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ABSTRACT 

 
The socio-economic gradient in health remains a controversial topic in economics and 

other social sciences. In this paper we develop a new duration model that allows for 

unobserved persistent individual-specific health shocks and provides new evidence on the 

roles of socio-economic characteristics in determining length of life using 19-years of 

high-quality panel data from the German Socio-Economic Panel. We also contribute to 

the rapidly growing literature on life satisfaction by testing if more satisfied people live 

longer. Our results clearly confirm the importance of income, education and marriage as 

important factors in determining longevity. For example, a one-log point increase in real 

household monthly income leads to a 12% decline in the probability of death. We find a 

large role of unobserved health shocks, with 5-years of shocks explaining the same 

amount of the variation in length of life as all the other observed individual and socio-

economic characteristics (with the exception of age) combined. Individuals with a high 

level of life satisfaction when initially interviewed live significantly longer, but this effect 

is completely due to the fact that less satisfied individuals are typically less healthy. We 

are also able to confirm the findings of previous studies that self-assessed health status 

has significant explanatory power in predicting future mortality and is therefore a useful 

measure of morbidity. Finally, we suggest that the duration model developed in this paper 

is a useful tool when analysing a wide-range of single-spell durations where individual-

specific shocks are likely to be important. 
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1. Introduction 

The relationship between socio-economic characteristics and health, and the causal 

pathways underlying such a relationship, continues to be a widely debated topic by 

economists and other social scientists (see Adda et al., 2003; Adler et al., 1994; Benzeval 

and Judge, 2001; Case, 2001; Ettner, 1996; Smith, 1999; van Doorslaer et al., 1997). As 

noted by Deaton and Paxson (1998), “There is a well-documented but poorly understood 

gradient linking socio-economic status to a wide range of health outcomes”. Economists 

have recently contributed to the untangling of the gradient by using large household panel 

data sets, exogenous variations in income and/or dynamic econometric techniques to 

attempt to more firmly establish if income changes do causally affect adult morbidity. 

Importantly, all the evidence so far suggests that any such causal effect is weak and 

quantitatively small in magnitude (see, for example, Adams et al., 2003, and Meer et al., 

2003, for US evidence; Contoyannis et al., 2004, for the UK; Frijters et al., 2005, for 

Germany; and Lindahl, 2005, for Sweden). This is despite it being reasonable to think 

that higher income could be used to ‘buy’ a better lifestyle through greater leisure 

opportunities and improved nutritional intake, fewer financial worries, better access to 

medical services and an improved living environment through better housing and the 

ability to move to more prosperous neighbourhoods. 

A second strand of the literature has focused on the role of socio-economic 

characteristics in determining length of life. Two of the pioneering studies on this topic 

were the first and second Whitehall studies of Marmot et al. (1984, 1991), which found 

that men working in the lowest grades of the British civil service were observed to have 

death rates significantly higher than those in the highest grades. In this paper, we aim to 

shed further light on this important issue by developing and estimating a duration model 

that accounts for individual-specific health shocks, which we apply to high-quality 

household panel data. So far the studies that have used such data have found mixed 

results. For example, while Gerdtham and Johannesson (2004) found an important role 

for income in explaining variations in longevity in Sweden using a Proportional Hazard 

(PH) model, Gardner and Oswald (2004) found no such role when estimating a binary 

probit model of mortality with lagged income using data from the British Household 

Panel Survey. However, both studies confirmed previous findings of a positive 

relationship between marriage and longevity, and between education and longevity. A 

detailed review of the earlier literature can be found in Gardner and Oswald (2004), but it 

 1



appears that there is still little consensus about the quantitative importance of socio-

economic characteristics in explaining mortality. 

In addition to investigating the roles of income, education and marriage, conditioning 

on initial health status and measures of wealth, we provide new evidence on the 

importance of individual-specific health shocks in determining length of life. We also 

provide what we believe is a novel contribution to the rapidly growing literature on life 

satisfaction and happiness (see Oswald, 1997; Frey and Stutzer, 2002; Frijters et al., 

2004, for reviews), by testing if individuals with higher life satisfaction live longer 

independent of their socio-economic status. This question also indirectly relates to the 

small recent medical literature that finds that more optimistic people have a better 

survival rate following certain chronic illness such as cancer (see, for example, Allison et 

al., 2003). However, the evidence on this issue is mixed (see Schofield et al., 2004). We 

are also able to contribute to the debate about the usefulness of self-assessed measures of 

morbidity, by testing whether or not such measures are strong predictors of future 

mortality (see Idler and Angel, 1990; Idler and Benysmini, 1997; van Doorslaer and 

Gerdtham, 2003). 

We address these issues using 19 waves of high-quality panel data on around 26,000 

individuals followed in the German Socio-Economic Panel (GSOEP) over the period 

1984 to 2002. Important for our analysis, is the fact that when individuals drop-out of the 

GSOEP panel, information is collected on the reason, which allows us to identify around 

2,400 individuals who died in this period. We introduce a new duration model that we 

call the "Increasingly Mixed Proportional Hazard Model" (IMPH), which allows for 

unobserved heterogeneity that increases over time due to unobserved persistent health-

related shocks. We argue that the assumptions underlying the IMPH model are superior 

to the often used Mixed Proportional Hazard Model (MPH) in the context of modelling 

length of life, and find strong evidence that health shocks explain a large part of the 

variation in longevity. We also suggest that the IMPH model is a useful tool for 

modelling a wide range of single spell duration applications in economics and the social 

sciences where individual-specific persistent shocks are likely to be important e.g. 

duration of unemployment or duration to bankruptcy. 

In Section 2 we describe our data, define the main variables used in the analysis and 

provide some preliminary statistics. We introduce our modelling framework in Section 3, 

and the corresponding results are discussed in Section 4. Conclusions are drawn in 

Section 5. 
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2. Data and Sample Properties 

To provide new evidence on the roles of socio-economic characteristics and life 

satisfaction on the duration of life we use high-quality data drawn from 19 waves of the 

German Socio-Economic Panel (GSOEP) between 1984 and 2002. The GSOEP is a 

nationally representative household panel that follows a large sample of adults (living in 

some 7,000 households) each year since 1984. In 1990, the year of German reunification, 

the panel was extended to include residents of the former East Germany. As with any 

panel survey, the GSOEP suffers from attrition with individuals dropping out of the panel 

for a variety of reasons. In order to maintain the nationally representative nature of the 

data, each year new individuals enter the panel for the first time. For those individuals 

that move home, the GSOEP is very successful in following them up. Importantly, in the 

context of this study, information is collected from other household members if an 

individual has died in the past year, and if this is not possible, this information is obtained 

from neighbours or from the official death register.  
In this paper, we use the full sample of adults in East and West Germany observed in 

all the currently available waves of the GSOEP. This comprises 26,401 individuals age 

over 15, for which we have 223,723 observations. The average number of years in the 

panel is 8.47. The average age of the sample is 44.5 years, 48.8% of respondents are 

male, 79.9% reside in West Germany and the average real monthly pre-tax household 

income is 3,949DM. Household income has been deflated by the OECD main economic 

indicators consumer price index (base year 1995). 

