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Abstract

Suppose that the econometrician is interested in comparing two misspecified moment re-
striction models, where the comparison is performed in terms of some chosen measure of
fit. This paper is concerned with describing an optimal test of the Vuong (1989) and Rivers
and Vuong (2002) type null hypothesis that the two models are equivalent under the given
measure of fit (the ranking may vary for different measures). We adopt the generalized
Neyman-Pearson optimality criterion, which focuses on the decay rates of the type I and II
error probabilities under fixed non-local alternatives, and derive an optimal but practically
infeasible test. Then, as an illustration, by considering the model comparison hypothesis
defined by the weighted Euclidean norm of moment restrictions, we propose a feasible ap-
proximate test statistic to the optimal one and study its asymptotic properties. Local power
properties, one-sided test, and comparison under the generalized empirical likelihood-based
measure of fit are also investigated. A simulation study illustrates that our approximate
test is more powerful than the Rivers-Vuong test.

JEL classification: C12; C14; C52
Keywords: Moment restriction; Model comparison; Misspecification; Generalized Neyman-
Pearson optimality; Generalized method of moments



1 Introduction

Econometric models are often defined in the form of moment restrictions and estimated
by the generalized method of moments (GMM) (Hansen, 1982), empirical likelihood (EL)
(Owen, 1988; Qin and Lawless, 1994), or their variants (see, e.g., Newey and Smith (2004)
and Kitamura (2007)).1 Moment restriction models are semiparametric and allow flexible
distribution forms of data. However, in many applications it is often reasonable to suspect
that those moment restrictions are misspecified. While misspecified models are typically
rejected with probability approaching one by some overidentifying restriction test, they
nevertheless can be of interest as approximations to the true unknown data generating
process.2 In this context, choosing one model having the best measure of fit among several
competing misspecified models is of great importance for practitioners.

Misspecified models and inference procedures for such models have been discussed ex-
tensively in econometrics. White (1982) studied the properties of maximum likelihood
under misspecification. Hendry (1979) and Maasoumi and Phillips (1982) discussed esti-
mation and inference with invalid instruments in a linear regression model. In more general
frameworks allowing nonlinear models, Gallant and White (1988) and Hall and Inoue (2003)
discussed properties of the GMM estimator for misspecified moment restriction models.

In a seminal paper, Vuong (1989) proposed a test of the null hypothesis that two mis-
specified parametric models provide an equivalent approximation to the data generating
distribution in terms of their Kullback-Leibler information criteria (KLIC). This approach
was extended in Rivers and Vuong (2002) (RV, hereafter) to a more general framework
which includes misspecified moment restriction models. In a recent paper, Hall and Pel-
letier (2011) (see also Hall and Pelletier (2007) for a detailed theoretical argument and
simulation study) analyzed in depth the properties of the RV test for moment restriction
models, and showed that the asymptotic null distribution of the RV test statistic depends
on the degree of misspecification. Furthermore, they pointed out that the ranking obtained
by the RV test crucially depends on the choice of weighting matrices used to define the
model comparison hypotheses. Kitamura (2000) and Kitamura (2003) developed informa-
tion theoretic approaches to compare misspecified unconditional and conditional moment
restriction models, respectively, in terms of their KLIC to the data generating distribution.
This information theoretic approach was employed, for example, in Christoffersen, Hahn,
and Inoue (2001) for a comparison of Value-at-Risk measures and Kitamura and Stutzer
(2002) for a comparison of stochastic discount factor models. Corradi and Swanson (2007)
proposed a Kolmogorov-type test to compare misspecified dynamic stochastic general equi-
librium models. Dridi, Guay, and Renault (2007) address the issue of misspecification from
a perspective of indirect inference (Gouriéroux, Monfort, and Renault, 1993). They show
how (some components of) structural parameters can be consistently estimated despite

1See Hall (2005) for a comprehensive review on the GMM.
2For example, Prescott (1991) argued that a model is only an approximation and should not be regarded

as a null hypothesis to be statistically tested.
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misspecification when certain requirements from the encompassing principle are satisfied.
This paper considers optimal testing of model comparison hypotheses for misspecified

unconditional moment restriction models under some chosen measure of fit. Our focus is
not on the choice of a measure of fit used to set up the model comparison hypotheses, but
on the choice of a test given the measure of fit. To set up (a list of) model comparison
hypotheses, the researcher must acknowledge that the rankings crucially depend on the
choice of the hypotheses as emphasized by Hall and Pelletier (2011) and assess the validity
of the chosen hypotheses based on economic or statistical considerations. This paper starts
from the situation where the researcher has already chosen a model comparison hypothesis
of interest. This paper does not make any specific recommendation about how to choose
the measure of fit for the hypothesis.

To evaluate different tests for a given model comparison hypothesis, we employ the
large deviation approach.3 In particular, we adopt the generalized Neyman-Pearson (GNP)
optimality criterion, which compares the decay rate of the type II error probability under
fixed non-local alternatives subject to a constraint on the decay rate of the type I error
probability. Based on Hoeffding (1965), Zeitouni and Gutman (1991) developed the notion
of the GNP optimality and applied it to hypothesis testing problems in parametric models.
Kitamura (2001) and Kitamura, Santos, and Shaikh (2009) studied the GNP optimality for
testing the validity of overidentified moment restrictions. This paper extends these GNP
optimality analyses to model comparison tests. Based on a modified version of the GNP
optimality criterion, we derive an optimal test that is defined by the KLIC between a neigh-
borhood of the empirical measure and a set of measures satisfying the model comparison
null hypothesis.

Since the derived optimal test is generally infeasible, we then discuss its feasible ap-
proximation. As an illustration, we first consider a measure of fit defined by the weighted
Euclidean (WE) norm of moment restrictions, propose an approximate test statistic, and
study its asymptotic properties. The weight matrix used to define the WE norm may be
unknown and may contain unknown parameters. We also demonstrate how to extend our
approach to the generalized EL-based measures of fit.

The asymptotic analysis for the WE norm example reveals that our approximate test
shares several common features with the conventional RV test: (i) for both tests, prelimi-
nary estimation of unknown parameters in the models does not affect the asymptotic null
distributions of the test statistics, and the null distributions are the same as if the pseudo-
true parameter values were known; and (ii) under some local alternatives, both tests have
the same local power functions. On the other hand, advantages of our approach over the RV
test are: (i) our test is motivated by the GNP optimality and shows better power properties
in the simulation study; and (ii) although the asymptotic null distribution of the RV test
statistic depends on whether the models are nested, non-nested, or overlapping in a certain
sense (see Rivers and Vuong (2002) and Hall and Pelletier (2011)), our test statistic has

3See, e.g., Dembo and Zeitouni (1998) for a review on large deviation theory.
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the same null distribution regardless of the nested, non-nested, or overlapping structure of
the competing models.

While we focus on the global power properties of model comparison tests under fixed
non-local alternatives, another conventional way to evaluate power properties of a test is
to evaluate the local power function under Pitman-type local alternatives, where the data
generating distribution drifts to the null hypothesis as the sample size increases. In Section
5.1, we illustrate that our approximate test and the RV test have the same local power
function against local alternatives in a simple setup. Therefore, the local power analysis
may not be informative enough to explain the different finite sample performances of these
tests as presented in Section 6. On the other hand, since different tests typically show
different global power properties (see, e.g., Hoeffding (1965)), the GNP optimality analysis
for global power can be useful to explain superior finite sample power properties of our
approximate test observed in the simulation study.

Lastly, we would like to emphasize that the problem of comparison of misspecified mod-
els should be discerned from non-nested hypothesis testing problems (Davidson and MacK-
innon, 1981; MacKinnon, 1983; Smith, 1992). The non-nested hypothesis testing literature
is concerned with testing whether one of the competing models is correctly specified. On
the other hand, we compare two misspecified models in terms of their measures of fit. Thus,
the two approaches, non-nested testing and model comparison testing, are not competing
but rather complementary. The former can be used in a search for correct specification,
while the latter can be used when the econometrician suspects that all competing mod-
els are misspecified or when those models have been rejected by some specification tests.
Examples of non-nested testing for moment restriction models are Singleton (1985) and
Ghysels and Hall (1990). They consider specification tests of Euler equations when some
information about specific non-nested alternatives is available.4

The rest of the paper is organized as follows. Section 2 describes the testing framework
with some examples and briefly discusses the choice of a measure of fit. Section 3 conducts
the GNP optimality analysis for model comparison testing under a given measure of fit.
Section 4 illustrates implementation of the approximate test when measures of fit are defined
by the WE norms of moment restrictions, and studies the asymptotic properties of the
proposed test statistic. Section 5 contains three extensions: local power analysis for the RV
test and ours, one-sided hypothesis testing, and test for the hypotheses defined using the
generalized EL-based measures of fit. In Section 6, we conduct a simulation study. Section
7 concludes. All proofs are given in the Appendix.

We use the following notation. Let cl (A) and int (A) be the closure and interior of a set
A, respectively. Let Pr {A : µ} and Eµ be the probability of an event A and the expectation
under a probability measure µ, respectively. The data generating measure is denoted by µ0,
and the expectation under µ0 is denoted by Eµ0 or simply by E. Let ‖z‖ =

√
trace (zz′)

4The EL-based non-nested tests for moment restriction models are considered by Smith (1997), Ramalho
and Smith (2002), and Otsu and Whang (2008).
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be the Euclidean norm for a vector or matrix z and ‖z‖W =
√
z′Wz be the WE norm for

a vector z and a symmetric positive definite matrix W .

2 Model comparison

2.1 Setup

Suppose that we observe an i.i.d. sample {wi}ni=1 of a random vector w ∈ Rq drawn from the
unknown probability measure µ0. Consider the unconditional moment restriction model:

Eµ0g (w, θ0) = 0, (1)

where g : Rq × Θ → Rlg is a known function up to unknown parameters θ0 ∈ Θ ⊂ Rpg
with lg > pg. In this paper, we denote moment restriction models by their corresponding
moment functions. For example, the model in equation (1) is called model g. If model g
is correctly specified (i.e., (1) is satisfied at some θ0 ∈ Θ), then we can apply the standard
GMM theory for estimation and inference of θ0. The condition lg > pg implies that model
g is overidentified.

