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Abstract 
 
 
In spatial competition firms are likely to be uncertain about consumer locations when 
launching products either because of shifting demographics or of asymmetric 
information about preferences. Realistically distributions of consumer locations 
should be allowed to vary over states and need not be uniform. However, the existing 
literature models location uncertainty as an additive shock to a uniform consumer 
distribution. The additive shock restricts uncertainty to the mean of the consumers 
locations. We generalize this approach to a state space model in which a vector of 
parameters gives rise to different distributions of consumer tastes in different states, 
allowing other moments (besides the mean) of the consumer distribution to be 
uncertain. We illustrate our model with an asymmetric consumer distribution and 
obtain a unique subgame perfect equilibrium with an explicit, closed-form solution. 
An equilibrium existence result is then given for the general case. For symmetric 
distributions, the unique subgame perfect equilibrium in the general case can be 
described by a simple closed-form solution. 
 
 
 
 
 
JEL Codes: C72, D43, D81, L10, L13, R30, R39 
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1 Introduction

The Hotelling model of spatial competition can be thought of as one of the

earliest problems in information economics: firms make strategic choices (lo-

cations/characteristics and prices) without knowing an individual consumer’s

type or location. However, in typical formulations, common knowledge of the

normal or uniform distribution of consumer types gives rise to the familiar mill

price equilibrium. Since individual consumer types are not observed in the stan-

dard model the assumption that the distribution of types is observable seems

internally inconsistent. Furthermore casual empiricism indicates that firms are

often less than perfectly informed about consumer tastes and frequently exert

considerable effort to generate market research data.1

Uncertainty about the population of consumers and their tastes arise natu-

rally due to rural-urban drift, migration (both local and international), births

and deaths, imperfect information dissemination and the obvious swings of fash-

ion. In order to more accurately reflect market reality, the recent demand loca-

tion uncertainty literature recasts the Hotelling model in a more general setting

in which firms are uncertain not only about the type of an individual but are

also uncertain about the distribution of consumer types.

The existing approaches to preference/demand location uncertainty focus on

the restrictive case of an additive shock to consumer types. Early approaches

to characteristic preference uncertainty, such as De Palma et al. (1985), used

the law of large numbers to generate certain demand functions from individ-

ual preferences with idiosyncratic shocks. More recently the demand location

uncertainty literature (Jovanovic (1981), Harter (1996), Casado-Izaga (2000)

and Meagher and Zauner (2004, 2005)) has analyzed situations with perfectly

correlated shocks which give rise to residual aggregate uncertainty.

Thus, the existing approaches generate no uncertainty at the distributional

level; intuitively, the uncertainty is only about the shift or the mean of consumer

1Data may be generated externally by market research survey, stated choice experiments
or internally from customer behavior databases or from staff interaction with customers.
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Table I: Share of urban settlements whose footprints intersect the Low Elevation
Coastal Zone (LECZ) by urban settlement size, 2000
Region <100K 100-500K 500K-1M 1-5M 5M+
Africa 9 23 39 50 40
Asia 12 24 37 45 70
Europe 17 22 37 41 58
Latin America 11 25 43 38 50
Australia and New Zealand 44 77 100 100 NA
North America 9 19 29 25 80
Small Island States 51 61 67 100 NA
World 13 24 38 44 65

Source: McGranahan, Balk, and Anderson (2007, Table 5, p.30).

locations/preferences. Furthermore, if there is aggregate uncertainty, consumers

are typically uniformly distributed. The contributions of this paper are twofold:

First, we show, by way of a coastal city example, how even simple situations

fall beyond the scope of the existing ‘additive-shock-uniform’ approach. Second,

we show how a judicious state space formulation gives an existence theorem for

very general forms of uncertainty. For example the distribution of tastes could

change shape across states and need not be from a fixed distributional type

such as the uniform or normal. In the case of symmetric distributions, the state

space approach gives simple closed form equations for equilibrium prices and

locations.