Of the 26,401 individuals we observe, 2,400 died over this period implying a 

mortality rate of 9.1%. Unfortunately, data is not collected on cause of death. The 

youngest death we observe is at age 19 and the oldest death at age 105, with an average 

age of death of 73 (71 for males, 76 for females). Figure 1 shows the hazard of death by 

age. The likelihood of mortality is very small in Germany up until the age of about 45, 

then increases gradually between ages 45 and 75, followed by a steep gradient thereafter. 

However, the raw data clearly suggests that income plays an important role in 

determining survival rates. This is highlighted in Figure 2, where separate hazard of death 

by age are shown for individuals with an initially observed real pre-tax monthly 

household income above and below the sample mean value. While there is little 

difference in the death hazard by income for individuals aged less than 60, individuals 

initially observed with below mean income have a higher chance of death between ages 
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Figure 1:
Death Hazard by Age
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Figure 2:
Death Hazard by Age and Initial Income

(Smoothed 3-year moving average)
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Figure 3:
Death Hazard by Age and Initial Life Satisfaction

(Smoothed 3-year moving average)
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60 and 80. Interestingly, the converse is the case for those with low incomes who survive 

until at least 85, although the sample sizes for the most elderly are small. 

Finally, Figure 3 shows the relationship between initially observed life satisfaction 

and the hazard of death. Although there appears to be no difference across high and low 

satisfaction up until the age of about 74, individuals who report low life satisfaction (i.e. 

<8 on a 0-10 scale) have a higher likelihood of death at each age above 74. Therefore 

there is some evidence from the raw data that more satisfied individuals live longer. 

 

3. Empirical Models 

In this section we outline our empirical strategy by first describing one of the most 

widely used duration analysis models by economists, namely, the Mixed Proportional 

Hazard Model (MPH). We then introduce a new extension to this model, which we have 

called the “Increasing Mixed Proportional Hazard Model” (IMPH), and then contrast the 

underlying assumptions of the two models. We suggest that the IMPH model is a useful 

new tool for modelling a wide-range of single-spell durations in economics when 

cumulative individual unobserved shocks are likely to be important and/or when the 

researcher observes a lot of information about respondents in the initial interview but 

little thereafter. 

 

(i) The MPH Model 

In the literature on single-spell duration hazard models to date, the Proportional Hazard 

(PH) model, and its extension to allow for unobservable heterogeneity, the Mixed 

Proportional Hazard (MPH) model, have been by far the most popular. The MPH takes 

the form: 

 

 ( | ) '( ) ( )t x z t xθ λ λ φ, =  (0.1) 

 
where x  is a set of observable characteristics, θ  is the hazard rate at duration t   is 

a continuous baseline function, and 

, '( )z t

0λ >  is a fixed unobservable characteristic. Van den 

Berg (2001) provides an extensive survey of the various applications of this model, for 

which the durations under scrutiny not only include the length of life, but also include the 

length of unemployment, the length of business solvency, the length of wars, the length 

 5



of time until first child and the length of time until a stock market crash. This model is 

identified under a certain set of assumptions, including the assumptions that λ  and x  are 

independent and that ( )E λ  is finite (see Elbers and Ridder, 1982; Heckman and Singer, 

1984; Ridder, 1990; and Heckman, 1991). Various recent extensions deal with the cases 

where there are multiple durations (Honoré, 1993; Frijters, 2002), and a combination of 

multiple and competing durations (Abbring and Van den Berg, 2003). However, the basic 

building block of any individual hazard remains the same i.e. multiplicativity in the 

various components of the hazard and some observed characteristics (time varying or not) 

that are not related toλ .  

The treatment of unobservables in this model is unusual for a time-series model. The 

MPH model essentially includes the presence of three unobservable components. The 

first unobservable component is the fixed individual one (λ ). The second component 

stems from the fact that even conditional on observables and λ,  the model does not 

specify an observed event, but only a hazard rate of an event occurring which implicitly 

means that other time-varying unobservables (whose distribution is constant) determine 

whether a transition is made or not. One can call these ‘incidence unobservables’. The 

third and more hidden unobservable component is the baseline function  duration 

itself is not a directly meaningful variable and merely proxies for other time-varying 

variables. When researchers discuss the hazard to first-time unemployment for instance, 

the baseline function is sometimes interpreted as picking up discouragement, stigma and 

time-varying benefit entitlements (see Van den Berg, 2001). When researchers discuss 

the hazard to death, where the baseline depends on age, the baseline function is 

interpreted as picking up health deterioration. The baseline function should therefore 

more properly be understood as a common time-varying unobservable.  

'( )z t :

However, having only common time-varying unobservables is clearly implausible in 

most practical applications in economics. In time-series analyses it is normal to have 

cumulative unobserved shocks over time. In the case of wage changes for instance, an 

unobserved promotion leading to a wage increase is not usually reversed the next period, 

but is a permanent wage change. In the case of first-time unemployment also, some time-

varying unobservables (such as benefit entitlements or motivation) are subject to 

individual-specific persistent shocks. In the case of the hazard to death, unobserved time-

varying cumulative health deterioration occurs but is not the same for all individuals. We 

thus argue that it is more natural to assume that time-varying unobservables have a 
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distribution over the population and are cumulative, leading to an individual-specific path 

in the time-varying unobservables rather than a common path.  

  

(ii) The Increasingly Mixed Proportional Hazard Model (IMPH) 

The main limitation of the MPH model in the context of modelling longevity is that it 

places an unduly large emphasis on unobserved health differences at some starting point, 

whilst paying no attention to the potentially much greater issue of unobserved cumulative 

individual health deteriorations.  

We therefore propose the following model to deal with this limitation: 

 

      
( ) ( ) '( ) (

(0 )

t t

t

t x f z t x

N t

)θ λ λ φ

λ

| , =

,
     (0.2) 

 
which has both common time-varying unobservables (in ) and an individual time-

varying unobservable, 

'( )z t

tλ .  This unobservable is defined to have expectation 0 over the 

whole population (surviving and not-surviving) at any time, and follows a Wiener 

process, also known as a random walk or a unit root process. It can be understood as the 

accumulation of smaller iid shocks over time and captures the permanent health shocks 

that are such a pervasive aspect of real life.1 In our empirical application we will only 

consider the function ( ) t
tf eσλλ =  but will discuss identification for the more general 

case where f(.) is a positive monotonically increasing function. However, the problem of 

identification arises in this model because individuals, who are hit by particularly severe 

health shocks that increase their hazard rate of dying, are also more likely to leave the 

stock of the living over time leaving a selective stock of individuals. Therefore, even 

though for the entire population that starts at t=0, E ( ) 0tλ =  at any age t, for those that 

survive until t, E( ) 0tλ < . In the Appendix we show that the model with discrete jumps in 

time (our application) is identified under weak assumptions. We also provide a discussion 

of the conditions needed for identification of a continuous version of this model.  

