every n¾ 1, we obtain
αnW (xn, 0) ¶ Mαnϕ(σnx)

¶ M
�

α
ϕ(σnx)
ϕ(σn−1x)

× . . .×α
ϕ(σx)
ϕ(x)

�

ϕ(x)

¶ Mχnϕ(x).
24Observe that the family of contraction coefficients is such that supK∈K βK = 1. We will show that

uniqueness is obtained on the whole set F .
25Observe that u? is non-decreasing. This follows from the fact that

u?(x) = lim
n→∞

W (x0, W (x1, . . . , W (xn, 0) . . .)).

26See Appendix D for details.
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Choosing x= a1 for any a > 0, we get

∀n¾ 1, αnW (a, 0)¶ Mχnϕ(a1).

Since α¾ 1 and χ < 1, it follows that W (a, 0) = 0 for every a > 0: contradiction.

5. RECURSIVE PREFERENCES FOR BLACKWELL AGGREGATORS

We borrow the notations of Section 4 and consider a model where an agent
chooses consumption streams in the space `∞+ . We propose to investigate if it is
possible to represent the agent’s preference relation on `∞+ by a recursive utility
function derived from an aggregator W : X × Y → Y where X = R+ and Y is a
subset of [−∞,∞) containing 0. The answer will obviously depend on the proper-
ties the aggregator W satisfies. Throughout this section, we will assume that W is a
Blackwell aggregator, i.e., W is continuous on X × Y , non-decreasing on X × Y and
satisfies a Lipschitz condition with respect to its second argument, i.e., there exists
δ ∈ (0, 1) such that

|W (x , y)−W (x , y ′)|¶ δ|y − y ′|, ∀x ∈ X , ∀y, y ′ ∈ Y.

The objective is to find a subspace X ⊂ `∞+ stable under σ such that W admits a
recursive utility function from X to R.

Taking `∞ as the commodity space is a choice that is made in many intertemporal
models.27 The advantage of `∞ with respect to other spaces (for instance `p with
1 ¶ p < ∞) is that it does not impose severe restrictions on the kind of dynamics
that can be considered (see Chapter 15 in Stockey, Lucas, and Prescott (1989) for
a discussion). In addition, the existence of a non-empty interior for `∞+ simplifies
considerably the application of a separation theorem that underlies the theorems of
welfare economics in an intertemporal setting (see Lucas and Prescott (1971)).

The choice of `∞ as a commodity space introduces some complications on the
choice of the appropriate topology. One may consider several topologies on `∞.
There is the topology derived from the sup-norm and the product topology. There
are also the weak topology σ(`∞,`1), the Mackey topology τ(`∞,`1) and the abso-
lute weak topology |σ|(`∞,`1) which is defined as the smallest locally convex-solid
topology on `∞ consistent with the duality 〈`∞,`1〉.28 In particular we have (see
Page 292 in Aliprantis and Border (1999))

σ(`∞,`1)⊂ |σ|(`∞,`1)⊂ τ(`∞,`1).
27See among others Lucas and Prescott (1971), Bewley (1972), Kehoe, Levine, and Romer (1990),

Magill and Quinzii (1994), Levine and Zame (1996) and Alipranits, Border, and Burkinshaw (1997). In
some models this choice is imposed directly while in some others it is implied by the assumptions made
on the production activity.

28This family is the weak topology generated by the family of semi-norms {ηq : q ∈ `1} where

∀x ∈ `∞, ηq = 〈|x|, |q|〉=
∑

t∈N
|x t qt |.



FIXED-POINT FOR LOCAL CONTRACTIONS 13

Assuming continuity of preference orderings with respect to one of the afore-
mentioned topologies plays a crucial role in establishing existence of equilibrium
in intertemporal models. As shown by Brown and Lewis (1981), assigning to `∞

one of these topologies is an abstract way of formalizing the idea that agents are
impatient. In particular continuity of preference orders with respect to the Mackey
topology permits equilibria of finite horizon economies to approximate the equi-
libria of infinite horizon economies since it implies that consumption in the very
distant future is unimportant.

In what follows we show how our fixed-point result can apply to prove existence
of recursive utility functions, defined on subsets of `∞+ endowed with a specific
topology, in two particular frameworks.

5.1. Unbounded from below

In this subsection we allow for aggregators that are unbounded from below. More
precisely, we assume that Y = [−∞,∞) and that W (x , y) ∈ R for every x 6= 0 and
y ∈ R. We letA be the space of sequences a ∈ `∞+ such that

∑

t∈N
δt |W (at , 0)|<∞

and we let X be the union of all intervals [a, b1] where a ∈A and b > ‖a‖∞. It is
straightforward to see that the set X is a subset of `∞+ stable under σ.29 We let K
be the set of all order intervals K ≡ [a, b1] where a ∈ A and b > ‖a‖∞. A direct
consequence of Theorem 2.1 is the following existence result.

PROPOSITION 5.1 There exists a recursive utility function U : X→ R continuous for
the product topology on every order interval K in K . Moreover, for any function
V : X → R continuous for the product topology on every order interval K in K
satisfying

(5.1) ∀K ∈K , lim
t→∞

δt sup
x∈K
|V (σtx)|= 0

we have30

lim
s→∞

sup
x∈K
|U(x)−W (x0, W (x1, . . . , W (xs, V (σs+1x)) . . .))|= 0.

The proof of Proposition 5.1 is based on an application of Theorem 2.1 with an
uncountable family of semi-distances. We refer to Appendix E for the details.

