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In the early 70s Merton developed a theory based on economic arguments to study
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máximo, aśı como los métodos de planos móviles y de deslizamiento. Nuestra aproximación
facilita extender la teoŕıa a modelos no lineales.
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1 Introduction

The rational theory of option pricing, RTOP, is an attempt to derive proper-
ties of option prices based on assumptions su�ciently weak to gain universal
support [14]. To the extent that this attempt is successful, the resulting
theorems become necessary conditions to be satis�ed by any rational option
pricing theory. The assumptions are both of economic and �nancial nature.

In this article, we develop a similar analysis for the rational option pri-
cing theory of Merton [14], but we use partial di�erential equations tech-
niques. In particular, the maximum principle ([8], [18] and [5]), moving
planes and sliding methods [2] are used to obtain monotonicity properties
of option prices as well as to establish comparison principles. The existing
proofs, in contrast, relied on economic and �nancial arguments (dominance
of portfolios).

Our results are not only of theoretical relevance, by providing analytical
proofs to the theory, but are important in practice, e.g., when implementing
numerical schemes (see [10]). Besides, they allow extending Merton's theory
to some nonlinear models. These have become important also in practice ([6]
and [16]). In particular, nonlinear models arise when pricing some bonds and
in generalizing standard approaches, i.e., the Black-Scholes-Merton model.
In these cases, representation formulas or Green's function techniques are
not available anymore. Nevertheless, it would be important to be able to
establish the same or similar qualitative results also in these cases.

In what follows, we will recall the essential features of Merton's RTOP
as presented in [14].

In order to establish the restrictions on prices, we need the notion of
dominance: security (portfolio) A dominates security (portfolio) B if, on
some known date in the future, the return on A will exceed the return on B
for some possible states, and will be at least as large as on B in all possible
states.

We will also assume the following:

a) In perfect markets with no transactions costs and the ability to borrow
and short-sell without restriction, the existence of a dominated security
would be equivalent to the existence of an arbitrage opportunity.

b) If one assumes something like "symmetric market rationality" [13] and
further that investors prefer more wealth to less, then any investor
willing to purchase security B would prefer to purchase A.
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c) The rate at which one is granted a loan is named lending rate and the
return of the lender is the saving return.

We consider four kinds of �nancial instruments: an "American" or "Eu-
ropean" call or put option.

We denote by

S: the underlying asset.

E: exercise price.

T : exercise time.

r: risk free interest rate, i.e., we assume lending and saving rates are equal.

�: the volatility of underlying asset.

The basic principle considered by Merton is a necessary condition for a
RTOP, namely, that the option be priced such that it is neither a dominant
nor a dominated security.

The main results that Merton presents are the following:

1) Early exercise for an "American"-type put might be optimal.

2) The value of an "American"-type option is larger than or equal to the
value of a "European"-type option, in other words, the "American"-
type option dominates the "European".

3) If we consider two "European" or two"American"-type call options that
di�er only in the expiration time then the option with the largest
expiration time has a larger value than the other.

4) If we consider two "European" or two "American"-type call options that
di�er only in the exercise price then the option with the largest exercise
price has a smaller value than the other.

5) It is not optimal to exercise an "American" call non-dividend-paying
asset before expiring. In this case, the value of an "American"-type
warrant is the same as its "European" counterpart.

This paper is structured as follows: in section two, we recall some stan-
dard tools related to the maximum principle. In section three we prove

2



Merton's results using the maximum principle, the Fokker-Planck equation,
the sliding and the moving planes methods instead of economic and �nancial
arguments. In section four we present the conclusions and some issues for
future research.

2 Preliminaries

For the sake of completeness, in this section we state the precise versions
of the maximum principle that we will use in proving our results. Most of
them are standard and we refer to [8] for details.

2.1 Maximum Principles for Parabolic Operators

2.1.1 Weak Maximum Principle

We assume that L is an operator of the form

Lu = ��ni;j=1aijuxixj +�ni=1biuxi + cu; (1)

where coe�cients aij , bi, and c are continuous. We will always assume
the uniform parabolicity (see [8]) condition and also that aij = aji (i; j =
1; : : : ; n). We assume U to be an open, bounded subset of Rn and, set
UT = (0; T ] � U for some �xed time T > 0. Recall also that the parabolic
boundary of UT is �T = UT � UT .