Our coastal city example, in Section 3 is a Hotelling style linear city but

with the population distributed according to a linear distribution instead of a

uniform. To the best of our knowledge, this is the first use of an closed-form

asymmetric distribution for consumers in the Hotelling model. In addition to

the standard characteristic space interpretation, this representation also allows

a geographic interpretation as a coastal city2 such as Chicago, New York or

Sydney. Two firms supplying the coastal city, when deciding where to locate,

are certain where the coastal boundary is but are unsure how spread out the city

will become by the time they build their facilities. In the coastal city example,

both the mean and the dispersion of the consumer distribution are uncertain.

2Coastal cities include cities on oceans as well as on large lakes.
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Figure 1: Population Density Per Square Kilometer by Distance to Coast for
Chicago 2000. Source: US Census 2000, Gazetted Census Tracts Data Set

This issue of uncertainty beyond the mean has not previously been considered

in the literature.

As Table I shows coastal cities are of considerable economic significance.

Sixty five percent of the worlds large cities (over five million inhabitants) are

coastal, with the rate even higher, eighty percent, in North America.

As the Chicago population density data in Figure 1 shows, average pop-

ulation density falls moving away from the coast. Many coastal cities share

this feature. This feature can be approximated by a linear distribution and is

suggestive of our coastal city example, as we will see in a later section.

We briefly lay out a model below to show how this class of problem can be

solved by extending location theory. We solve the more general case in Section

4 following the coastal city example in Section 3.
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2 Common Features of the Model

We present a model of aggregate location/taste uncertainty in the spirit of

Meagher and Zauner (2004). Both firms and consumers are located at points

on the real line IR. Each consumer demands either one or zero units of the

good and has sufficient income to buy one unit of the good. For a consumer

with “ideal” point/location x, the indirect utility function for consuming firm

i’s product (located at xi) at price pi is given by

V (x, xi, pi) = A − pi − τ(xi − x)2, τ > 0. (1)

There are two firms, i = 1, 2. The marginal cost of production of each firm

is constant and normalized to 0. Firms are uncertain about the distribution of

consumers but make decisions on the basis of a common prior, which we describe

below. Firms choose locations xi ∈ IR (i = 1, 2 and, without loss of generality,

x1 ≤ x2) simultaneously, observe the location of their competitor, then choose

prices simultaneously and finally the uncertainty is resolved.

This timing implies that firms’s product flexibility and price flexibility are

on a similar time scale. The major strategic thrust of modern manufacturing

techniques which have emerged in recent decades is to allow product flexibility

of small production runs so that firms can adjust the characteristics of their

output to what consumers are buying (see Roberts, 2004 and Milgrom, Qian

and Roberts, 1991). Restaurants have always been able to change menus from

day to day (think of the specials board) and manufacturers, and others, can

also be responsive is short time periods (see Thomke and von Hippel (2002)

for a discussion of Dell and other custom manufacturing by firms). While fixed

product characteristics may be an unreasonably pessimistic view of firms, in-

stantaneous adjustment has been shown to be an overly optimistic assumption

about price discovery. Under imperfect information firms have to experiment in

order to discover demand conditions and this experimentation is more complex

in a differentiated products setting (see Aghion, Espinosa and Jullien, 1993 and

5



Harrington, 1995). Indeed, if the consumer population do not remain constant

in their behavior pricing cycles can emerge as in Keller and Rady (2003).

Consumers buy from the firm that gives them the highest (net) utility, hence

there exists a unique point ξ, satisfying V (ξ, x1, p1) = V (ξ, x2, p2), where con-

sumers are indifferent between buying from firm 1 or firm 2. We will take this

as the definition of ξ, which will be referred to as the indifferent consumer lo-

cation. States of the world are indexed by S, which might be a vector, with

density f(S). In each state of the world the distribution of consumer locations,

x, is given by gS(x).

3 An Asymmetric Coastal City Under Uncer-

tainty

Consider a variant of the ice cream sellers story popularly used to motivate

the Hotelling model. Two ice cream sellers must choose locations on a beach of

length 1, represented by the unit interval, and post prices before their customers

arrive for the day. Furthermore, assume this is a beach with a car park at the

left end so all consumers enter from the same end and then walk a random

distance to the right, determined jointly by their dislike of walking and crowds.

This scenario could plausibly yield an asymmetric density of consumers on the

interval [0, α], 0 < α ≤ 1.