29When W (0, y) =−∞ for any y ∈ Y , a feasible consumption stream in X must be strictly positive.
30This implies that U is the unique fixed-point of T on the set of all functions V : X→ R bounded and

continuous for the product topology on every order interval K in K satisfying (5.1).



14 V. F. MARTINS-DA-ROCHA AND Y. VAILAKIS

5.2. Weak absolute continuity

In this subsection we restrict our attention to aggregators that are bounded from
below. More precisely, we assume that Y = [0,∞) and for simplicity we impose
W (0, 0) = 0. We will also assume that for any y ∈ Y , the function x 7→ W (x , y) is
concave. We show that under our assumptions, there exists a recursive utility func-
tion defined on `∞+ and continuous for the absolute weak topology, and in particular
for the Mackey topology.31

PROPOSITION 5.2 There exists a recursive utility function U : `∞+ → R which is
continuous for the absolute weak topology. Moreover, the function U is the unique
recursive utility function among all functions V : `∞+ → R continuous for the abso-
lute weak topology and satisfying

(5.2) lim
t→∞

δt sup
x∈K
|V (σtx)|= 0

for every non-empty set K⊂ `∞+ compact for the absolute weak topology.

The proof of Proposition 5.2 is based on an application of Theorem 2.1 with an
uncountable family of semi-distances. We refer to Appendix F for the details.
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APPENDIX A: PROOF OF THEOREM 2.1

Fix an element g in A. Since T is a local contraction, for every pair of integers q > n> 0, we have

d j(T
q g, T n g)¶ β j dr( j)(T

q−1 g, T n−1 g)¶ . . .¶ β jβr( j) . . .βrn−1( j)drn( j)(T
q−n g, g).

Since A is T -invariant, T q−n g belongs to A and we get

d j(T
q g, T n g)¶ β jβr( j) . . .βrn−1( j) diamrn( j)(A).

31Stroyan (1983) also proves existence and uniqueness of a Mackey continuous recursive utility func-
tion for aggregators studied by Koopmans, Diamond, and Williamson (1964). However, the arguments
of his proof rely on non-standard analysis.
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It follows from condition (2.1) that the sequence (T n g)n∈N is d j -Cauchy for each j. Since A is assumed
to be sequentially σ-complete, there exists f ? in A such that (T n g)n∈N is σ-convergent to f ?. We claim
that f ? satisfies all properties of Theorem 2.1.

CLAIM A.1 The function f ? is a fixed-point of T .

PROOF OF CLAIM A.1: Since the sequence (T n g)n∈N converges for the topology σ to f ?, we have

∀ j ∈ J , d j(T f ?, f ?) = lim
n→∞

d j(T f ?, T n+1 g).

Recall that the operator T is a local contraction with respect to (D, r), this implies that

∀ j ∈ J , d j(T f ?, f ?)¶ β j lim
n→∞

dr( j)( f
?, T n g).

Since convergence for the σ-topology implies convergence for the semi-distance dr( j), we get that
d j(T f ?, f ?) = 0 for every j ∈ J . This in turn implies that T f ? = f ? since σ is Hausdorff. Q.E.D.

CLAIM A.2 For every h ∈ F satisfying (2.2), the sequence (T nh)n∈N is σ-convergent to f ?.

PROOF OF CLAIM A.2: Fix an arbitrary h ∈ F . For each j ∈ J and every n¾ 1, we have

d j(T
n+1h, T n+1 f ?) ¶ β j dr( j)(T

nh, T n f ?)

¶ β jβr( j) . . .βrn( j)drn+1( j)(h, f ?)

¶ β jβr( j) . . .βrn( j)

h

drn+1( j)(h, A) + diamrn+1( j)(A)
i

.

Since T f ? = f ?, it follows from conditions (2.1) and (2.2) that (T nh)n∈N is d j -convergent to f ?. Since
this is true for every j we have thus proved that (T nh)n∈N is σ-convergent to f ?. Q.E.D.

The proof of Theorem 2.1 follows from Claims A.1 and A.2.

APPENDIX B: RELATION TO THE LITERATURE

Consider a set F and a family D = (d j) j∈J of semi-distances on F such that F is σ-Hausdorff where
we recall that σ is the weak topology defined by the family D. Fix r : J → J and let T : F → F be a local
Lipschitz function with respect to (D, r) in the sense that for every j there exists β j ¾ 0 such that32

∀ f , g ∈ F, d j(T f , T g)¶ β j dr( j)( f , g).

Assume that F is sequentially σ-complete. We propose to apply Theorem 2.1 for a specific set A. Assume
that there exists f in F such that the series

(B.1)
∞
∑

n=0

β jβr( j) . . .βrn( j)drn+1( j)( f , T f )

is convergent for every j ∈ J . Denote by O ( f ) the orbit of f and let A be the σ-closure of O ( f ).33 The set
A is T -invariant and sequentially σ-complete. We first prove that A is σ-bounded. Fix j ∈ J and observe
that

diam j(A)≡ sup{d j( f , g): f , g ∈ A}= diam j(O ( f ))¶ 2sup
n∈N

d j(T
n+1 f , f ).

Since T is a local Lipschitz function with respect to (D, r), we get that for every n¾ 1

d j(T
n+1 f , f )¶ d j(T f , f ) + β j dr( j)(T f , f ) + . . .+ β jβr( j) . . .βrn−1( j)drn( j)(T f , f ).

32If β j ∈ [0, 1) for each j then F is a local contraction. The concept of a local Lipschitz function was
first introduce by Hadžić (1979) in a more specific framework.