Importantly, the IMPH model inverts the usual assumption on unobserved 

heterogeneity: whilst the MPH assumes there to be heterogeneity at the start of the 

                                                 
1 There are a number of potential extensions and generalizations of this model. One such generalization in 
a discrete environment is to have an additive process with an unknown distribution of shocks each period. 
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observation plan which reduces to zero over time because only those with low 

unobserved heterogeneity remain in the sample, our model assumes that there is zero 

unobserved heterogeneity at the start of the observation plan (i.e. perfect initial 

information on hazards) which increases over time due to unobserved persistent shocks. 

We take the following parameterisation: 

  

 

'

1

( )

'( ) a

x

a a

x e

z t e s t s

β

θ

φ

−

=

= ⇐⇒ ≤ <
 (0.3) 

 
which means β  conveys the influence of the observables x;  the baseline hazard  is 

taken to be a non-parametric step-function of age where we need to estimate the 

parameters 

'( )z t

aθ . We furthermore take age to be discrete (in years), we have as our 

information set for each individual  some individually-specific starting age  a set of 

characteristics denoted by 

i 0it ,

X  which are observed at some individual-specific calendar 

time 0iτ ,  and for the subset that has died before the end of our observation plan (ending 

at calendar time ), we observe age at death . The likelihood of an individual i  who 

still lives at the end of our observation plan (calendar time ) is therefore: 

S iT

S

  

0 0
1

0

( )
0(1 ) ( )

i i
t a a a

i

t t S
s t s X

t i
t t

e e e dG S
τ

λ θ β λ τ
′

−

= + −
∗ ≤ <

=

∑−∏∫ , −     (0.4) 

 

where we integrate over the distribution of all paths tλ  in the time-interval of length 

0iS τ− .

)

 It is also important to bear in mind that t  here denotes age and not calendar time. 

A computational problem arises when we consider that 0( t iG Sλ τ, −  is in principle of 

infinite dimension. If we reduce the dimensionality of tλ  to one where there are discrete 

shocks each year, then 0( t iG S )λ τ, −  is still of dimension 0iS τ−  and can thus be 

extremely large. To solve this, we use a simulation method whereby we draw a large 

number M of possible paths tλ  from the Wiener process and integrate over them. Denote 

each randomly drawn path j as 0 1{ }j j j j
Tλ = λ λ λ, ,..,

                                                                                                                                                

 where T  denotes the maximum age 

 
However, in the continuous case any process with unknown additional shocks will closely resemble a 
Wiener process when aggregated to discrete time intervals. 
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observed in the sample. Then, our computed likelihood for someone who remains alive at 

 equals: S

 

 
0 0

0 1

0

( ) '

1

1 { (1
i i jj

t ti a a a

i

t t SM
s t s X

j t t

e e e
M

τ
λ λ θ β−

= + −
− ∗ ≤ <

= =

∑−∑ ∏ )}  (0.5) 

 
and the likelihood for someone who is observed to die at age  equals:  iT

 

 0 1 0 1

0

1
( ) ( )' '

1

1 { (1 )
i j j jj

t t T ti a a a i i a a i a

i

t TM
s t s s T sX X

j t t

e e e e e e
M

λ λ λ λθ θβ β− −

= −
− −∗ ≤ < ∗ ≤ <

= =

∑ ∑− ∗∑ ∏ )}  (0.6) 

 

where 0 1( ) '
j j

T ti i a a i as T s Xe e eλ λ θ β−
− ∗ ≤ <∑  equals the probability of dying at age  For large enough iT .

M , this simulated likelihood approaches the true one. The precision of the 

approximation can further be increased by reducing the time-interval. Given our data, 

where individuals are interviewed each year, the natural unit of time is years. In this 

application, we have found that taking smaller time intervals made only a negligible 

difference to the main parameters of interest. We undertook a specification search using 

M=1000, and in a final run used M=2000 and M=5000, neither of which changed the 

estimated coefficients noticeably or significantly, implying that M=1000 appears to be 

reasonable in practice.  

 

(iii) Contrasting the MPH and IMPH Models 

The basic idea of the IMPH model versus the MPH model can be clearly illustrated by 

showing how the two models work in a hypothetical case. To focus the discussion on the 

unobserved heterogeneity distribution, which is the sole item of difference between these 

two models, consider a case with no observed heterogeneity and no baseline hazard.  

In Figure 4 we have taken a very simple MPH model, where there is only 

unobserved heterogeneity which at t=0 follows a uniform distribution on the points 

{0.01,0.02,..,0.3}. We can see that at t=0 the unobserved heterogeneity distribution is 

uniform, but over time the distribution becomes more and more tilted to the low hazard 

rates, until after 400 periods, nearly all individuals surviving in the sample are those with 

the lowest unobserved hazard rates (i.e. hazards equal to 0.01). This shows a well-known 
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trait of the MPH model, which is that all the ‘high-risks’ (i.e. high unobserved hazards) 

sort themselves out of the surviving population, leaving only low-risk individuals in the 

surviving population.  

Figure 4:
The Distribution of Unobserved Heterogeneity over Time in the MPH model
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Contrast this with the IMPH model. In Figure 5, we take each individual to start with 

the same hazard rate in the mid-point of the [0.01,0.3] range, but a Wiener process 

operates on this distribution such that at each point in time, the unobserved heterogeneity  

 10



Figure 5:
The Distribution of Unobserved Heterogeneity over Time in the IMPH Model
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has an equal chance of going up as well as down.2 We can see that at t=0, the distribution 

has a single spike and that as time passes, the distribution flattens, until finally, after 100 

periods, the unobserved heterogeneity distribution of the survivors follows a bell-type 

                                                 
2 Our specific assumptions here are that the entire population starts at a hazard rate of 0.16, and that every 
individual at each point in time has a probability of 90% to keep the same hazard rate, a 5% probability of 
increasing the hazard rate by 0.01, and a 5% probability of decreasing the hazard rate by 0.01 (except at 
0.01 itself). 
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shape. However, the bell is not perfect with the left tail being thicker than the right tail. 

This relates to the fact that the mean of the distribution gradually shifts downwards i.e. it 

is individuals with shocks that make them less likely to leave that survive. The survival of 

the low-risk groups shown in Figures 4 and 5, which results in a shift in the distribution 

to the left, is therefore a feature of both the MPH and IMPH models.  