Theorem 1 (Weak maximum principle for c � 0)
Assume u 2 C21 (UT ) \ C(UT ) and c � 0 in UT .1

i) If

ut + Lu � 0 in UT ;

then
max
UT

u = max
�T

u:

1C21 means that the �rst derivative with respect to the time variable, t, is continuous
and the second derivatives with respect to the space variables are also continuous.
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ii) Likewise, if

ut + Lu � 0 in UT ;

then
min
UT

u = min
�T

u:

Theorem 2 (Weak maximum principle for c � 0)
Assume u 2 C21 (UT ) \ C(UT ) and c � 0 in UT .

i) If

ut + Lu � 0 in UT ;

then
max
UT

u � max
�T

u+:

ii) If

ut + Lu � 0 in UT ;

then
min
UT

u � min
�T

u�:

Remark 1 In particular, if ut + Lu = 0 in UT , then

max
UT

j u j= max
�T

j u j :

The following comparison lemma is immediate from the maximum prin-
ciples already stated.

Lemma 1 We consider u1 and u2, two solutions of the equation

ut + Lu = 0 in UT ;

and satisfying the condition

u1 � u2 in �T ;

then

u1 � u2 in UT :

The corresponding results can be easily adapted for backward equations.
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3 Main Results for European and American Calls

The Black-Scholes partial di�erential equation for a European call is (see
[20])

@CEu
@t

+
1

2
�2S2

@2CEu
@S2

+ rS
@CEu
@S

� rCEu = 0; (2)

where CEu denotes the price of the European call, with payo� CEu(T; S) =
max(S � E; 0), and boundary conditions
CEu(t; 0) = 0 and CEu(t; S)! S if S !1.

Similarly, the corresponding partial di�erential inequality for an Ameri-
can call is

@CA
@t

+
1

2
�2S2

@2CA
@S2

+ rS
@CA
@S

� rCA � 0; (3)

where CA denotes the price of the American call, with payo� CA(t; S) =
max(S � E; 0), boundary conditions CA(t; 0) = 0, and CA(t; S) ! S if
S !1, and CA(t; S) � max(S � E; 0) at the free boundary.

Analogously, we will denote with PEu and PA the corresponding prices
for a European and an American put option.

Remark 2 For the price of a European or an American call option, V (t; S)!
S when S ! 1, which is the standard boundary condition. For simpli-
city and without loss of generality, we will consider the boundary condi-
tion V (t; ~S) = ~S, for an ~S �xed and su�ciently large. We could apply
the maximum principle in unbounded domains, but imposing further tech-
nical assumptions. This is also necessary in order to accurately implement
numerical methods.

A �rst trivial statement, consequence of the maximum principle, is that

CEu(T; S) � 0 and CA(t; S) � 0, which ensures the positivity of prices
(see [7]).

Recall that if we consider the Black-Scholes equation for a European call
on a dividend-paying asset, we have
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@CED
@t

+
1

2
�2S2

@2CED
@S2

+ (r �D0)S
@CED
@S

� rCED = 0; (4)

with payo� CED(T; S) = max(S � E; 0).
For an American call on a dividend-paying asset, equality in equation

(4) becomes an inequality. In this case, we have the following condition
CAD(t; S) � max(S � E; 0) at the free boundary.

Lemma 2 An American call in absence of arbitrage opportunities must sa-
tisfy

CA(t; S) � max(S � E; 0): (5)

Proof

This inequality has always been proved using economic and �nancial
arguments as follows:

The put-call parity is given by
CEu = PEu + S � PV (E), where PV stands for present value. Then

CEu = PEu + S � V P (E) + E � E
= (S � E) + fE � V P (E)g+ PEu
� S � E: (since the terms left out are positive)

Now we want to prove the same lemma using the maximum principle. For
this example we give a detailed proof. Later, we will use similar arguments
and, thus, omit some of the details.