The focus of this paper is to compare two misspecified moment restriction models. To
formalize our idea, we introduce some notation. Let M be the space of all probability
measures on Rq and define

Pgθ = {µ ∈M : Eµg (w, θ) = 0} , Pg = ∪θ∈ΘPgθ ,

i.e., Pgθ is a set of measures satisfying the moment restrictions of model g at a given θ ∈ Θ,
and Pg is a set of measures satisfying the moment restrictions at some θ ∈ Θ. Then
misspecification of model g is defined as follows.5

Definition 1 (Misspecification). Model g is said to be misspecified if µ0 6∈ Pg.

An alternative moment restriction model is similarly defined as Eµ0h (w, β0) = 0, where
h : Rq×B → Rlh is a known function up to unknown parameters β0 ∈ B ⊂ Rph with lh > ph.
For model h, we also define the sets Phβ = {µ ∈M : Eµh (w, β) = 0} and Ph = ∪β∈BPhβ .

We consider the situation where models g and h are both misspecified and we wish
to compare these models in terms of their goodness of fit. Let D (g, µ0) and D (h, µ0) be
measures of fit of models g and h to the data generating measure µ0, respectively. For
example, Vuong (1989) and Kitamura (2000) adopted the KLIC:

DKL (g, µ0) = inf
µ∈Pg

I (µ0‖µ) ,

5The overidentification condition lg > pg is needed for a model to be misspecified in the sense of
Definition 1 as discussed in Hall and Inoue (2003, Proposition 1).
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where

I (µ0‖µ) =

{ ´
log
(
dµ0
dµ

)
dµ0 if µ0 is absolutely continuous with respect to µ,

∞ otherwise.

Another example, studied in depth by Hall and Pelletier (2011), is the WE norm of (the
violation of) the moment restrictions:

DWE (g, µ0) = min
θ∈Θ
‖Eµ0g (w, θ)‖2Wg

, (2)

where the weight matrix Wg may be unknown and needs to be estimated. The measures
of fit DKL (h, µ0) and DWE (h, µ0) for model h are similarly defined. Once the researcher
has chosen a measure of fit of interest, model comparison testing problems can be defined
as follows.

Definition 2 (Model comparison testing problem).

(i) The two-sided model comparison testing problem between models g and h under the
measure of fit D is the one to test

H0 : D (g, µ0) = D (h, µ0) against H1 : D (g, µ0) 6= D (h, µ0) . (3)

(ii) The one-sided model comparison testing problem between models g and h under the
measure of fit D is the one to test

H0 or Hg
0 : D (g, µ0) ≤ D (h, µ0) against Hh

1 : D (g, µ0) > D (h, µ0) ,

where the roles of models g and h can be interchanged.

We first present our main results for the two-sided test and then discuss the one-sided
test in Section 5.2. We close this subsection by providing two economic examples of model
comparison testing. The first example is concerned with misspecified linear instrumental
variable regression models (e.g., Hendry, 1979; Maasoumi and Phillips, 1982), and the sec-
ond example is borrowed from the asset pricing literature (e.g., Hansen and Jagannathan,
1997).

Example 1 (Instumental variable regression models). Let w =
(
y, x′, zg′, zh′

)′, where y
is a dependent variable, x is a vector of endogenous regressors, and zg and zh are dif-
ferent vectors of instruments for models g and h, respectively (in general, the regressors
may vary with the models as well). Moment functions for models g and h are defined as
g (w, θ) = zg (y − x′θ) and h (w, β) = zh (y − x′β), respectively. Both models are assumed
to be overidentified, i.e., dim (zg) > dim (x) and dim

(
zh
)
> dim (x). If the researcher is in-

terested in the WE measure of fit DWE in (2), the null hypothesis for the model comparison
is

H0 : min
θ∈Θ

∥∥Eµ0zg (y − x′θ)∥∥2

Wg
= min

β∈B

∥∥∥Eµ0zh (y − x′β)∥∥∥2

Wh

.

In Section 6, we use this example for our simulation study.
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Example 2 (Linear factor asset pricing models). Let fg and fh be two different vectors
of factors (including a constant) used to define stochastic discount factors fg′θ and fh′β
based on linear factor asset pricing models g and h, respectively. Let R be an l-vector of
asset returns and w =

(
fg′, fh′, R′

)′. Asset pricing models can be evaluated by comparing
the WE norms of pricing errors Eµ0R (fg′θ) − 1l and Eµ0R

(
fh′β

)
− 1l, where 1l is the

l-vector of ones (see, e.g., Hansen and Jagannathan (1997), Kan and Robotti (2009), and
Kan, Robotti, and Shanken (2009)). In this case, the moment functions for models g and
h are defined as g (w, θ) = R (fg′θ)− 1l and h (w, β) = R

(
fh′β

)
− 1l, respectively, and the

null hypothesis for the model comparison can be written as

H0 : min
θ∈Θ

∥∥Eµ0R (fg′θ)− 1l
∥∥2

W
= min

β∈B

∥∥∥Eµ0R(fh′β)− 1l

∥∥∥2

W
.

Alternatively, Kitamura and Stutzer (2002) suggested to compare the asset pricing models
by the KLIC, where the null hypothesis for the model comparison can be written as

H0 : min
θ∈Θ

max
γg∈Rlg

−Eµ0eγ
′
g{R(fg′θ)−1l} = min

β∈B
max
γh∈Rlh

−Eµ0eγ
′
h{R(fh′β)−1l}.

2.2 Remarks on the choice of measure of fit

A characteristic feature of the model comparison testing is that the researcher needs to
specify a measure of fit D to set up the testing problem, and thus the conclusion drawn
from the test crucially depends on the choice of D, as was minutely studied by Hall and
Pelletier (2011). This subsection clarifies the focus and contribution of the paper and then
discusses several issues concerning the choice of D.

First of all, we would like to emphasize that the main question of this paper is not how
to choose D, but how to test a given hypothesis after the researcher has chosen some D
to set up a model comparison testing problem. Therefore, this paper does not develop any
specific recommendation on the choice of D. The GNP optimality analysis developed in
Section 3 applies to any choice of D as far as the assumptions therein are satisfied. For the
illustration purposes, Section 4 considers the case of DWE , and Section 5.3 describes how
to extend our approach to the generalized EL-based measures of fit.

However, we would like to point out that to avoid misleading interpretations of the
outcome of a model comparison test, it is necessary to report the employed D together
with results of the test. In some cases, it can be desirable to consider several different
candidates for D to ensure robustness of the conclusion.

To find reasonable candidates for D, in each application the researcher needs to explore
the implications of those measures of fit from the economic theory perspective or using some
other frameworks such as information theory. For instance, in the asset pricing framework
considered in Example 2, it is a common practice to use the Hansen-Jagannathan measure
of fit, which is based on the minimized WE norm minθ∈Θ ‖Eµ0R (fg′θ)− 1l‖2W with the
weight matrix W = (Eµ0RR

′)−1. As discussed in Hansen and Jagannathan (1997), this

6



choice corresponds to the case where the difference between the true and proxy stochastic
discount factors is evaluated using a quadratic loss function. Thus, the Hansen-Jagannathan
measure of fit may not be appropriate if the econometrician’s preferences are represented
by some other loss function. For example, Kan, Robotti, and Shanken (2009) considered
several choices of W including the unit matrix.6 Also, an alternative KLIC-based measure
of fit for stochastic discount factors was proposed in Kitamura and Stutzer (2002).

If economic theory is not informative enough to specify an appropriate choice of D,
the researcher may adopt one of the popular measures of fit considered in the information
theory and statistics literature. The KLIC is one such example. One can also consider the
class of generalized EL functions (Newey and Smith, 2004):

Dρ (g, µ0) = min
θ∈Θ

max
γ∈Rlg

Eµ0ρ
(
γ′g (w, θ)

)
, (4)

where ρ (·) is a criterion function, such as ρ (v) = log (1− v) (EL), ρ (v) = − (1 + v)2 /2
(Euclidean likelihood or continuous updating GMM), and ρ (v) = −ev (exponential tilting).
Note that the KLIC-based measure of fit of Kitamura and Stutzer (2002) is included here as
a special case. Although these measures of fit do not involve weight matrices as in the case
of DWE , the researcher still needs to choose the criterion function ρ. Therefore, the caveat
pointed out in Hall and Pelletier (2011) still applies: conclusions of the model comparison
test, in general, depend on the choice of ρ.

Hereafter, we assume that the researcher has already deliberately chosen a measure
of fit D and wishes to find a test having desirable statistical properties. Section 3 below
derives a GNP δ-optimal test. Sections 4.1 and 4.2 propose a feasible approximation to
the GNP δ-optimal test and study its asymptotic properties when the WE measure of fit
with a known weight matrix W is used. Section 4.3 considers the case where W has to
be estimated as in the example of the Hansen-Jagannathan measure of fit. Section 5.3
discusses the case where the measure of fit is defined by a generalized EL function.

3 GNP optimal test

We now address the issue of optimal model comparison testing under a chosen measure of
fit. Among several optimality criteria of statistical tests (see, for example, Serfling (1980,
Chapter 12)), we adopt the GNP optimality criterion developed by Zeitouni and Gutman
(1991) and Kitamura (2001), among others. The GNP optimality criterion focuses on global
properties of a test, in particular asymptotic behaviors of error probabilities under fixed
non-local data generating distributions (in contrast to Pitman-type drifting distributions).

6We would like to emphasize here that in the context of model comparison, the choice of a weight matrix
in the WE norm represents the choice of a loss function used to evaluate violations of moment restrictions
and should be discerned from optimal weighting used to achieve asymptotic efficiency in the usual inference
framework.
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Under fixed data generating distributions, the type I and II error probabilities of a test
with an adequate critical value typically decrease to zero at exponential rates. The GNP
optimality criterion compares the decay rate of the type II error probability under some
restriction on the decay rate of the type I error probability.