One major difference between the MPH and the IMPH models is that the MPH 

model presumes to know very little about the population at the start of the sampling 

frame (t=0), but that over time one ‘learns’ more and more about the population in the 

sense that there is less and less variation in the unobservables and the remaining 

population is therefore more and more homogeneous. In contrast, the IMPH presumes to 

know a lot about the population at the start of the sampling frame, but ‘loses touch’ with 

the population in the sense that there is more and more variation in the unobservables in 

the surviving population. We argue that for our application the latter presumption is more 

sensible since the GSOEP asks a whole host of question to respondents, but those who 

die are often not observed having responded to questions for several years. In fact, for 

around 40% of those we observe dying, no questionnaires are responded to in any of the 

five years before death. In such a situation, where one knows a lot about a population at 

some fixed point in time, but little after that other than who has left the state of interest 

(in our case, life), we suggest the IMPH model as the logical model to use rather than the 

MPH model.  

The situation where the researcher observes a great deal of information about a 

population at some point in time, but observes far less afterwards, other than whether 

some particular event took place, arises often in economics. For example, the 

unemployed and the disabled are in many data sets asked many questions at the time that 

they become unemployed or disabled. However, after such an ‘intake-interview’, it is 

often the case that little is known about the respondent other than whether they leave 

unemployment or disability. It is very likely that persistent shocks are unobserved for 

these people e.g. whether they marry, whether they have followed training, whether they 

have moved house and whether they have been active in voluntary work. The IMPH 

model is also more appropriate for such situations.  

The IMPH model also has other advantages over the MPH model. In particular, the 

origin of ‘unobserved heterogeneity’ is left unspecified in the MPH model. Unknown 
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factors are presumed to be present before t=0 which have left permanent differences 

between individuals. These unknown factors are often interpreted in labour market 

context as upbringing or peer influences. However, once observed in the sample such 

processes are presumed to have stopped completely i.e. there is nothing that affects 

individually-varying unobserved factors once the duration of interest begins. Upbringing 

and peer influences essentially ‘stop’. This aspect of the MPH model is often 

unappealing. If there are unobserved processes at work creating unobserved differences 

between individuals, then it would seem unlikely that these would happen to stop just 

because individuals were interviewed or recorded in some other way.  

Our model effectively presumes that the outcome of ‘unobserved processes’ are 

revealed as specific variables at the start of a sampling period, but that these unobserved 

processes continue unabated after that and therefore lead to an increase in unobserved 

heterogeneity.  

A legitimate question is to ask ‘so what’, in the sense of whether there is any good 

reason to suppose that the MPH model and the IMPH model are in general going to yield 

different results. We show in this study that they do in terms of the quantitative effect of 

socio-economic characteristics on mortality. However, the key issue we want to raise in 

this respect is the identification of the unobserved heterogeneity distribution in the MPH 

model applied to single spell data. As noted by Elbers and Ridder (1982), the unobserved 

heterogeneity distribution is identified from the change in the relative hazard between a 

high-risk group and a low-risk group. To illustrate this, Figure 6 shows a typical profile 

of the observed relative hazards in a hypothetical environment (again, without any 

baseline hazard). In this figure we have supposed that there is a group with an observed 

difference whose true effect on the hazard rate is to double it. Both groups start out with 

the same unobserved heterogeneity distribution.  

The broken line shows the observed relative hazard for the MPH model and the 

straight line shows the same statistic for the IMPH model. For the MPH model, the 

relative hazard of the two observed groups (high and low) at the start reveals what the 

true relative effect is. This is an important observation in the identification of the MPH 

model, because it is a feature that holds for all possible MPH models. Over time, 

however, the relative hazard of the high group first declines (possibly even below 1) and 

then returns again to its initial level. This decline is due to sorting, with those in the high 

risk group that have high unobserved heterogeneity leaving quickest. This means that 

within the high-risk group the unobserved heterogeneity distribution changes faster than 
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for the low-risk group. In essence, within the high-risk group, those with low unobserved 

heterogeneity are very quickly the only individuals remaining, whilst within the low-risk 

group, this sorting is much slower. This is the reason why the relative hazard drops even 

though the true effect on the hazard of being in the high-risk group remains 2 over the 

entire period. The observed relative hazard in the MPH model can even drop below 1, 

which means that if we do not observe individuals from the start of the period we could 

easily draw misleading conclusions. Consequently, when the start of the spell is not 

observed for the entire sample, there is an initial-conditions problem with the MPH 

model. 

Figure 6: How Relative Hazards for Observed Groups 
Change in the MPH and the IMPH model 
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For the MPH model this relative hazard profile is not just due to our choice of 

parameters. Rather, the general profile holds for all MPH models, regardless of the 

baseline hazard, the observed heterogeneity or the unobserved heterogeneity distribution. 

There is always a dip followed by a recovery in the relative hazards between the high and 

low risk groups. However, the exact shape of the profile is of a particular form: it is 

unique to a particular unobserved heterogeneity distribution and hence identifies the 

unobserved heterogeneity distribution. Such profiles in empirical practice are therefore 

used in this way. Baker and Melino (2001) showed that this source of identification is 

very weak with finite data and that the MPH model for single spells is extremely 
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sensitive to the parameterization of the baseline hazards.  

The relative hazards in the IMPH model also start out being correct. However, the 

profile of the relative hazard is very different to the case of the MPH model. There is still 

a clear decline in the relative hazard, but it accelerates over time rather than reduces over 

time. However, as the duration goes to infinity, the relative hazard should always tend to 

1, since the relative importance of the initial heterogeneity versus the unobserved 

cumulative shocks becomes less and less. Therefore, if the IMPH model is correct, the 

relative hazard of the high risk and the low risk groups has a very different profile from 

what the MPH model ‘uses’ to identify parameters and would in general mean that 

different parameter estimates can be obtained. 

We can now look for the empirical equivalent of the relative hazards in Figure 6, by 

plotting the relative hazards for four key socio-economic variables that we will use in the 

empirical analyses. These are shown in Figure 7, where we have used 10-year-smoothed 

hazards to reduce the importance of small numbers of deaths at various ages. This figure 

shows the ratio of the hazard for groups divided up on the basis of the main observed 

socio-economic characteristics. These are initial real household monthly income, initial 

life satisfaction, initial marital status and initial years of schooling. Although it is no more 

than a casual ocular test, these ratios do appear to tend to 1 as age increases. All the 

‘action’ in the relative hazards is in the age range 35-65, whilst at very high ages, when 

most initial fixed unobserved heterogeneity should have been sorted out, relative hazard 

ratios become very close to 1. This provides some tacit support for the IMPH model, 

which predicts that relative hazards for any variable should tend to 1, in contrast to the 

MPH model, which predicts relative hazards at high durations to be further from 1 than at 

intermediary durations. 