33The orbit of f is the set O ( f )≡ {T n f : n ∈ N}.
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This implies that

(B.2) diam j(A)¶ 2



d j( f , T f ) +
∞
∑

n=0

β jβr( j) . . .βrn( j)drn+1( j)( f , T f )



<∞

and the set A is σ-bounded. From (B.2) we have that for each n¾ 1,

β jβr( j) . . . . . .βrn( j) diamrn+1( j)(A)¶ 2
∞
∑

k=0

β jβr( j) . . .βrk+n( j)drk+n+1( j)( f , T f )

implying that (2.1) follows from (B.1). We can thus apply Theorem 2.1 to get the following corollary
which generalizes Lemma 2 in Hadžić (1979).34

COROLLARY B.1 Consider a family D = (d j) j∈J of semi-distances defined on a set F such that F is Hausdorff
and sequentially complete with respect to the associated topology σ. Let T : F → F be a locally Lipschitz
operator with respect to (D, r) for some r : J → J. Assume that there exists f in F satisfying (B.1). Then T
admits a unique fixed point in the closure of the orbit of f .

REMARK B.1 In Hadžić (1979) it is assumed that each semi-distance d j is the restriction of a semi-norm
defined on a vector space E containing F such that E is a locally convex topological vector space. We
have proved that this assumption is superfluous. Moreover, Hadžić (1979) does not provide any criteria
of stability similar to condition (2.2).

APPENDIX C: PROOF OF THEOREM 3.1

For any subset A of X , we denote by A? the set A\ {0}. Recall that C?(X ) is the space of all continuous
functions from X = R`+ to Z = [−∞,∞) such that f (x)>−∞ for every x 6= 0. Let F = [w−, w+] be the
order interval in C?(X ), i.e., the space of all functions f ∈ C?(X ) satisfying w− ¶ f ¶ w+.

REMARK C.1 If w−(0)>−∞ then every function f in F takes values in R. We claim that if w−(0) =−∞
then every function f in F satisfies f (0) =−∞.35

Observe that for every function f in F , we can construct a function Ψ( f ) : X ?→ R by posing

∀x ∈ X ?, Ψ( f )(x)≡ ln
�

f −w

w+ −w
(x)
�

.

The function Ψ( f ) is continuous on X ?. Moreover, for any compact set K of X , the function Ψ( f ) is

34Hadžić (1979) allows the operator T to be multi-valued. The arguments of the proof of Theorem 2.1
can easily be adapted to deal with multi-valued operators.

35Indeed, if w+(0) =−∞ the result is trivial. We claim that we always have w+(0) =−∞. Assume by
way of contradiction that w+(0) ∈ R. This implies that w(0) also belongs to R. It follows from (DP4) that
there exists M > 1 and an open neighborhood V of 0 in X such that w(x)−w−(x)¶ M(w(x)−w+(x))
for every x ∈ V ?, implying that

∀x ∈ V ?, −w−(x)¶ (M − 1)w(x)−Mw+(x).

Passing to the limit when x tends to 0, we obtain a contradiction.
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bounded on K?.36 We recall that for each j the function d j is defined on F by

d j( f , g)≡ sup
x∈K?j

�

�Ψ( f )(x)−Ψ(g)(x)
�

� .

Given a function f in F , we denote by fK j
the restriction of f to K j . Denote by F j the space of all functions

fK j
when f belongs to F . Since K j is a compact subset of X , the space Ψ(F j) composed of all functions

Ψ( fK j
) with fK j

in F j , is a subset of Cb(K?j ) the space of continuous and bounded functions defined on
K?j . It is straightforward to check that d j is a semi-distance on F . We denote by σ the topology on F
defined by the family D = (d j) j∈N.

CLAIM C.1 The topology σ is Hausdorff.

PROOF OF CLAIM C.1: Indeed, let f and g two functions in F with f 6= g. Assume there exists x 6= 0
such that f (x) 6= g(x). Then there exists j large enough such that x ∈ K j , implying that d j( f , g) > 0.
Now assume that f (x) = g(x) for every x 6= 0. By continuity at 0, we must have f (0) = g(0) which
contradicts the fact that f 6= g. Q.E.D.

CLAIM C.2 The space F is sequentially σ-complete.

PROOF OF CLAIM C.2: Indeed, let ( fn)n∈N be a sequence in F which isσ-Cauchy. For every j the sequence
is d j -Cauchy. Recall that for f and g in F we have

d j( f , g)≡ sup
x∈K?j

�

�Ψ( f )(x)−Ψ(g)(x)
�

� .

We split the analysis in two parts. We first study the interesting case where w−(0) =−∞.37 We denote
by Cb(X ?) the space of continuous functions defined on X ? and bounded in a neighborhood of 0. Since
the sequence ( fn)n∈N is d j -Cauchy it follows that the sequence (gn)n∈N is δ j -Cauchy where gn ≡ Ψ( fn)
belongs to Cb(X ?) and δ j is the semi-distance defined on Cb(X ?) by38

∀ξ,ϕ ∈ Cb(X
?), δ j(ξ,ϕ)≡ sup{|ξ(x)−ϕ(x)|: x ∈ K?j }.

Fix j ∈ J and let g j
n be the restriction of gn to K?j . We already proved that (DP4) implies that g j

n belongs
to Cb(K?j ). Since the Cb(K?j ) endowed with the sup-norm δ j is a Banach space, there exists a continuous

and bounded function g j : K?j → R such that

lim
n→∞

sup
x∈K?j

|g j
n(x)− g j(x)|= 0.