To formalize the notion of the GNP optimality, we need some notation. Let µn be the
empirical measure based on the sample {wi}ni=1 and

P0 = {µ ∈M : D (g, µ) = D (h, µ)}

be the set of measures satisfying the null hypothesis H0 in (3). Consider a test Ω = (Ω0,Ω1)
based on µn defined by the partition (Ω0,Ω1) forM, i.e., accept H0 if µn ∈ Ω0 and reject
H0 if µn ∈ Ω1 =M\ Ω0.7 Then the type I and II error probabilities are defined as

Pr {µn ∈ Ω1 : µ0} for µ0 ∈ P0,

Pr {µn ∈ Ω0 : µ0} for µ0 /∈ P0,

respectively. By adapting the original idea of the Neyman-Pearson optimality to the decay
rate analogs, the GNP optimality criterion is described as

minimize limn→∞
1
n log Pr {µn ∈ Ω0 : P1} for each P1 ∈M \ P0, (5)

subject to supP0∈P0
limn→∞

1
n log Pr {µn ∈ Ω1 : P0} ≤ −α.

To analyze these decay rates of the error probabilities, we can apply the large deviation
theory for the empirical measure. In particular, Sanov’s theorem is useful for our purpose.
Let DL (µ, ν) be the Lévy metric between µ ∈M and ν ∈M, that is

DL (µ, ν) = inf {ε > 0 : Fµ (w − ε1q)− ε ≤ Fν (w) ≤ Fµ (w − ε1q) + ε for all w ∈ Rq} ,

where Fµ and Fν are the distribution functions of µ and ν, respectively.

Theorem 1 (Sanov). Suppose that {wi}ni=1 is an i.i.d. sample from µ0 ∈ M. Then its
empirical measure µn satisfies

lim sup
n→∞

1

n
log Pr {µn ∈ G : µ0} ≤ − inf

ν∈G
I (ν‖µ0) ,

for any closed set G ⊂M with respect to the Lévy metric, and

lim inf
n→∞

1

n
log Pr {µn ∈ H : µ0} ≥ − inf

ν∈H
I (ν‖µ0) ,

for any open set H ⊂M with respect to the Lévy metric.
7We focus on the class of tests defined by a partition for the empirical measure. For example, the

conventional RV test statistic, which may be written as DWE (g, µn)−DWE (h, µn), belongs to this class.
An analogous argument to Zeitouni and Gutman (1991, Lemma 1) may yield a sufficiency result to restrict
on this class of tests.
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The proof of Sanov’s theorem can be found in Deuschel and Stroock (1989), for example.
Sanov’s theorem says that the error probabilities written in terms of the empirical measure
are determined by the KLIC between the data generating measure µ0 and the sets of interest
G and H. This result is particularly useful for establishing the bounds on the decay rates
of the type I and II errors probabilities. On the other hand, Sanov’s theorem has some
rough nature: we can only obtain the upper (or lower) bound for closed (or open) sets with
respect to the Lévy metric. In general, however, the rejection regions defined in terms of
the KLIC is not necessarily closed, and this fact makes derivation of the GNP optimality
in the sense of (5) very difficult (see Zeitouni and Gutman (1991) and Kitamura (2001) for
more discussions). Therefore, we consider a modified version of the GNP optimality, called
the GNP δ-optimality.

To define the GNP δ-optimality, we need more notation. Let B (µ, δ) = {ν ∈ M :
DL (µ, ν) < δ} be an open ball around µ ∈ M with radius δ > 0. For a test Ω = (Ω0,Ω1),
define the partition Ωδ =

(
Ωδ

0,Ω
δ
1

)
with Ωδ

1 = ∪µ∈Ω1B (µ, δ) and Ωδ
0 = M \ Ωδ

1. The set
Ωδ

1 is often called the δ-blowup (or δ-smoothing) of the critical region Ω1 by the Lévy ball.
The GNP δ-optimality is defined as follows.

Definition 3 (GNP δ-optimality). A test defined by a partition Λ = (Λ0,Λ1), which may
depend on δ, is called GNP δ-optimal if for each δ > 0,

(a) supP0∈P0
lim supn→∞

1
n log Pr

{
µn ∈ Λδ1 : P0

}
≤ −α for some α > 0,

(b) for any test Ω = (Ω0,Ω1) satisfying

sup
P0∈P0

lim sup
n→∞

1

n
log Pr

{
µn ∈ Ωδ̄

1 : P0

}
≤ −α for some δ̄ > δ,

it holds that for all P1 ∈M \ P0,

lim sup
n→∞

1

n
log Pr

{
µn ∈M \ Λδ1 : P1

}
≤ lim inf

n→∞

1

n
log Pr

{
µn ∈M \ Ωδ

1 : P1

}
.

From Theorem 1, we can expect that a test based on the KLIC between the set of
measures P0 satisfying H0 and the empirical measure µn would enjoy the GNP optimal
property. Based on Zeitouni and Gutman (1991), we consider the (δ-dependent) KLIC-
based test Λδ = (Λ0,δ,Λ1,δ):

accept H0 if µn ∈ Λ0,δ =

{
ν ∈M : inf

µ∈P0

inf
ν′∈cl(B(ν,cδ))

I
(
ν ′‖µ

)
≤ α

}
,

reject H0 if µn ∈ Λ1,δ =M\ Λ0,δ,

for some c > 1. In other words, we test H0 by the test statistic

Tn,δ = inf
µ∈P0

inf
ν∈cl(B(µn,cδ))

I (ν‖µ) , (6)
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with the critical value α. The following theorem establishes the GNP δ-optimality of this
KLIC-based test Λδ.

Theorem 2 (GNP δ-optimal test). Suppose that {wi}ni=1 is i.i.d. and the set
{ν ∈M : infµ∈P0 I (ν‖µ) ≤ α} is compact with respect to the Lévy metric. Then the KLIC-
based test Λδ is GNP δ-optimal to test the model comparison hypothesis H0 against H1.

Remarks. (a) The i.i.d. assumption on the sample {wi}ni=1 is a major limitation. Al-
though this assumption is often reasonable for the models based on cross-section data such
as instrumental variable regression models in Example 1, many applications such as as-
set pricing models discussed in Example 2 involves time series data. This assumption is
required to apply Sanov’s theorem to control large deviation behaviors of the empirical mea-
sure. Under weakly dependent data, large deviation properties of the empirical measure
can be analyzed by Gärtner-Ellis’ theorem (Dembo and Zeitouni, 1998, Theorem 2.3.6),
where the exponential convergence rate is characterized by the long-run limit of the mo-
ment generating function instead of the KLIC. Nevertheless, it is not clear how to apply our
technical argument to dependent data. For example, it is not clear what kind of topology
should be employed for stochastic processes. Even for simpler setups such as parametric
models, we are not aware of any GNP optimality analysis. We note that even though we
lose a rationale from the GNP optimality, the approximate test statistics in the next Section
can be generalized to dependent data.

(b) To prove the GNP optimality of a test in the sense of (5) by Sanov’s theorem, one
needs closedness of the rejection region {ν ∈M : infµ∈P0 I (ν‖µ) ≥ α} which is generally
not true (see, Zeitouni and Gutman, 1991, p. 287). For the GNP δ-optimality, we impose a
weaker condition that the set {ν ∈M : infµ∈P0 I (ν‖µ) ≤ α} is compact. This compactness
condition is easier to verify and holds if infµ∈P0 I (ν‖µ) is lower semicontinuous in ν under
the Lévy metric, for example.

(c) The compactness condition on the set {ν ∈M : infµ∈P0 I (ν‖µ) ≤ α} restricts the
form of the null hypothesis P0 (not only the forms of the moment functions g and h,
but also the form of D). For example, suppose that D (g, µ0) and D (h, µ0) are contin-
uous in µ0 under the Lévy metric, which is satisfied if g and h are bounded and the
WE measure of fit DWE in (2) with a known weight matrix is adopted. In this case, an
application of the maximum theorem (Leininger, 1984) combined with the lower semicon-
tinuity of the KLIC (Chaganty and Karandikar, 1996) implies the lower semicontinuity
of infµ∈P0 I (ν‖µ) in ν under the Lévy metric, which in turn implies the compactness of
{ν ∈M : infµ∈P0 I (ν‖µ) ≤ α} under the Lévy metric. Note that the KLIC-based measure
of fit DKLIC (g, µ0) or DKLIC (h, µ0) does not necessarily satisfy the continuity of µ0 even
if g and h are bounded.

(d) Although the GNP δ-optimality is a weaker notion of optimality than the original
Neyman-Pearson or the GNP optimality in the sense of (5), this theorem is insightful: the
test statistic Tn,δ should be constructed by taking the minimum KLIC between the space
P0 and the closed Lévy ball cl (B (µn, 2δ)) around the empirical measure µn.

10



(e) Note that the second inequality in Definition 3 (b) is a weak one. Thus, similar
to other optimality or admissibility statements, the GNP δ-optimality is silent about the
uniqueness of the optimal test. Along with our KLIC-based test Λδ, there may exist other
GNP δ-optimal tests.

(f) An obvious limitation of this theorem is the fact that both the optimal test Λδ and
alternative test Ωδ depend on the blowup constant δ. For the optimal test Λδ, we can apply
a similar argument to Zeitouni and Gutman (1991, Corollary 3) and construct a positive
and monotone decreasing sequence {δn}n∈N with δn → 0 such that the n-dependent test{

Λδn
}
n∈N satisfies the GNP δ-optimality. On the other hand, for the alternative test Ωδ,

suppose that the test Ωδ is “regular” in the sense of Zeitouni and Gutman (1991), i.e.,

lim
δ→0

lim sup
n→∞

1

n
log Pr

{
µn ∈ Ωδ

1 : P0

}
= lim sup

n→∞

1

n
log Pr {µn ∈ Ω1 : P0} ,

for each P0 ∈ P0, which is satisfied when infµ∈int(Ω1) I (µ‖P0) = infµ∈cl(Ω1) I (µ‖P0) (see,
Zeitouni and Gutman, 1991, Lemma 4). Then we can replace the blowup critical regions
Ωδ̄

1 and Ωδ
1 in Definition 3 with the original one Ω1.