As Figure 1 shows asymmetric densities of consumer locations are not just

confined to stories about ice cream sellers. Coastal cities are, by definition,

bounded (on at least one side) by water. Typically access to shipping through

a port played a strong role in the foundation of these coastal cities leading to

a concentration of economic activity close to the coast. As the Chicago data

shows over time the coast continues to exert a strong pull on the population.

It is of course not immediately obvious if the higher population density near

the coast is due directly to the attraction of the coast or if other agglomeration

forces have taken over.
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Table II: OLS Regression Results: Population per Square Kilometer by Distance
to Coast for Chicago 2000.

Variable Coefficient Std. Error p-value

Distance to coast -283.46 16.19 0.000
Constant 9274.35 246.31 0.000
N 1254
Adjusted R2 19.6 %

Source: US Census 2000, Gazetted Census Tracts Data Set. Distances are calculated using
the Haversin Formula for Great Circle Distances as the minimum distance from the census

tract centroids to a set of points on the coast.

Our focus is not to explain coastal population density but to observe that the

standard Hotelling style uniform assumption is not accurate for this common

situation, nor is the more recent triangle distribution model of Tabuchi and

Thisse (1995). Rather than approximate a real density with a step function,

as in Hotelling, we take the more flexible approach of linear approximation.

For example approximating the Chicago data in Figure 1 by linear regression

gives the estimates in Table II. The regression shows that population density

in Chicago decreases on average at a rate of 283.46 people/km2 per kilometer

from the coast.3

The following distribution is reminiscent of the coastal city discussed. For

simplicity we assume consumers are distributed according to the linear density:

gα(x) =











2
α
− 2x

α2 if 0 ≤ x < α

0 otherwise

Cities, and especially coastal cities in developing countries, are experiencing

rapid population growth, for example coastal urban areas in China grew on

average 3.39% per year from 1990 to 2000 (see McGranahan et al., 2007). We

believe these large population changes are not deterministic from the point of

view of firms, but they should appear as uncertainty over the distribution of

consumers in the duopoly model. To clarify what we mean by uncertainty over

3Obviously population density is also likely to be affected by other geographic features
like industrial zoning, rivers, hills, parks, urban decay etc. Indeed looking at the Chicago
map shows industrial corridors close to the coast and the Chicago river. Nonetheless the
adjusted-R2 of 19.6% is comparable to cross sectional results for many economic variables.
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the distribution reconsider the simple ice sellers story. Since the ice cream sellers

are uncertain who will come to the beach they are therefore uncertain of which

(linear) density of consumers will occur. This uncertainty about the realization

of the consumer distribution is represented here by a common prior over α,

denoted f(α) on [0, 1]. For simplicity and to yield explicit solutions we choose f

to be the power density of order 2, i.e. f(α) = 3α2 (which is also asymmetric).4

Assuming firms are risk neutral the expected profits for firm 1 are

E[Π1(p1, p2, x1, x2)] =

∫ 1

0

∫ ξ

0

p1gα(x)f(α)dxdα (2)

=

∫ ξ

0

(

p1

∫ x

0

0dα + p1

∫ 1

x

(

2

α
− 2x

α2

)

3α2dα

)

dx(3)

= p1

[

x3 − 3x2 + 3x
]ξ

0
(4)

= p1(ξ
3 − 3ξ2 + 3ξ) (5)

and similarly for firm 2

E[Π2(p2, p2, x1, x2)] = p2

[

x3 − 3x2 + 3x
]1

ξ
(6)

= p2(1 − (ξ3 − 3ξ2 + 3ξ)) (7)

This problem is quite different from those considered previously in the liter-

ature. Clearly, it is not just the mean of the consumer distribution that varies

with the uncertainty.

As the following proposition shows, this problem does in fact give rise to a

unique equilibrium.