 

(iv) Relation to biometric hazard models 

In the biometric literature, there have also been some attempts at incorporating 

unobserved Wiener processes into a hazard framework. Yashin and Maton (1997) review 

that literature and discuss the main type of model that has been implemented empirically: 
*( ) '( ) ( )

( , ) ( )

t t t

t t

t Y x z t Y Q t Y

dY f Y t dt b t dW

θ | , = +

= +
           (0.7) 

where  is a Wiener process vector,  is the transpose of  which is a vector, and the 

matrix  and the function 

tW *
tY tY

( )Q t ( , )f Y t  satisfy some regularity conditions. This model is 
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richer in some dimensions and more restrictive in other dimensions than the IMPH 

model. It is richer in the sense that it deals with multiple Wiener processes in stead of 

one. It is more restrictive in the sense that its identification and estimation relies on the 

additive quadratic formulation of the term . In applications, authors presume to 

be able to (infrequently) measure , unlike our application where we (apart from the 

initial condition) presume never to measure . It’s the quadratic form in (0.7) that allows 

explicit analytic computation of conditional means and variances. The applications which 

Yashin and Maton (1997) review consist of fitting population-age-mortality profiles 

where  is a simple function of age.  

* ( )tY Q t Yt

tY

tY

( )Q t

Figure 7:
Death Hazard Ratios by Socio-Economic Characteristics and Age
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 (v) Explanatory Variables 

Following the recent studies that have focused on the role of socio-economic 

characteristics in determining length of life (e.g. Gerdtham and Johannesson, 2003, 2004; 

Gardner and Oswald, 2004), we control for a wide-range of initial socio-economic and 

demographic individual characteristics in our models that a priori would be expected to 

influence longevity. In addition to the powerful mortality predictors of age and gender, it 

is important for the IMPH model that we comprehensively capture initial differences in 
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health status. We do this in three ways. Firstly, we include a variable indicating the extent 

of disability (which is reported in terms of percentage disabled in the GSOEP). Secondly, 

we include a self-assessed measure of general health status which is the level of health 

satisfaction reported by the individual that is captured on a 0 (very unsatisfied) to 10 

(very satisfied) scale. There is some evidence that self-assessed health measures are a 

powerful predictor of mortality, and a significant predictor of future changes in 

functioning among the elderly (see, for example, Idler and Angel, 1990; Idler and Kasl, 

1995; Grant et al., 1995; and Idler and Benyamini, 1997). Self-reported health 

satisfaction has also been found to be a good predictor of future health care usage (van 

Doorslaer et al., 2000). In this paper we are able to test if self-assessed health is also a 

good predictor of mortality in Germany. Thirdly, we also control for the presence of an 

invalid in the household (usually a spouse or parent) as we expect that such caring 

responsibility would be directly detrimental to the health of the carer.  

 Turning to the economic variables, we control for initial income and wealth, as well 

as the prosperity of the region of residence. The income measure we include is the log of 

real pre-tax total monthly household income in 1995 prices. We control for wealth in two 

ways. Firstly, we control for whether or not the household owns outright or has a 

mortgage on their home, and conditional on home ownership, an imputed monthly 

rentable value of the home. Secondly, we control for the amount of asset income the 

household receives per month.  

Importantly, we also include controls for marital status, years of schooling and 

employment status, all of which we expect, given the results of previous studies, to be 

significant predictors of mortality. We also control for number of children in the 

household and whether or not the individual was born outside of Germany. In an attempt 

to contribute to the recent literature that focused on the potential importance of income 

inequality on health outcomes (see Gravelle et al., 2001, for a discussion), following 

Gerdtham and Johannesson (2004) we include a measure of average income by 

geographical area (region in our case) that is time-varying across our 19-year sample 

period. 

Finally, in order to test whether individuals with high life satisfaction live longer, we 

control for initial life satisfaction, which in the GSOEP is reported on the familiar 0 (very 

unsatisfied) to 10 (very satisfied) scale.  
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4. Empirical Results 

Table 1 presents the parameter estimates from PH models using the entire sample, and 

then separately for East and West Germans. The corresponding results from the MPH and 

IMPH models using the entire sample are then shown in Table 2.3 The estimates from the 

PH models are shown in order to allow for a direct comparison with the results of 

Gerdtham and Johannesson (2004) for Sweden. Moreover, for our purposes the PH 

model, which does not control for unobserved heterogeneity, also acts as a useful 

comparison for the MPH and IMPH models. In this respect, the PH model is nested in the 

IMPH model since when the variance of tλ  goes to 0, the model reverts to a PH model. 

This comparison also leads to a natural test of the validity of the IMPH model, namely 

the Likelihood Ratio Test of the additional value of the extra heterogeneity parameter 

versus the PH model. The additional Likelihood between the IMPH and the PH model is 

91.6 (for the model using the whole sample), which means the p-value of the IMPH being 

statistically ‘better’ than the PH is in the order of 0.99999. The significance of the 

increasing heterogeneity can also be deduced from the t-value of 12.35 on the log of the 

standard deviation of tλ .  

In contrast, the MPH model is not nested in the IMPH model, and can therefore not 

be directly compared by looking at the log likelihood, although we do note that the IMPH 

has a higher likelihood. Rather, the fit of the MPH model compared to the IMPH model 

can be based on the Akaike information criterion, which equals A(k)=-2*L+2k, where L 

is the log-likelihood and k is the number of parameters in the models. The lower the 

score, the better the model fits the data. We can see that according to this criterion the 

IMPH performs statistically best of all three models (the score of the PH model for the 

                                                 
3 The MPH model we have estimated specifies the mixing distribution to have mass-points. The results 
presented in Table 2 allow for 2 mass-points, although we have also estimated this model using more mass-
points to test for robustness of the main results (see later text). The assumption on mixing is that the mixing 
occurs at the moment of entering the panel, which is consistent with the assumption that the fixed 
unobservables are measurement errors in the initial observed characteristics. A natural alternative to ask is 
whether it would have made sense to estimate a MPH model where the mixing occurs at birth and would 
thus denote a fixed unobserved health characteristic? The MPH would then, however, be inappropriate as 
an empirical comparison to the IMPH for this data, mainly because of the initial conditions problem. That 
is, under the assumptions of the MPH model, the actual sample when mixing occurs at birth is selective 
because only the ‘good risks’ have survived long enough to make it into the sample. To deal with this, one 
(explicitly or implicitly) has to make assumptions about the entire life history of all sample participants 
from birth until entry into the sample. This would entail making detailed assumptions about their marriage, 
health and employment histories, and all other variables that change over time but are not observed before 
the start of the sample. Comparing the outcome of such an exercise with the outcomes of the IMPH would 
be meaningless because of these auxiliary assumptions, which is why we have opted to take the PH as an 
additional empirical benchmark by which to compare the IMPH model. This is also why we only estimate 
the MPH under the assumption that the unobservables are measurement errors. 
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whole sample was 21228.3). As a robustness check on the correct number of points of 

support for the MPH model, we re-estimated the MPH model with three points of support 

instead of two. This actually led to a lower Akaike information score i.e. the likelihood 

with three points of support was -10572.34, which comes at the cost of two extra 

variables. 