(g) We note that the same argument applies to the case of one-sided testing, i.e., H0

or H0g : µ0 ∈ P0,g = {µ ∈ M : D (g, µ) ≤ D (h, µ)} against Hh : µ0 ∈ {µ ∈ M : D (g, µ) >
D (h, µ)} (the roles of models g and h can be interchanged). In this case, as far as the set{
ν ∈M : infµ∈P0g I (ν‖µ) ≤ α

}
is compact with respect to the Lévy metric, the same tech-

nical argument goes through and the test statistic T gn,δ = infµ∈P0g infν∈cl(B(µn,cδ)) I (ν‖µ)
yields the GNP δ-optimal test for H0g against Hh. Moreover, since P0 ⊂ P0,g, this opti-
mality result in turn implies that T gn,δ yields the GNP δ-optimal test for H0 against Hh as
well. Section 5.2 proposes a feasible approximation to T gn,δ.

4 Approximation of the optimal test

As discussed in the previous section, a test based on the statistic Tn,δ enjoys the GNP δ-
optimality property. However, in practice it is difficult to compute Tn,δ due to the δ-blowup
in its definition. In this section, we propose a feasible approximation to Tn,δ and study its
statistical properties.

To simplify the notation, hereafter let E be the expectation under the data generat-
ing measure µ0, gi (θ) = g (wi, θ), hi (β) = h (wi, β), ḡ (θ) = 1

n

∑n
i=1 gi (θ), and h̄ (β) =

1
n

∑n
i=1 hi (β).

4.1 Construction of the approximate test statistic

As an illustration of our approach, we first consider the case where the (two-sided) model
comparison hypothesis is written by the WE measure of fit, i.e.,

P0 = {µ ∈M : min
θ∈Θ
‖Egi (θ)‖2Wg

= min
β∈B
‖Ehi (β)‖2Wh

}

11



for some known matrices Wg and Wh. The first step for approximation of the optimal test
statistic Tn,δ in (6) is to remove the δ-blowup and focus on the statistic

Tn = inf
µ∈P0

I (µn‖µ) , (7)

i.e., take the infimum of the KLIC from the empirical measure µn to the set P0.8 Similarly
to the construction of EL statistics, we consider the following discretized analog of (7):

min
{pi}ni=1

− 1

n

n∑
i=1

log (npi) , (8)

s.t. pi > 0,
n∑
i=1

pi = 1, min
θ∈Θ

∥∥∥∥∥
n∑
i=1

pigi (θ)

∥∥∥∥∥
2

Wg

= min
β∈B

∥∥∥∥∥
n∑
i=1

pihi (β)

∥∥∥∥∥
2

Wh

.

Although this minimization problem looks similar to that of EL, we cannot directly apply
the standard implementation and asymptotic theory of EL because of the following two
reasons: (i) the last constraint in the above minimization problem is nonlinear in the
weights pi’s; and (ii) in the last constraint, we need to evaluate infimum with respect to θ
and β for each possible choice of pi’s.

The next step is to find a more practical and technically tractable approximation to
the minimization problem in (8). Let us set θ and β in the last constraint of (8) to their
population pseudo-true values:

θ∗ = arg min
θ∈Θ
‖Egi (θ)‖2Wg

, β∗ = arg min
β∈B
‖Ehi (β)‖2Wh

. (9)

Then the minimization problem in (8) reduces to that of the conventional EL for a smooth
function of means (Hall and La Scala, 1990):

T ∗An = min{
ηg∈Rlg ,ηh∈Rlh :‖ηg‖2Wg=‖ηh‖2Wh

} `∗ (ηg, ηh) , (10)

where

`∗ (ηg, ηh) = min
{pi}ni=1

− 1

n

n∑
i=1

log (npi) , (11)

s.t. pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pigi (θ∗) = ηg,
n∑
i=1

pihi (β∗) = ηh.

8When µ0 has finite support, this approximate statistic Tn is GNP optimal and no smoothing is required
(see, Zeitouni and Gutman, 1991, Section II). The GNP optimality of the likelihood ratio test in multinomial
models is established by Hoeffding (1965).
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Note that the above formulation of EL involves two optimization problems with (11) nested
into (10). Note also that ηg and ηh are the running arguments for the minimization in (10).
The null of model equivalence is imposed through the constraint ‖ηg‖2Wg

= ‖ηh‖2Wh
in

(10). The constraints in (11) are now linear in pi’s, and `∗ (ηg, ηh) has a convenient dual
representation which involves optimization only with respect to lg + lh variables:

`∗ (ηg, ηh) = − max
λg∈Rlg ,λh∈Rlh

1

n

n∑
i=1

log
(
1 + λ′g (gi (θ∗)− ηg) + λ′h (hi (β∗)− ηh)

)
.

The last step is to derive a feasible test statistic. By replacing θ∗ and β∗ in `∗ (ηg, ηh)
with their empirical analogs

θ̂ = arg min
θ∈Θ
‖ḡ (θ)‖2Wg

, β̂ = arg min
β∈B

∥∥h̄ (β)
∥∥2

Wh
,

our approximate test statistic is now defined as

TAn = min{
ηg∈Rlg ,ηh∈Rlh :‖ηg‖2Wg=‖ηh‖2Wh

}−2n` (ηg, ηh) , (12)

where

` (ηg, ηh) = − max
λg∈Rlg ,λh∈Rlh

1

n

n∑
i=1

log
(

1 + λ′g

(
gi

(
θ̂
)
− ηg

)
+ λ′h

(
hi

(
β̂
)
− ηh

))
. (13)

The optimization problems in (12) and (13) must be solved numerically. For example,
this can be implemented in MATLAB using a nested structure: employ unconstrained
minimization procedure fminunc for (13) and employ constrained minimization procedure
fmincon for (12).9 The following natural starting values can be used for minimization: ḡ

(
θ̂
)

for ηg and h̄
(
β̂
)
for ηh to implement (12), and zero vectors for λg and λh to implement

(13). (Note that under H0, the solutions for λg and λh in (13) converge in probability to
zero.)

4.2 Asymptotic properties

In this section, we derive the asymptotic properties of the approximate test statistic TAn
introduced in (12). Observe that the conventional theory for EL (e.g., Hall and La Scala,
1990) implies

−2n min{
ηg∈Rlg ,ηh∈Rlh :‖ηg‖2Wg=‖ηh‖2Wh

} `∗ (ηg, ηh)
d→ χ2

1 if ‖Egi (θ∗)‖2Wg
= ‖Ehi (β∗)‖2Wh

.

9In MATLAB, fmincon allows nonlinear constraints.
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Here we show that the asymptotic distribution of the approximate test statistic TAn , defined
by ` (ηg, ηh) instead of `∗ (ηg, ηh), is unaffected by preliminary estimation of θ∗ and β∗

under the model comparison null hypothesis H0. To this end, we impose the following
assumptions.

Assumption 1.

(a) {wi}ni=1 is i.i.d.

(b) Model g is misspecified and ‖Egi (θ)‖2Wg
has a unique minimum at θ∗ ∈ int (Θ); model

h is misspecified and ‖Ehi (β)‖2Wh
has a unique minimum at β∗ ∈ int (B). Θ and B

are compact.

(c) gi (θ) is twice continuously differentiable on Θ almost surely; hi (β) is twice continuously
differentiable on B almost surely.

(d)
(
E ∂gi(θ)

∂θ′

)′
Wg

(
E ∂gi(θ)

∂θ′

)
+
(
Ipg ⊗ (WgEgi (θ))

)′ (
E ∂
∂θ′ vec

(
∂gi(θ)
∂θ′

))
is nonsingular in a

neighborhood Nθ∗ of θ∗;(
E ∂hi(β)

∂β′

)′
Wh

(
E ∂hi(β)

∂β′

)
+ (Iph ⊗ (WhEhi (β)))′

(
E ∂
∂β′ vec

(
∂hi(β)
∂β′

))
is nonsingular

in a neighborhood Nβ∗ of β∗.

(e) For some ε > 0, supθ∈Nθ∗ ‖gi (θ)‖2+ε, supθ∈Nθ∗

∥∥∥∂gi(θ)∂θ′

∥∥∥2
, and supθ∈Nθ∗

∥∥∥ ∂
∂θ′ vec

(
∂gi(θ)
∂θ′

)∥∥∥
as well as supβ∈Nβ∗ ‖hi (β)‖2+ε, supβ∈Nβ∗

∥∥∥∂hi(β)
∂β′

∥∥∥2
, and supβ∈Nβ∗

∥∥∥ ∂
∂β′ vec

(
∂hi(β)
∂β′

)∥∥∥
are integrable.

(f) E
[
(gi (θ∗)− Egi (θ∗)) (gi (θ∗)− Egi (θ∗))′

]
is positive definite;

E
[
(hi (β)− Ehi (β∗)) (hi (β)− Ehi (β∗))′

]
is positive definite.

Assumption 1 (a) excludes dependent data. Although it loses a rationale based on the
GNP δ-optimality in Theorem 2, the construction of the test statistic TAn itself can be
adapted to weakly dependent data. In particular, we can replace the moment functions
gi (·) and hi (·) used to define TAn with their blocked analogs as in Kitamura (1997). Then
a modified argument of Kitamura (1997) will yield the asymptotic properties of the test
statistic using blocked moments.

Assumption 1 (b) requires uniqueness of the pseudo-true values, which is often assumed
in the literature of misspecification analysis (e.g., Vuong, 1989; Kitamura, 2000; Rivers and
Vuong, 2002; Hall and Pelletier, 2011). However, it should be acknowledged that this as-
sumption commonly fails in practice. Although it is beyond the scope of this paper, we
suggest two directions to relax this assumption. First, Assumption 1 (b) may be generalized
by using the notion of “identifiably unique parameters” in Domowitz and White (1982, Def-
inition 2.1), which are not required to converge to a limit (see also Bates and White (1985)
for a detailed discussion on consistency). Second, a recent paper by Shi (2009) proposed the
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notion of “pseudo-true sets” and developed an RV-type test to compare misspecified mo-
ment inequality models, where measures of fit are minimized on some sets of parameters.
It is interesting to assess how our approach can be adapted to such scenarios.