4Choosing distributions which yield closed form solutions is extremely difficult for this
problem. First, forming an expectation about demand is similar to the conjugate priors
problem of Bayesian statistics which has only a few known solutions. In addition, the posterior
from the conjugate priors must satisfy the Anderson et al. (1997) log-concavity type conditions
for a location-price equilibrium which also has a relatively small number of closed formed
solutions (see Meagher et al., 2008).
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Proposition 1 The coastal city problem under uncertainty has a unique sub-

game perfect location-then-price equilibrium given by

x∗

1 = 1 − 17

24
3
√

2 ≈ 0.1076

x∗

2 = 1 +
3

8
3
√

2 ≈ 1.4725

p∗1 = τ
13

12

3
√

22 ≈ 1.7197τ

p∗2 =
τ

3

13

12

3
√

22 ≈ 0.5732τ

ξ∗ = −1

2
3
√

2 + 1 ≈ 0.3700

Proof: See appendix. 2

The obvious way to establish this proposition is by working directly with

the specified payoff functions and their derivatives. Naturally one wonders if

there are more general economic forces at work and if a more general result is

possible. As the next section shows the appropriate formulation of the problem

yields a very general existence result.

As one might expect the equilibrium locations and prices are asymmetric

for the coastal cities model due to the asymmetric distributions. Specifically,

firm 1 has expected demand of 0.7400, while firm 2 only has 0.2500, resulting in

equilibrium expected profits of 1.2897 and 0.1433 for firms 1 and 2 respectively.

Thus firm 2, the firm on the periphery, has prices one third the level of firm 1.

These low prices plus low consumer density lead to profit for the coastal firm 1

being nine times higher than for the peripheral firm. These results are in strong

contrast with the symmetric results produced from most models, in particular

those with uniform distributions. In contrast to the asymmetric equilibrium of

Tabuchi and Thisee (1995), the equilibrium here is unique.

Now, we turn to a more general version of this problem.
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4 General State Space Results

Consider the more general setting in which the distribution of consumers over

locations, x, conditional on the value of a vector of parameters M is given by

g(x|M). The marginal density of M , that is, the uncertainty distribution, is

given by f(M) with support S. Without loss of generality assume E[M ] = 0.

We analyze the pure-strategy subgame perfect Nash equilibria of this game.

Given the above assumptions the consumer-cum-uncertainty distribution of con-

sumers, h(x), is given by:

h(x) =

∫

S

g(x|M)f(M)dM. (8)

For the following proposition it is useful to define

J(x) ≡ H(x)(1 − H(x))

h(x)
, (9)

where H(·) is the distribution function associated with the density function h(·).

The following proposition shows the existence and uniqueness of the equilibrium

in the general case.

Proposition 2 Assume that the consumer-cum-uncertainty distribution h(·) is

log-concave with mean 0 and support [a, b]. If J(x) is strictly pseudo-concave

and limx→a J(x) = limx→b J(x) then there exists a unique subgame perfect equi-

librium in the location-then-price game with uncertainty.

Proof: The proof establishes the equivalence of our game to another spatial
game with a known solution.

Prices are state independent thus for a fixed M firm i’s profit, πi, is πi =
piQi, i = 1, 2, where Qi is the demand for firm i. Since firms are risk neutral
their payoffs are given by the expectation over M of the state contingent profits.
Locations are also state independent implying ξ is independent of M . Hence,
we have

EM [Q1(p1, p2, x1, x2, M)] =

∫

S

∫ ξ(p1,p2,x1,x2)

−∞

g(z|M)f(M)dzdM (10)

=

∫ ξ(p1,p2,x1,x2)

−∞

∫

S

g(z|M)f(M)dMdz (11)

10



=

∫ ξ(p1,p2,x1,x2)

−∞

h(z)dz, (12)

and a similar expression for firm 2. Thus EM [π1] = p1H(ξ) and EM [π2] =
p2(1 − H(ξ)).

Thus, the expected payoffs and strategies for each firm are the same as in
a standard certainty location game with a consumer distribution given by h.
Since the two games are equivalent they will have the same equilibria which is
seen to be unique by a direct application of Anderson et al. (1997, Proposition
2). 2

Corollary 1 If, in addition to the conditions of Proposition 2, h(·) is symmetric

then the unique sub-game perfect location-then-price equilibrium is:

−x∗

1 = x∗

2 =
3

4h(0)
, (13)

p∗1 = p∗2 =
3τ

2h(0)2
. (14)

Proof: Proposition 2 and Anderson et al. (1997, Corollary 1). 2

If the density of consumers h(x) is symmetric and neither too concave nor

too convex, there is a unique equilibrium in which the prices and the locations

depend only upon the density of the distribution at its mean. The standard

spatial competition model uses a continuum of consumers to aggregate out the

individual level uncertainty about consumer locations from firm profit functions.

