

Techniques for Efficient Regular Expression Matching

Across Hardware Architectures

A Thesis

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

XIANG WANG

Dr. Michela Becchi, Thesis Supervisor

July 2014

The undersigned, appointed by the dean of the Graduate School, have examined the the-

sis entitled

TECHNIQUES FOR EFFICIENT REGULAR EXPRESSION MATCHING

ACROSS HARDWARE ARCHITECTURES

presented by Xiang Wang,

a candidate for the degree of master of science,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Michela Becchi

Professor Harry Tyrer

Professor Guilherme DeSouza

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my research advisor Michela Becchi for her

advising and teaching during my graduate study. Her enthusiasm and dedication inspired

me to overcome difficulties and realize new ideas. I am extremely grateful for her

instructions not only on academic research but also on normal life. I also learned how to

share, respect and become a better person from her.

I have been so lucky to work with my friends in the NPS lab. In particular, I would

like to thank all the lab members, including Kittisak, Daniel, Henry, Ruidong and etc, for

the knowledge they shared and the happiness they provided.

I have been so fortunate to have summer intern at Micron Technology. It was great

pleasure to work with knowledgeable people there. I am thankful for their help on both

my work and life. I enjoyed this experience and benefited a lot from it.

I am thankful to my nice friends for bringing me the beautiful life here in Columbia

during these years. Especially, I will always remember the everlasting friendship with

Yuanhao, Lei, Yifan, Yi, Xiangjie, Sangdi, Haidong, Xiao, Xiuyi, Muhan and Luyao.

Finally, I am extremely grateful for having a nice family. With their encouragement

and support, I became more confident and optimistic about my study and life. In

particular, I have great parents who taught me with patience and help me to solve

challenging problems.

Thank you!

Xiang

University of Missouri-Columbia,

July 2014

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF FIGURES ..vi

LIST OF TABLES ... viii

ABSTRACT ...ix

Chapter1 Introduction... 1

1.1 Contributions.. 2

1.2 Organization ... 2

Chapter 2 Background .. 4

2.1 Regular Expressions... 4

2.2 Finite Automata ... 5

2.2.1 Introduction to NFA and DFA .. 6

2.3 Introduction to GPUs ... 7

2.3.1 General GPU Architecture .. 8

2.3.2 GPU Memory Hierarchy ... 9

2.3.3 Threads and blocks on GPUs .. 10

2.4 Introduction to Automata Processor .. 11

2.4.1 General Design.. 11

2.4.2 Automata Processor Elements .. 13

2.5 Introduction to FPGAs ... 14

iv

Chapter 3 Regular Expression Matching On GPU .. 16

3.1 Basic Implementation on GPU .. 16

3.2 Alphabet Reduction ... 17

3.3 Selection of GPU Memory for Alphabet Transition Table 18

3.4 Per-DFA vs. Shared Alphabet Translation Tables ... 20

3.5 Regular Expression Clustering Algorithm ... 20

3.5.1 Single Set Implementation .. 21

3.5.2 Double Set Implementation .. 23

3.6 Experimental Evaluation .. 25

3.6.1 Pattern-sets .. 25

3.6.2 Effect of GPU Memories .. 26

3.6.3 Multiple Tables vs. Single Table .. 28

3.6.4 Effect of Number of DFAs ... 30

3.6.5 Comparison of DFAs generation algorithms .. 31

Chapter 4 ANML Implementation ... 33

4.1 ANML Workbench .. 33

4.2 Data Structures for ANML Parser and Generator .. 35

4.3 ANML Parser ... 36

4.3.1 API functions of ANML parser .. 38

4.4 ANML Generator ... 38

v

4.4.1 API functions of ANML generator ... 40

4.5 Optimization Techniques ... 41

Chapter 5 FPGA implementation... 44

5.1 General Design... 44

5.2 Design Optimizations... 47

5.3 Experimental Evaluation .. 49

5.3.1 Effect of Average Node Outdegree ... 50

5.3.2 Effect of Number of States ... 51

5.3.4 Real Regular Expression Pattern-set Evaluation .. 52

5.3.5 1D Cellular Automaton ... 54

5.3.6 2D Cellular Automaton ... 56

Chapter 6 Summary .. 60

6.1 Future Work ... 61

REFERENCES ... 63

VITA.. 66

vi

LIST OF FIGURES
Figure Page

Fig. 2.1: (a) NFA and (b) DFA accepting regular expressions a+bc, bcd+ and cde.

