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Banco de México CREI and Universitat Pompeu Fabra

June 2005

La serie de Documentos de Investigación del Banco de México divulga resultados preliminares de
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Abstract
How do the liquidity functions of banks affect investment and growth at different stages of

economic development? How do financial fragility and the costs of banking crises evolve with
the level of wealth of countries? We analyze these issues using an overlapping generations
growth model where agents experience idiosyncratic liquidity shocks. By pooling liquidity
risk, banks play a growth-enhancing role in reducing inefficient liquidation of long term
projects, but they may face liquidity crises associated with severe output losses. We show
that middle-income economies may find it optimal to be exposed to liquidity crises, while
poor and rich economies have more incentives to develop a fully covered banking system.
Therefore, middle-income economies could experience banking crises in the process of their
development and, as they get richer, they eventually converge to a financially safe, long-run
steady state.
Keywords: Growth models, Liquidity, Financial intermediation, Financial fragility, Banking
crises.
JEL Classification: E44, G21, O11

Resumen
¿Cómo afectan las funciones de liquidez llevadas a cabo por el sistema bancario a la

inversión y el crecimiento en diferentes etapas del desarrollo económico? ¿Cómo evoluciona
la fragilidad financiera y los costos de crisis bancarias con el nivel de riqueza de una economı́a?
En este documento se analizan estas cuestiones utilizando un modelo de crecimiento en el que
los agentes enfrentan incertidumbre idiosincrática de liquidez. El sistema bancario juega un
papel promotor del crecimiento al reducir la necesidad de liquidación ineficiente de proyectos
productivos de largo plazo. Sin embargo, el sistema bancario puede enfrentar crisis de liquidez
con importantes pérdidas en el producto. Se muestra que para los bancos de los páıses de
ingreso medio puede ser óptimo estar expuestos a crisis de liquidez, mientras que los páıses
pobres y ricos tienen mayores incentivos a estar cubiertos contra estas crisis.
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1 Introduction.

This paper investigates the relationship between the liquidity roles of banks, financial fragility

and economic growth. It integrates the analysis of liquidity crises into the analysis of the

long-run growth effects of financial intermediation.

The development of a banking system to pool liquidity risk allows economies to achieve

higher growth rates and higher long-run levels of wealth and consumption. However, a bank-

ing system may be vulnerable to liquidity crises with potentially large output and welfare

consequences in the short run. We show that sufficiently rich economies can afford the cost

of full coverage against the risk of liquidity crises, while middle-income economies may find

it optimal to remain vulnerable in exchange for higher returns and welfare. This can explain

why financial development in middle-income countries is associated with both a higher growth

and a higher frequency of banking crises.

A large number of empirical studies support the existence of a positive relationship between

financial intermediation and growth. King and Levine [1995] and Beck, Levine and Loayza

[2000] find a positive effect of the relative size of the banking sector, and several measures of

financial development on per capita output growth.1 On the other hand, the banking crisis

literature has pointed out the role of financial liberalization and the rapid increase in financial

depth as good predictors of financial crises.2 Loayza and Ranciere [2001] attempt to reconcile

the apparent contradiction between those two strands of the literature. They show that a

long-run positive relationship between financial intermediation and output growth can coexist

for some countries with a negative short-run relationship, specially for those countries that

have suffered financial crises episodes.

Table 1 : Real Income Per Capita and Systemic Banking Crises1

Income Quartile Number of systemic banking crisis2
Partition of crises

Q1 6 18.8%

Q2 9 28.1%

Q3 11 34.4%

Q4 6 18.8%

Total 32 100%  .

1/ average 1975-1998 GDP per Capita, 1995 US dollars.

2/ source: Caprio and Klingebiel (1999).

1Beck, Levine and Loayza (2000) use an external instruments approach to address the issue of joint endo-

geneity between financial development and growth.
2See for example Demirguc-Kunt and Degatriache [1998 and 2000]; Gourinchas, Landerretche and Valdes

[1999]; Kaminsky and Reinhart, [1999].
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Table 1, presents information on the level of income per capita and the number of banking

crises.3 Countries are divided in quartiles according to their level of GDP per capita. The

table shows that the highest frequency of banking crises is for middle-income economies.

Moreover, emerging economies have not only experienced higher recurrence of banking crises

but also more severe costs. This is shown in Figure 1, which plots the cumulative fiscal cost

of banking crises (as percentage of GDP) for countries ranked according to their average per

capita income. The severity of the banking crises has been much higher for middle-income

economies than for poor and rich economies.

Figure 1: F iscal Cost of Banking Crises (%GDP)
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Financial intermediaries play several roles that can increase depositors’ welfare and foster

economic growth. This paper focuses only on allocating and liquidity functions of banks. In

particular; financial intermediaries: (i) provide an efficient mechanism that channels savings

into those investments with the highest returns; (ii) are efficient suppliers of liquidity (can

transform illiquid assets into liquid liabilities); and (iii) provide liquidity insurance that

eliminates idiosyncratic liquidity risk.4 We study what are the costs and benefits of these

3Caprio and Klingebiel define a systemic banking crisis as a situation where aggregate capital of the banking

sector has been exhausted.
4Most of the existing literature on financial intermediation and growth focus on other functions of financial
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liquidity functions on welfare and growth of the economy, and how they change in the process

of economic development.

We use an intertemporal model of financial intermediaries to analyze the dynamics of

wealth, capital and consumption. The model embeds a modified version of the Diamond and

Dybvig [1983] model of liquidity provision (henceforth DD)5 into an overlapping generations

model (Diamond [1965]). There are two technologies available, a short-term storage technology

and a long-term technology. In this paper, the long-run technology uses a standard Cobb-

Douglas production function with labor and capital as inputs. This technology constitutes the

channel for growth over time and among generations.

As has been noticed by Cooper and Ross [1998], the original Diamond-Dybvig solution

does not consider the impact of the possibility of runs on the design of the optimal deposit

contract or the bank’s investment portfolio. In this paper we characterize the optimal deposit

contract offered by a competitive bank when panic runs can occur with positive probability,

and we show how this contract changes with the level of wealth of the economy.

The possibility of bank runs occurring with positive probability affects the design of the

contract offered by the bank. It involves a decision between being covered (that is, invulnerable

to panic runs) and taking the risk of being exposed to liquidity crises. Covered banking is

possible at the cost of lower liquidity insurance, while exposed banking has the cost of possible

crises episodes. The welfare and growth implications of these two types of arrangements will

depend on the probability with which crises can happen, and on the level of wealth of the

economy.

The characterization of the optimal banking system constitutes the key result of this paper:

for sufficiently high probabilities of crises, a covered banking system would be optimal for any

level of wealth; for lower probabilities, poor and rich economies would opt for a covered banking

system, while middle-income economies would chose an exposed banking system; finally, when

the risk of runs is small enough, poor and middle-income economies will choose to be exposed

to liquidity crises. Nevertheless as long as the probability of runs is positive, there will be a

level of wealth above which a covered banking system would be optimal.

intermediation; such as the pooling of risk among different investment projects, specialization, adoption of new

technologies, etc. See for example Greenwood and Jovanovic [1990], Saint Paul [1992] and Acemoglou and

Zilibotti [1997].
5The modified version of the Diamond-Dybvig model emphasizes the distinction between liquidity insurance

and liquidity provision in the role of banks.
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The analysis of the optimal banking system has important implications for economic

growth. Those economies that choose an exposed banking system take on the risk of short-run

output losses of crises to enjoy the higher liquidity insurance and possible higher returns. Nev-

ertheless, as they get richer, they can eventually "escape" financial vulnerability and converge

to a long-run, financially-safe steady state.

The comparison of optimal banking and the benchmark of autarky yields two results.

First, the optimal banking system always dominates autarky in terms of welfare of the current

generation of depositors, independently of the probability of runs. Second, even if at early

stages of economic development the provision of liquidity insurance imposes some growth costs,

once the economy has crossed a certain wealth threshold, the development of the banking

system has unambiguously positive growth consequences.

Finally, we show that the output losses suffered by an exposed system in case of a run

are more severe for middle-income economies than for poor and rich economies. This feature

replicates the empirical pattern on the costs of banking crises (see Figure 1).

Some previous literature has studied liquidity provision by financial intermediaries in an

intertemporal framework. In particular, Bencivenga and Smith [1991], Ennis and Keister

[2003], Qi [1994] and Fulghieri and Rovelli [1998] have studied the DD model in an overlapping

generations frameworks. Ennis and Keister [2003] is the closest work to our paper, since it is

the only paper we are aware of that considers the possibilities of bank runs in a growth model.

However, Bencivenga and Smith [1991] and Ennis and Keister [2003] consider an endogenous

growth model with constant returns to capital. Under this assumption, the role of financial

intermediation is no longer dependent on the level of wealth, and financial intermediation is

always growth enhancing. Qi [1994] and Fulghieri and Rovelli [1998] focus on intergenerational

transfers and not on growth; their model has technologies with constant returns to capital and

is an endowment economy without wealth dynamics and no capital accumulation.6 Even when

these authors recognize the presence and potential importance of a bank run equilibrium, none

of these models incorporate financial crises in their analysis.

Our results of the mapping between the level of development and the vulnerability to

crises have some similarities with Acemoglu and Zilibotti [1997]. In their model, uncertainty

is suppressed above a certain level of wealth through full diversification, while in our model a

sufficiently rich economy can afford the cost of full coverage against crises.
6 In our model, the use of a Cobb-Douglas technology, for the long asset, makes the returns to investment

endogenous, and the banking solution (optimal investment and liquidation policy and liquidty insurance)

dependent on the wealth of the economy.
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The remainder of the paper is organized as follows. Section 2 describes the general set up of

the model: the structure of the overlapping generations, the preferences, and the technologies

available. Section 3 studies the optimal investment portfolio and growth under financial

autarky. Section 4 characterizes the optimal banking system and studies the distortions

generated by the possibility of crises and the dynamic implications of banking. Section 5

analyzes the consequences of a banking system, first by comparing the economy with a banking

system with the economy under autarky, and then by analyzing the output cost of banking

crises. Finally, section 6 confronts our results with the empirical evidence, concludes and sets

an agenda for future research.

2 The Basic Model

The economy consists of an infinite sequence of overlapping generations. In each period, a

generation, composed of a continuum of ex-ante identical agents with unit mass, is born; there

is no population growth.