Under our state space approach firms know less: firms must still make their

strategic decisions without knowing the locations of individual consumers but

in addition they are uncertain about the distribution of consumers as well.

However, because all decisions are made prior to the resolution of either source

of uncertainty all that matters from the perspective of a firm is the combined

effect of both forms of uncertainty on the density of consumers (at the marginal

location).

11



5 Conclusion

We have argued that spatial competition theory should be extended to include

uncertainty over the distribution of consumers, that the theory should allow

for non-uniform consumer distributions and that these distributions should be

allowed to vary in shape (mean, dispersion, support etc) over states of the world.

We tackled all these issues in a setting where the adjustment of prices and

product characteristics/locations occurs over a similar time frame to changes in

the underlying distribution of consumer locations/tastes.

The coastal city model describes an asymmetric setting in which a linear

consumer distribution is random, that is, the realized uncertainty determines

which linear consumer distribution occurs. We showed that this situation has a

unique duopoly equilibrium which, as one would expect, is quite different from

the results of the standard uniform models.

For the general case we identified conditions on the joint density which yield

a unique duopoly equilibrium. These conditions are relatively easy to test and

could be employed in the numerical analysis of real data. For the case of sym-

metric densities we identified a closed form solution in which firms locate sym-

metrically. In the symmetric case equilibrium prices and locations depend on

the density of the joint distribution at the mean, thus an increase in uncertainty,

as expressed by a mean preserving spread of the joint distribution, would yield

higher prices, greater differentiation and higher profits.

Appendix

Proof of Proposition 1

From Proposition 2 for existence and uniqueness of the equilibrium it suf-

fices to show that h is log concave and that J is strictly pseudo concave with

symmetric limits for its tails. First calculating h:

h(x) =

∫ 1

x

(

2

α
− 2x

α2

)

3α2dα (15)
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= 3x2 − 6x + 3 (16)

and

H(x) = x3 − 3x2 + 3x (17)

Hence

∂2ln(3x2 − 6x + 3)

∂x2
= − 2

(x − 1)2
. (18)

Which establishes log concavity.

Now for the coastal city problem it can be shown that

J(x) =
H(x)(1 − H(x))

h(x)
(19)

=
(x3 − 3x2 + 3x)(1 − (x3 − 3x2 + 3x))

3x2 − 6x + 3
(20)

= −x(x − 1)(x2 − 3x + 3)/3 (21)

Since this function is continuous the limits can be found by simple substitution

J(0) = 0 = J(1). (22)

Finally strict pseudo concavity is easily established since the J function in

this case is in fact concave:

∂2(−x(x − 1)(x2 − 3x + 3)/3)

∂x2
= −4(x − 1)2 < 0 (23)

Having established existence and uniqueness we need only solve the system

of first order conditions to find the equilibrium values for locations and prices:

h′(ξ∗) =

[

1

H(ξ∗)
− 1

1 − H(ξ∗)

]

h(ξ∗)2 (24)

x∗

1 = ξ∗ − 1 − H(ξ∗)

h(ξ∗)
(2 − H(ξ∗)) (25)

x∗

2 = ξ∗ +
H(ξ∗)

h(ξ∗)
(1 + H(ξ∗)) (26)

13



p∗1 = 4τ
H(ξ∗)

h(ξ∗)2
(1 − H(ξ∗) + H(ξ∗)2) (27)

p∗2 = 4τ
1 − H(ξ∗)

h(ξ∗)2
(1 − H(ξ∗) + H(ξ∗)2). (28)

Solving for ξ∗ gives the cubic equation:

4(ξ∗)3 − 12(ξ∗)2 + 12(ξ∗) − 3 = 0. (29)

This yields only one real root (which is the value of interest)

ξ∗ = −1

2
3
√

2 + 1.

The other results follow immediately by substitution. QED
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