Accepting states are bold. States active after processing text aabc are colored

gray. In the NFA, ∑ represents the whole alphabet. In the DFA, state 4 has an

incoming transition on character b from all states except 1 (incoming

transitions to states 0, 1 and 8 can be read the same way). 6

Fig. 2.2: Baseline architecture of Fermi GPU... 8

Fig. 2.3: Architecture of streaming multiprocessor on Fermi GPU 9

Fig. 2.4: Micron Technology’s Automata Processor. ... 11

Fig. 2.5: Use of start-of-data and all- input STEs to identify if matching starts

at the beginning or anywhere in a given string respectively. 13

Fig. 2.6: (a) Structure of a logic cell and (b) LUT encoding scheme. 15

Fig. 2.7: Interconnections between CLBs. .. 15

Fig. 3.1: Flow charts of (a) single set implementation and (b) double set implementation.

... 23

Fig. 3.2: Comparison of number of DFAs generated by two algorithms. 32

Fig. 4.1: ANML workbench.. 34

Fig. 4.2: Organization of data structures to represent Automata Networks...................... 35

Fig. 4.3: Structure of Element class. ... 36

Fig. 4.4: Structure of STE class. ... 36

Fig. 4.5: Structure of counter class. .. 36

Fig. 4.6: Structure of boolean class.. ... 36

Fig. 4.7: Transfer from XML file to Automata Network. ... 37

Fig. 4.8: API functions of ANML parser. ... 38

Fig. 4.9: ANML generator workflow. .. 39

Fig. 4.10: Sample code to construct Automata Networks. ... 40

file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391844718
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391844718
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391844718
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391844718
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391844718
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391844868
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390764636
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391830873
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390764981
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390764981
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765105
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765210
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765383
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765383
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765550
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392416124
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273130
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273083
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273251
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273337
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273402
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765648
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273518
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765751
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392273784

vii

Fig. 4.11: Sample code to export Automata Networks to XML file................................. 41

Fig. 4.12: Effect of NFA reduction algorithm. Accepting states are colored grey. 42

Fig. 4.13: Implementation of alphabet reduction algorithm. Accepting states are colored

grey. .. 43

Fig. 5.1: (a) Automata Network and (b) logic representation through one-hot encoding

scheme. The INIT signal is asserted on the first character of a new input stream.

The MATCH signal is asserted upon matching the pattern. 44

Fig. 5.2: General FPGA design. .. 46

Fig. 5.3: Verilog sample code to implement Automata Networks. 47

Fig. 5.4: Slice utilization of different average outdegrees per state. 50

Fig. 5.5: FPGA performance of different average outdegrees per state. 50

Fig. 5.6: Resource utilization of different number of states. .. 51

Fig. 5.7: FPGA performance of different number of states .. 52

Fig. 5.8: Slice utilization of spyware and backdoor. .. 53

Fig. 5.9: FPGA performance of spyware and backdoor. .. 54

Fig. 5.10: Design of 1DCA cell. ... 54

Fig. 5.11: 1DCA with 3 cells. ... 54

Fig. 5.12: Resource utilization of 1DCA. ... 55

Fig. 5.13: FPGA Performance of 1DCA. .. 56

Fig. 5.14: Design of 2DCA ... 57

Fig. 5.15: 3x3 2DCA. .. 57

Fig. 5.16: Resource utilization of 2DCA. ... 59

Fig. 5.17: FPGA performance of 2DCA. .. 59

file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392274130
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392274474
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392274711
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392274711
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765815
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765815
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765815
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390765920
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392274942
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825266
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825378
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825496
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825613
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825684
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825770
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825882
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825928
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391825967
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391826001
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391826056
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392852153
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391826106
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391826145

viii

LIST OF TABLES
Table Page

Table 2.1: Access latency of GPU memories. .. 10

Table 2.2: Resource availability in one chip on Automata Processor. 14

Table 3.1: Weight assigned to different character sets. .. 22

Table 3.2: Weight distribution of regular expressions in pattern-sets. 26

Table 3.3: Characteristics of DFAs. ... 27

Table 3.4: Throughput (in Mbps) obtained with multiple tables and different memory

implementations... 28

Table 3.5: Throughput (in Mbps) obtained with single table and different memory

implementations... 29

Table 3.6: Characteristics of DFAs generated by double sets implementation. 30

Table 3.7: Throughput (in Mbps) obtained from DFAs generated by double sets

implementation. .. 31

Table 4.1: Counter Types. ... 40

Table 4.2: Mapping between boolean elements and type numbers. 40

Table 5.1: Rule 110 for 1D Cellular Automaton. ... 55

Table 5.2: Rule of 2D Cellular Automaton. .. 56

file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390764847
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392272770
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390729280
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392338672
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390762615
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390762795
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390762795
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390763083
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390763083
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390763312
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390763819
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390763819
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392275666
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc392275743
file:///C:/Users/Administrator/Desktop/thesis_xiangwang.docx%23_Toc391826225
file:///C:/Users/Administrator/Downloads/draft.docx%23_Toc390764037