 

TABLE 1: 

Proportional Hazard Model Estimates of Mortality 
 PH 

 All West East 

 Coeff. |t|-stat Coeff. |t|-stat Coeff. |t|-stat 

Age < 50 -4.121 38.71 -4.173 36.32 -3.717 12.70 

49<age<65 -2.511 29.48 -2.575 27.35 -2.103 10.03 

64<age<75 -1.601 22.56 -1.581 20.32 -1.702 9.36 

74 < age< 85 -0.690 11.62 -0.685 10.65 -0.745 4.71 

Male 0.618 12.42 0.610 11.14 0.651 5.16 

Married -0.170 3.34 -0.169 3.05 -0.131 0.93 

Number of children -0.001 0.03 0.012 0.29 0.001 0.01 

Foreign-born -0.708 8.20 -0.716 7.87 0.005 0.02 

Years of schooling -0.040 3.37 -0.036 2.79 -0.076 2.41 

% Disabled 0.005 6.21 0.005 6.17 0.003 1.20 

Health satisfaction -0.091 10.46 -0.083 8.89 -0.145 5.71 

Invalid in household 0.170 2.37 0.076 0.95 0.529 3.38 

Employed -0.063 0.65 -0.026 0.24 -0.278 1.28 

Non-participant 0.194 2.13 0.207 2.00 0.241 1.18 

Life satisfaction 0.016 0.52 -0.002 0.07 0.244 1.59 

House owner -0.003 0.53 0.054 0.82 -0.437 2.36 

House owner * Imputed rent / 1000 0.001 0.04 -0.001 0.47 0.074 1.12 

Asset income / 10000 0.031 0.96 0.028 0.86 0.059 0.20 

Log household income -0.095 2.16 -0.099 2.11 -0.100 0.76 

Log Average area income -0.139 3.25 -0.153 3.41 -0.079 0.64 

West Germany -0.073 1.14     

Sample in observed years 338717 289077 49640 

Number of individuals 25772 20376 5396 

Number of deaths 2236 1878 358 

Mean Log Likelihood per year -0.031 -0.031 -0.034 

Notes: Absolute t-statistic in parentheses. Omitted categories are female, not married, born in Germany, no 
invalid in household, unemployed, renter, living in West Germany. 

 19



TABLE 2: 

Mixed Proportional Hazard and Increasing Mixed Proportional Hazard Model Estimates 

of Mortality 
 MPH IMPH 

 All All 

 Coeff. |t|-stat Coeff. |t|-stat 

Age < 50 -3.248 37.05 -4.346 34.75 

49 <age< 65 -2.671 28.40 -2.777 25.21 

64 <age <75 -1.781 21.80 -1.881 18.99 

74 < age< 85 -0.867 10.95 -0.899 11.26 

Male 0.657 11.97 0.697 12.12 

Married -0.177 3.19 -0.164 2.85 

Number of children -0.006 0.16 -0.022 0.52 

Foreign-born -0.747 8.46 -0.786 8.56 

Years of schooling -0.039 3.15 -0.037 2.90 

% Disabled 0.005 6.28 0.005 6.40 

Health satisfaction -0.105 10.95 -0.105 10.37 

Invalid in household 0.260 3.35 0.239 3.04 

Employed -0.068 0.70 -0.089 0.87 

Non-participant 0.202 2.14 0.241 2.44 

Life satisfaction 0.063 1.92 -0.025 0.71 

House owner -0.054 0.80 -0.053 0.75 

House owner * Imputed rent / 1000 0.004 0.24 0.001 0.49 

Asset income / 10000 0.035 1.05 0.037 1.06 

Log household income -0.121 2.45 -0.130 2.51 

Log average area income -0.546 2.01 -0.105 2.10 

West Germany -0.065 0.66 -0.075 1.07 

Log Standard Deviation of Lambda - -1.301 12.35 

First point of support 1 - - 

Second point of support 42.45 1.79 - 

Probability of first point 0.128 - - 

Probability of second point 0.872 5.95 - 

Sample in observed years 338717 338717 

Number of individuals 25772 25772 

Number of deaths 2236 2236 

Total likelihood -10573.1 -10501.5 
Akaike information criterion 21192.18 21047.05 

Notes: Absolute t-statistic in parentheses. Omitted categories are female, not married, born in Germany, no 
invalid in household, unemployed, renter, living in West Germany. 
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(i) Individual-specific health shocks (the IMPH model) 

As to the size of the unobserved heterogeneity shocks identified by the IMPH model, the 

coefficient on the log of the standard deviation of tλ  translates into yearly random shocks 

that increase or decrease the hazard rate to death by about 27% (=e-1.3) per standard 

deviation. This is a large effect: the difference between the death hazard for an individual 

aged 40 compared to an 80 year old is about 0.03:1 i.e. an individual aged 80 is per year 

about 31 times more likely to die than a similar person aged 40. This is equivalent to 

about 12.6 standard deviations of the unobserved shocks, implying that increasing age 

from 40 to 80 is the same as experiencing 5 or 6 particularly bad unobserved shocks 

(slightly above 2 standard deviations). Another way of ascertaining the importance of the 

unobserved shocks is to reflect on the fact that the standard deviation of non-age effects, 

by which we mean the standard deviation of the total effect of all other observables on 

the log-hazard rate, is about 0.592. This is worth 2.2 standard deviations of the 

unobserved shocks. Importantly, the unobserved health shocks accumulate to have the 

same variance as all observed factors within 4.73 years. The IMPH model therefore finds 

strong support for the existence of large individual-specific unobserved shocks over time 

that impact on the hazard of death. 

 

(ii) Socio-economic determinants of mortality 

Despite the clear importance of health shocks in the IMPH model, and differences in the 

assumptions underlying the three models with regard to unobserved heterogeneity, we 

find a large degree of consistency in the parameter estimates of the socio-economic 

factors affecting mortality across the PH, MPH and IMPH models. 

 The findings for the baseline hazard are entirely as expected with the young having a 

far lower hazard to death than the old, which we attribute in our modelling framework to 

unobserved common deteriorations in health (often captured under the banner of 

‘ageing’). Moreover, the estimates on the socio-economic characteristics to a large extent 

confirm our prior expectations, with there being consistent evidence that the death hazard 

(i.e. the probability of death at any point in time) significantly increases with being male, 

being disabled, having an invalid in the household and being a non-participant in the 

labour market, and significantly falls with being married, having more years of schooling, 

having high initial health satisfaction, having high real household income4 and residing in 

                                                 
4 The fact that the effect of household income on the death hazard is roughly the same across both East and 

 21



a more wealthy region of Germany (the latter two effects, however, are not significant in 

the PH model for East Germans). In contrast to income, our wealth indictors are not 

estimated to be significant predictors of mortality, with the exception of home ownership 

in East Germany, which is associated with a lower death hazard. This could be due to the 

limited nature of these measures, but if we take them at face value they would imply that 

accumulated assets simply ‘buy’ little life expectancy. We find no evidence that mortality 

is affected by number of children. Contrary to our expectation, being an immigrant in 

Germany is associated with longer life, but a higher probability of return migration for 

immigrants who experience health shocks might be driving this result. 