Assumption 1 (c) is standard for nonlinear models. Assumption 1 (d) requires that
the Hessians of ‖Egi (θ)‖2Wg

and ‖Ehi (β)‖2Wh
are nonsingular in neighborhoods of θ∗ and

β∗, respectively. This assumption appears, for example, in Hall and Inoue (2003).10 As-
sumption 1 (e) assumes that the moment functions g and h are sufficiently smooth in some
neighborhoods of θ∗ and β∗ respectively, and the distribution of the data has sufficiently
thin tails; they are similar to Kitamura (2000, Assumption 2 (f)). Assumption 1 (f) is sim-
ilar to Hall and Inoue (2003, Assumption 4), and together with other conditions it ensures
that

√
n
(
θ̂ − θ∗

)
= Op (1) and

√
n
(
β̂ − β∗

)
= Op (1) (see, e.g., Domowitz and White,

1982).
The asymptotic properties of the approximate test statistic TAn to the GNP δ-optimal

one Tn,δ (in the case of the WE measure of fit) are described in the following theorem.

Theorem 3. Suppose that Assumption 1 holds. Then under H0, TAn
d→ χ2

1. Also, under
H1, Pr

{
TAn > c

}
→ 1 for any c > 0.

Remarks: (a) Let χ2
1,α be the (1− α)-th quantile of the χ2

1 distribution. According to
Theorem 3, an asymptotic size α model comparison test is defined by the following rule:

accept H0 if TAn ≤ χ2
1,α,

reject H0 and select the model g if TAn > χ2
1,α and

∥∥∥ḡ (θ̂)∥∥∥2

Wg

≤
∥∥∥h̄(β̂)∥∥∥2

Wh

,

reject H0 and select the model h if TAn > χ2
1,α and

∥∥∥ḡ (θ̂)∥∥∥2

Wg

>
∥∥∥h̄(β̂)∥∥∥2

Wh

.

Note that except for the test statistic and its critical value, our test procedure is same
as that of RV whose test statistic is based on the contrast ‖ḡ

(
θ̂
)
‖2Wg
− ‖h̄

(
β̂
)
‖2Wh

after
normalization with a normal critical value.

(b) An interesting difference with the RV test is that for Theorem 3, the positive
definiteness of the variance matrix of (gi(θ

∗)′, hi(β
∗)′) is not required (even though the

variance matrices of gi (θ∗) and hi (β∗) are assumed to be positive definite respectively in
Assumption 1 (f)). Thus, even in the so-called nested or overlapping cases where gi (θ∗) and
hi (β∗) share common elements, the null asymptotic distribution of our statistic remains
χ2

1. The reason for this is that, when the rank of the variance of (gi(θ
∗)′, hi(β

∗)′) is less
than lg + lh, one can express some elements of (gi(θ

∗)′, hi(β
∗)′) as a linear combination of

the remaining elements and reformulate the problem so that the new random vector in the
reformulated problem has a positive definite variance matrix. This is one of the important

10In contrast to the correctly specified case, the Hessian involves an extra term when the model is
misspecified.
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advantages of our testing approach over that of RV. In the RV approach, the difference of
estimated criterion functions can have a non-standard non-normal asymptotic distribution
when the models are nested or overlapping.11 Therefore, to implement the RV test, one
typically has to employ pre-tests or two-step testing approach which introduces additional
practical and theoretical complications. Unlike RV, our approach does not require such
pre-tests since the asymptotic null distribution does not depend on whether the models are
non-nested, nested, or overlapping.

(c) Theorem 3 establishes that estimation of θ∗ and β∗ does not affect the asymptotic
null distribution of the test statistic. The reason for this, as can be seen in the proof
of this theorem, is that the stochastic terms in ` (ηg, ηh) created by estimation of θ∗ and
β∗ are asymptotically orthogonal to a linear space defined by the null hypothesis. This
orthogonality is guaranteed by the first-order conditions for θ̂ and β̂. A similar phenomenon
occurs in the case of the RV test statistic.

(d) When g and h are both correctly specified, i.e., Egi(θ∗) = 0 and Ehi(β∗) = 0, one
can show that TAn converges to zero in probability (see footnote 13 in the proof of Theorem
3). Hence, H0 of models equivalence will be accepted with probability approaching one,
which is a correct decision, since in this case the models are equivalent.

4.3 Estimated weight matrices

We now consider the situation where the weight matrices Wg and Wh are unknown and es-
timated by the estimators Ŵg and Ŵh, respectively. In this case, our test statistic (denoted
by T̂An ) is defined by replacing Wg and Wh in (12) with Ŵg and Ŵh. Based on Hall and
Pelletier (2011), we impose the following assumptions.

Assumption 2.

(a) Ŵg and Ŵh satisfy
√
n

vec
(
Ŵg −Wg

)
vec
(
Ŵh −Wh

) = A 1√
n

∑n
i=1 fi + op (1), where {fi}ni=1 is

an i.i.d. mean-zero k-vector and A is an
(
l2g + l2h

)
× k constant matrix.

(b) E

 gi (θ∗)− Egi (θ∗)
hi (β∗)− Ehi (β∗)

fi

 gi (θ∗)− Egi (θ∗)
hi (β∗)− Ehi (β∗)

fi

′ = ( Ω Σ1

Σ′1 Σ2

)
is positive definite.

Assumption 2 (a) says that the estimators Ŵg and Ŵh have asymptotic linear forms.
This assumption is typically satisfied if Ŵg and Ŵh are functions of sample means and/or
contain

√
n-consistent estimators for nuisance parameters. See Domowitz and White (1982)

for primitive conditions needed to derive the
√
n-consistency and asymptotic linear forms for

the nuisance parameter estimators. Assumption 2 (b) is a rank condition. This assumption
11See also Vuong (1989).
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can be relaxed by allowing overlapping elements between gi (θ∗) and hi (β∗). In that case,
Ω would denote the variance of the elements of

(
gi (θ∗)′ , hi (β∗)′

)
without the duplicates.

Let
(
X1

X2

)
∼ N

((
0
0

)
,

(
Ω Σ1

Σ′1 Σ2

))
. The asymptotic properties of T̂An are obtained

as follows.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Under H0,

T̂An
d→ ‖π‖−2

Ω

(
π′X1 + κ′AX2/2

)2
,

where

π =

(
WgEgi (θ∗)
−WhEhi (β∗)

)
, κ =

(
Egi (θ∗)⊗ Egi (θ∗)
−Ehi (β∗)⊗ Ehi (β∗)

)
. (14)

Also under H1, Pr
{
T̂An > c

}
→ 1 for any c > 0.

Remark: The asymptotic null distribution of T̂An is non-standard and depends on the
nuisance parameters. However, the critical values for testing H0 of models equivalence
can be obtained through simulations. Let π̂ and κ̂ be estimators of π and κ constructed
using Ŵg, Ŵh, ḡ

(
θ̂
)
, and h̄

(
β̂
)
. Let Ω̂, Σ̂1, Σ̂2, and Â be consistent estimators of the

corresponding matrices. To obtain critical values, one simulates(
X1r

X2r

)
∼ N

((
0
0

)
,

(
Ω̂ Σ̂1

Σ̂′1 Σ̂2

))

independently across r = 1, . . . , R, and computes ξr =
(
π̂′X1r + 0.5κ̂′ÂX2r

)2
/ ‖π̂‖2

Ω̂
. Then

a simulated critical value for the asymptotic size α test is obtained as the (1− α)-th sample
quantile of {ξr}Rr=1.

5 Extensions

5.1 Local power property

In this section, we study the local power properties of the proposed test based on TAn in
(12) and the conventional RV test in a simple setup. In particular, we show that these tests
are asymptotically equivalent under certain local alternatives, and argue that it is beneficial
to explore approaches different from the conventional local power analysis. Since different
tests typically show different global power properties (see, e.g., Hoeffding, 1965), our GNP
optimality analysis for global power can be useful to explain the superior finite sample
power properties of the approximate test observed in the simulation study in Section 6.

For simplicity, we assume that (i) models g and h are of the same dimension (i.e.,
lg = lh); (ii) the weights used to define the WE norms are same (i.e., Wg = Wh = W ); and
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(iii) the models are non-nested (i.e., Ω = V ar
((
gi (θ∗)′ , hi (β∗)′

))
is positive definite). We

consider local alternatives (say, µ0n) satisfying

Engi (θ∗) = Enhi (β∗) +
c√
n
,

for some c 6= 0, where En is the expectation under µ0n. In this case, the deviation from the
null hypothesis H0 is characterized by

‖Engi (θ∗)‖2W − ‖Enhi (β∗)‖2W =
c′WEnhi (β∗)√

n
+
‖c‖2W
n

. (15)

Thus, as n increases, the measure µ0n approaches the set P0 (the set of measures consistent
with the null hypothesis).

The RV test statistic is defined as

dn =
√
n

(∥∥∥ḡ (θ̂)∥∥∥2

W
−
∥∥∥h̄(β̂)∥∥∥2

W

)
/ (2σ̂) , (16)

where σ̂ is a consistent estimator of σ2 = π′Ωπ and π is defined in (14). Under analogous
conditions to Assumption 1, the numerator of dn satisfies

√
n

(∥∥∥ḡ (θ̂)∥∥∥2

W
−
∥∥∥h̄(β̂)∥∥∥2

W

)
= c′WEnhi (β∗) + 2π′

√
n

 ḡ
(
θ̂
)
− Engi (θ∗)

h̄
(
β̂
)
− Enhi (β∗)

+ op (1)

d→ N
(
c′W lim

n→∞
Enhi (β∗) , 4σ2

)
.

Therefore, under the local alternatives satisfying (15), we see that

d2
n

d→ χ2
1

((
c′W lim

n→∞
Enhi (β∗)

)2
/
(
4σ2
))

,

where χ2
1

(
λ2
)
is the noncentral χ2 distribution with one degree of freedom and the non-

centrality parameter λ2.
We now study the local power property of our approximate test statistic TAn . By adapt-

ing the proof of Theorem 3, the constraint ‖ηg‖Wg
− ‖ηh‖Wh

= 0 in the definition of TAn in
(12) can be linearized as

2π′
(

Engi (θ∗)− ηg
Enhi (β∗)− ηh

)
− c′WEnhi (β∗)√

n
= o

(
n−1/2

)
.