We denote by g? the function defined on X ? by g?(x) = g j(x) where j is such that K j contains x . Since
for every compact set K of X , there exists j ∈ J such that K ⊂ K j , we can follow standard arguments

36Indeed, for every x in X ? we have

0¶Ψ( f )(x)¶ ln
w− −w

w+ −w
(x).

It follows from (DP4) that there exists an open neighborhood V of 0 in X such that (w− −w)/(w+ −w)
is bounded on V ? by M > 1. Now, take f in F and K a compact subset of X . The set K \ V is a compact
subset of X ? implying that there exists M(K , f ) > 0 such that Ψ( f )(x) ¶ M(K , f ) for every x ∈ K \ V .
Therefore, we have proved that Ψ( f ) is bounded on K? by max{ln(M), M(K , f )}.

37We already proved that (DP4) implies that w+(0) = −∞. In particular, every function f in F also
satisfies f (0) =−∞.

38If ξ belongs to Cb(X ?) then it is bounded on K?j . Indeed, there exists V an open neighborhood of 0
such that ξ is bounded on V ?. Since ξ is continuous, it is bounded on the compact set K j \ V ⊂ X ?.
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to show that g? is well defined and is continuous on X ?. Observe that the sequence (gn)n∈N converges
uniformly to g? on every set K?j . Let us define the function f ? : X ?→ R by

∀x ∈ X ?, f ?(x) = (w+(x)−w(x))eg?(x) +w(x).

The function f ? is continuous on X ? and the sequence (d j( fn, f ?))n∈N converges to 0 for every j. More-
over, for every x ∈ X ?, we have w−(x)¶ f ?(x)¶ w+(x).39

We propose to define the function f : X → Y by posing f (x) = f ?(x) if x ∈ X ? and f (0) = −∞. To
prove that F is sequentially σ-complete, it is sufficient to show that f is continuous on X . Let (xk)k∈N be
a sequence in X ? converging to 0. Observe that

f (xk) = eg?(xk)−gn(xk)(w+(xk)−w(xk))e
gn(xk) +w(xk).

For κ ∈ N large enough, there exists j such that {xk : k ¾ κ} ⊂ K j . It follows that for every k ¾ κ we have

f (xk)¶ e−δ j (g? ,gn)(w+(xk)−w(xk))e
gn(xk) +w(xk).

Since the sequence (δ j(g?, gn))n∈N converges to 0, there exists m ∈ N such that δ j(g?, gm) ¶ 1/2.
Therefore, we have

f (xk)¶ e−1/2(w+(xk)−w(xk))e
gm(xk) +w(xk).

Since gm(x)¾ 0, for all x ∈ X ?, we have

f (xk)¶ e−1/2w+(xk) + (1− e−1/2)w(xk).

Since w+(0) =−∞ and we cannot have w(0) = +∞, passing to the limit, we obtain that

limsup
k→∞

f (xk) =−∞.

If w−(0)>−∞ then we can replace K?j in the definition of d j by K j . In that case, we can follow standard
arguments to prove that F is sequentially σ-complete. Q.E.D.

CLAIM C.3 For every f ∈ F the functionB f also belongs to F .

PROOF OF CLAIM C.3: It follows from Assumptions (DP1)–(DP3) that B maps functions in C?(X ) into
functions in C?(X ). Let f be a function in F = [w−, w+]. By monotonicity of B and Assumption (DP4)
we get the desired result. Q.E.D.

For every j, the semi-distance d j is well defined on the set C of all functions f ∈ C?(X ) for which
there exist 0< m< M <∞ and a neighborhood V of 0 in X satisfying

∀x ∈ V ?, m¶
w− f

w−w+
(x)¶ M .

In other words, C is the set of all functions f ∈ C?(X ) such that at 0 we have

w− f

w−w+
= O(1) and

w−w+
w− f

= O(1).

Observe that the order interval [w−, w+] is a subset of C . Indeed, for every f in [w−, w+] and all x ∈ X ?

we have

1=
w−w+
w−w+

(x)¶
w− f

w−w+
(x)¶

w−w−
w−w+

(x).

39This follows from the fact that for every n we have

∀x ∈ X ?, 0¶ gn(x)¶ ln[(w(x)−w−(x))/(w(x)−w+(x))].
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Since at 0 we have
w−w−
w−w+

= O(1)

there exists a neighborhood V of 0 in X and 0< M <∞ such that

∀x ∈ V ?,
w−w−
w−w+

(x)¶ M .

We claim that the functionBw also belongs toC . Indeed, we know from Assumption (DP4) that w > w−
implying by monotonicity ofB thatBw ¾Bw− ¾ w−. In particular, we have

∀x ∈ X ?,
w−Bw

w−w+
(x)¶

w−w−
w−w+

(x).

We have proved that (w −Bw)/(w − w+) = O(1) at 0. The fact that Bw belongs to C follows from
Assumption (DP4.b).

We can now follow the arguments in (Rincón-Zapatero and Rodríguez-Palmero, 2003, p.1553) to
prove that for every j we have

∀ f , g ∈ F, d j(B f ,B g)¶ (1− exp{−µ j})d j( f , g)

where

µ j ≡ sup
f ∈F

d j( f ,Bw).