Turning to the quantitative effects of the main socio-economic variables in 

explaining variations in mortality, Table 3 shows the estimated percentage change in the 

death hazard and the associated change in expected length of life due to increased 

household income, being married, having higher health satisfaction and having a great 

number of years of schooling. Here it is important to note that a reduction or increase in 

the death hazard of a certain percentage does not translate into the same percentage 

change in expected length of life. This is because a change in the hazard of death 

interacts with the baseline hazard. For example, having a 10% lower probability of dying 

when an individual is young, and therefore has an extremely low chance of dying 

anyway, is going to make very little difference, whereas a 10% higher probability of 

dying when an individual is very old, and has a high chance of dying per se, is only going 

to make a 10% difference within that age range. 

Focusing on the results from the IMPH model, we find that a one-log point increase 

in real household monthly income leads to a fall in the death hazard of 12.21% and an 

increase in expected length of life of just under one year (at the gravity point). This 

important role that income has to play in determining longevity supports the result for 

Sweden by Gerdtham and Johannesson (2004), but is in contrast to that found by Gardner 

and Oswald (2004) who estimated a simple probit model of mortality using British data. 

However, while Gerdtham and Johannesson (2004) found no significant effect of 

                                                                                                                                                 
West Germany, to some extent provides extra credibility to the income finding since, as we have argued in 
Frijters et al. (2005), incomes in East Germany can be considered mostly driven by exogenous (non-health 
related) factors in the years following reunification. Moreover, following Gerdtham and Johannesson 
(2004) we have tested the robustness of the income result to a number of functional forms and income 
definitions. For example, we have used household equivalent income adjusted for household size and 
composition. None of these additional tests changed the result of the significant income effect on mortality. 
These additional results are available on request. 
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community or area average income on mortality, we find a significantly positive effect 

with individual residing in higher income regions, conditional on their own household 

income, living longer. From the IMPH estimates, we calculate that residing in a 

geographical area with a one-log point higher average income is associated with a 10% 

decline in the death hazard, which correspondents to 0.75 years of life. However, the size 

of this effect is far higher in the MPH model, accounting for about 5 more years of life. 

The important role of area income could be capturing the direct role that income 

inequality might have on health, or the fact that richer areas might have better health or 

public amenities (e.g. such as road safety, less serious crime). It is certainly an important 

topic for future research. 

 

TABLE 3: 

Estimated Effects of Socio-Economic Characteristics of Mortality 
 PH MPH IMPH 

% Change in death hazard    

Income 9.08 11.38 12.21 

Marriage 15.64 16.25 15.14 

Health satisfaction 8.71 9.98 9.98 

Years of schooling 3.94 3.81 3.66 

Area average income 12.96 42.06 9.98 

Additional years of life    

Income  1.00 1.12 0.93 

Marriage  1.79 1.64 1.17 

Health satisfaction  0.96 0.97 0.75 

Years of schooling  0.42 0.36 0.27 

Area average income 1.46 5.05 0.75 

Total socio-economic variation in years of life    

Maximum expected years of life 95.62 96.13 93.61 

Minimum expected years of life 44.47 38.53 43.14 

Notes: The % change in the death hazard and additional years of life are computed for a one-log point 
increase in real household monthly income, being married relative to being single, a one-point increase on 
the 0-10 health satisfaction scale, a one-year increase in years of schooling and a one-log point increase in 
average area income, respectively (holding all else at the sample means). Total socio-economic variation in 
years of life shows the maximum expected and minimum expected years of life at the two extremes of the 
socioeconomic characteristics (calculated at the gravity point of the sample and holding age, gender and 
immigrant status constant). 

 

Interestingly, the quantitative effect of being married has roughly the same effect as 

a one-log point increase in household income, being associated with a 15% reduction in 
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the probability of death and living 1.17 more years. Self-assessed health, in the form of 

health satisfaction, is clearly a good predictor of mortality, with a one point increase on 

the 0-10 scale leading to a 10% decline in the death hazard. Moving from 5 to 10 on the 

scale would therefore be associated with a 50% decline in the probability of death and 

3.75 more years of life. In fact, it is interesting to note that initial self-assessed health is a 

stronger predictor of mortality than initial levels of disability. This also provides some 

additional support to the validity of using self-assessed health measures as indicators of 

morbidity. 

An important policy-related question to ask is what is the size of the estimated 

mortality differential at the two extremes of the socio-economic characteristics? Holding 

age, gender and immigrant status constant, we have calculated that an individual who is 

initially observed in the panel with the worst possible set of observable socio-economic 

characteristics is expected to live to only 43 years of age, in contrast to an individual with 

high initial health status, no disability, being married, highly educated, in the top decile of 

the income distribution and residing in the richest region etc., who would be expected to 

live to age 94. If we hold age, gender, immigrant status, and health satisfaction and 

disability constant, then the worst possible set of remaining socio-economic variables 

would give an expected 59 years of life, and the best set would give 92 years of life. 

These results clearly support the argument that socio-economic factors are very important 

in explaining variations in length of life across the population.  

 

(iii) The role of life satisfaction 

While the parameter estimate on life satisfaction in the IMPH model is negative, 

suggesting that individuals who were initially observed in the panel with high life 

satisfaction have a lower death hazard, it is not statistically significant. To explore the 

effect of initial life satisfaction on mortality further, we re-estimated the model excluding 

health satisfaction. When we did this the coefficient on life satisfaction was negative and 

significant at the 1% level (i.e. -0.041, t-stat = 4.13), with a one point increase in initial 

life satisfaction reducing the death hazard by 3.1%. This clearly implies that more 

satisfied individuals live longer. However, this is only the case because more satisfied 

individuals typically also have a better initial health status. The other parameter estimates 

were virtually unchanged.5

                                                 
5 The full results from these models are available on request. 
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We have also tested the robustness of this result by instrumenting life satisfaction 

using information on ‘locus of control’ collected in certain years of the GSOEP, which is 

an assessment of the extent to which an individual possesses internal or external 

reinforcement beliefs. It is widely used as a measure of personality traits by psychologists 

(see the Journal of Personality and Social Psychology, for a wide range of articles 

relating to locus of control and personality traits). Importantly, this experiment did not 

change the above life satisfaction result. 

 

5. Conclusions 

In this paper we have contributed to the debate about the importance of socio-economic 

factors in determining how long individuals live. We have done this in two main ways. 

Firstly, we have used 19 years of high-quality data on around 26,000 individuals from the 

German Socio-Economic Panel Study between 1990 and 2002, of which we observe 

2,400 deaths. In this respect our analysis is most similar to that undertaken by Gerdtham 

and Johannesson (2004), who analysed a similar data set for Sweden. Secondly, as with 

the Swedish study, we have estimated a number of Proportional Hazard (PH) models of 

mortality, but we have also developed a new duration model, which we have called the 

Increasingly Mix Proportional Hazard Model (IMPH), that explicitly allows for 

unobservable individual-specific health shocks. This new model fits the data statistically 

better than the other main duration models (the Proportional Hazard Model and the 

Mixed Proportional Hazard Model (MPH)), and we find strong evidence that health 

shocks play a large role in determining longevity. However, despite the importance of 

heath shocks the parameter estimates of the various models in this application are 

remarkably consistent. 