Then, as in the proof of Theorem 3,

TAn = miny ‖Zn + δn − y‖2 + op (1) s.t.
1

2
c′WEnhi (β∗) + ν ′y = 0
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d→
(
ν ′Z

‖ν‖
+
c′W limn→∞Enhi (β∗)

2 ‖ν‖

)2

,

where Zn, δn, and ν are defined in (25) in Appendix A.2, and Z ∼ N
(
0, Ilg+lh

)
. Therefore,

under the local alternatives satisfying (15), we see that

TAn
d→ χ2

1

((
c′W lim

n→∞
Enhi (β∗)

)2
/
(

4 ‖ν‖2
))

.

Since ν = Ω1/2π, it follows that the statistics d2
n and TAn are asymptotically equivalent

under the local alternatives satisfying (15).

5.2 One-sided test

In this subsection, we describe how our approach can be extended to one-sided testing
problems. In the case of one-sided testing, the researcher is interested in testing the null
hypothesis that the fit of model g is at least as good as that of model h:

H0,g : ‖Egi (θ∗)‖2Wg
≤ ‖Ehi (β∗)‖2Wh

,

against the alternative hypothesis

Hh : ‖Egi (θ∗)‖2Wg
> ‖Ehi (β∗)‖2Wh

.

Such testing problem can arise if, for example, the researcher is interested in showing that
a newly proposed model h has a better fit than some benchmark model g. By applying the
same argument as in Section 4.1 to the null hypothesis H0,g, an approximate test statistic
can be defined as

TA,gn = min{
ηg∈Rlg ,ηh∈Rlh :‖ηg‖2Wg≤‖ηh‖

2
Wh

}−2n` (ηg, ηh) ,

where the function ` (ηg, ηh) is defined in (13).
The asymptotic behavior of TA,gn can be described using the results of Gourieroux, Holly,

and Monfort (1982). Let 1
2χ

2
0 + 1

2χ
2
1 denote the distribution of a mixed χ2 random variable,

where χ2
0 denotes the point mass distribution at zero. We have the following result.

Theorem 5. Suppose that Assumption 1 holds, and let V ∼ 1
2χ

2
0 + 1

2χ
2
1. Then, un-

der H0,g, limn→∞ Pr
{
TA,gn > c

}
≤ Pr {V > c} for any c > 0. Furthermore, under Hh,

limn→∞ Pr
{
TA,gn > c

}
= 1 for any c > 0.

Let cα be the (1− α)-th quantile of 1
2χ

2
0 + 1

2χ
2
1. By this theorem, the test that rejects

H0,g when TA,gn > cα has the asymptotic size α.
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5.3 Test for generalized EL-based measure of fit

Our testing approach is not limited to the case of the WE norm-based measures of fit.
For example, suppose that we are interested in model comparison using the generalized
EL-based measure of fit in (4), i.e.,

H0 : min
θ∈Θ

max
γg∈Rlg

Eρ
(
γ′ggi (θ)

)
= min

β∈B
max
γh∈Rlh

Eρ
(
γ′hhi (β)

)
. (17)

A discretized analog of (7) can be written as

min
{pi}ni=1

− 1

n

n∑
i=1

log (npi) , (18)

s.t. pi > 0,

n∑
i=1

pi = 1, min
θ∈Θ

max
γg∈Rlg

n∑
i=1

piρ
(
γ′ggi (θ)

)
= min

β∈B
max
γh∈Rlh

n∑
i=1

piρ
(
γ′hhi (β)

)
.

As in the case of the WE measure of fit, this formulation is not practical because the last
restriction is nonlinear in pi’s due to the minimax component. After fixing the parameters
at θ̂ρ = arg minθ∈Θ maxγg

1
n

∑n
i=1 ρ

(
γ′ggi (θ)

)
, β̂ρ = arg minβ∈B maxγh

1
n

∑n
i=1 ρ (γ′hhi (β)),

γ̂g = arg maxγg
1
n

∑n
i=1 ρ

(
γ′ggi

(
θ̂ρ

))
, and γ̂h = arg maxγh

∑n
i=1 piρ

(
γ′hhi

(
β̂ρ

))
, the dual

problem of (18) yields the following approximate test statistic for the null hypothesis in
(17):

TAn,ρ = −2 max
λ∈R

n∑
i=1

log
(

1 + λ
(
ρ
(
γ̂′ggi

(
θ̂ρ

))
− ρ

(
γ̂′hhi

(
β̂ρ

))))
.

Similarly to the WE case, one can show that TAn,ρ
d→ χ2

1 provided that H0 in (18) is true and
Pr
{
ρ
(
γ∗′g gi

(
θ∗ρ
))
6= ρ

(
γ∗′h hi

(
β∗ρ
))

: µ0

}
> 0, where θ∗ρ, β∗ρ , γ∗g , and γ∗h denote the population

analogs of θ̂ρ, β̂ρ, γ̂g, and γ̂h respectively (see Appendix A.5 for a sketch of the proof). One
can also show that the test that rejects H0 in (18) when TAn,ρ > χ2

1,α is consistent. Therefore,
our approach to construct an approximate test statistic is not confined to the WE norm-
based measure of fit.

For example, if we set ρ (v) = −ev, the null hypothesis in (17) is the one considered
in Kitamura (2000). While his statistic is based on the difference of the models’ criterion
functions, our test statistic is constructed using the KLIC between the empirical measure
and the set of measures consistent with H0.

Furthermore it is interesting to discuss the roles of quadratic approximations used to
derive the asymptotic null distribution of TAn,ρ. First, a quadratic approximation is ap-
plied the logarithm in TAn,ρ (see (26) in Appendix A.5). This approximation is commonly
applied to derive the asymptotic properties of the EL-based statistic (see Owen, 1988;
Qin and Lawless, 1994). Second, to derive the

√
n-consistency for θ̂ρ and γ̂g (also for

β̂ρ and γ̂h) to the population analogs, we typically need a quadratic approximation of
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1
n

∑n
i=1 ρ

(
γ̂′ggi

(
θ̂ρ

))
around

(
γ̂g, θ̂ρ

)
=
(
γ∗g , θ

∗
ρ

)
(see Domowitz and White, 1982; Ki-

tamura, 2000). However, due to the first-order conditions for
(
γ∗g , θ

∗
ρ

)
(see (27) in Ap-

pendix A.5), the estimation error
√
n
(
θ̂ρ − θ∗ρ

)
does not contribute to the first-order

asymptotics for TAn,ρ. Indeed, the convergence of TAn,ρ to the χ2
1 distribution is induced

by the central limit theorem to 1√
n

∑n
i=1

{
ρ
(
γ∗′g gi

(
θ∗ρ
))
− ρ

(
γ∗′h hi

(
β∗ρ
))}

under H0 imply-
ing E

[
ρ
(
γ∗′g gi

(
θ∗ρ
))
− ρ

(
γ∗′h hi

(
β∗ρ
))]

= 0. For this term, a quadratic approximation is
unnecessary (note that γ∗g and γ∗h are non-zero under misspecification and θ∗ρ, β

∗
ρ , γ
∗
g , and

γ∗h depend on the criterion function ρ (·)).
Finally, we emphasize that the caveat pointed out by Hall and Pelletier (2011) still

applies in this context, i.e., different choices of the criterion function ρ may yield different
rankings.

6 Monte Carlo simulations

In this section, we evaluate the finite sample performance of our approximate test by sim-
ulations. Specifically, we compare the finite sample power properties of the following three
tests: (i) approximate test based on TAn in (12), (ii) its infeasible version based on T ∗An in
(10), and (iii) the conventional RV test in (16).

The data generating process is similar to that of Hall and Pelletier (2007) and is based
on the instrumental variable regression model:

yi = xi + z2i + (1 + γ) z4i + ui,

xi = z1i + z2i + z3i + z4i + vi,

for i = 1, . . . , n, where z1i, z2i, z3i, z4i, ui, and vi are independent standard normal random
variables. We consider two misspecified moment restriction models g and h defined by
gi (θ) = (yi − θxi) (z1i, z2i)

′ and hi (β) = (yi − βxi) (z3i, z4i)
′. For the model comparison

null hypothesis, we consider

H0 : min
θ
‖Egi (θ)‖2 = min

β
‖Ehi (β)‖2 ,

i.e., the WE measures of fit with the weights Wg = Wh = I2. In this setup, the null H0

is satisfied when γ = 0. For the alternative H1, we consider the cases of γ =0.5, 1.0, 1.5,
2.0, 2.5, and 3.0. Note that for γ > 0, the difference minβ ‖Ehi (β)‖2 − minθ ‖Egi (θ)‖2
is positive and increasing in γ. Thus, γ can be viewed as a parameter controlling the
discrepancy between the null and alternative hypotheses. The sample size is n = 100.

For each Monte Carlo repetition, we compute three test statistics: TAn in (12), its
infeasible version T ∗An in (10), and the RV test statistic in (16). To compute the infeasible
statistic T ∗An , we use the knowledge of θ∗ = 1.5 and β∗ = 1.5 + 0.5γ in this setup. To
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compute the RV statistic, we use σ̂2 =

∥∥∥∥(ḡ (θ̂)′ ,−h̄(β̂)′)∥∥∥∥2

Ω̂

, with

Ω̂ =
1

n

n∑
i=1

 gi

(
θ̂
)
− ḡ

(
θ̂
)

hi

(
β̂
)
− h̄

(
β̂
)  gi

(
θ̂
)
− ḡ

(
θ̂
)

hi

(
β̂
)
− h̄

(
β̂
) ′ .