We want to show that CA(t; S) � max(S � E; 0), and we already know
that CA(t; S) � 0. Thus, we only have to verify that CA(t; S) � S � E.

We consider the Black-Scholes inequality for an American call (3).
By standard regularity arguments [9], CA(t; S) 2 C21 (Ut) \ C( �Ut) and

�t = �Ut � Ut.
We make the next change of variable � = T � t. Then (3) is transformed

into
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@CA
@�

� LBS(CA)

=
@CA
@�

� 1
2
�2S2

@2CA
@S2

� rS @CA
@S

+ rCA � 0; (6)

or,

@(�CA)
@�

� LBS(�CA)

=
@(�CA)
@�

� 1
2
�2S2

@2(�CA)
@S2

� rS @(�CA)
@S

+ r(�CA) � 0; (7)

since r � 0, the inequality satis�es the conditions to apply the weak maxi-
mum principle with c = r � 0 (equation (2)). Then from equation (7), we
want to verify, applying the maximum principle, that

(S � E)� CA � 0:

Let u = (S � E)� CA, then we have to show that

u� � LBS(u) � 0:

Substituting the value of u, we get

(S � E)� + (�CA)� � LBS(S � E)� LBS(�CA) � �rS + rS � rE
� �rE � 0;

since r � 0, and E � 0.
If we apply the maximum principle, we have:

max
U�

((S � E)� CA) � max
��
((S � E)� CA)+ = 0;

given that we have in the boundary the following conditions:

i) If S > E

) CA = S�E ) (S�E)�CA = 0 ) max
��
((S�E)�CA)+ = 0:
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ii) If S < E

) CA = 0 ) (S � E)� CA = S � E � 0 ) max
��
(S � E)+ = 0:

iii) If S = 0

) CA = 0 ) (S � E)� CA = �E � 0 ) max
��
(�E)+ = 0:

iv) If S is large

) CA � S ) (S � E)� CA � �E � 0 ) max
��
(�E)+ = 0:

The last analysis reveals that

max
�U�
((S � E)� CA) � 0

) (S � E)� CA � 0 in �U� ; so CA � (S � E):

This completes our proof. 2
This �nancial interpretation leads to an important result: an American

call on a non-dividend-paying asset will never be exercised prior to expira-
tion, hence, it has the same value as a European call.

If we consider now an American call on a dividend-paying asset, we also
recover and extend some important results.

Let us consider the Black-Scholes inequality for an American call on a
dividend-paying asset

@CAD
@t

+
@CAD
@S2

+ (r �D0)S
@CAD
@S

� rCAD � 0: (8)

Similarly to the last proof, we have the change of variable � = T � t, and
taking u = (S � E)� CAD we get

u� � LBSD(u) � �rS + SD0 + rS � rE � SD0 � rE:

In this case, we cannot apply the maximum principle because we do not
know the sign of SD0� rE. For this reason, the inequality CAD � S �E is
not always true, i.e., it tells us that the early exercise could occur.
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The main idea of using the maximum principle is that we can say accu-
rately when the early exercise is possible.

If SD0 < rE implies that u� +LBSD(u) � 0 and if we use the maximum
principle, we have CAD � S�E. The last proof shows that the early exercise
does not occur.

For the sake of consistency, we will verify that the early exercise for an
American put, PA, cannot be ruled out with our methodology. Proceeding
by contradiction, we try to show that PA � (E � S) � 0.

Let u = PA � (E � S), and � = T � t

u� � LBS(u) � �rS � rE + rS � �rE � 0:

If we apply the maximum principle, we obtain the inequality

max
�U�
(PA � (E � S)) � max

��
(PA � (E � S))+:

We verifying the boundary

i)

If S > E ) max
��
(S � E)+ = S � E:

ii)

If S < E ) max
��
(PA � (E � S))+ = 0:

iii)

If S = 0 ) max
��
(S)+ = S:

iv)

If S !1 ) max
��
(S)+ = S:

Since the boundary term does not have a de�nite sign, we do not obtain
the inequality PA � max(E � S; 0). This reveals that an American put
option can, in principle, be exercised any time before expiring.