ix

TECHNIQUES FOR EFFICIENT REGULAR EXPRESSION

MATCHING

ACROSS HARDWARE ARCHITECTURES

Xiang Wang

Dr. Michela Becchi, Thesis Supervisor

ABSTRACT

Regular expression matching is a central task for many networking and

bioinformatics applications. For example, network intrusion detection systems, which

perform deep packet inspection to detect malicious network activities, often encode

signatures of malicious traffic through regular expressions. Similarly, several

bioinformatics applications perform regular expression matching to find common

patterns, called motifs, across multiple gene or protein sequences. Hardware

implementations of regular expression matching engines fall into two categories:

memory-based and logic-based solutions. In both cases, the design aims to maximize the

processing throughput and minimize the resources requirements, either in terms of

memory or of logic cells.

Graphical Processing Units (GPUs) offer a highly parallel platform for memory-

based implementations, while Field Programmable Gate Arrays (FPGAs) support

reconfigurable, logic-based solutions. In addition, Micron Technology has recently

announced its Automata Processor, a memory-based, reprogrammable hardware device.

From an algorithmic standpoint, regular expression matching engines are based on finite

automata, either in their non-deterministic or in their deterministic form (NFA and DFA,

respectively). Micron’s Automata Processor is based on a proprietary Automata Network,

x

which extends classical NFA with counters and boolean elements.

In this work, we aim to implement highly parallel memory-based and logic-based

regular expression matching solutions. Our contributions are summarized as follows.

First, we implemented regular expression matching on GPU. In this process, we explored

compression techniques and regular expression clustering algorithms to alleviate the

memory pressure of DFA-based GPU implementations. Second, we developed a parser

for Automata Networks defined through Micron’s Automata Network Markup Language

(ANML), a XML-based high-level language designed to program the Automata

Processor. Specifically, our ANML parser first maps the Automata Networks to an

internal representation. We then apply NFA optimization techniques designed for other

architectures to this internal representation. Finally, we implemented a tool to convert our

internal representation to Verilog, thus allowing automatic deployment on FPGA. Our

toolchain allows the user to apply existing optimization techniques to Micron’s Automata

Processor and to directly compare this new platform with FPGA-based solutions.

1

Chapter1 Introduction

Pattern matching is at the center of many applications in a variety of domains. For

example, deep packet inspection in network security and genome sequence search in the

bioinformatics area highly rely on pattern matching. To detect malicious network

activities and avoid network intrusion, most networking applications perform regular

expression matching on packets. To discover specified gene sequences which may cause

particular diseases, the searches of common gene sequences are conducted for different

sequence samples.

Regular expression matching has been traditionally performed using finite automata,

either in their deterministic or in their non-deterministic form (DFA and NFA,

respectively). These data structures reduce the search process to a basic graph traversal

guided by the symbols in the input stream. Both the NFA and DFA data structures can be

deployed on different hardware platforms. Network processors, ASICs (Application-

Specific Integrated Circuits) and FPGAs are widely used in network devices for packet

inspection. Due to their massive computational power, GPGPUs (General Purpose GPUs)

have proven to be a viable candidate for regular expression matching on large datasets. In

addition, Micron Technology has recently announced their Automata Processor, a

memory-based accelerator of NFA-wise computations.

In this thesis, we study the deployment of regular expression matching on three

hardware platforms: GPUs, FPGAs and Micron’s Automata Processor. In particular, we

consider the effective deployment of DFA-based search engines on GPU, and of NFA-

based search engines on FPGA and on the Automata Processor.

2

1.1 Contributions

In this thesis, we discuss regular expression matching on different hardware

platforms and propose algorithms to further optimize these implementations. Our main

contributions can be summarized as follows.

First, we implement a compression algorithm for DFA to fit the limited GPU

memory resources. We consider different implementation alternatives that are suited to

the GPU architecture and its memory hierarchy. Furthermore, we propose two regular

expression clustering algorithms that allow generating relative compact DFAs to fit the

GPU memory even in the presence of complex pattern-sets.

Second, we develop a programming interface for Micron’s Automata Processor.

Micron’s Automata Processor accelerates the traversal of so-called Automata Networks,

which are extensions to NFA with counter and boolean element. Those Automata

Networks can be represented through an XML-based language called ANML (Automata

Network Markup Language). We develop an ANML generator and parser. The former

allows deploying our optimized NFA onto the Automata Processor. The latter allows

importing existing ANML specification into C++ data structures for optimizations (such

as NFA reduction, alphabet reduction and so on).