In this setup, we have dn
d→ N (0, 1) under H0 because models g and h are non-nested in

the sense of RV and satisfy their regularity conditions.
The size and power results (non-size-adjusted) based on 10,000 simulation repetitions

are reported in Table 1 on page 23. According to the results for γ = 0 (H0 is true), the
RV test is under-sized, while the rejection frequencies of our infeasible and feasible tests
are very close to the nominal levels. For γ > 0 (H0 is false), the rejection frequencies of
our tests are substantially higher than those of the RV test. Our tests are especially more
powerful when the significance level is low. For example, when γ = 2.0 and α = 0.01,
the rejection frequencies of our tests are about 76%, while the RV test rejects H0 only in
41% of the simulations. These simulation results are in agreement with our theoretical
findings and confirm superior power properties of our approach. The simulations also show
that estimation of unknown parameters has no significant effect on the size and power
properties of our tests: in all cases, the rejection frequencies of the infeasible and feasible
tests are remarkably close.

The size-adjusted power results are reported in Table 2 on page 24. These results are
based on 100,000 simulation repetitions. To compute size-adjusted critical values, first, we
generated 100,000 values of each of the statistics under H0 (γ = 0). The size-adjusted
critical value for a size α test is the 1− α quantile of the resulting empirical distribution.

When γ = 0.5, the three tests have same power as the differences in simulated rejection
probabilities are below the precision of the simulations.12 In all other cases, the differences
in simulated rejection rates between the RV test and our tests are statistically significant,
and the tests proposed in this paper dominate the RV test. The superior power properties
of our approach are especially apparent in the case of larger values of γ and α = 0.01. For
example, when γ = 2.5 the 1% RV test rejects with probability 75.7%, while the simulated
rejection probabilities of our infeasible and feasible tests are 80.3% and 80.7% respectively.

While the differences in size-adjusted power between our tests and the RV test are less
stark than in the case of non-size-adjusted power, we would like to emphasize that the size
adjustment is infeasible in practice and the non-size-adjusted results in Table 1 give a more
accurate depiction of the tests performance in real applications. Given the fact that the
size of our tests is very close to nominal, one might expect a substantial power gain with
minimal size distortions by adopting the EL approach.

12When the simulated rejection probability is π̂ and the number of simulation repetitions is R, the
standard error for π̂ is given by

√
π̂(1− π̂)/R. Thus, in the case of α = 0.05 and γ = 0.05, the standard

error for the simulated power of the RV test is 0.0014.
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Table 1: Rejection frequencies of the tests based on RV, T ∗An , and TAn for different signifi-
cance levels α and different values of γ (using 10,000 simulation repetitions)

α RV test Infeasible test (T ∗An ) Feasible test (TAn )

γ = 0.0
0.10 0.0717 0.1062 0.1092
0.05 0.0268 0.0540 0.0568
0.01 0.0013 0.0127 0.0141

γ = 0.5
0.10 0.3348 0.4110 0.4118
0.05 0.1915 0.2937 0.2952
0.01 0.0285 0.1262 0.1272

γ = 1.0
0.10 0.6811 0.7547 0.7501
0.05 0.5013 0.6482 0.6440
0.01 0.1495 0.4081 0.4071

γ = 1.5
0.10 0.8433 0.9001 0.8933
0.05 0.7033 0.8281 0.8267
0.01 0.2969 0.6359 0.6328

γ = 2.0
0.10 0.9096 0.9476 0.9453
0.05 0.8045 0.9054 0.9008
0.01 0.4055 0.7551 0.7580

γ = 2.5
0.10 0.9367 0.9686 0.9694
0.05 0.8546 0.9362 0.9369
0.01 0.4733 0.8164 0.8205

γ = 3.0
0.10 0.9520 0.9777 0.9791
0.05 0.8825 0.9529 0.9561
0.01 0.5176 0.8503 0.8583
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Table 2: Size-adjusted power of the tests based on RV, T ∗An , and TAn for different significance
levels α and different values of γ (using 100,000 simulation repetitions)

α RV test Infeasible test (T ∗An ) Feasible test (TAn )

γ = 0.5
0.10 0.3993 0.3987 0.3979
0.05 0.2814 0.2795 0.2795
0.01 0.1114 0.1115 0.1132

γ = 1.0
0.10 0.7386 0.7507 0.7418
0.05 0.6227 0.6333 0.6284
0.01 0.3723 0.3837 0.3869

γ = 1.5
0.10 0.8809 0.8974 0.8893
0.05 0.8032 0.8238 0.8153
0.01 0.5778 0.6101 0.6112

γ = 2.0
0.10 0.9348 0.9482 0.9436
0.05 0.8786 0.9015 0.8958
0.01 0.6918 0.7367 0.7365

γ = 2.5
0.10 0.9582 0.9681 0.9664
0.05 0.9135 0.9351 0.9330
0.01 0.7537 0.8029 0.8066

γ = 3.0
0.10 0.9689 0.9765 0.9769
0.05 0.9329 0.9512 0.9517
0.01 0.7892 0.8388 0.8463
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7 Conclusion

In this paper, we study global optimality in model comparison hypothesis testing for mis-
specified unconditional moment restriction models. Based on the generalized Neyman-
Pearson optimality criterion, which focuses on the decay rates of the type I and II error
probabilities under fixed distributions, we find an optimal test statistic that is defined by
the Kullback-Leibler information criterion. We then propose a feasible approximation to
the optimal test, and study its asymptotic properties for some examples. Simulation re-
sults show that our test has excellent finite sample properties and is more powerful than
the existing Rivers-Vuong test.

A Proofs

A.1 Proof of Theorem 2

First, we check Definition 3 (a). Without loss of generality, we set as c = 2 in (6). Pick
any δ > 0 and P0 ∈ P0. We start by showing that for each δ′ ∈ (0, δ/2),

cl
(

Λδ1,δ

)
⊂ Λδ

′
1,δ′ . (19)

Pick any and ν ∈ cl
(

Λδ1,δ

)
. It is sufficient for (19) to show that

inf
µ∈P0

I
(
ν ′‖µ

)
> α for each ν ′ ∈ cl

(
B
(
ν, 2δ′

))
. (20)

Since ν ∈ cl
(

Λδ1,δ

)
, there exists ω ∈ M such that DL (ν, ω) ≤ δ + (δ − 2δ′) /2 and

infµ∈P0 I (ω′‖µ) > α for each ω′ ∈ cl (B (ω, 2δ)). Thus, it is sufficient for (20) to show
that ν ′ ∈ cl (B (ω, 2δ)) for each ν ′ ∈ cl (B (ν, 2δ′)). This can be shown by the triangle
inequality:

DL

(
ν ′, ω

)
≤ DL

(
ν ′, ν

)
+DL (ν, ω) ≤ 2δ′ + δ +

(
δ − 2δ′

)
/2 < 2δ,

for each ν ′ ∈ cl (B (ν, 2δ′)). Therefore, we obtain (19). Now, observe that

lim sup
n→∞

1

n
log Pr

{
µn ∈ Λδ1,δ : P0

}
≤ lim sup

n→∞

1

n
log Pr

{
µn ∈ cl

(
Λδ1,δ

)
: P0

}
≤ − inf

P∈cl(Λδ1,δ)
I (P‖P0) ≤ − inf

P∈Λδ
′

1,δ′

I (P‖P0) ≤ −α,

where the first inequality follows from a set inclusion relationship, the second inequality
follows from Sanov’s theorem, the third inequality follows from (19), and the last inequality
follows from the definition of Λδ

′
1,δ′ . Therefore, the test Λ satisfies Definition 3 (a).
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We now check Definition 3 (b). Without loss of generality, we set as δ̄ = 6δ. Pick any
δ > 0 and P1 ∈M \ P0. We start by showing that

Λ2.1δ
0,2.1δ ⊂ Ωδ

0. (21)

Suppose otherwise. Then there exists a sequence {ξm}m∈N such that ξm ∈ Λ2.1δ
0,2.1δ and

ξm ∈ Ωδ
1 for all m ∈ N. Since ξm ∈ Λ2.1δ

0,2.1δ, there exists {ξ′m}m∈N such that DL (ξm, ξ
′
m) <

4.2δ and infµ∈P0 I (ξ′m‖µ) ≤ α. The set {ξ ∈M : infµ∈P0 I (ξ‖µ) ≤ α} is assumed to
be compact, and therefore there exists a subsequence

{
ξ′mk

}
k∈N such that ξ′mk → ξ′ ∈

{ξ ∈M : infµ∈P0 I (ξ‖µ) ≤ α} as k → ∞. Also, from ξm ∈ Ωδ
1 and DL (ξm, ξ

′
m) < 4.2δ for

all m ∈ N, we have ξ′mk ∈ Ω5.2δ
1 and thus B

(
ξ′mk , δ/2

)
⊂ Ω6δ

1 for all k ∈ N, which implies
that the limit ξ′ satisfies B (ξ′, δ/4) ⊂ Ω6δ

1 . Thus, Sanov’s theorem implies

sup
P0∈P0

lim inf
n→∞

1

n
log Pr

{
µn ∈ Ω6δ

1 : P0

}
≥ sup

P0∈P0

lim inf
n→∞

1

n
log Pr

{
µn ∈ B

(
ξ′, δ/4

)
: P0

}
≥ − inf

P0∈P0

inf
P∈B(ξ′,δ/4)

I (P‖P0) ≥ −α.