APPENDIX D: PROOF OF THEOREM 4.1

Recall that

• V is the space of sequences V = (vt )t∈N where vt is a τ-continuous function from X to R+;

• K is the family of all sets [a1, b1] with 0< a < b <∞;

• F is the subset of V composed of all sequences V such that on every set K the family V = (vt )t∈N
is uniformly bounded from above and away from 0, i.e., V = (vt )t∈N belongs to F if for every
0< a < b <∞ there exist v and v such that

(D.1) ∀t ∈ N, ∀x ∈ [a1, b1], 0< v ¶ vt (x)¶ v <∞.

Consider two functions V and V ′ in V and recall that for each set K ∈ K , the number MK(V |V ′) is
defined by

MK(V |V ′)≡ inf{α > 0 : ∀x ∈K, ∀t ∈ N, vt (x)¶ αv′t (x)}.

The functions V and V ′ in V are said to be comparable if MK(V |V ′) ∈ (0,∞) and MK(V ′|V ) ∈ (0,∞) for
every K inK . This defines an equivalence relation on V and the set of all functions V ′ in V comparable
to a function V is called the component of V and is denoted by CV .

Observe that any pair of functions in F are comparable. Indeed, assume that V and V ′ belong to F
and fix K in K . We let (v, v) and (v′, v′) be the real numbers satisfying (D.1) for V and V ′ respectively.
It is straightforward to check that

0< v/v′ ¶ MK(V |V ′)¶ v/v′ <∞ and 0< v′/v ¶ MK(V
′|V )¶ v′/v <∞.

Moreover, if MK(V |V ′)< 1 then for every t ∈ N and x ∈K we have

vt (x)< v′t (x)¶ MK(V
′|V )vt (x)

implying that MK(V ′|V )> 1. It follows that

dK(V, V ′)≡max{ln MK(V |V ′), ln MK(V
′|V )}¾ 0.

As a consequence, fixing an arbitrary V in F , the set F is a subset of the component CV . Actually the set
F coincides with the component CV , i.e., if V ′ is a function in V comparable to V then V ′ belongs to F .
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LEMMA D.1 For each K ∈ K , the function dK is a semi-distance on F. The topology σ on F defined by the
family D = (dK)K∈K is Hausdorff.

PROOF OF LEMMA D.1: Consider a sequence V = (vt )t∈N in F . Given a set K in K , we denote by VK =
(vKt )t∈N the sequence of functions from K to R+ where vKt is the restriction of vt to K. The space of all
sequences VK when V belongs to F is denoted by FK. It is straightforward to adapt the arguments in
Thompson (1963) to show that dK is a distance on FK, implying that dK is a semi-distance on F . Since
the family K covers X the topology σ on F defined by the family D = (dK)K∈K is Hausdorff.40 Q.E.D.

We recall that T is the operator on V defined by

∀t ∈ N, ∀x ∈ X, [T V ]t (x)≡W (x t , vt+1(x)).

The mapping T maps F into F . Indeed, fixing K= [a1, b1] in K we have

∀t ∈ N, ∀x ∈K, 0<W (a, v)¶ [T V ]t (x)¶W (b, v)<∞.

Recall that V 0 = (v0
t )t∈N is the element in V defined by V 0 ≡ T0. Observe that

∀t ∈ N, ∀x ∈ X, v0
t (x) =W (x t , 0).

If K= [a1, b1] belongs to K then we have

∀t ∈ N, ∀x ∈K, 0<W (a, 0)¶ v0
t (x)¶W (b, 0)<∞

implying that V 0 belongs to F .
Recall that V∞ ∈ V is the sequence of functions (v∞t )t∈N defined by v∞t (x) ≡ f (‖x‖∞). Fix K =

[a1, b1] ∈K . Since f is continuous there exist z and z in [a, b] such that

∀x ∈K, f (z)¶ f (‖x‖∞)¶ f (z).

Since f (z) ¾ W (z, f (z)) we get f (z) > 0 implying that the sequence V∞ belongs to F . Moreover, for
every t ∈ N and every x ∈ X we have

[T V∞]t (x) =W (x t , f (‖x‖∞))¶W (‖x‖∞ , f (‖x‖∞))¶ f (‖x‖∞)

implying that T V∞ ¶ V∞.
The monotonicity of T implies that T maps the order interval [V 0, V∞] into [V 0, V∞]. We can then

adapt the arguments of Theorem 9 in (Marinacci and Montrucchio, 2007, Appendix B) to show that T is
a 0-local contraction on [V 0, V∞] with respect to the family D = (dK)K∈K . Recall that we denote by σ
the topology defined by D.

LEMMA D.2 The set [V 0, V∞] is sequentially σ-complete.

PROOF OF LEMMA D.2: We first relate the distance dK with the semi-norm ‖·‖K defined by

∀V ∈ [V 0, V∞], ‖V‖K ≡ sup
t∈N

sup
x∈K
|vt (x)|.

Fix two sequences V = (vt )t∈N and V ′ = (v′t )t∈N in [V 0, V∞] and fix K= [a1, b1] in K . Since

∀x ∈K, ∀t ∈ N, vt (x)¶ MK(V |V ′)v′t (x)

we get that

∀x ∈K, ∀t ∈ N, vt (x)− v′t (x)¶
�

MK(V |V ′)− 1
�

v′t (x).

Permuting V and V ′, and using the fact that max{vt (x), v′t (x)}¶ f (b) we obtain that

(D.2)




V − V ′






K ¶
�

exp{dK(V, V ′)} − 1
�

f (b).