We would like to prove Lemma 2 in a di�erent way. To do that, we prove
the following theorem.
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Theorem 3 If the underlying asset does not give dividends, the value of a
European call is the same as that of an American call, i.e., the early exercise
for an American call does not occur.

Before providing proof, some facts need to be presented. We need to
refer to [7].

We have already proved this result, by showing that the American call
satis�es the condition CA � max(S�E), but now we want to establish this
theorem using other tools that will also be useful in other contexts. It is
well known that for a European option V , the solution to the Black-Scholes
equation can be expressed using the Feynman-Kac formula [17]:

V (t; S) = E

�
g
�
Xt;S
T

�
exp

�
�
Z T

t
r(�;Xt;S

� d�)

��
; (9)

where V can be a put or a call value, g is the payo� and for � 2 [0; t] the
process Xt;S

� is de�ned by considering Xt;S
� � S and where for � 2 [t; T ]

the process Xt;S
� is de�ned to be the solution of the stochastic di�erential

equation

dXt;S
� = r

�
�;Xt;S

�

�
Xt;S
� dt+ �

�
�;Xt;S

�

�
dB� and Xt;S

� = S: (10)

The expectation in (9) is considered with respect to the risk neutral
measure.

This is the fundamental theorem of asset pricing, which states that the
arbitrage free price can be obtained as an expected value with respect to
the risk neutral measure.

In turn, this can be written as an expected value, not with respect to
the risk neutral measure, but with respect to the physical measure, with an
appropriate discount factor (the so-called Samuelson formula [3]). Moreover,
the density of the physical measure satis�es a Fokker-Planck equation, which
can be written once the dynamics of S is given by a SDE (see [15]).

In fact, an analogous formulation can be given for an American call (for
more details see [7] and [19]). Recall that the equation for a European call
is (2).

According to Samuelson's formula the price of a European call at time t
and exercise time T is

CEu(t; S; T ) = e
�r(T�t)Et;Sp

�
g

�
S(T�t)

Ep(S(T�t))
S0e

r(T�t)
��

; (11)
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where g(�) is the payo�; Ep(St) = e�(T�t)S0, � is the return interest rate and
Ep is the expected value at time t, with respect to the physical measure.

If the price of an American call is written in terms of a European call,
we get the following formula

CA(t; S; T ) = E
t;S
p (CA(�; S; t)=�) =

Z t

0
�(�; S)CEu(�; S; t)d�; (12)

with CEu(t; S; T ) as before a European call with exercise time T and time
before to expire t, and �(t; S) is the probability that early exercise occurs at
time t, when the underlying asset is S2 and where we have used the fact that
a European and an American call non-dividend-paying stock are identical.

We know that �(t; S) satis�es the following Fokker-Planck equation(FP)

@�

@t
=
1

2

@2
�
�2S2�

�
@S2

� @ (�S�)
@S

( see also [7] ); (13)

with boundary conditions: �(t; 0) = 0 8t 2 [0; T ], �(S; t) ! 0 as S ! 1,
and the initial condition �(0; S) = �(S � S0) with S0 the initial underlying
asset.

Proof of Theorem 3

Using this approach we can easily see that CA(t; S) � CEu(t; S).

CA(t; S) =

Z t

0
�(�; S)CEu(�; S)d�

�
Z t

0
�(�; S)CEu(t; S)d� ( by Theorem 4; see below )

= CEu(t; S)

Z t

0
�(�; S)d� (since CEu(t; S) does not depend on �);

� CEu(t; S): ( since � is a probability distribution

function and integrates to one in [0; T ])

The opposite inequality, CA � CEu, is a general fact (see [14]) and follows
easily from the maximum principle (see [7]). The proof is analogous to that
of Lemma 2.

2In geometric terms, �(t; S) is the probability that the process exists in the domain
through the free boundary.
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We can give an alternative proof by applying the maximum principle to
�.