Since this contradicts with the requirement for Ω, we obtain (21). Now, observe that

lim inf
n→∞

1

n
log Pr

{
µn ∈ Ωδ

0 : P1

}
≥ lim inf

n→∞

1

n
log Pr

{
µn ∈ Λ2.1δ

0,2.1δ : P1

}
≥ lim inf

n→∞

1

n
log Pr

{
µn ∈ int

(
Λ2.1δ

0,2.1δ

)
: P1

}
≥ − inf

P∈int(Λ2.1δ
0,2.1δ)

I (P‖P1) ≥ − inf
P∈Λδ0,δ

I (P‖P1)

≥ lim sup
n→∞

1

n
log Pr

{
µn ∈ Λδ0,δ : P1

}
,

where the first inequality follows from (21), the second inequality follows from a set inclusion
relationship, the third inequality follows from Sanov’s theorem, the fourth inequality follows
from (19), and the last inequality follows from Sanov’s theorem. Therefore, the test Λ
satisfies Definition 3 (b). �

A.2 Proof of Theorem 3

The proof is an adaptation of that of Theorem 2.1 in Hall and La Scala (1990).
Proof for the property under H0. Without loss of generality, we can assume that

Ω = V ar((gi(θ
∗)′, hi(β

∗)′)′) is positive definite. If rank (Ω) = r < lg + lh, then as in Hall
and La Scala (1990), one can express lg + lh − r of the elements of (gi(θ

∗)′, hi(β
∗)′) as a

linear combination of the remaining r elements with a positive definite variance matrix,
and reformulate the problem using only those r elements. From Hall and Inoue (2003), we
can see that

√
n
(
θ̂ − θ∗

)
= Op (1) and

√
n
(
β̂ − β∗

)
= Op (1) under Assumption 1. Thus,
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a standard Taylor expansion argument for EL (see, e.g., Hall and La Scala (1990)) yields a
quadratic approximation:

−2n` (ηg, ηh) = n

∥∥∥∥∥∥Ω−1/2

 ḡ
(
θ̂
)
− ηg

h̄
(
β̂
)
− ηh

∥∥∥∥∥∥
2

+ op (1) , (22)

for any (ηg, ηh) and C > 0 satisfying ‖Egi (β∗)− ηg‖ ≤ Cn−1/2 and ‖Ehi (β∗)− ηh‖ ≤
Cn−1/2. On the other hand, under H0 (i.e., ‖Egi (β∗)‖Wg

= ‖Ehi (β∗)‖Wh
), a Taylor

expansion of the constraint ‖ηg‖Wg
− ‖ηh‖Wh

= 0 around (ηg, ηh) = (Egi (θ∗) , Ehi (β∗))
yields (

WgEgi (θ∗)
−WhEhi (β∗)

)′(
Egi (θ∗)− ηg
Ehi (β∗)− ηh

)
= o

(
n−1/2

)
, (23)

for any (ηg, ηh) and C > 0 satisfying ‖Egi (β∗)− ηg‖ ≤ Cn−1/2 and ‖Ehi (β∗)− ηh‖ ≤
Cn−1/2. From (22) and (23) combined with the Taylor expansions of ḡ

(
θ̂
)

and h̄
(
β̂
)

around θ̂ = θ∗ and β̂ = β∗, respectively, the test statistic can be written as

TAn = min
y∈S⊥ν

‖Zn + δn − y‖2 + op (1) , (24)

where

S⊥ν =
{
x ∈ Rlg+lh : ν ′x = 0

}
, ν = Ω1/2

(
WgEgi (θ∗)
−WhEhi (β∗)

)
(25)

Zn = Ω−1/2√n
(

ḡ (β∗)− Egi (θ∗)
h̄ (β∗)− Ehi (β∗)

)
, δn = Ω−1/2√n

 ∂ḡ(θ∗)
∂θ′

(
θ̂ − θ∗

)
∂h̄(β∗)
∂β′

(
β̂ − β∗

) 
Now, let Qν = νν ′/ ‖ν‖2 be the projection matrix on Sν = {x : x = bν, b ∈ R}. Then
(I −Qv)Zn ∈ S⊥ν . Also, from v′δn

p→ 0 (by the first-order conditions of θ̂ and β̂), it holds
plimδn ∈ S⊥ν . Therefore,

TAn = min
y∈S⊥ν

‖QνZn + (I −Qν)Zn + δn − y‖2 + op(1)

= Z ′nQνZn + op (1)

d→ χ2
1,

where the result in the last line holds because Zn →d N
(
0, Ilg+lh

)
and rank (Qν) = 1.13

13When the both models are correctly specified, ν = 0, S⊥ν is Rlg+lh , and y = Zn + δn solves the
minimization problem in (24). It follows then from (24) that TAn = op(1).
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Proof for the property under H1. Pick any c > 0. Under H1, we have ḡ
(
θ̂
)
− ηg

h̄
(
β̂
)
− ηh

 p→
(

Egi (θ∗)− ηg
Ehi (β∗)− ηh

)
6= 0,

for any (ηg, ηh) with ‖ηg‖Wg
= ‖ηh‖Wh

. Therefore, from (22), the conclusion follows. �

A.3 Proof of Theorem 4

We only show the asymptotic null distribution. The property under H1 is derived in the
same manner as the proof of Theorem 3. The function `n (ηg, ηh) in (13) is now minimized
under the constraint

0 = η′gŴgηg − η′hŴhηh = η′gWgηg − η′hWhηh + η′g

(
Ŵg −Wg

)
ηg − η′h

(
Ŵh −Wh

)
ηh.

By the same argument to derive (23), this constraint can be linearized as(
WgEgi (θ∗)
−WhEhi (β∗)

)′(
Egi (θ∗)− ηg
Ehi (β∗)− ηh

)
+

un
2
√
n

= op

(
n−1/2

)
,

for any (ηg, ηh) and C > 0 satisfying ‖Egi (β∗)− ηg‖ ≤ Cn−1/2 and ‖Ehi (β∗)− ηh‖ ≤
Cn−1/2, where un = Egi (θ∗)′

√
n
(
Ŵg −Wg

)
Egi (θ∗)−Ehi (β∗)′

√
n
(
Ŵh −Wh

)
Ehi (β∗).

Now, as in the proof of Theorem 3,

T̂An = min
y:ν′y+un/2=0

‖Zn + δn − y‖2 + op (1) = min
y∈S⊥ν

∥∥∥∥Zn +
un

2 ‖ν‖2
ν + δn − y

∥∥∥∥2

+ op (1)

=

(
Zn +

un

2 ‖ν‖2
ν

)′
Qν

(
Zn +

un

2 ‖ν‖2
ν

)
+ op (1) =

(ν ′Zn + 0.5un)2

‖ν‖2
+ op (1) .

Assumption 2 and the central limit theorem imply(
ν ′Zn
un

)
d→
(
π′X1

κ′AX2

)
.

The result follows by the continuous mapping theorem. �

A.4 Proof of Theorem 5

We prove only the first part of the theorem. By the same arguments as in the proof of
Theorem 3, one can show that under H0,g,

TA,gn
d→ min{

y∈Rlg+lh :‖Egi(θ∗)‖2Wg−‖Ehi(β
∗)‖2Wh+ν′y≤0

} ‖Z − y‖2
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≤ min
{y∈Rlg+lh :ν′y≤0}

‖Z − y‖2

=
1

2
χ2

0 +
1

2
χ2

1,

where Z is a standard normal random vector, and ν is as defined in the proof of Theorem
3. The inequality in the second line holds because ‖Egi(θ∗)‖2Wg

− ‖Ehi(β∗)‖2Wh
≤ 0 under

H0,g, and the equality in the last line is by the results in Gourieroux, Holly, and Monfort
(1982). �

A.5 Sketch of proof for the null distribution of TA
n,ρ

Under H0 in (17), a similar quadratic approximation to derive (22) yields

TAn,ρ =

(
1√
n

∑n
i=1

{
ρ
(
γ̂′ggi

(
θ̂ρ

))
− ρ

(
γ̂′hhi

(
β̂ρ

))})2

1
n

∑n
i=1

{
ρ
(
γ̂′ggi

(
θ̂ρ

))
− ρ

(
γ̂′hhi

(
β̂ρ

))}2 + op (1) . (26)

Define θ∗ρ = arg minθ∈Θ maxγg Eρ
(
γ′ggi (θ)

)
and γ∗g = arg maxγg Eρ

(
γ′ggi (θ∗)

)
, and let β∗ρ

and γ∗h be defined similarly. Let ρ1 (v) = dρ (v) /dv. We assume the
√
n-consistency of θ̂ρ,

β̂ρ, γ̂g, and γ̂h to θ∗ρ, β∗ρ , γ∗g , and γ∗h, respectively (see, e.g., Domowitz and White, 1982, for
regularity conditions). Under similar regularity conditions to Assumption 1, an expansion
yields

1√
n

n∑
i=1

{
ρ
(
γ̂′ggi

(
θ̂ρ

))
− ρ

(
γ̂′hhi

(
β̂ρ

))}
=

1√
n

n∑
i=1

{
ρ
(
γ∗′g gi

(
θ∗ρ
))
− ρ

(
γ∗′h hi

(
β∗ρ
))}

+
1

n

n∑
i=1

ρ1

(
γ∗′g gi

(
θ∗ρ
))
gi
(
θ∗ρ
)′√

n
(
γ̂g − γ∗g

)
+

1

n

n∑
i=1

ρ1

(
γ∗′g gi

(
θ∗ρ
))
γ∗′g

∂gi
(
θ∗ρ
)

∂θ′
√
n
(
θ̂ρ − θ∗ρ

)
− 1

n

n∑
i=1

ρ1

(
γ∗′h hi

(
β∗ρ
))
hi
(
β∗ρ
)′√

n (γ̂h − γ∗h)

− 1

n

n∑
i=1

ρ1

(
γ∗′h hi

(
β∗ρ
))
γ∗′h

∂hi
(
β∗ρ
)

∂β′
√
n
(
β̂ρ − β∗ρ

)
+ op (1)

=
1√
n

n∑
i=1

{
ρ
(
γ∗′g gi

(
θ∗ρ
))
− ρ

(
γ∗′h hi

(
β∗ρ
))}

+ op (1) ,
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where the second equality follows from the first-order conditions for θ∗ρ, β∗ρ , γ∗g , and γ∗h:

E
[
ρ1

(
γ∗′g gi

(
θ∗ρ
))
gi
(
θ∗ρ
)]

= 0, E

[
ρ1

(
γ∗′g gi

(
θ∗ρ
))
γ∗′g

∂gi
(
θ∗ρ
)

∂θ′

]
= 0, (27)

(similar results hold for β∗ρ and γ∗h). Therefore, underH0 (i.e., E[ρ(γ∗′g gi(θ
∗
ρ))−ρ(γ∗′h hi(β

∗
ρ))] =

0), the central limit theorem implies TAn,ρ
d→ χ2

1. �
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