Agents live for two periods. They have an endowment of one unit of labor during the first

period of their lives, which they supply inelastically. Agents do not value consumption when

they are young. During the second period of their life they are subject to a time preference

shock. With probability π, an agent only values consumption when middle aged (the beginning

of her second period), and becomes an early consumer. With probability (1 − π), she only

values consumption when old (the end of her second period) and becomes a late consumer.

The shock is stochastically independent across agents, and is private information to the agent.

Therefore, preferences of an agent that belongs to generation t are:

U
¡
ctE , c

t
L

¢
= Γu

¡
ctE
¢
+ (1− Γ)u(ctL) (1)

with Γ =

 1

0

with probability π

with probability (1− π)

where ctE , c
t
L ≥ 0 are the levels of early and late consumption, respectively, at t+1 of an agent

born at t, and u(·) belongs to the constant relative risk aversion class of utility functions:

u(c) =

 c1−σ
1−σ if σ 6= 1
ln (c) if σ = 1

.

Risk averse agents would like to reduce the ex-ante gap between early and late consump-

tion. Given the CRRA preferences the level of liquidity insurance attained by a financial

arrangement is proportional to the ratio of consumptions ( cEcL ).

5



There is one good, used for consumption and investment. There are two technologies

available. First, there is a storage technology that uses the good as the only input and, for

each unit invested at t, gives a return of one unit in any sub-period of t+ 1. There is also a

long-term technology with a Cobb-Douglas production function, which uses labor l and capital

k as inputs.7 Capital fully depreciates after being used in production. If the technology is left

until full maturity (the end of the period), it gives the return:

z(k, l) = Akβl1−β (2)

Since the unit of labor is supplied inelastically, define the capital intensive production function

by:

f(k) ≡ z(k, 1) = Akβ

This production can be prematurely liquidated, with a liquidation cost. With premature

liquidation output produced is a fraction γ, 0 < γ < 1, of the full return at maturity, i.e.,

γf(k). Hence, the liquidation cost of the long-term technology is expressed in terms of output

and not in terms of capital. This assumption makes the relative marginal returns of a long

project left until maturity and liquidated prematurely a constant ( f 0(k)
γf 0 (k) ≡ 1

γ ).
8

An example helps to better illustrate this liquidation technology. We can think about this

technology as a crop. It is irreversible in terms of the original capital invested (seeds). If it is

left until full maturity, it yields the maximum size of the crop; however, premature liquidation

would yield crop that is not fully grown. Finally, the amount of labor required both at the

planting and at the harvest is the same, and it is independent of the timing of the harvest.

Define the return of holding the long asset as the function h(k) ≡ βf(k). Hence, the

marginal return of the long investment is h 0(k) if the investment is maintained until full

maturity, and γh 0(k) if it is liquidated prematurely. Let’s define the two following capital

levels:

k such that γh 0(k) = 1

k such that h 0(k) = 1

7To motivate the differences of the two technologies, we can think that the country is a small open economy

with access to domestic production (the long technology) and to an international asset (the short technology)

that has constant returns to investment (see Velasco and Chang [2000]).
8The results of the paper are robust to a broad range of specifications about concavity of the two technologies.

In particular, the liquid technology may pay g(x) units on both subperiods, for x units invested, as long as

there is a trade-off between liquidty and return (i.e., f(·) must be more concave than g(·)). This trade-off is
justified because otherwise the liquid technology would dominate the long technology. The robustness analysis

is available upon request.
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Since labor is inelastically supplied, the long-term asset presents diminishing returns to

capital. Figure 2 describes the marginal returns of the technologies as functions of the level

of investment. For low levels of capital (k < k), the marginal return of the long-term asset,

even when it is prematurely liquidated, exceeds the marginal return of the storage technology

(γh 0(k) ≥ 1). Beyond some level of investment in the long asset (k > k), its marginal return

is lower than one (h 0(k) ≤ 1).

Factor markets are competitive, so each input is paid its realized marginal product. How-

ever, the realized marginal product depends on the financial arrangement in place because it

depends on the proportion of long-term projects liquidated.

Wages received at the end of period t represent the unique source of wealth for members

of the generation. After receiving wages, agents make investment decisions before observing

the realization of their liquidity shock. Since agents do not value consumption when young,

the consumption-saving decision at t is trivial, and they will invest their full wealth either

directly in the two technologies (autarky), or as bank deposits (financial intermediation).9

In the two following sections we present two financial arrangements: financial autarky

and the competitive banking solution. Financial autarky is a benchmark to compare the

welfare and growth costs and benefits of financial intermediation. In this case, agents have

to insure themselves against future liquidity needs. In the second case we develop a general

banking solution, where the financial intermediary provides liquidity and liquidity insurance

to depositors. Under this arrangement, the idiosyncratic liquidity shock is private information

to the agent, and the bank has to offer incentive compatible allocations. However, even when

a truth revelation mechanism is in place, panic bank runs are still possible, and the optimal

demand deposit contract must consider the bank’s expectations about the probability of a

panic.

3 Financial Autarky

Under financial autarky, young agents make their investment decision between storing goods

and investing in capital on their own. We adopt a simplifying assumption about the structure

of the economy. We assume that each worker supplies her unit of labor to a continuum of

9This is an important difference from the OLG model of Diamond (1965). We abstract from the

consumption-saving decision to stress the choice among assets with different liquidity.
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representative firms with mass ψ ∈ (0, 1].10 Under this assumption, young workers are paid a
wage equal to the expected marginal product of labor wt+1 = (1− β) [πγ + 1− π] f(kt)

11 and,

at the same time, the investors (old agents) receive the marginal product of their investment-

liquidation decision (γβf(k) if early consumer and βf(k) if late). The results under financial

autarky are taken from Gaytan and Ranciere [2005].

3.1 The optimal individual investment decision

In the absence of financial markets, agents cannot get insurance against idiosyncratic liquidity

risk. Investment in capital is risky in the sense that its return will depend on the realization of

the liquidity shock. Agents’ investment choices will determine the level of consumption they

will enjoy under each state of nature. At the end of their first period, for any given level of

wealth w > 0, a typical agent of generation t, chooses investment in the long technology k to

maximize:

πu (cE) + (1− π)u (cL) (3)

subject to 0 ≤ k ≤ w (4)

where cE = w− k+ γh(k), cL = w− k+ h(k), and the difference between wealth and capital

(w − k), represents investment in the storage technology.z

The following proposition characterizes the optimal solution for members of any given

generation under financial autarky:

Proposition 3.1 For every level of wealth w, the unique solution (kopt(w), cE(w), cL(w)) to

the agent’s problem under autarky is characterized by the following conditions:

There exists a unique level of wealth w∗ ∈ (k, k) defined by u 0(γh(w∗))
u 0(h(w∗)) =

(1−π)(h 0(w∗)−1)
π(1−γh 0(w∗))

such that:

(i) if w ≤ w∗then


kopt(w) = w

cE = γh(w)

cL = h(w)

(corner solution)

10This mass ψ can be arbitrarily close to zero; however, this is equivalent to assuming that every worker

works for all firms.
11This assumption avoids the possibility of heterogeneity among consumers, that complicates the presentation

of the model . Nevertheless, all the results of the paper are robust to this heterogeneity, and the proof is available

upon request.
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(ii) if w > w∗ then


0 < kopt(w) < w

cE = w − kopt + γh(kopt)

cL = w − kopt + h(kopt)

(interior solution)

where kopt(w) in (ii) is defined by:
u 0(cE)
u 0(cL)

=
(1−π)(h 0(kopt)−1)
π(1−γh 0(kopt))

Proof. Gaytan and Ranciere [2005] Proposition 4.1.

The optimal solution under autarky is inefficient. The source of inefficiencies is that, in

the absence of financial markets, each agent needs to insure herself against any liquidity need

she may face. In poor economies self insured agents invest, as precautionary savings, their full

wealth in capital beyond the point where it is efficient to do so. When the marginal return

of the short asset exceeds the marginal liquidation value of the long asset, (γh 0(w) < 1), it

would be efficient to start investing a fraction of wealth in the short asset. However, w∗ > k

means that for any level of wealth between k and w∗ agents are over-investing in the long

asset (k = w), although γh 0(w) < 1.

For levels of wealth greater than the threshold w∗, a second inefficiency arises. Early con-

sumers are forced to liquidate productive investments to cover their liquidity needs, while late

consumers finance some of their consumption by using the less productive liquid investment.

The impossibility of receiving insurance through financial markets generates an inefficient

liquidation of the long investment. Therefore, when w is very large investment in capital is

bounded above by kmax (h0(kmax) = 1
πγ+(1−π) > 1), while it is efficient to invest up to the

higher level k (h0
¡
k
¢
= 1).

For low levels of wealth, when agents are investing only in the long technology, liquidity self

insurance is constant ( cEcL = γ). For higher levels of wealth, when agents are investing in both

assets (w > w∗), an increase in wealth reduces the gap between early and late consumption.

Nevertheless, full liquidity risk insurance is not possible under financial autarky.

3.2 The dynamics of wealth, capital and consumption under autarky

We can now characterize the steady state of the economy and study the evolution of wages,

capital and consumption towards this stationary equilibrium. Since capital fully depreciates

after it is used, the connection between the individual problem and the dynamics of the

intertemporal model is given by wages of the next generation:

wt = F a(wt−1) = (1− β)(πγ + 1− π)f(k(wt−1)) (5)

kt = k(wt−1) = kopt(wt−1)

9



The following proposition characterizes the dynamics of this economy :

Proposition 3.2 (convergence and the steady state) The economy converges towards a

unique stable steady state
_
w
a
> 0 and k(

_
w
a
). The steady state is defined by F b(

_
w
a
) =

_
w
a

Proof. Gaytan and Ranciere [2005] Proposition 4.2.

Figure 6, in section 4.2, presents the dynamics of wealth under autarky. Beyond the

threshold w∗, the rate of growth decreases rapidly, since overinvestment in the previous region

has already exhausted the marginal returns on capital. A constant level of liquidation π,

due to self insurance, becomes more and more costly in terms of growth. Finally, as both

consumptions (cE, cL) are monotonically increasing in wealth, their dynamics follow the

dynamics of wealth.

4 Intra-generational Risk Sharing: the Optimal Banking Sys-

tem

All liquidity uncertainty in this economy pertains to the liquidity needs of individuals, and it

is idiosyncratic. Therefore, welfare gains are possible via a mechanism of liquidity preference

insurance. In addition, under financial autarky the mismatch between ex-post liquidity needs

of the agents and the timing of highest returns of the assets, generates an inefficient allocation

of aggregate resources. Financial intermediaries can provide welfare improvements by pooling

liquidity needs and by finding an efficient balance between the agents’ preference for insurance

and the timing of the highest returns on the assets.