Finally, we develop an automatic Verilog generator to transfer Automata Networks

to Verilog files that target FPGA implementation.

1.2 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we provide

3

background on finite automata and the hardware platforms we used in our research. In

Chapter 3, we describe the design of our DFA-based search engine targeting GPU. We

also propose a DFA compression algorithm and two regular expressions clustering

algorithms. In Chapter 4, we present the implementation of our ANML parser and

ANML generator as useful tools for both Micron’s Automata Processor and FPGA. In

Chapter 5, we discuss the deployment of Automata Networks on FPGAs by developing a

generator to convert NFA or Automata Networks to Verilog files. Finally, in Chapter 6,

we summarize our main results and discuss several future research directions.

4

Chapter 2 Background

In this chapter, we provide background on regular expressions matching. In Section

2.1, we discuss regular expression. In Section 2.2, we provide an introduction to NFA

and DFA. In the remaining sections, we provide background on the considered hardware

platforms, namely GPU, FPGA and Micron’s Automata Processor.

2.1 Regular Expressions

A regular expression is a sequence of characters and special symbols that represent a

set (possible infinite) of exact-match strings. The features found in regular expressions

can be classified into different categories.

Exact-match patterns represent a simple string with fixed length. The Aho-Corasick

DFA construction algorithm [1] can be used in the case of exact-match patterns.

Character sets accept a set of symbols and can be represented in two ways. First, it

can be represented in the form [c1-c2c3], ci being any character of the alphabet. For ex-

ample, [a-cz] represents the combination of character ‘z’ and a character range that starts

from ‘a’ and ends at ‘c’. The second way is by special symbols, such as space characters

(\s), all digits (\d), all alphanumerical characters (\w), and their complements (\S, \D, \W).

In addition, both single characters and character sets can be repeated, using expressions

such as c+, c*, [c1c2]+ and [c1c2]*.

Wildcards are represented by a single dot symbol. The wildcard repetition called

dot-star (.*) is commonly found in complex regular expressions derived from anti-viruses

5

and network intrusion detection systems and may cause DFA size explosion when large

sets of regular expressions are combined.

Finally, counters allow bounded or infinite repetitions of particular characters or pat-

terns. For instance, a{1,99} matches a sequence of characters ‘a’ ranging from 1 to 99 in

length. As analyzed in [3], both counters and wildcards may lead to state blow-up when

performing NFA to DFA transformation.

2.2 Finite Automata

Regular expression matching has traditionally been implemented by representing the

pattern-set through finite automata (FA) [14], either in their deterministic or in their non-

deterministic form (DFA and NFA, respectively). The matching operation is equivalent

to a FA traversal guided by the content of the input stream. Worst-case guarantees can be

met by bounding the amount of processing performed per character. Being the basic data

structure in the regular expression matching engine, the finite automaton must be

deployable on a reasonably provisioned hardware platform. As the size of pattern sets and

the expressiveness of individual patterns increase, limiting the size of the automaton

becomes challenging. The exploration space is characterized by a trade-off between the

size of the automaton and the worst-case bound on the amount of per character

processing.

NFAs and DFAs are at the two extremes in this exploration space. NFAs [14, 19]

have a limited size but can require expensive per-character processing, whereas DFAs

offer limited per-character processing (only one state transition is taken for each input

character) at the cost of a possibly large automaton.

6

2.2.1 Introduction to NFA and DFA

In Figure 2.1, we show the NFA and DFA accepting three simple patterns (a+bc,

bcd+ and cde). In the two diagrams, states active after processing text aabc are colored

gray. In the NFA, the number of states and transitions is limited by the number of sym-

bols in the pattern-set. In the DFA, every state presents one transition for each character

in the alphabet (Σ). Each DFA state corresponds to a set of NFA states that can be simul-

taneously active [14]; therefore, the number of states in a DFA equivalent to an N-state

NFA can potentially be 2N. In reality, previous work [3, 7, 17, 24] has shown that this so-

called state explosion happens only in the presence of complex patterns (typically those

containing bounded and unbounded repetitions of large character sets).