We consider the Fokker-Planck equation (13) and, according to the ma-
ximum principle [Theorem 1], we have

a)

max
Ut

(��) � max
�Ut

(��)+ = 0;

or

�� � 0 ) � � 0:

The result of this inequality is that � � 0, because � is a probability
density function.

b) On the other hand, it also satis�es

min
Ut

(��) � min
�Ut
(��)�:

Therefore

1) if � = 1

min
Ut

(��) � �1 ) �max
Ut

(�) � �1 ) max
Ut

(�) � 1:

2) if � = 0

min
Ut

(��) � 0 ) �max
Ut

(�) � 0 ) max
Ut

(�) � 0:

This means that in UT the function is identically zero, except perhaps
at the top when t = T .

We have proved before that CA(t; S)� (S�E) � 0, i.e., the boundary in
the right hand side is not reached because the early exercise does not occur
(Lemma 2).

Since the only portion of the boundary where � can be di�erent from
zero is at ft = Tg and

R
UT
� = 1, we see that this measure is a Dirac delta

concentrated in ft = Tg.
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In this way, we get the price of an American call:

CA(t; S) =

Z t

0
�(�; S)CEu(�; S; t)d�

=

Z t

0
�(� � t; S)CEu(�; S; t)d�

= CEu(t; S):

We can say that the value of an American call is the same as that of a
European call, since the early exercise does not occur.2

3.1 Others Results about American Call Options

We mention other results about American and European calls. Their proofs
rely not only on the maximum principle, but on the so-called sliding and
moving planes methods [2].

We consider the heat equation

@u

@t
=
@2u

@x2
+ b

@u

@x
+ cu;

in the rectangle [0; T ]� [0; L], with initial and boundary conditions
u(0; x) = u0(x) convex and u(t; 0) = u(t; L) = 0, 0 � t � T , respectively.

Theorem 4 Let u be a classical solution, then u is monotone in t, i.e.,

u(t; x) � u(t0; x) if t � t0 8x 2 [0; L]

Proof

By contradiction. Assume that u(t; x) < u(t0; x) with t � t0 and let

t� = supft j u(t; x) � u(t0; x); x 2 [0; L]g:

If t� > 0 then

u(t; x) � u(t0; x) 8x 2 [0; L] and 0 � t0�:

Notice that this is true since the initial condition is convex as it can be
easily veri�ed [7].
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De�ne

u� = u(t+ �; x) for t 2 [t� � �; t� + �];

and � su�ciently small so that the measure of [t�� �; t�+ �]� [0; L] is small
and the maximum principle holds [5]. � is considered to be also small.

Then u� (t� � �; x) � u(t� � �; x), by the de�nition of t�.
From the maximum principle it follows that the previous inequality is

valid in [t� � �; t� + �]� [0; L].
This in turn implies that u(t; x) � u(t0; x) for t0� + �, and this is a

contradiction.2
As a particular case, we have the next lemma.

Lemma 3 Given two call options on the same stock S, with the same ex-
piring time and with the same exercise price E, but evaluated at di�erent
times before expiring (real times), t2 > t1, they satisfy

C(t2; S; E) � C(t1; S; E): (14)

Notice that by Theorem 3, C can be either American or European.

Proof

Let C(t2; S; E) and C(t1; S; E) be two options with t2 > t1.
We put
S = Eex, ti = T � �i

1
2
�2

and C(t; S;E) = E�(x; �i), for i = 1; 2.

According to this change of variables equation (2) is transformed in the
following heat equation and here the �i's correspond to the time of expiration

@�

@�i
=
@2�

@x2
+ (k1 � 1)

@�

@x
� k1�; k1 =

r
1
2�

2

and the �nal condition is transformed in an initial condition of the following
form

�(0; x) = max(ex � 1; 0);

which is convex and its boundary condition is

�(t; 0) = �(t; L) = 0; 0 � t � T:
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In the previous theorem we consider t = �1, t
0 = �2, u(t; x) = �(�1; x)

and u(t0; x) = �(�2; x).2

Remark 3 Using the maximum principle, it is easy to show that for two
given call options on the same stock S, with the same exercise price E, but
with di�erent expiring times, T2 > T1, they satisfy, C(T2; S) � C(T1; S).