However, since liquidation is costly, if the value of the bank’s assets at the early sub-

period cannot cover the total withdrawal of deposits, the bank is vulnerable to a panic run. A

financial crisis driven by a panic appears as a coordination problem in which late consumers

believe that the bank won’t be able to service all deposits in the late sub-period, driving a

total run on the bank at the beginning of t+1. The optimal deposit contract is influenced by

the possibility of a financial panic. The bank faces a tension between improving the welfare of

depositors, by offering higher returns and liquidity insurance, and having a more vulnerable

system. If the bank could assign a probability to the event of a financial panic, it could find

the most efficient balance between these two objectives. Diamond and Dybvig (1983) do not

consider the effect of the possibility of bank runs on the optimal risk sharing contract and

the optimal portfolio of the bank. Nevertheless, the DD solution is a benchmark because it

is the best risk sharing possible if the liquidity shocks were observable. We will refer to the

10



DD contract and investment portfolio as the first best or unconstrained optimal risk sharing

solution.

In this section we develop the optimal risk sharing solution when the bank assigns a fixed

probability to a financial panic. The unconstrained optimal risk sharing appears as a limiting

case of the general problem (in the limit when the probability of a panic tends to zero). This

benchmark is useful to determine the distortions generated by the existence of unobservable

shocks and the existence of a positive probability of a financial panic.12

4.1 Generation t Optimal Risk-Sharing

We consider a generational bank that pools resources and maximizes expected utility of current

depositors, which is equivalent to a competitive banking system that maximizes profits. Since

the t-bank pools labor income from the agents w, on the aggregate, all liquidity uncertainty

disappears: by the law of large numbers, the bank knows that a proportion π of agents will

demand their deposits in the early sub-period, and a proportion (1 − π) in the late sub-

period. Therefore it can offer a deposit contract that promises a fixed payment cE for the

beginning of period t + 1, and cL for the late sub-period of t + 1. To provide the optimal

risk sharing contract the financial intermediary chooses the investment portfolio k, and the

optimal liquidation policy. Since the relative marginal returns of the assets vary with the

level of wealth, it may be optimal to transfer resources between sub-periods: the bank can

liquidate a proportion λ of the long asset, to serve early consumers, and it can keep in storage

an amount i of the short asset, or "excess liquidity", for late consumption. This policy is

aimed to form the most efficient match between the liquidity needs of agents and the highest

returns of the assets. Since the type of agent remains private information, a self-revelation

mechanism is necessary to make the contract incentive compatible. Whenever the contract

offers higher consumption in the late sub-period (cE ≤ cL), patient agents have an incentive

to wait until the full realization of the assets’ returns.

Existence of a Bank Run Equilibrium

At the beginning of t + 1 those agents that claim to be early consumers withdraw their

deposits, and the bank is forced to liquidate any amount of assets required to satisfy their

demand. The remaining assets are left to mature until the second sub-period to serve late

12 In our model all the ongoing projects are financed with investment of the older generation alive, therefore

any risk sharing can only be done among members of the same generation. Qi [1994], Fulgueri and Rovelli

[1998] and Bhattarcharya et.al. [1998] allow for overlapping investors, however, their focus is on optimal risk

sharing between generations without reference to growth.
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consumers. The implication of the liquidation cost on the long technology is that the value

of the bank’s total portfolio at the early sub-period, (cR ≡ w − k + γh(k)) is lower than the

value if the technologies were left to mature as planned (w− k+(λγ+1−λ)h (k)). When all

consumers withdraw their deposits according with their true type, the bank faces a demand of

πcE in the early sub-period. However, if all late agents misrepresent their type and withdraw

early, the bank has to meet a total demand for resources of cE. Once late agents have learned

their type they face the decision between waiting and receiving a share of the remaining assets

in the late sub-period, or claim to be early consumers and withdraw their resources from the

bank. Whenever the bank has enough resources in the early period to satisfy any withdrawal,

the dominant strategy for late consumers is to wait. Therefore, a run strategy can only be

optimal if the value of all liabilities in the early sub-period exceed the liquidation value of the

banks portfolio, that is if:

cE > cR ≡ w − k + γh(k) (6)

If (6) holds, and the contract is incentive compatible, there are two possible equilibria: a honest

equilibrium where agents withdraw from the bank according with their true type, and a run

equilibrium where all agents withdraw their deposits, pretending to be early consumers. In

the run equilibrium the bank declares bankruptcy and distributes any remaining assets among

claimants following a bankruptcy rule. We assume that the bank has to give the same amount

to consumers reporting at the bank at the same time. By (6), such a service assumption

implies in the run equilibrium a pro-rata distribution of assets: the bank divides equally the

liquidation value of the bank’s assets among all claimants and provides all consumers an equal

share cR13.

Equilibrium Selection Mechanism.

A maximizing bank must necessarily realize that a contract for which (6) holds makes it

vulnerable to panic runs, and this fact will affect the design of the contract. The question

of how the equilibrium is selected when both equilibria are possible is crucial to determine

how it affects the choice of the optimal contract. In the absence of additional uncertainty, it

is not clear what drives expectations about the future solvency of the bank. In this paper

we assume the most basic equilibrium selection mechanism:14 a sunspot. We assume that

13 In the honest equilibrium, agents don’t care about their position in the bank line, as there are enough

assets to serve them all the promised amount cE . By contrast, in case of a run, all agents want to be "first in

line" and thus they will show up at the bank at the same time. The example of the recent run on Argentinian

banks in 2002 is illustrative: all agents who where waiting in front of the bank before the opening were allowed

to withdraw an equal fraction of their deposits.
14Several authors have studied bank runs as an equilibrium phenomenon (Postlwaite and Vives [1987], Jacklin
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there is a publicly observable variable that influences the agents’ level of "optimism" about

the solvency of the bank. Suppose that with probability q the variable takes values that lead

to a pessimistic assessment about future solvency. Nevertheless, pessimistic expectations can

lead to a financial crisis only when the bank is vulnerable.

4.1.1 The Bank’s Problem

Let θ ∈ {0, 1} be the state variable of a bank run. If θ = 1 late agents withdraw the deposits
in the early sub-period, and if θ = 0 all agents make their withdrawals according to their type.

Let η be the probability of a bank run given the optimal contract and investment portfolio. If

the contract makes the bank solvent under any circumstance in the early sub-period (cE ≤ cR)

it is not optimal to run, even if all other late agents run (η = 0). On the other hand if (6)

holds the probability of a bank run is the probability of pessimistic expectations (η = q).

At any period t, and for any given level of deposits (wealth w > 0), a representative bank of

generation t-depositors chooses k, λ, i, cE, cL to maximize expected utility of a representative

current depositor:15

V (η,w) = max
k,λ,i,cE ,cL

(1− η) [πu(cE) + (1− π)u(cL)] + ηu(cR) subject to: (7)

πcE ≤ w − k − i+ λγh(k) (8)

(1− π)cL + πcE ≤ w − k + λγh(k) + (1− λ)h(k) (9)

cE ≤ cL (10)

0 ≤ λ ≤ 1 (11)

0 ≤ k ≤ w (12)

0 ≤ i ≤ w − k (13)

cR = w − k + γh(k) (14)

η =

 Pr(θ = 1|k∗, λ∗, i∗, c∗E, c∗L) = 0 ⇔ cE ≤ cR

Pr(θ = 1|k∗, λ∗, i∗, c∗E, c∗L) = q ⇔ cE > cR
(15)

and Bhattacharya [1988], Cooper and Ross [1998], Allen and Gale [1998], Golfajn and Valdes [1997]). These

papers either assume an exogenous probability of crises, or neglect the possibility of panic-based runs. In

a recent paper Goldstein and Pauzner [2001] tackle the problem of equilibrium selection and endogenize the

probability of bank runs. Based on the ideas of global games developed by Carlsson and van Damme [1993],

and Morris and Shin [1998] the authors show that the existence of aggregate uncertainty and imperfect and

asymmetric private information, can select a unique equilibrium in the static DD model.
15The bank centralizes production and pays a wage to the following generation (w0) equal to the realized

marginal product of labor w0 = (1− β)(λγ + 1− λ)f(k).
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Equation (8) is the resource constraint at the early sub-period of t+ 1; for serving agents

with early liquidity needs, the bank can liquidate part of the short asset (w − k − i) and a

proportion λ of the long-term technology. Equation 9 is the resource constraint at the late

sub-period of t + 1; the bank uses all its remaining assets to serve late consumers. Since

agents still have access to the storage technology, the bank must offer a higher return to

patient consumers (the incentive compatibility constraint (10)). Finally, the probability of a

bank run (equation 15) given the optimal contract is equal to the sunspot probability if the

bank is vulnerable to a crisis, and zero otherwise.

The bank’s problem can be decomposed into two decision problems that provide insights

about the tensions and distortions of the optimal contract generated by the possibility of crises.

The bank can offer two alternative types of contracts. Under the first type of contract, termed

"covered banking”, the financial intermediary chooses a contract that makes it invulnerable

to crisis (cE ≤ cR ⇒ η = 0). The returns on deposits under this contract are independent of

the realization of the sunspot. Under the second type of contract, termed "exposed banking”,

the bank takes on the risk of having a run on its deposits (cE > cR ⇒ η = q) .16 For any

given level of wealth, the bank determines first the optimal contract for each type and, in the

second stage, it selects the type of contract that maximizes expected utility.17 This second

decision is equivalent to choosing the probability with which a crisis will occur (η).

The optimal covered banking contract Oc = {kc, λc, ic, cc, cc} solves the problem:

V c (w) = max
k,λ,i,cE ,cL

πu(cE) + (1− π)u(cL) subject to: (Ps)

(8), (9), (11), (10), (12),(13), and

cE ≤ w − k + γh (k) (16)

where (16) is the run-preventive constraint.

The optimal exposed banking contract Oe = {ke, λe, ie, ce, ce} solves the problem:

V e (q, w) = max
k,λ,i,cE ,cL

(1− q) [πu(cE) + (1− π)u(cL)] + qu(cR) subject to: (Pc)

(8), (9), (11), (10), (12),(13), and (14)

16Using the terminology of Cooper and Ross (1998), "covered banking” corresponds to "run preventive

contracts” and "exposed banking” to "contracts with runs”.
17 It is important to notice that the ”covered banking” contract may be optimal, and it is not impossed as

prudential regulation of banks.
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In the second stage of the problem, the bank chooses the contract that gives the larger

expected utility, which is equivalent to choosing η = argmax {V (η,w)} between the two
contracts, where V (η,w) =Max {V e (q, w) , V c (w)} .