From an implementation perspective, existing regular expression matching engines

can be classified as either memory-based [3-4, 7-8, 12, 15-17, 24, 33] or logic-based [6,

9, 23, 27]. For the former, the FA is stored in memory; for the latter, it is stored in com-

binatorial and sequential logic. Memory-based implementations can be deployed on vari-

ous platforms (GPUs, network processors, ASICs, FPGAs); logic-based implementations

typically target FPGAs. In the latter case, updates in the pattern-set require the underlying

platform to be reprogrammed. In a memory-based implementation, the design goals are to

Fig. 2.1: (a) NFA and (b) DFA accepting regular expressions a+bc, bcd+ and cde. Accepting

states are bold. States active after processing text aabc are colored gray. In the NFA, ∑ rep-

resents the whole alphabet. In the DFA, state 4 has an incoming transition on character b
from all states except 1 (incoming transitions to states 0, 1 and 8 can be read the same way).

a

0

1

4

7

2

5

8

3

6

9

a

b c

b c d

d

c

d e

∑

(a)

c: from 1,3,5-10

0

1

4

8

2

5

9

3

6

10

a

b c

b c d

c

d e

7

d

e

d

d

remaining

transitions b: from 2-10

a: from 1-10
(b)

7

minimize the memory size needed to store the automaton and the memory bandwidth

needed to operate it. Similarly, in a logic-based implementation, the design should aim at

minimizing the logic utilization while allowing fast operation (that is, a high clock fre-

quency). Typically memory-based implementations use a DFA representation, whereas

logic-based implementations use an NFA design.

Existing proposals targeting DFA-based, memory-centric solutions have focused on

two aspects: (i) designing compression mechanisms to minimize the DFA memory foot-

print; and (ii) devising novel automata to be used as an alternative to DFAs in case of

state explosion. Despite the complexity of their design, memory-centric solutions have

three advantages (i) fast reconfigurability, (ii) low power consumption, and (iii) limited

flow state; the latter leading to scalability in the number of flows. The one-hot encoding

scheme [13] is at the center of all logic-based designs listed above. By encoding each FA

state through a flip-flop, this scheme enables easy implementation of NFAs in logic,

while limiting the processing time to one clock cycle per input character (both in the av-

erage and in the worst case). Unfortunately, by distributing the state information across

the FPGA, this solution does not allow easy and efficient context switching between

packet flows. In other words, NFA-based, logic-centric solutions allow one to easily

achieve peak worst-case performance on a single flow, at the expense of higher power

consumption and of a lack of scalability in the number of concurrent flows.

2.3 Introduction to GPUs

GPUs were originally designed for graphic processing. Nowadays, these platforms

are considered more general purpose, and regarded as efficient accelerators for a variety

8

of applications. Many scientific applications have been accelerated on NVIDIA GPUs,

whose programmability has greatly improved since the advent of the CUDA

programming model. We will give a brief introduction to NVIDIA Fermi GPUs [20] that

we have used in this research.

2.3.1 General GPU Architecture

In general, GPUs are composed of a number of Streaming Multiprocessors (SMs).

Figure 2.2 shows the baseline architecture of Fermi GPU, which consists of 16 SMs and

has up to 6 GB of global memory. The host interface connects the GPU to the CPU via a

PCI-Express.

In Figure 2.3, we can see the general architecture of a single SM. As can be seen,

each SM consists of many simple, in-order cores (usually 32 or 48 for Fermi

architecture). 32 threads are grouped into a warp and warps are scheduled on each SM

through a warp scheduler. At the same time, a dispatch unit will dispatch different threads

to different cores and functional units that will execute the threads’ computation. Threads

are also grouped into thread-blocks. Multiple thread-blocks can be mapped to a single

SM and multiple threads can be mapped to a single core.

Fig. 2.2: Baseline architecture of Fermi GPU.

9

2.3.2 GPU Memory Hierarchy

GPUs have a different memory hierarchy compared to CPU. GPU memories can be

classified into 2 categories: on-chip and off-chip memories. First, as for on-chip memory,

registers have low access latency and are shared by thread-blocks mapped to the same

SM. Second, each SM has a configurable shared memory/L1 cache. Threads within the

same block can share the data that reside in the on-chip shared memory on each SM. On

the other hand, as a representation of off-chip memory, global memory is the most

frequently used one with the largest size and is responsible for the direct communication

with host through PCI-e. In addition, constant memory is a cached 64KB read-only

memory that belongs to off-chip memory and is shared by all the thread blocks.

As shown in Table 2.1, different kinds of memories provide different access

latencies. In general, the GPU memory organization consists of high latency global

Fig. 2.3: Architecture of streaming multiprocessor on Fermi GPU.

10

memory, high latency local memory, low latency read-only constant memory, low-

latency read-write shared memory. Therefore, shared memory and constant memory

should be preferred when latency is a concern, while global memory needs to be used

when memory size requirements become large. Therefore, the judicious use of the

memory hierarchy and of the available memory bandwidth is essential to achieve good

performance. Detailed considerations about the selection of GPU memories for our DFA-

based search engine will be described in Section 3.3.