40The family K covers X if for each x ∈ X there exists K ∈K containing x.
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Now let (Vn)n∈N be a σ-Cauchy sequence in [V 0, V∞]. Fix K ∈K and denote by VKn the restriction of
Vn to the set K. It follows from (D.2) that the sequence (VKn )n∈N is a Cauchy sequence for the sup-norm
‖·‖K. Observe that VKn belongs to the space of bounded and continuous functions from N×K to R. This
space is a Banach space when endowed with the sup-norm ‖·‖K. Therefore there exists VK = (vKt )t∈N a
sequence of continuous functions vKt :K→ R+ such that

lim
n→∞





VKn − VK






K = 0.

Since Vn belongs to [V 0, V∞], passing to the limit we get that V 0(x)¶ VK(x)¶ V∞(x) for each x ∈K.
Observe that if K and K′ are two sets in K satisfying K ⊂ K′ then VK(x) = VK

′
(x) for every x ∈ K.

Therefore, we can define without ambiguity the function V : X→ RN+ as follows:

∀x ∈ X, V (x) = VK(x)

where K is any set in K containing x.41 Since V 0(x) ¶ VK(x) ¶ V∞(x) for each x ∈ K, we get
that V 0(x) ¶ V (x) ¶ V∞(x). To conclude the proof of Lemma D.2 we only have to show that V is
τ-continuous on X. Fix x in X and let (xn)n∈N be a sequence in X τ-converging to x. Fix a > 0 and
b <∞ such that

a < inf
t∈N

x t and sup
t∈N

x t < b.

Observe that x belongs to K ≡ [a1, b1]. Since (xn)n∈N converges for the sup-norm to x, for n large
enough xn also belongs to K. Since VK is τ-continuous on K, it follows that the sequence (V (xn))n∈N
converges to V (x). Q.E.D.

We can apply Corollary 2.1 to get the existence of a unique fixed-point V ? = (v?t )t∈N of T in [V 0, V∞].
Actually uniqueness is obtained in a much larger set.

LEMMA D.3 Let V = (vt )t∈N be a sequence in V which is a fixed-point of T . If the sequence (vt (x))t∈N is
bounded from above for every x in X then V belongs to [V 0, V∞]. In particular, V ? is the unique fixed-point
of T on F.

PROOF OF LEMMA D.3: We let V = (vt )t∈N be a sequence in V which is a fixed-point of T . Assume that
for every x, the sequence V (x) is bounded from above, i.e., there exists v(x) ∈ R such that

∀t ∈ N, 0¶ vt (x)¶ v(x).

Fix x ∈ X. Since W is non-decreasing we have

∀t ∈ N, vt (x) =W (x t , vt+1(x))¾W (x t , 0) = v0
t (x).

We have thus proved that V ¾ V 0. We claim that we also have V ¶ V∞. Let x ≡ ‖x‖∞. We should prove
that for every t ∈ N we have vt (x)¶ f (x). We split the analysis in two cases.

First, assume that for every t ∈ N there exists T ¾ t such that vT (x) ¶ f (x). The monotonicity of W
and the definition of f imply

vT−1(x) =W (xT−1, vT (x))¶W (x , f (x))¶ f (x).

If t < T − 1 we reproduce the above argument recursively to show that vt (x)¶ f (x).
Now, assume that there exists τ ∈ N such that vt (x)> f (x) for every t ¾ τ. Following the arguments

in (Marinacci and Montrucchio, 2007, Lemma 4) we can prove that the function y 7→ W (x , y)/y is
strictly decreasing for any x > 0. In particular, if y > f (x) then W (x , y)/y < W (x , f (x))/ f (x) ¶ 1. It
follows that

∀t ¾ τ, vt (x) =W (x t , vt+1(x))¶W (x , vt+1(x))< vt+1(x).

41We always have x ∈ [x1, x1] where x ≡ inft∈N x t and x ≡ supt∈N x t . By definition of X, we have
x > 0 and x <∞ for each x ∈ X, implying that [x1, x1] belongs to K .
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The sequence (vt (x))t¾τ is strictly increasing and bounded by v(x). Let us denote its limit by `(x). Since
vt (x) > f (x) for every t ¾ τ, we get that `(x) ¾ f (x). Since the mapping y 7→ W (x , y)/y is strictly
decreasing we obtain

(D.3)
W (x ,`(x))
`(x)

<
W (x , f (x))

f (x)
¶ 1.

Moreover, since

∀t ¾ τ, vt (x) =W (x t , vt+1(x))¶W (x , vt+1(x))

passing to the limit we get that

(D.4) `(x)¶W (x ,`(x)).

Combining (D.3) and (D.4) we get a contradiction.
We have thus proved that V ¶ V∞, implying that V belongs to the order interval [V 0, V∞]. Q.E.D.

The function u? ≡ v?0 : X → R+ is a recursive utility function associated to the aggregator W and
continuous for the sup-norm topology.42 Actually, we have

∀K ∈K , lim
n∈N

dK(T
n0, V ?) = 0.

This implies that for each x ∈ X we have

u?(x) = lim
n→∞

W (x0, W (x1, . . . , W (xn, 0) . . .)).

Since W is non-decreasing with respect to both variables, we get that u? is also non-decreasing. This in
turn implies that the function u? is bounded on every set K in K .