The analysis of the tensions and distortions generated by run-proof contracts, under cov-

ered banking, and by a positive probability of a run, under exposed banking, require the

definition of an efficient benchmark. We consider the intra-generational first-best solution, in

which a planner (or bank) can observe the realization of the liquidity shock. This solution

is equivalent to the limiting case of exposed banking when the probability q tends to zero.18

Using this benchmark we can make assessments about the distortions of the two banking con-

tracts in terms of technology (investment capital k), liquidity provision (λ and i) and liquidity

insurance ( cEcL ).

The General Shape of the Solutions.

Before presenting the first-best, covered and exposed contracts, it is possible to characterize

the general shape of the solution. Technological considerations on the returns of the assets

define four regions (A toD) depending on the level of wealth for the three solutions. Although

the thresholds that define these regions differ among the three contracts, we define the generic

thresholds: k, w̃j , and ŵj where j = {u, c, e} is an index for the unconstrained or first-best
solution, the covered banking and exposed banking solutions, respectively.

Region A: No investment in short-term technology, no liquidity provision.

For poor economies (w ≤ k) investing in capital dominates investing in the short asset

because the marginal return is higher even if it is liquidated. Therefore, all wealth is invested

in the long technology (k = w), and early consumption is served by liquidating a constant

proportion of its asset (λj is constant). Notice that the optimal portfolio is the same as under

autarky. Since the optimality of full investment in capital is a technological consideration, the

optimal portfolio, and the threshold of the region is common to all solutions.

Region B: Constant level of investment in capital, reduction of early liquidation,

increasing liquidity provision.

For k≤ w ≤ ewj the financial intermediary invests in both assets and provides extra

liquidity. The defining characteristic of this region is that investment in capital is kept fixed

at k. All optimal solutions keep the marginal return of the long asset fixed at a high level,

18The two contracts are equivalent because in the absence of aggregate uncertainty the incentive compatibility

constraint is never violated.

15



where its value, when liquidated prematurely, equals the marginal return of storing the good.19

Even for a constant level of the capital stock, output can grow because the bank is liquidating

a decreasing proportion of the long asset (λj is decreasing in wealth). The bank starts using

the liquid asset as a source of liquidity to pay out early consumers, reducing premature

liquidation of the long asset. Late consumers are served using an increasing proportion of the

fully matured output.

Region C: No liquidation of long term investment, increasing investment in both

assets.

When wealth has crossed a certain threshold (w ≥ ewj), the financial intermediary stops

using the long asset to serve early consumers. All the long technology is left until full maturity

(λj = 0) to serve late consumers, and investment in capital can increase again. If there

is no crisis, early consumption is served only using the short asset (cjE = w−kj
π ), and late

consumption using the long term technology (cjL =
h(kj)
1−π ). Increasing investment in capital

over this region implies that the marginal return of the asset used to serve late consumers

decreases relative to the return of the asset used for early consumption.

Region D: No liquidation of long term investment, and excess liquidity.

For high levels of wealth (w > ŵj) high investment in capital has exhausted the marginal

return of the long asset, and it is optimal to transfer some returns of storage to serve late

consumers (ij ≥ 0). Over this region there is no early liquidation of the long technology

(λj = 0).

A general expression for early and late consumption for all contracts and all regions is

given by:

cjE =
w − kj − ij + λjγh

¡
kj
¢

π
and cjL =

ij +
¡
1− λj

¢
h
¡
kj
¢

1− π

We present first the main features of the efficient benchmark (4.1.2). Then we characterize

the optimal covered (4.1.3) and exposed banking (4.1.4) contracts. Section (4.1.5) presents

then the optimal banking system as the bank’s choice between these contracts.

4.1.2 The Efficient Benchmark: Unconstrained Optimal Risk Sharing

Gaytan and Ranciere [2005] characterize the unconstrained optimal risk sharing solution in

Proposition 5.1. The main implications for investment, liquidation policy and liquidity insur-
19Two assets can be used to serve the same type of consumption only if their marginal returns are the same

at the required moment of liquidation.
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ance are presented in the following table:

w ku λu iu cE
cL

A 0 < w ≤k w λ∗ 0 γ
1
σ

B k≤ w ≤ ewu k λu(w) 0 γ
1
σ

C ewu ≤ w ≤ ŵu ku (w) 0 0 h0 (ku)−
1
σ

D w ≥ ŵu k 0 (1− π) (w − k)− h(k) 1

where ewu, ŵu, λ∗, λu(w) are defined by:20

ewu = k

Ã
1 +

πγ1/σ

(1− π)γβ

!
(17)

ŵu = k

µ
1 +

π

β(1− π)

¶
(18)

λ∗ =
πγ

1
σ

πγ
1
σ + (1− π) γ

(19)

λu(w) = λ∗ − (1− λ∗)β
w − k

k
(20)

The efficiency of the unconstrained solution can be summarized by the following conditions:

Technological efficiency:

(i) There is full investment in capital whenever the early liquidation marginal return on

capital exceeds the marginal return on storage (k = w ⇔ γh0 (k) > 1);

(ii) whenever there is liquidation of the long technology, capital investment never exceeds k

(if λ > 0 ⇒ γh0 (k) ≥ 1);

(iii) when wealth is large enough (w ≥ ŵu) the bank fully exploits the marginal return on

capital (k = k).

Liquidity efficiency:

(iv) There is never inefficient liquidation of the long technology (if γh0 (k) ≥ 1 ⇒ λ > 0);

20The definition of the unconstrained threholds ewu and ŵu is presented in the Appendix. ku (w) is a

continuous, strictly increasing and concave function implicitly defined by (see Gaytan and Ranciere (2005)):

u0 (cE)
u0 (cL)

= h0 (ku (w))
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(v) whenever the marginal return of capital at maturity exceeds the marginal return on

storage there is no excess liquidity (if h0 (k) > 1 ⇒ i = 0).

Efficient liquidity insurance:

(vi) Whenever there is early liquidation of the long asset (λ > 0), liquidity insurance is kept

constant at a level that equates the marginal rate of substitution with the marginal

return of k (if λ > 0⇒ u0(cE)
u0(cL)

= 1
γ );

(vii) whenever γh0 (k) < 1, an increase in capital investment is optimally associated with an

increase in liquidity insurance;

(viii) excess liquidity is held (i > 0) only to make an efficient transfer from the early to the

late subperiod to provide perfect insurance (if i > 0⇒ cE
cL
= 1).

An important question is whether a bank that offers a contract that replicates the first-

best solution is vulnerable or not to panic runs. If the first-best solution is run proof, it must

be the optimal contract chosen both under covered and under exposed banking; therefore,

it must be the optimal banking solution. There is the following relationship between risk

aversion and invulnerability of the first-best solution.

Proposition 4.1 (Optimal risk sharing and bank runs) (i) If σ > 1 (high risk aversion),

the unconstrained risk sharing solution is vulnerable to crises (cE > cR).

(ii) If σ ≤ 1 (low risk aversion), there exists a unique level of wealth wrp ∈ ( ewu, bwu), such

that:

— if w ≤ wrp, the unconstrained risk sharing solution is run proof (cE ≤ cR)

— if w > wrp, the unconstrained risk sharing solution is vulnerable to crises (cE > cR).

where wrp = krp(1 +
πγ

(1−π)βγσ ) and h0
¡
krp
¢
= 1

γσ

Proof. See Appendix A.

Impatient agents (σ > 1) have a stronger preference for liquidity insurance and demand

higher early pay-off, making the first-best contract vulnerable to runs. Patient agents (σ ≤ 1),
on the other hand, prefer to enjoy higher payoffs on late withdrawals while the marginal returns

are still high. However, as wealth increases and liquidity insurance improves, the economy
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reaches a point where the optimal risk sharing solution becomes necessarily vulnerable to

runs.21

For 0 < w ≤ wrp and σ ≤ 1, the first best solution is the optimal covered bank contract
and is also the optimal banking solution. For higher levels of income, the optimal contracts

are subject to the optimality conditions that prevail for σ > 1. Therefore, we can concentrate

our attention on the results for high risk aversion (σ > 1).

4.1.3 Covered Banking (η = 0).

Before presenting the optimal covered contract, it is useful to notice that the autarkic solution

is run proof (caE = w− k + πγh (k) < w− k + γh (k)). A covered bank could always replicate

the autarkic solution by setting λ = π, k = ka, and i = (1− π) (w − k) and, therefore, optimal

covered banking will necessarily dominate the autarkic outcome.

Proposition 4.2 The optimal covered banking contract for high risk aversion (σ > 1) is

characterized by the following conditions22:

Region w u0(cE)
u0(cL)

kc λc ic

A 0 < w ≤k 1
γσ w π 0

B k≤ w ≤ ewc 1
γσ k λc(w) 0

C ewc ≤ w ≤ ŵc 1
γσ kcC (w) 0 0

D w ≥ ŵc 1−π
π

[( 1−πγ1−π )h
0(k)−1]

(1−γh0(k)) kcD (w) 0 (1− π) (w − kc)− πγh (kc)

where the thresholds ewc, ŵc, liquidation policy λu(w) , and investment ks (w) are given by:

ewc = k

µ
1 +

π

β(1− π)

¶
(21)

ŵc = bkcµ1 + γπ

β (1− π)
h0
³bkc´¶ Where : h0

³bkc´ = π + (1− π)γσ

πγ + (1− πγ)γσ
(22)

λc(w) = π − (1− π)β
w − k

k
(23)

kc (w) is implicitly defined by the marginal rate of substitution u0(cE)
u0(cL)

and excess liquidity

ic.23

21 Improving insurance and the existence of a wealth level above which the economy is vulnerable to a run,

represent a difference with respect to the original DD model. In their original framework of fixed returns to

assets, low risk aversion (σ ≤ 1) implied that the optimal risk sharing contract was necessarily run proof.
22Figure 3 illustrates the optimal choice of capital and liquidity insurance for a simulation of the economy
23ksC (w) and ksD (w) are two continuous, strictly increasing and concave functions of w (see Appendix).
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The source of distortions in covered banking is the limit imposed on the degree of liq-

uidity insurance. The unconstrained level of liquidity insurance violates the run preventive

constraint; therefore, a covered bank will provide a strictly lower level of liquidity than the

first best. The incentive to increase early consumption towards the first-best level implies

that the run-preventive constraint binds for all levels of wealth cE = w − k + γh (k) . This

limit on early consumption forces the bank to provide a constant level of liquidity insurance

over regions A, B and C (cE = γcL), below the efficient level. Lower liquidity insurance frees

resources to provide higher late consumption either through reducing liquidation or increasing

capital investment.