2.3.3 Threads and blocks on GPUs

Different from other parallel programming models, like POSIX threads [22] and

OpenMP [21], CUDA [10] exposes to the programmer two degrees of parallelism: fine-

grained parallelism within a thread-block and coarse-grained parallelism across multiple

thread-blocks. We can distribute work to a large number of threads by using unique iden-

tifiers assigned to threads and blocks. Threads are grouped into warps (32 threads/warp),

which operate in a SIMD (Single instruction, multiple data) manner. The configurations

of threads and thread-blocks affect the overall performance. Too small configurations

cause GPU resource underutilization, while too large configurations result in resource

conflicts and in the serialization of parallel computations.

Table 2.1: Access latency of GPU memories.

11

2.4 Introduction to Automata Processor

The Automata Processor (AP) [11], as shown in Figure 2.4, is an adoption of

SDRAM technology designed to be used as a reconfigurable device for the direct

implementation of non-deterministic finite automata (NFA) [11].

2.4.1 General Design

The Automata Processor comprises of an array of thousands of state transition

elements (STEs) and a routing matrix. An STE is associated with each state in the

mapped automata and stores one state bit that marks if the corresponding state is active or

not. Each STE also contains a 256-bit symbol array (indexed by the current input) to

process the input symbol. The output of symbol recognition and state bit determine the

output of the STE. The output of each STE determines if another STE will become active

or inactive after the current input symbol. The next state outputs from all the STEs are

connected in parallel to a programmable routing fabric called the “routing matrix”. The

routing fabric is comprised of an array of switching blocks that allows any STE to

communicate with any other STE within a certain physical distance, allowing for a

Fig. 2.4: Micron Technology’s Automata Processor.

12

maximum out-degree (fan out) of 16 from most states. Larger out-degrees are possible at

the cost of reduced clock rate. Since one STE is associated with each state and is capable

of activating another STE, each STE can conceptually be thought of as representing an

edge, instead of a state, from the automaton description. The next state tables (and thus

edge labels) are stored in the STEs, while the NFA topology is encoded into the

configuration of the routing matrix. STEs can be individually marked as being an

incoming edge into a start state or an outgoing edge into an accepting state, allowing for

multiple start and accepting states. Also, start edges can be further classified as start-of-

data or all-input-start, allowing for a simple representation of automata that match

substrings.

In general, the Automata Processor consists of 6 ranks, each comprising 8 chips.

Patterns can be loaded into the Automata Processor from an object file. Multiple input

streams can be scanned in parallel. The Automata Processor thus is able to scan 8~48

flows in parallel and operate at the rate of 128MBps for each rank.

The Automata Processor implements Automata Networks, an extension to NFA, ei-

ther from PCRE (Perl Compatible Regular Expressions) or from ANML (Automata Net-

work Markup Language). PCRE file can be automatically compiled into a loadable object

file by using a compiler provided by Micron Technology. At the same time, ANML, an

XML-based language for programming Automata Networks, can be used to construct

patterns in the form of XML files that can be further compiled into loadable objects.

13

2.4.2 Automata Processor Elements

The Automata Processor has 3 basic functional elements: STEs, counters and boole-

an elements. Each STE represents the normal state in a classical NFA, while counters and

boolean elements are used along with STEs to increase the space efficiency of automata

implementations and extend the computational capabilities beyond NFA.

A STE can be either configured as start-of-data or all-input to represent a start state

as provided in Figure 2.5. In addition, a matching STE has an ‘R’ symbol in the lower

right corner. Furthermore, a STE can also be defined as latched which means it will keep

being active after once being activated. Finally, unlike classical NFA with labeled transi-

tions, the matching symbols are integrated with the STE (that is, the accepted symbols are

associated to the states rather than to the transitions).

Counters allowed some specified patterns to occur for a specified amount of times.

Counters include two input ports: count and reset respectively. A target count and counter

type should be configured for each counter in advance. In particular, there are three dif-

ferent counter types that can be implemented, namely roll, pulse and latch counters. Like

normal counters, the roll counter is reset each time the target value is reached and ready

for the next activation. The latch counter persistently activates the elements connected to

Fig. 2.5: Use of start-of-data and all-input STEs to identify if matching starts

 at the beginning or anywhere in a given string respectively.

*

a b

a b

14

it on the cycle on which the counter value reaches the target count. The counter value

holds at the target and always activates the elements connected to it. The pulse counter

activates the elements connected to it on the cycle on which the counter value reaches the

target count and on subsequent cycles does not activate the connected elements. The

counter value holds at the target but never activate the elements connected to it.

Boolean elements are particularly useful to achieve the functionality of boolean op-

erators, like OR, AND, NOR, NAND, SoP (Sum of products) and PoS (Product of sums).