Lemma 4 Given two identical calls options, American or European, with
the exception that one has an exercise price larger than the other, i.e., E2 >
E1, they must satisfy the following inequality

C(t; S;E2) � C(t; S;E1): (15)

Proof

We are going to prove the lemma only for a European call. The case of
an American call is similar.

Let two European call options be CEu(t; S;E1) and CEu(t; S;E2), res-
pectively. They satisfy equation (2) with boundary conditions:

� CEu(t; 0; Ei) = 0, for i = 1; 2

� CEu(t; S;Ei)! S if S !1, for i = 1; 2, and

� CEu(T; S;Ei) = max(S � Ei; 0), for i = 1; 2

We are going to use Lemma 1. We make a change of variables so that
(2) becomes a parabolic equation

@u

@�
=
@2u

@x2i
�1 < xi <1 y � > 0;

with xi = log(S=Ei) for i = 1; 2 and initial condition

u(0; xi) = max(e
1
2
(k1+1)xi � e(k1�1)xi ; 0):

If we apply Lemma 1, we have to prove that for x2 < x1,

u(0; x1) > u(0; x2):

First, we consider two cases
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1) if S � Ei ) S
Ei
� 1 ) ln( SEi ) � 0.

2) if S � Ei ) S
Ei
� 1 ) ln( SEi ) � 0.

Without loss of generality, we only consider the �rst case (S � Ei),
because for the second case, we have max(S � Ei; 0) = 0.

Let E1 < E2, S � 0 and S > Ei for i = 1; 2, then

x1 � x2:

Since k1 =
2r
�2
> 0

e
1
2
(k1+1)x1 � e

1
2
(k1+1)x2 ; (16)

and using direct calculus, we can prove

�e
1
2
(k1�1)x1 � �e

1
2
(k1�1)x2 : (17)

From inequalities (16) and (17), we get

e
1
2
(k1+1)x1 � e

1
2
(k1�1)x1 � e

1
2
(k1+1)x2 � e

1
2
(k1�1)x2 :

We have

max(e
1
2
(k1+1)x1 � e

1
2
(k1�1)x1 ; 0) � max(e

1
2
(k1+1)x2 � e

1
2
(k1�1)x2 ; 0);

therefore u(0; x1) � u(0; x2) for x2 < x1.

Then, we can apply Lemma 1 and have

u(t; x1) � u(t; x1):

Thus, we have proved that

CEu(t; S;E2) � CEu(t; S;E1) if E1 < E2:2

Finally, according to Merton, now we want to establish that a European
option is equivalent to a long position in the common stock levered by a
limited-liability discount loan, where the borrower promises to pay E dollars
at the end of � periods, but in the event of default is only liable to the extent
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of the value of the common stock at that time. If the present value of such
a loan is a decreasing function of the interest rate, then, for a given stock
price, the option price will be an increasing function of the interest rate.

Let P (�) be the price of a riskless (in terms of default) discounted loan
(or bond), which pays one dollar � years from now. If it is assumed that
current and future interest rates are positive, then

1 = P (0) > P (t1) > P (t2) > : : : > P (tn); for 0 < t1 < t2 < : : : < tn:

Theorem 5 If the exercise price of a European call option is E, the under-
lying asset does not pay dividends and we build the common stock over the
option life , then

CEu(t; S) � max(0; S � EP (t)): (18)

Proof

The proof is analogous to that of Lemma 2.

4 Conclusions

As we mentioned in the introduction, and from the techniques used in the
proofs, it is clear that basically all results can be extended to semilinear
models and to fully nonlinear equations (see [6] and [16]).

A relevant direction of future research is to consider models that allow
for small arbitrage opportunities, in which case our approach would enable
us to consider equations of the form (2) with variable interest rates. In
this context, an arbitrage opportunity would be generated if r(t) becomes
negative for a short period.

However, the tools we employed would still be applicable provided these
time "windows" are not very large. Along the same lines, using analytical
techniques provides us with a more quantitative version of Merton's RTOP
(see equation (8)).
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