Over regions A and B, since capital is determined by pure technological considerations

(k = w and k = k), a lower liquidity insurance implies a smaller liquidation of the long asset

λc (w) < λu (w).24 In addition the bank stops liquidating the long asset at lower levels of

wealth ( ewc < ewu). This reduction in liquidation increases the marginal product of capital

and has a positive effect on economic growth. Once the covered economy has stopped early

liquidation of the long technology starts increasing capital. However, over region C, the

increase in capital is not accompanied by an increase in liquidity insurance. Over region C

and the first part of D, the bank ”over-invest” in capital with respect to the first-best level

to maintain a covered contract. In the second part of region D, there is underinvestment

in capital relative to the first-best, as ”excess liquidity” i > 0 becomes a more efficient way

to restrict liquidity insurance. The use of excess liquidity before fully exhausting the return

on the long asset (h0 (k) < 1) is a technological inefficiency of covered banking. Over region

D, the bank can maintain a covered contract and increase liquidity insurance, reducing the

distortion generated by the run-preventing constraint.

Making a banking system ”safe” implies restricting both the banks’ asset portfolio, and the

provision of liquidity insurance offered by the deposit contract in a way that banks can always

satisfy any claim by depositors. In the previous literature, a requirement of excessive liquid

reserves can attain this objective. However, when returns are endogenous it is not necessarily

the case. We find that, except for rich economies, it is more efficient to reduce the promises to

early consumers rather than to hold more liquid assets. This reduction of liquidity insurance

allows the bank to allocate more resources to long term projects, with positive consequences

for economic growth.

24Over region A, λ = π, the safe contract just replicates the autarkic solution.
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4.1.4 Exposed Banking (η = q).

Proposition 4.3 The optimal exposed banking contract for high risk aversion (σ > 1) is

characterized by the following conditions.25

w u0(cE)
u0(cL)

ke λe ie

A 0 < w ≤k 1
γ w λ∗ 0

B k≤ w ≤ ewu 1
γ = h0 (k) k λu(w) 0

C ewu ≤ w ≤ ŵe h0(ke)− q
1−q (1− γh0 (ke)) u

0(cR)
u0(cL)

keC (w) 0 0

D w ≥ ŵe h0(ke)− q
1−q (1− γh0 (ke)) u

0(cR)
u0(cL)

keD (w) 0 (1− π) (w − ke)− πh (ke)

where ŵe is given by:

ŵe = bke
1 + πh0

³bke´
β (1− π)

 where : h0
³bke´ = q + (1− q) (π + (1− π) γ)σ

γq + (1− q) (π + (1− π) γ)σ
(24)

keC (w) is implicitly defined by the expression for the marginal rate of substitution
u0(cE)
u0(cL)

,

and kcD (w) is implicitly defined by the marginal rate of substitution and excess liquidity ie.

Regions A and B of the exposed contract are identical to the intra-generational first-best

solution. Since over these regions the level of investment is determined by technological effi-

ciency, it is optimal to provide the first-best level of liquidity insurance, because a reduction of

liquidity insurance helps only if it makes the contract run proof (covered banking); otherwise,

crises are still possible. As a consequence, for this range of wealth an optimizing bank will be

restricted to maximize utility under the good state of no-crisis only.

Exposed banking introduces an important new element. Having crises with positive prob-

ability generates aggregate uncertainty in the payoff for both types of consumers. The bank

will have incentives to smooth consumption over realizations of the aggregate state. This

”banking self-insurance” against crisis risk is achieved by increasing the payoff in the bad

state, that is, by increasing the early liquidation value of the bank’s portfolio. Since the early

value of the portfolio increases with investment in the storage technology, the bank will invest

less capital than the optimal risk sharing over regions C and D.26

There is no conflict for the exposed bank between increasing liquidity insurance and in-

creasing crises self-insurance. A promise of higher early consumption adds extra liquidity,
25Figure 4 illustrates the optimal choice of capital and liquidity insurance for a simulation of the economy
26 In region C of the unconstrained problem, the marginal cost of increasing capital was just u0 (cE), the

valuation in terms of utility of the marginal return of storage. When crises occur with positive probability the
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which can be used in case of a financial crisis. That is why over region C the bank provides

excessive liquidity insurance
³
ceE
ceL

>
cuE
cuL

´
, and starts providing full liquidity insurance at a

lower level of wealth (ŵe < ŵu).

Excess liquidity (i > 0) is used to provide full insurance, although the marginal product

of capital is not the same as that of storage. Since the marginal return on capital has not

been completely exhausted (h0 (k) > 1), the bank will continue to increase capital as wealth

increases over D.27

Therefore, a maximizing bank that faces a positive probability of a run, will increase

the level of liquidity and liquidity insurance beyond the first-best solution increasing the

vulnerability of the system and reducing the growth benefits. Although this ”excessive risk”

result resembles those coming from a moral hazard problem, the distortion is not a consequence

of insurance received, but of insurance provided. In effect, by increasing liquidity the bank

is providing crisis insurance. At the cost of lower returns, a more liquid system reduces the

output loss in case of a crisis, because it increases the bankruptcy value of the bank.

An exposed bank never ”overinvest”. At low levels of wealth (regions A and B), capital

and growth are the same as under the unconstrained solution. For higher levels of wealth, the

risk of a run reduces the level of investment, with negative consequences for economic growth.

4.1.5 The Optimal Banking System

In this section we characterize the optimal risk-sharing solution when there is an exogenous

probability of pessimism that can drive a panic run on the bank as the choice between the

optimal”covered” and ”exposed” contracts. For any given level of wealth, the financial in-

termediary will choose the contract that maximizes expected utility. The bank’s decision

reflects the tension between crisis prevention and precautionary measures to minimize the

costs of a possible crisis. The financial intermediary chooses η = argmax {V (η,w)}, where
V (η,w) =Max {V e (q,w) , V c (w)} .
marginal cost increases to

u0 (cE) +
¡
1− γh0 (k)

¢ q

1− q
u0 (cR)

because investment in capital also reduces consumption in case of a total run.
27 It is interesting to notice that over region D (cE = cL = c = w − k + h (k)), the optimality condition can

be written as:

region D :
u0 (cR)
u0 (c)

=
(1− q) (h0 (ke)− 1)
q (1− γh0 (ke))

that is a similar expression to the autarkic condition for self-insurance against liquidity risk.
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Since the distortions generated by the contracts vary with the level of wealth, the optimal

choice between the contracts will depend on wealth, and on the probabilty of a bad realization

of the sunspot. The expected utility of covered banking (V c (w)) is invariant to q, while the

expected utility of the exposed contract (V e (q, w)) is strictly decreasing in q. The choice

between the two contracts will be determined by a wealth-dependant, cut-off probability

q∗ (w). This threshold probability is defined in the following proposition.

Proposition 4.4 The Optimal Banking System

For any level of wealth for σ > 1, and for w > wrp, when σ ≤ 1, there exists a unique
cut-off probability q∗ ∈ (0, π] such that:

q > q∗(w)⇔ a covered banking system is optimal

q < q∗(w)⇔ an exposed banking system is optimal

where q∗(w) is a continuous function defined by:

V e (q∗ (w) , w) = V c (w)

Proof. See Appendix A

Over regions A and B the optimal exposed contract replicates the first-best contract;

therefore, there are no distortions in the contract, and the only cost is the expected cost of

a run. This cost increases with q and, therefore, the expected utility is decreasing in q. Over

regions C and D, a positive probability of a run q increases the liquidation risk, reducing the

expected marginal return of capital and investment.

Lower capital investment has two effects on expected utility: a positive effect because

it increases liquidity insurance, and a negative effect because it reduces the returns for late

consumption. The overall effect is negative, because the bank is increasing the expected payoff

in case of a run at the cost of reducing it when there is no run, exacerbating the distortion in

the non-run case.28 Over regions C and D, every dollar kept for crisis self-insurance pays less

in terms of utility than a dollar invested to increase the payoff in the good equilibrium.

In Appendix B, we show that if the probability of the sunpot is higher than the probability

of the idiosyncratic liquidity shock (q > π), autarky dominates the exposed banking solution.

28Using the envelope theorem we can see that:

dV e (q,w)

dq
= − [πu (cE) + (1− π)u (cL)] + u (cR) < 0.
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Since covered banking weakly dominates the autarkic outcome, the cutoff probability q∗ (w)

must be strictly lower than π.

The cutoff probability determines the bank’s optimal choice of contract for any given level

of wealth. However, it is useful to invert the problem and find, for a given probability of

the sunspot, how the decision between the two contracts changes with the level of wealth.

This analysis sheds light on how the choice of risk taken by an exposed bank varies over the

development path, or equivalently it provides a broad picture of the cross-sectional distribution

of risk for countries with different levels of wealth.

Proposition 4.5 Optimal Banking and the Level of Wealth.

There exist two cutoff probabilities q0, q1 (0 < q0 < q1 < π) such that:

(i) high probability of a run: if q > q1, a covered banking system is the optimal for all

levels of wealth

(ii) intermediate probability of a run: if q0 < q < q1, there exist two levels of wealth

wl < wh such that an exposed banking system is optimal for middle income economies

(wl < w < wh) and a covered banking system is optimal for poor and rich economies

(w ∈ R+ − [wl, wh])

(iii) low probability of a run: if q < q0, there exist one level of wealth wh such that an exposed

banking system is optimal, except for rich economies (w > wh)

where:

q0 = q∗o =

·
π+(1−π)γ σ−1σ

¸σ
−[π+(1−π)γσ−1]·

π+(1−π)γ σ−1σ
¸σ
−1

q1 =Max {q∗ (w)} < π

δwl
δq > 0; δwhδq < 0 and lim

q→0wh = 0

Proof. See Appendix A

Figure 5 illustrates the characterization of the optimal solution in proposition 4.5. For any

probability of the pessimistic state q , it shows the upper and lower wealth thresholds (wh

and wl) that define the switch between the two contracts:

24



0 0.05 0.1 0.15 0.2 0.25

0.5

1

1.5

2

2.5

3

3.5
Figure 5: The Optimal Banking System 

Sunspot Probability  (q)

 
Le

ve
l o

f W
ea

lth
Wlow
Whigh

Case (iii) Case (ii) 

Optimal: Exposed Banking 

Optimal: Covered Banking 

Case (i) 

qzero qone 

Optimal: Covered Banking 

Optimal: Covered Banking 

Optimal: Exposed Banking 

For poor economies, the cost of covered banking is the low liquidity insurance provided

by the intermediary; however, the cost is partially compensated because lower liquidation

increases late consumption. On the other hand, since the exposed banking replicates the

unconstrained solution, the cost of exposed banking is the cost of a run. Therefore, poor

economies will prefer a covered contract when the probability of the pessimistic state is high

enough (q > q0).