 As expected, age, gender and initial health status are strong predictors of death. In 

addition, we have found a large role for socio-economic characteristics in determining 

how long an individual lives. In particular, we have been able to confirm the positive 

significant effects of being married and years of schooling on promoting longevity found 

for other countries, for both East and West Germans. With respect to the more 

contentious issue of the role that income plays in promoting longevity, we have found 

that having a higher level of real household income, when initially observed in the panel, 

is associated with living significantly longer. Moreover, this effect is considerably larger 

than found in the recent literature that has investigated the effect of income on morbidity 
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using panel data. Specifically, a one-log point increase in household income leads to a 

12% reduction in the probability of death. We have also found an important role for 

average regional income, with individuals residing in richer regions also living 

significantly longer. Further investigation might be able to unravel why this is the case. 

Importantly, we have calculated, holding age, gender and immigrant status constant, that 

an individual with the ‘worst’ socio-economic characteristics, including poor health and 

disability, is expected to live to only 43 years of age, compared to 94 years for an 

individual with the ‘best’ socio-economic characteristics. If we also hold health 

satisfaction and disability constant, then the worst possible set of remaining socio-

economic variables would give an expected 59 years of life, and the best set would give 

92 years of life. Together, we take these findings as strong support for the important role 

that socio-economic characteristics play in promoting longevity and explaining mortality 

variations across the population. 

 A new contribution in this paper has been to test whether individuals with high life 

satisfaction when initially interviewed in the panel live longer. The raw data and the 

results for duration models that do not control for initial self-assessed health status, 

clearly support this hypothesis. Importantly, however, once we control for health status 

this effect is no longer evident capturing the fact that less satisfied people typically have 

poorer health. The significant role that self-assessed health has in predicting future 

mortality confirms previous studies and supports the validity of such measures of 

morbidity. 

Finally, we believe that the duration estimator that we have developed in this paper is 

a useful additional tool for econometricians. It can be applied to a wide-range of single-

spell duration outcomes in economics where unobservable individual-specific persistent 

shocks are likely to be important and when little information is observed for individuals 

after the initial survey interview. 
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Appendix 

 

Take the model with the continuous hazard defined by:  

  
( ) ( ) ( ) (

(0 )
t t

t

t x f z t x
N t

θ λ λ φ
λ

′| , =
,

)

 

where durations are from a finite set of natural numbers, i.e. t=0,1, ..,T with T the end of 

the observation plan, and where the hazard is constant between intervals. What we thus 

have as observations are the survival functions at discrete points in time. We make the 

following additional assumptions, which closely follow the identification assumptions 

(and ideas) of Elbers and Ridder (1982) and Honore (1993): 

 

Assumption 1:  (no defective distribution). ( )z t dt′ = ∞∑
Assumption 2: ( )tEf λ is finite for any finite t. 

Assumption 3: x has an open set of support X including 0x  and the function ( )xφ  is non-

negative, non-constant, and differentiable on S.  

 

We can then trivially choose a set of normalizations, and we take 

0( ) 1, (0) 1, '(1) 1x f zφ = = = .  Proposition 1 shows identification. 

 

Proposition 1: Under Assumptions 1, 2, and 3, the functions ( )z .  and ( )xφ  and ( )tf λ  

are non-parametrically identified as long as we observe more than 1 time period (T>0). 

 Proof. First, note that 
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The first line implies that we can trace ( )xφ  and  from the survival functions 

, which is one of the basic ideas of Elbers and Ridder (1982). Now, note that we 

can re-write the second line to be 

'(0)z

(0 )S x|
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which means there is a one-to-one relation between the unknown distribution  and 
the combination of the unknown 

( )G v
( )tf λ  and the normal distribution. Because the relation 

between v and ( )tf λ  is monotonic and unique, we can identify ( )tf λ  by identifying 
. This inversion allows us to use the idea of Honore (1993): note that we observe ( )G v

( )(1 ) [
(0 )

]x vS x E e
S x

φ−|
=

|
 for an open set X. Because (1 )

(0 )
S x
S x

|
|

 is real analytic it can be 

extended to any value of ( )xφ . It is also the case that (1 )
(0 )

S x
S x

|
|

 is the Laplace transform of 

G. From the uniqueness of the transform we can identify G, which in turn identifies 
( )tf λ  for any tλ  because even at t=1, tλ  achieves the full support. Finally, we may not 

that we can then identify  for all periods after t=1 by the fact that ( )z .
( )

( 1 )
S t x

S t x
|

− |
 is a 

monotonically increasing and continuous function of  meaning we can trace  

forward uniquely from 

'( )z t '( )z t
( )

( 1 )
S t x

S t x
|

− |
. 

 
  
Now, we can make some remarks as to the identification of the model if tλ  changes in 
continuous time rather than once at the start of every period and we observe hazards in 
continuous time. 
  
Conjecture 1: Under Assumptions 1, 2, and 3, the functions ( )z . , ( )xφ ,  and ( )tf λ  are 

non-parametrically identified. 

Remark 1: ( )xφ  is identified by 
0

( )
( )0( ) lim t x
t xtx θ

θφ |
|↓= .  Then, 0(0) ( 0 )z tθ′ x= = |  because 

( ) 1tEf λ =  at  Intuitively one would think one could now replicate the basic idea 

above by looking at 

0t = .

0

( )lim [ ] /
( )t

S t xd
S t x↓ d+ Δ |

Δ
|

. However, the difficulty is the non-

intergrability of the underlying Wiener process.   

 

Remark 2: Without variation in x,  the model is not identified because any path ( )tEf λ  

can be compensated by  to leave an observationally equivalent model. Like the 

standard hazard model therefore, it is the interaction between 

( )z t

x  and  that identifies the 

model. 

t
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Remark 3: There is some information that is not yet used in this motivation which is 

useful in extending the model because the proof of proposition 1 does not use much of 

the information of the survival functions for high t. 

 

Remark 4: A possible avenue is to use the analogy with differential equations. We can 

write the pdf g [ ( )t y T t z tλ φ′= | > , , ] for t>0. It is known at time t=0. For time t+ ,  it 

can be written as: g[ ( )t y T t z tλ φ′
+ = | ≥ + , ]=

2( )
21 2
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 The 

numerator can be simplified as 1 ( ) ( tz t Ef )φ λ′− . The difficulty now is finding the limit 

of this when  goes to 0, and then to build an expression for ( )tEf λ . If the 

characteristics of ( )tEf λ  allow it to be invertible and smooth, then this, combined with 

the initial conditions and the differential equation for ( )z t′ ,  would provide uniqueness. 
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