Now, let u : X→ R+ be a continuous function which is bounded on every set K in K . Assume that u
is a recursive utility function. We propose to prove that u coincides with u?. We let V = (vt )t∈N be the
sequence in V defined by vt (x) = u(σtx). Since u is a recursive utility function then V is a fixed-point of
T . We claim that V coincides with V ?. In order to apply Lemma D.3 we only have to show that for every
x ∈ X, the sequence (vt (x))t∈N is bounded from above. Fix x ∈ X. We propose to show that there exists
v(x) ∈ R such that vt (x)¶ v(x) for every t ∈ N. We always have x ∈ [x1, x1] where x ≡ inft∈N x t and
x ≡ supt∈N x t . Since x belongs to X, the set Kx ≡ [x1, x1] belongs toK . By assumption, the function u
is bounded on Kx by some u(x) ∈ R. Observe that for every t ∈ N we have σtx belongs to Kx, implying
that

∀t ∈ N, vt (x) = u(σtx)¶ u(x).

We can thus choose v(x) ≡ u(x) and we have proved that the sequence (vt (x))t∈N is bounded from
above.

Applying Lemma D.3, we get that V = V ? implying that u= u?.

APPENDIX E: PROOF OF PROPOSITION 5.1

Let F be the space of functions V : X→ R continuous for the product topology on every K ∈K .43 For
every set K ∈K we let dK be the semi-distance on F defined by

dK(U , V )≡ sup{|U(x)− V (x)|: x ∈K}= ‖U − V‖K .

42Modifying the definition of the set V one can prove that u? is continuous for the product topology
on every order interval [a1, b1] in K .

43Recall that K is the set of all order intervals K ≡ [a, b1] where b > ‖a‖∞ and a is a sequence in
`∞+ satisfying

∑

t∈N
δt |W (at , 0)|<∞.
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The space F is sequentially complete with respect to the topology defined by the family D ≡ (dK)K∈K .
Observe that if K belongs to K then σK = {σx: x ∈ K} also belongs to K . We let r : K → K
be the mapping defined by r(K) = σK. Given U ∈ F we let T U : X → R be the function defined by
[T U](x) = W (πx, U(σx)). Since W is continuous and non-decreasing, the mapping T is an operator
on F , i.e., it maps F into F . Since W satisfies a Lipschitz contraction property, we get that T is a local
contraction with respect to (D, r). More precisely, we have

dK(U , V )¶ δdr(K)(U , V ).

For each s ¾ 1 we have

‖T0‖rs(K) = sup
x∈K
|W (xs , 0)|.

Since K belongs to K , it follows that the series

∞
∑

s=0

δs ‖T0‖rs(K)

is convergent. We can then apply Corollary B.1 (see Appendix B) to get the existence of a fixed-point U
of the operator T which is unique in A the closure of the orbit O (0) of 0 . Now, fix a function V : X→ R
continuous for the product topology on every order interval K in K satisfying (5.1). We have to prove
that for every K ∈K ,

(E.1) lim
s→∞

sup
x∈K
|U(x)−W (x0, W (x1, . . . , W (xs , V (σs+1x)) . . .))|= 0.

In other words, we should prove that

∀K ∈K , lim
s→∞

dK(T
sV, U) = 0.

According to Theorem 2.1, it is sufficient to prove that

∀K ∈K , lim
s→∞

δsdrs(K)(V, A) = 0.

Since 0 belongs to A, we have

drs(K)(V, A)¶ drs(K)(V, 0) = ‖V‖σsK

and the desired result follows from (5.1).

APPENDIX F: PROOF OF PROPOSITION 5.2

We denote by K the set of all subsets K of `∞+ such that
∑

t∈N
δt sup{|W (x t , 0)| : x ∈K}<∞.

Let x be any element in `∞+ . Observe that 0 ¶ x t ¶ ‖x‖∞ for all t ∈ N. Since W is non-decreasing we
get 0¶W (x t , 0)¶W (‖x‖∞ , 0) for all t ∈ N, implying that

∑

t∈N
δt W (x t , 0)<∞.

In particular, for every x ∈ X, the set {x} belongs to K . Choose η > 0 such that

(F.1)
∑

t∈N
δt W (η, 0)< 1.

We denote by D the family of all non-empty sets K⊂ `∞+ such that there exists x ∈K satisfying

sup
z∈K

∑

t∈N
δt W (x t , 0)|zt − x t |<∞ and sup

z∈K

∑

t∈N
δt W (η, 0)|zt − x t |<∞.
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CLAIM F.1 The family D is stable under σ, contains all non-empty subsets of X that are compact for the
absolute weak topology, and covers X.

PROOF OF CLAIM F.1: Let x be any consumption stream in `∞+ . The set {x} belongs to D. This implies
that D is non-empty and covers X. The stability of D is obvious. Now, let K be a non-empty set of `∞+
that is compact for the absolute weak topology. Since K is non-empty, we let x be any element of K. We
already proved that

∑

t∈N
δt W (x t , 0)<∞.

Therefore the sequence q belongs to `1
+ where qt = δt W (x t , 0) for every t ∈ N. Observe that the

sequence r = (rt )t∈N defined by rt = δt W (η, 0) also belongs to `1
+. Since K − {x} is compact for

|σ|(`∞,`1), there exists M > 0 such that

sup
z∈K

∑

t∈N
δt W (x t , 0)|zt − x t |= sup

z∈K
〈|z−x|, q〉< M

and

sup
z∈K

∑

t∈N
δt W (η, 0)|zt − x t |= sup

r∈K
〈|z−x|, q〉< M .

This implies that K belongs to D. Q.E.D.

CLAIM F.2 The family D is a subset of K .

PROOF OF CLAIM F.2: Let K be a set in D and let x be any element of K and M > 0 such that

sup
z∈K

∑

t∈N
δt W (x t , 0)|zt − x t |< M and sup

z∈K

∑

t∈N
δt W (η, 0)|zt − x t |< M .