The underinsurance distortion of covered banking becomes more pervasive for higher levels

of wealth. Liquidity insurance is kept constant even when the return of the long asset is

decreasing. In addition, the covered bank eventually uses excessive liquidity (i > 0) to satisfy

the run-preventive constraint, although the returns to the long assets are not fully exhausted

(h0 (k) > 1).

On the other hand, an exposed contract does increase insurance and crisis insurance,

partially offsetting the loss of the run. Therefore, for intermediate levels of wealth, the ex-

posed contract may prevail over the covered contract (if q < q1). However, there is always a

sufficiently high probability q that can make the exposed banking suboptimal.
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There is always a level of wealth high enough after which covered banking is the optimal

contract. The distortions of covered banking tend to disappear as the bank increases liquidity

insurance and increases investment towards the maximum level of capital attained by first-

best solution (k); in contrast, the exposed banking always faces an uninsurable crisis risk that

prevents capital investment to achieve the maximum efficient level.29

4.2 The Dynamics of Wealth, Capital and Consumption

We characterize the dynamics of wealth implied by the optimal banking solution for high risk

aversion (σ > 1).30 We assume an initial generation endowed with w0 > 0. When the optimal

contract is j = {c, e}, the dynamics of wealth can be represented as:

wt =

 F j(wt−1) =

F
run
(wt−1) =

(1− β) [λ(wt−1)γ + 1− λ(wt−1)] f(k(wt−1))

(1− β)γf(k(wt−1))

with probability 1− η

with probability η

(25)

kt = kj(wt−1) : optimal capital choice

λt = λj(wt−1) : optimal liquidation

η =

 0

q

if j = c

if j = e

When the optimal banking solution is a covered banking system ( j = c), the dynamics of

wealth are deterministic. In contrast, when the optimal banking solution is an exposed banking

system ( j = e), the dynamics of wealth are stochastic. When an exposed bank experiences a

run, the full liquidation of the bank porfolio will reduce wealth and investment possibilities of

the following generation.31

29 In the limit for infinitely large wealth kc attains k, while ke attains an upperbound given by:

h0 (kemax) =
1

qγ + 1− q

30Early and late consumption (cE and cL) are monotonically increasing in wealth; therefore, as in the case

of autarky, their dynamics follow the dynamics of wealth, and the level of liquidity insurance implied by the

optimal contract.
31 It is important to the notice that a higher probability of the sunspot does not necessarily imply lower

growth under optimal banking, since the probability can affect the choice between the two contracts. Under

exposed banking, an increase in q would imply lower growth if exposed banking remains the optimal contract;

however, since covered banking has a positive effect on growth, a switch to a covered contract, as a response

to the increase in crisis risk, could have positive growth consequences.
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The following proposition characterizes the generic convergence properties of this economy:

Proposition 4.6 For any initial wealth w0 > 0, the economy with financial intermediaries

converges toward a unique stable steady state
_
w
b
> 0 and kss = k(

_
w
b
). The steady state is

defined by F b(
_
w
b
) =

_
w.32

Proof. See Appendix B

Figure 6 illustrates the dynamics for a simulation of the economy. It presents the unique

dynamic paths (F (wt−1)) for autarky, covered banking, and the unconstrained problem. In

contrast, the stochastic growth dynamics for exposed banking is represented by two paths:

F e (wt−1) if there is no run, and F run (wt−1) otherwise. The dynamics of the optimal banking

solution are underlined. The steady state is determined by the intersection of the optimal

path with the 45 degree line.
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32When the optimal banking system at the steady state is an exposed bank, the economy remains in the

steady-state conditional on no run. To be precise, an exposed banking economy converges to a limit distribution

centered around this point.

27



The simulation used in Figure 6 presents the case of an economy with an intermediate

probability of the sunspot (q0 < q < q1).33 Covered banking is the optimal contract both

for low and high income, and attains a covered-banking steady state. Starting with an initial

low level of wealth, such an economy experiences the fast growth associated with covered

banking, and then switches to an exposed contract, entering the region where crises happen

with positive probability. Eventually, the economy will converge to a long-run, financially-safe

steady state. The speed of convergence will depend on the realization of the sunspot. If the

economy receives good draws it will ”escape” rapidly to a run-proof region. If the economy

experiences bad draws, it will experience multiple crises, and yet, it remains optimal to take

on the risk associated with an exposed banking system.

The optimality of covered banking for high levels of wealth is similar to the result of

Acemoglu and Zilibotti [1997]. In their model growth and crises will depend on ”luck” until

the economy gets rich enough to afford full insurance through broader risk diversification. In

our model, the economy is financially fragile and vulnerable to bank runs until it becomes

rich enough to afford the cost of a full self-insurance against the risk of liquidity crises.

5 The Consequences of a Banking System

5.1 Liquidity Insurance and the welfare of the current generation

The fundamental source of inefficiency under financial autarky is the absence of a mecha-

nism for pooling liquidity risk, making necessary that each agent insures herself against such

risk. On the other hand, the bank pools resources and balances the assets’ returns with the

consumers’ ex-ante preference for consumption smoothing between the two possible liquid-

ity needs. Since the bank maximizes expected utility of a current depositor, welfare for the

current generation is necessarily higher than under financial autarky.

Proposition 5.1 For any probability of a run and for any level of wealth, the optimal banking

solution dominates autarky for the welfare of the current generation and strictly dominates

autarky for w > k

Proof. This result is independent of the probability q because autarky is a run preventive

contract and thus, covered banking dominates autarky in terms of welfare of the current

generation and stricly dominates for w > k (see Property P6 in Appendix A for a formal

proof).

33The parameters used in the simulation are presented in Appendix D.
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5.2 Growth

In this section, we compare the relative growth performance of financial autarky and financial

intermediation.34 We concentrate on the financial intermediation growth performance condi-

tional on the good state of no run, leaving the analysis of output losses caused by liquidity

crises to the next section. The relative growth consequences of the two financial regimes can

be analyzed using the ratio of wages for the following generation:

F a(w)

F b(w)
=

1− π(1− γ)

1− λ(w)(1− γ)

µ
ka(w)

kb(w)

¶β

(26)

where the indexes {a, b} stand for financial autarky and the optimal banking system.

Equation (26) can be written in terms of growth rates as:35

ga(w)− gb(w) ≈ ln(1− π(1− γ))− ln(1− λ(w)(1− γ))| {z }+β hln ka(w)− ln kb(w)i| {z } (27)

Liquidation Effect (A) Investment Effect (B)

The relative growth performance depends on the combination of a liquidation effect (A),

which reflects the different level of liquidation (λ(w) vs π), and an investment effect (B), which

reflects the difference in capital choice. In terms of growth accounting, the first effect reflects

a "total factor productivity” gap and the second effect an "investment” gap.

The Liquidation Effect.

Under autarky, self-insurance imposes a constant aggregate liquidation equal to π. In

contrast, under optimal banking whenever the marginal return of the short asset exceeds the

early liquidation marginal return of the long asset, the bank sets liquidation to zero. These

features represents a technological advantage of banking, that is, its ability to avoid inefficient

liquidation by pooling the liquidity risk. Since the marginal returns, both of capital and

labor, are inversely related with the level of liquidation, its suppression explains why financial

intermediaries can attain a higher steady state level of wealth.

For lower levels of wealth, liquidation of the long technology is optimally chosen by the

bank to distribute a fraction of the high returns of this asset to early consumers. When for

low levels of wealth a covered bank is optimal, liquidation in region A equals π (the level of

34For simplicity, we restrict our attention to the most interesting case when σ > 1.
35The growth rate of wealth gi (w) , i = {a, b} is given by:

gi (w) =
F i(w)

w
− 1 ≈ lnF i(w)− lnw
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autarkic aggregate liquidation), and it is gradually reduced to zero. Therefore, the liquidation

effect will favor growth under optimal banking. On the other hand, when exposed banking

is optimal for low levels of wealth, over region A the bank will liquidate a larger proportion

of long term projects (λ∗ > π). In this case, the liquidation effect initially favors autarky;

however, as liquidation is reduced over region B, the liquidation effect will eventually favor

growth under banking.

The Investment Effect.

For some low levels of wealth (w ∈ [k,w∗]), autarkic agents overinvest in capital as pre-
cautionary savings, while it would be efficient to start investing a fraction of wealth in the

short asset, and reduce liquidation. This inefficiency is not present under banking, over region

B, as the banking level of investment is constant. Therefore, over this region, the investment

effect will favor autarky.

Nevertheless, the cost of inefficient liquidation under autarky limits capital investment

for larger levels of wealth, and the investment effect will eventually favor optimal banking.

The reduction of liquidation under banking compensates the decline in the marginal product

of capital due to increasing investment. In region D of the banking economy, investment in

capital is strictly higher than under autarky.36 Therefore there exists a wealth threshold m

in region C at which capital investment in the banking economy and in the autarkic economy

are identical, while for wealth levels higher than m, the investment effect favors the banking

economy. At m, as capital investments are the same in both economies and liquidation is

higher under autarky, growth is strictly higher in the banking economy. The same results

necessarily hold for w > m. Therefore:

Proposition 5.2 There exist a level of wealth wa ∈ (k,m) such that for w > wa, growth

under optimal banking is strictly higher than under financial autarky.

Proof. see Appendix B

The intra-generational optimal banking contract maximizes welfare of the current genera-

tion of depositors, without direct concerns on the welfare of future generations or the growth

rate of the economy. Risk-sharing is optimally achieved in an intra-generational sense, but

36To see that, note that in region D (w > ewc > ewd) investment in exposed banking is higher than autarky

if and only if q < π (but, this is a necassary condition for exposed banking to be optimal); and, investment in

covered banking is higher that under autarky (propositions (3.1) and (4.2)).
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it may be inter-generationally inefficient, as the bank does not internalize the effect of its

decisions on growth and wealth of future generations of depositors.