Table 2.2 shows the resource availability in one chip on the Automata Processor.

Each chip consists of two cores and each core has 96 blocks. We have rich STE resource

while have limited number of counters and boolean elements in each block. In general,

the Automata Network is a powerful extension of classical NFA and therefore especially

useful for implementing a variety of pattern matching applications.

2.5 Introduction to FPGAs

An FPGA [18] is a type of integrated circuit (IC) that can be configured to imple-

ment a variety of functions in hardware. An FPGA consists of thousands of programma-

ble logic cells shown in Figure 2.6(a). As we can see in this figure, each cell is composed

of a look-up table (LUT), a flip-flop and a multiplexer.

Table 2.2: Resource availability in one chip on Automata Processor.

Element Availability in one chip

STE

49152 in two cores with 96 blocks per core

(24576 per core, 256 per block).

6144 can report. (3072 per core, 32 per block)

Counter 768 in two cores (384 per core, 4 per block)

Boolean 2304 in two cores (1152 per core, 12 per block)

15

The LUT allows performing logic operations. It can be configured to encode simple logic

functions like in Figure 2.6(b). It can also be used as distributed memory. Flip-flops are

memory elements storing 1-bit of information. They can be configured to be triggered by

a positive- or negative-edge clock. The multiplexer feeding the flip-flop could be config-

ured to accept the output from the LUT or a separate input to the logic block.

In Xilinx FPGAs, a slice consists of multiple programmable logic cells and a con-

figurable logic block (CLB) is made up of multiple slices. As shown in Figure 2.7, fast

programmable interconnections also exist between different CLBs.

FPGAs can be programmed using a hardware description language (HDL), like Ver-

ilog and VHDL. By making use of these languages, we can easily construct the logic

functions that we need to implement. HDL specification can then be processed by synthe-

sis, map, place and route. The outcome of this process is a bit file that can be loaded on

the FPGA thus programming its hardware.

Fig. 2.7: Interconnections between CLBs.

Fig. 2.6: (a) Structure of a logic cell and (b) LUT encoding scheme.

(a) (b)

16

Chapter 3 Regular Expression Matching On GPU

Since DFAs have the potential of state explosion for complex regular expressions,

generating DFA representations without exceeding the GPU memory size becomes an

important problem. We propose techniques to reduce the DFA size and optimize regular

expression matching on GPU. This chapter is structured as follows.

In Section 3.1, we show the basic approach to implement regular expression

matching on GPU. In Section 3.2, we discuss an optimization algorithm called alphabet

reduction. We propose different approaches to implement alphabet reduction on GPU in

Section 3.3 and 3.4. In Section 3.5, we describe two novel clustering algorithms for

regular expressions. Our algorithms allow achieving smaller number of DFAs that fit

GPU memory. Finally, in Section 3.6 we perform experiments on both real and synthetic

pattern-sets using our DFA-based search engine.

3.1 Basic Implementation on GPU

Since GPUs are memory-based hardware platforms. In this case, DFA representation

is preferred. DFAs need to be stored in GPU global memory. We take advantage of the

uncompressed DFA-based solution from [34]. In general, different threads process

different DFAs in the same thread-block. Different input streams are again mapped onto

different thread-blocks. Because the ASCII table size is 256, we will store 256 transitions

for each state in the memory layout. However, if the regular expression is complex and

causes the DFA to have large number of states, the memory requirement may exceed the

17

GPU memory capacity. In this case, we can apply the alphabet reduction algorithm

described in Section 3.2 to reduce the size of transition table and we can implement the

clustering algorithms discussed in Section 3.5 to divide the regular expressions into

partitions and generate smaller number DFAs that fit memory size.

3.2 Alphabet Reduction

The idea at the basis of alphabet reduction is the following: in a DFA recognizing

regular expressions over an alphabet , each state has potentially || outgoing transitions,

one for each symbol in . However,  can be partitioned into classes of symbols C1,..,Ck

which are indistinguishable for the purposes of the DFA operation. Two symbols ci and cj

will fall into the same class if they are treated the same way in all DFA states. In other

words, given the transition function (states, )states, (s,ci)= (s,cj) for each state s in

the DFA. Once the class translation C() {1..k} has been computed, the alphabet is

reduced from cardinality || to k. k next state transitions will therefore suffice at each

procedure alphabet_reduction (DFA dfa=(n, δ(states, Σ)), modifies set class);

(1) int alphabet_size = 0;

(2) for state s ∈ states do

(3) for state t ∈ states do

(4) set char_covered[|Σ|] = false;
(5) set class_covered[|Σ|] = false;