We denote by Nη the subset of all t ∈ N such that x t ¶ η. Now let t ∈ Nη, i.e., x t < η. If zt ¾ η then by
concavity of W (·, 0) we have

|W (zt , 0)−W (x t , 0)|¶
W (η, 0)
η

|zt − x t |.

If zt < η then

|W (zt , 0)−W (x t , 0)|¶ 2W (η, 0).
It follows that for every z ∈K we have

∑

t∈Nη

δt |W (zt , 0)−W (x t , 0)| ¶
∑

t∈Nη

δt
�

W (η, 0)
η

|zt − x t |+ 2W (η, 0)
�

¶ M/η+ 2.

Now if t 6∈ Nη then x t ¾ η > 0 and by concavity of W (·, 0) we have for every z ∈K

|W (zt , 0)−W (x t , 0)|¶
W (x t , 0)

x t
|zt − x t |¶

W (x t , 0)
η

|zt − x t |.

This implies that for every z ∈K
∑

t∈N
δt |W (zt , 0)−W (x t , 0)| ¶

∑

t∈Nη

δt |W (zt , 0)−W (x t , 0)|

+
∑

t 6∈Nη

δt |W (zt , 0)−W (x t , 0)|

¶
∑

t∈Nη

δt |W (zt , 0)−W (x t , 0)|

+
∑

t 6∈Nη

δt W (x t , 0)
η

|zt − x t |

¶ (M/η+ 2) +M/η= 2(M/η+ 1).
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We have shown that
∑

t∈N
δt sup{|W (zt , 0)| : z ∈K} ¶

∑

t∈N
δt W (x t , 0)

+ sup
z∈K

∑

t∈N
δt |W (zt , 0)−W (x t , 0)|

¶
∑

t∈N
δt W (x t , 0) + 2(M/η+ 1)<∞.

This implies that the set K belongs to K . Q.E.D.

We let H be the space of functions U : `∞+ → R which are continuous on `∞+ for the absolute weak
topology and we let F be the space of functions U : `∞+ → R which are bounded and continuous for the
product topology on every set K of D.

CLAIM F.3 Any function in F is also continuous on `∞+ for the absolute weak topology, i.e., F is a subset
of H.

PROOF OF CLAIM F.3: Let V : X→ R be function in F . Let (xα)α∈A be a net in `∞+ converging to x in `∞+
for the absolute weak topology. Recall that we have

∑

t∈N
δt W (x t , 0)<∞

implying that the sequence q belongs to `1
+ where qt = δt W (x t , 0) for every t ∈ N. Observe that the

sequence r = (rt )t∈N defined by rt = δt W (η, 0) also belongs to `1
+. The convergence of (xα)α∈A to x

for the absolute weak topology implies that

lim
α∈A
〈q, |xα −x|〉= 0 and lim

α∈A
〈r, |xα −x|〉= 0.

Therefore, there exists α0 ∈ A such that for all α¾ α0 we have
∑

t∈N
δt W (x t , 0)|xαt − x t |¶ 1 and

∑

t∈N
δt W (η, 0)|xαt − x t |¶ 1.

It follows that the set

K≡ {x} ∪ {xα : α¾ α0}

belongs to D.44 Since (xα)α¾α0
converges for the absolute weak topology, it also converges for the

product topology.45 Since the restriction of V to K is continuous for the product topology, we get that

lim
α¾α0

V (xα) = V (x).

Q.E.D.

For each K ∈ D we let dK be the semi-distance on F defined by

dK(U , V )≡ sup
x∈K
|U(x)− V (x)|.

The space F is sequentially complete for the topology defined by the familyD. For any function U in F , we
let T U be the function defined on `∞+ by [T U](x) =W (πx, U(σx)). As in the proof of Proposition 5.1
we can show that T maps F into F and is a local contraction contraction with respect to (D, r) where
r(K) = σK. We let A be the closure of the orbit O (0) of the null function. Since D is a subset of K ,

44The family D was introduced because we do not know if the set {x} ∪ {xα : α ¾ α0} is compact
for the absolute weak topology.

45Fix any s ∈ N and let q be defined by qt = 0 if t 6= s and qs = 1. The sequence q belongs to `1
+.
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we can apply Theorem 2.1 to conclude that there exists a function U in A which is a fixed-point of T .
Claim F.3 implies that the fixed-point U of T is continuous on `∞+ for the absolute weak topology.

Denote by C(|σ|) the set of all non-empty subset of `∞+ which are compact for the absolute weak
topology. We already proved that C(|σ|) is a subset of D. If K belongs to C(|σ|) then we can extend the
definition of dK to the larger space H. Indeed, every function in H is continuous for the absolute weak
topology and therefore must be bounded on K. Moreover, the mapping T can be extended to H and
satisfies T (H)⊂ H.

Now fix a function V : `∞+ → R continuous for the absolute weak topology, i.e., V ∈ H and satisfying

lim
t→∞

δt sup
x∈K
|V (σtx)|= 0

for every non-empty set K ∈ C(|σ|). We can adapt the arguments of the proof of Proposition 5.1 to show
that

∀K ∈ C(|σ|), lim
n→∞

δn+1dσn+1K(V, A) = 0.

We can also adapt the arguments of the proof of Theorem 2.1 to show that the condition above implies

∀K ∈ C(|σ|), lim
n→∞

dK(T
nV, T nU) = 0.

If V is a fixed-point of T then V must coincide with U .
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