The simulation presented in Figure 6 shows an economy for which financial intermediation

has a lower rate of growth at early stages of economic development than the autarkic economy.

After the economy has crossed the threshold wa, financial intermediation has a strictly growth

enhancing effect.

Figure 6 also illustrates the stage at which the development of a banking system starts to

have crucial long-run effects. When the economy has enough resources to keep an increasing

number of long term projects until full maturity, financial intermediation has an increasing

contribution to growth. This result replicates the empirical importance of financial intermedi-

ation for the growth perspectives of middle income, or emerging economies. This can explain

why these economies are willing to undertake the risk of an exposed banking system and

increase financial vulnerability by developing their financial systems.

5.3 Liquidity crises and output losses

An exposed bank is vulnerable to panic runs, and runs impose a cost on the current and future

generations. The ultimate cost of a financial crisis is the reduction in welfare it imposes on

consumers of the current, and any subsequent generation that may bear the costs. The

output forgone when there is a crisis is another possible indicator of its cost. However, both

indicators are difficult to estimate empirically. The available empirical information on the

costs of banking crises, reported by De Caprio and Klingebiel [1999], is the fiscal cost of those

episodes.

The fiscal burden of banking crises does not distinguish which generation is paying for the

rescue of the banking system. In that respect, the relevant variable in our model to compare

with the empirical evidence is the net present value of the output loss of exposed banking

when there is a run. This variable considers the total cost of the crises, and it synthesizes

both the loss of consumption of the current generation, and the reduction in investment (or

wealth) of the next generation. Under the good state of no crisis, an exposed banking system

produces:

y = w − ke + (1− λe (1− γ)) f (ke) .

When there is a bank run, liquidation of all long term assets imply an output of:37

yR = w − ke + γf (ke)

37Let w0 =wealth of the next generation. The distribution of income between consumption and investment
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To analyze how the output loss varies with the level of wealth, define the relative output loss

by:

LY =
y − yR

y
(28)

=
(1− λe) (1− γ)

β (w−k
e)

h(ke) + (1− λe (1− γ))

The output forgone in case of a run is linked to the liquidity of the banking portfolio. The

more liquid the portfolio, the lower the output cost in case of a crisis, because there is less

inefficient liquidation of long-term projects. The bank provides liquidity by investing in the

short asset (w − k) and by liquidating a proportion λ of long-term projects. The following

table presents the relative output loss for the different regions of exposed banking:

Region w − k λ (w) LY

A 0 λ∗ (1−λ∗)(1−γ)
1−λ∗(1−γ) constant

B increasing decreasing
β(w−k)+k

β(w−k)+k+ γ
(1−λ∗)(1−γ) [β

2(w−k)+k] increasing

C increasing 0
(1−γ)
1+βw−k

h(k)

decreasing

D increasing 0
(1−γ)
1+βw−k

h(k)

decreasing

The relative output loss LY has a humped shape. Poor economies that offer a constant

proportion of liquidity in the form of liquidation, exhibit a constant output loss. Over region B,

there are two effects: first, an exposed bank starts investing in the liquid asset, which reduces

the relative output lost; second, it decreases the optimal liquidation increasing the relative

output lost. The latter effect dominates, and increases of wealth over this region increases

the loss in case of a run. Once an exposed bank stops liquidating the long technology, any

subsequent increase in wealth will be accompanied by an increase in investment in the liquid

asset, thus, reducing the output loss in case of a run.38

is:

y = πcE + (1− π) cL +w0 (if there is no run)

yR = cR +w0R

with w0R = (1− β) γf (k)
(if there is a run)

38Except for region B, there is a negative relationship between the output loss and liquidity insurance, since

early consumption is increased using liquid assets.
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Figure 7 depicts the potential output loss for an exposed banking system under different

probabilities of the sunspot q. It provides further insight on why middle-income economies

may find an exposed banking system optimal, while covered banking is optimal for poor

economies.
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Figure 7: Relative Output Loss and the Level of Wealth 

Over regions A and B, an exposed bank holds the same portfolio independently of having a

higher probability of crises. An increase in q does not increase liquidity as crises self-insurance,

and the only way to limit the consequences of a run is to be covered. In contrast, over regions

C and D, an exposed bank does increase self-insurance through a more liquid portfolio as

an optimal response to higher run risk, reducing the output loss. The humped shape of the

output loss matches the empirical evidence: crises in middle-income economies have higher

costs than poor and rich economies.
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6 Conclusion

In this paper, we developed an integrated framework to analyze the relationships between

financial intermediation, financial fragility and growth. This framework is capable of repli-

cating the observed relationship between financial development and economic growth, and

between the recurrence and depth of financial crises and the level of economic development of

the countries.

To summarize, poor economies have too much to lose in a banking crisis and tend to

prefer to sacrifice liquidity insurance for crisis protection; middle income-economies choose to

be vulnerable to crises in exchange for higher liquidity insurance and returns; and finally rich

economies need a smaller sacrifice of liquidity insurance to be fully protected against crises

and avoid any liquidation of long-term projects. By choosing to be vulnerable, middle-income

economies accept the risk of experiencing banking crises. As they get richer, they eventually

converge to a long-run, financially-safe steady state. Consequently, the uncertainty on their

growth process introduced by the risk of crises as well as the cost of actual banking crises may

be only a transitory phenomena on the road of their development.

Consistently with the data, we find that the development of the banking system in middle-

income economies is associated both with a higher growth and a higher risk of banking crises.

The model is also consistent with the empirical evidence that the output costs of a banking

crisis are more severe for middle-income economies than for poor and rich economies. Finally,

it shows that although there can be short-run growth costs of developing the financial system,

there is a positive relationship in the long-run between financial development and economic

growth, thus replicating the results of Loayza and Ranciere [2001].

A important variable in our model is the probability of the bad realization of the sunspot,

which in an exposed banking system becomes the actual probability of banking crises. Al-

though it is difficult to assess empirically this probability, there are some estimations of the

unconditional probability of banking crises. Gourinchas, Landerreche and Valdes [2001] us-

ing a 24 year-data set on banking crises, provide an estimate of the probability of banking

crises following episodes of rapid financial development ranging between 9.5% and 14%. By

comparison, the most interesting case of intermediate probability in our model -where cov-

ered banking is optimal for poor and rich economies, and exposed banking for middle income

economies- occurs within a range for the probability of a run of 5% to 20%.
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A The optimal banking system

A.1 Unconstrained optimal risk sharing and bank runs [proof of proposi-

tion (4.1)]

A bank run is run proof if: cR
cE
≥ 1. This condition for the four regions of the optimal risk

sharing solution imply:

Region A: cR
cE
≥ 1⇔ λ∗ ≤ π.

Region B: cR
cE
≥ 1⇔ (β (w − k) + k) (λ∗ − π) ≤ 0⇔ λ∗ ≤ π.

Region C: cR
cE
≥ 1⇔ cE

cL
≤ γ

Region D: cR
cE
≥ 1⇔ γ ≥ 1, (which is impossible since γ < 1).

(i) optimal risk sharing is never run proof for σ > 1

Region A and B: σ > 1⇒ λ∗ > π.

Region C: Optimality requires 1 ≤ u0(cE)
u0(cL)

= h0 (k) ≤ 1
γ ⇒ cE

cL
≥ γ

1
σ

since σ > 1⇒ γ
1
σ > γ which contradicts the run proof condition.

(ii) Optimal risk sharing solution is run proof only if w ≤ wrpc for σ ≤ 1
Region A and B: σ ≤ 1⇒ λ∗ < π, optimal risk sharing is run proof.

Region C: Optimality requires: γ
1
σ ≤ cE

cL
≤ 1, and cE

cL
= h0 (k)−

1
σ

since σ ≤ 1⇒ γ
1
σ < γ < 1. Hence, there exists a unique level of wrp, and a unique capital

level krp such that if w > wrp , the run preventing condition is violated. krp is defined by:

h0(k (wrp)) =

µ
1

γ

¶σ

A.2 Properties of the Value Functions.

P1: V e(w, q) and V c(w) are continuous, differentiable, strictly increasing and strictly concave

in w and satisfy Inada Conditions.

P2: V e(w, q) is continuous, differentiable and strictly decreasing in q.

P3: V c(w) is invariant in q

P4: V c(w) < V u(w) and lim
w→∞

V c(w)
V u(w) = 1

P5: q > 0 : V e(w) < V u(w); lim
w→∞

V e(w,q)
V u(w) < 1 and lim

q→0
V e(w,q)
V u(w) = 1; and q = 0 :⇒ V e(w, 0) =

V u(w):
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P6 Covered Banking weakly dominates autarky (V c(w) ≥ V a(w)) and stricly dominates

autarky for w > k

— By replicating the autarkic solution (λ = π, k = ka(w)), a bank is covered⇒Covered
Banking weakly dominates autarky

— The solution for the optimal covered bank is unique. Therefore, except when the

autarkic and covered banking solution are identical (w ≤ k), the optimal covered

banking solution stricly dominates autarky.

A.3 The optimal banking system [proof of proposition (4.4)]

The proof first proves existence by showing that for extreme values of q (0 and π) the choice

of the optimal contract differs. Uniqueness comes from a single crossing property given by the

properties of the value functions.

• for q = 0 : V e(w, q) = V u(w) > V c(w)

• for q = π :covered banking weakly dominates exposed banking.

Under autarky the function to be maximized is

V a (w) = max {πu(w − k + γh(k)) + (1− π)u(w − k + h(k))}

Under a exposed banking, the function to be maximized is

V e (q = π,w) = max {(1− π) [πu(cE) + (1− π)u(cL)] + πu(w − k + h(k))}
with : πcE + (1− π)cL ≤ w − k + h(k)

⇒Using Jensen inequality:

[πu(cE) + (1− π)u(cL)] ≤ u(w − k + h(k))

the optimal solution for exposed bank and autarky for q = π, implies ke(w) ≤ ka(w) for

any w <∞, and
lim
w→∞k

e(w)
¯̄̄
q=π

= lim
w→∞k

a(w) =
1

πγ + 1− π

then:

V e(w) ≤ V a(w)
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Using P6 :

V e(w, π) ≤ V a(w) ≤ V c(w)

for q > π by P2 and P6 : V e(w) < V a(w) ≤ V e(w)

By P2 and P3 the cutoff probability q∗(w) is unique, therefore:

q < q∗(w) : V e > V c

q > q∗(w) : V e < V c

q = q∗(w) : V e = V c

• q∗(w) is implicitly define by:

V e(w, q∗) = V c(w)

then as V e(w, q∗) and V c(w) are continuous in w and V e(w, q) is continuous in q; hence

q∗(w) is continuous in w

A.4 Optimal Banking and the level of wealth [proof of proposition (4.5)]

The proof proceeds as follows. First we characterize two ranges of wealth: for the first range

(poor economies) the cutoff probability is fixed, for some higher levels of wealth, the cutoff

probability is strictly increasing. Second, we show that the two value functions can be at

most crossing in two points (intersections with different slope). Hence, for a fixed q there are

three possible cases. No crossing, one crossing and two crossings. Third, we characterize the

implications of the three cases. For any q we show the corresponding case.

Prelimiaries (P7− P8 are proved at the end of the proof)

P7 : for w ≤ ewc it exists a unique q∗0 invariant in w such that:

q < q∗0 : V
e(w) < V c(w)

q > q∗0 : V
e
(w) > V c(w)

q = q∗0 : V
e(w) = V c(w)

with q∗0 =

·
π+(1−π)γ σ−1σ

¸σ
−[π+(1−π)γσ−1]·

π+(1−π)γ σ−1σ
¸σ
−1

P8 for ewc < w < min( ewe, bwc) : q∗(w) is stricly increasing. Let’s eq = q(min( ewe, bwc))

For the rest of the proof will will assume q 6= q
∗
0 and describe at the end the special case

q = q∗0
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By P1 and P4 − P5, the graphs of V e(w) and V c(w, q) can intersect in zero,one or two

points

Let’s first characterize the different possible cases and show then how they apply to dif-

ferent values of q :

case a: one intersection

By P4− P5 at the unique intersection point wh
δV c(w,q)

δw < δV c(w,q)
δw

case b :two intersections

Let’s call wl and wh, the two point of intersection where they intersect twice

By P4− P5, at wh,
δV c(w,q)

δw < δV c(w,q)
δw . Then at wl,

δV c(w,q)
δw > δV c(w,q)

δw . which implies:

w < wl : V
e < V c : covered banking is optimal

wl < w < wh : V
e > V c : exposed banking is optimal

w > wh : V
e < V c : covered banking is optimal

case c: no intersection

By P4− P5, V e > V c for all level of w

Let’s now consider how thoses cases apply for different value of q

By P7 and P4− P5, when q < q∗0, case a applies

By P8 and P4− P5 when q∗0 < q < eq case b applies
By Proposition (4.4), when q > π, case c applies

Let’s now use the P2 to demonstrate by continuity which cases apply to the remaining

range q ∈]eq, π].
When q continuously decreases, the graph of V b(w, q) continuously shift up when the graph

of V c(w), stays invariant.

Therefore by continuity ∃! q1such that:

q1 < q < π : case c applies

eq < q < q1 : case b applies

q = q1 : V
b(w, q) and V c(w) are tangeant

By the same reasonning when there is two intersections points wl, wh :
δwl
δq > 0; δwhδq < 0 .

By P7− P8, min( ewe, bwc) < wl < wh

special case: q = q∗0 :
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By P7 for w < ewc : V e(w, q∗0) = V c(w)

When w ≥ ewe the analysis is as above and over ] ewe,∞) and by P4 − P5, case b applies

on ] ewe,∞)

Having demonstrated the relative position of V c(w) and V e(w, q) for all values of q and

all value for w, the proof of proposition is now complete.

Appendix: proofs of P7− P8

Let : ∆(w, q) = V e(w, q)− V c(w)

for w ≤ k :

∆(w, q) = V e(w, q)− V c(w) = [V e(1, q)− V c(1)]w1−σ

then:

∆(q∗, w) = 0⇔ [V e(1, q)− V c(1)] = 0

then q∗ = q∗0 is a constant independant of w

for k < w ≤ ewc

V c(w) = πu(cE) + (1− π)u(cL) and as cE = w − k + γh(k) and cL = cE/γ :

V c(w) = u(w − k + γh(k))[π + (1− π)γσ−1]

V e(w, q) = (1− q)(πu(cE) + (1− π)u(cL)) + qu(w − k + γh(k)

and cL = cE/γ
1/σ

then:

V e(w, q) = (1− q)u(cE)[[π + (1− π)γ
σ−1
σ ] + qu(w − k + γh(k)

but also:

crun = πcE + (1− π)γcL

crun = cE

h
π + (1− π)γ

σ−1
σ

i
cE =

h
π + (1− π)γ

σ−1
σ

i−1
(w − k + γh(k))

then:

V e(w, q) =

µ
(1− q)

h
π + (1− π)γ

σ−1
σ

i h
π + (1− π)γ

σ−1
σ

iσ−1
+ q

¶
u(w − k + γh(k))

=
³
(1− q)

h
π + (1− π)γ

σ−1
σ

iσ
+ q
´
u(w − k + γh(k))

And at q = q∗

V e(w, q) = V c(w)
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then subsituting it appears clearly that q∗ does not depend on w :

³
(1− q∗)

h
π + (1− π)γ

σ−1
σ

iσ
+ q∗

´
u(w − k + γh(k)) = [π + (1− π)γσ−1]

then:

q∗0 =

h
π + (1− π)γ

σ−1
σ

iσ − [π + (1− π)γσ−1]h
π + (1− π)γ

σ−1
σ

iσ − 1
for ewc < w ≤ min( ew, bwc)

V c(w) = u(w − k + γh(k))[π + (1− π)γσ−1]

V e(w, q) =
³
(1− q)[π + (1− π)γ

σ−1
σ ](π + (1− π)γ1−1/σ)σ−1 + q

´
u(w − k + γh(k))

so q∗ :

u(w − k + γh(k))[π + (1− π)γσ−1] =
³
(1− q∗)

h
π + (1− π)γ

σ−1
σ

iσ
+ q∗

´
u(w − k + γh(k))

u(w − k + γh(k))

u(w − k + γh(k))
=

³
−q∗

³h
π + (1− π)γ

σ−1
σ

iσ − 1´+ hπ + (1− π)γ
σ−1
σ

iσ´
[π + (1− π)γσ−1]

with
h
π + (1− π)γ

σ−1
σ

iσ
> 1

As w increases, k increases in the SBG solution but stay steady in the CWR solution,

u(w − k + γh(k)) increase by less than u(w − k + γh(k))

because (γh0(k)− 1) < 0).

Then the LHS will go down so to restore equality the RHS will have to down as well which

implies q to go up

δq∗

δw
> 0

B The dynamics of wealth of a banking economy [proof of

proposition (4.6)]

We prove that the growth rate of the economy with the optimal banking system is stricly

decreasing in two steps, first within banking systems and then between banking systems when

there is a switch in the optimal banking regime.

Step A: we prove that the growth rates with a covered banking system and with an

exposed banking system are stricly decreasing

growth rate under covered banking
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• region A-B:g0(w) < 0 cf proof of proposition 4.2 in Gaytan-Ranciere (2005) in the special
case where σ = 1

• region C: 1 + g(w) = (1−β)h(k)/β
w

which combined with f.o.c and after some algebra gives: g0(w) =
k0(w)h00(k(w))(1−β)

³
1−π
βπ

´2
( 1−π

π
h0(k)
β
+1)

As h”(k(w)) < 0 and k0(w) > 0 =⇒ g0(w) < 0

• region D:g0(w) < 0 identical to the proof of proposition 3.2 in Gaytan-Ranciere (2005)

growth rate under exposed banking

• region A-B:g0(w) < 0 cf proof of proposition 4.2 in Gaytan-Ranciere (2005) as {ke(w), λe(w)} =
{ku(w), λu(w)}

• region C: g0(w) < 0⇔ βwk0(w) < k ⇔ βw k0(w)
k < 1

Let show that βw k0(w)
k < 1

βw k0(w)
k =

β 1−π
π

w
h(k)

1−π
π

β( 1
h0(k)+

w−k
h(k)

)+kB
withB = (1−β)h0(k)

k

³
(1−γ)h0(k)+1−u0(x)

1−γh0(k)
´³

x(πx+(1−π)γ)
u0(x)γ(1−π)+πxh0(k)

´
and ( 1

h0(k) +
w−k
h(k) ) = (

w+k(β−1−1)
h(k) ) > (w−kh(k) )⇒ βw k0(w)

k < 1⇔ g0(w) < 0

• region D: indentical to the proof of proposition 3.2 in Gaytan-Ranciere (2005)

Step B: we prove that when there is a change in banking regime at wl and wh : g(wl)
+ <

g (wl)
− and g(wh)

+ < g (wh)
−

• at wh there is a switch from an exposed system to an covered system then:

g(wh)
+ < g (wh)

− ⇔ ke(wh) > kc(wh)

ke(wh) > kc(wh)⇔ δV c

δk

¯̄
k=ke(wh)

> 0

After some algebra: δV
c

δk

¯̄
k=ke(wh)

> 0⇔ q < π which is true as q = q∗(wh) < π

=>ke(wh) > kc(wh)⇔ g(wh)
+ < g (wh)

−

• at wl, by a similar argument, g(wl)
+ < g (wl)

−
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C The Consequences of a Banking System [proof of proposi-

tion ( 5.2)]

• Let prove first the existence of a wealth thresholdm in region C such that ka(m) = kb(m)

and w > m⇒ ka(w) < kb(w)

In region D: ke(w) > ka(w) ⇔ q < π which is verified if an exposed banking system is

optimal

In region D: V c(w) > V a(w)⇒ kc(w) > ka(w)

In region B: ka(w) > k = ke(w) = kc(w)

Then there exists a threshold m in region C such that ka(m) = kb(m) and w > m ⇒
ka(w) < kb(w)

• Let know compare growth in both regimes

In region C and D, λb(w) = 0 < λa(w) = π then w ≥ m⇒ gb(w) > ga(w)

In region A: for σ > 1 : ka(w) = kb(w) = w and λa(w) = π = λc(w) > λe(w) ⇒ ga(w) ≥
gb(w)

Then there exists a threshold wa ∈ (k,m) such that w > wa ⇒ gb(w) > ga(w)

D Parameters

The parameters used for simulations are:

Factor productivity A = 3

Capital share β = .4

Liquidity needs π = .4

Liquidation value γ = .5

Risk Aversion σ = 2
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