(6) set remap[|Σ|] = 0;

(7) for (char c ∈ Σ & δ(s,c)=t) do

(8) char_covered[c] = true;

(9) class_covered[class[c]]=true;

(10) for (char c ∈ Σ) do

(11) if (!char_covered [c] & class_covered[class[c]]) then

(12) if (remap[class[c]]==0) then remap[class[c]]= ++alphabet_size;

(13) class[c]=remap[class[c]];

end;

18

state. An additional alphabet translation table encoding the symbol-to-class mapping is

required to allow the pattern matching operation. In practical scenarios (ASCII alphabet)

this table will contain 256 entries, with a maximum width of 1 byte (for heavily

compressed alphabets 5-6 bits per character may suffice). This indexing table can be

efficiently cached or stored in on-chip memory. The algorithm of alphabet reduction is

shown in the pseudo code above.

To compute the required alphabet translation tables, we use a parallel variant of the

alphabet compression algorithm proposed in [4], which has O(n2) time complexity. Spe-

cifically, we first construct a separate translation table for each state and then build a

global alphabet translation table by progressively merging the state-specific tables from

the first phase. On a 8-core processor, our implementation achieves a 4-5x speedup com-

pared to the original single-threaded version [4].

Unfortunately, alphabet reduction becomes less effective as the size of the dataset

(and of the corresponding DFA) increases. In fact, on large DFAs it is less likely for

different symbols to cause transitions to the same target states. Therefore, in this study we

combine alphabet compression with regular expression partitioning. In particular, we

propose two new regular expression clustering methods in Section 3.5, and we compare

them with the bisection-based scheme proposed in [5].

3.3 Selection of GPU Memory for Alphabet Transition Table

In our implementation, each alphabet translation table consists of 256 1-byte entries,

thus requiring 256 B of memory. Below, we discuss advantages and disadvantages of

storing the alphabet translation tables in different GPU memories.

19

• Given its large size (from 1 to about 12 GB depending on the GPU), global

memory can easily accommodate a large number of alphabet translation tables. The main

disadvantage of global memory is its high access latency.

• Shared memory offers low access latency at the cost of a limited capacity (from

16KB to 48KB per SM, depending on the configuration). The main limitation of shared

memory is the following. Shared memory is SM-specific and has the scope of a single

thread-block. If multiple thread-blocks with cumulative shared memory requirements

exceeding the available capacity are mapped onto the same SM, their execution is

serialized. Thus, storing a large number of alphabet translation tables in shared memory

will limit the scalability in the number of packet flows. Specifically, given nAT alphabet

translation tables, a shared-memory based implementation can scale up to

48KB/(256B×nAT) concurrent flows, and is more suited to pattern-sets that can be easily

compiled into a small number of DFAs.

• Constant memory is read-only, has a 64KB size, is shared by all the thread-

blocks, offers low access latency, and can be accessed in parallel to shared memory. If

every thread in a half-warp requests data from the same address in constant memory, the

GPU will generate only a single read request and subsequently broadcast the data to

every thread. In addition, constant memory is cached, and therefore consecutive reads to

the same address will not lead to any additional memory traffic. However, if the threads

in a half-warp require different data, the corresponding 16 reads will be serialized. If

multiple, per-DFA alphabet translation tables are used, this memory accesses serialization

may impact the performance of our implementation, since different threads process

different DFAs.

20

3.4 Per-DFA vs. Shared Alphabet Translation Tables

In general, alphabet translation tables can be either DFA-specific or shared across

multiple DFAs. This design choice involves the following trade-off. Per-DFA alphabet

translation tables typically result in smaller alphabets, thus reducing the amount of

memory required to store the DFA state transition tables. However, as discussed above,

multiple alphabet translation tables limit the flow scalability of shared-memory based

implementations, and cause access serialization in constant-memory based

implementations. On the other hand, sharing a single alphabet translation table across

multiple DFAs generally leads to larger alphabets (it is more likely for a character to be

treated differently in distinct DFAs), and thus to larger state transition tables (and

memory requirements). As we will discuss in Section 3.6.3, we found the use of a single,

shared alphabet translation table to be preferable.

3.5 Regular Expression Clustering Algorithm

In this section, we propose two regular expression clustering schemes aimed to

mitigate the state explosion problem [3, 17, 33, 25]. Recall that, in our implementation

(Section 3.1), each thread is responsible for the traversal of one DFA, and branch and

memory divergence are the main obstacles to achieving high processing throughput.

Therefore, when performing regular expression partitioning, it is important to alleviate

this performance degradation by limiting the number of DFAs. At the same time, the size

of each DFA must be kept small, so to limit the DFA memory requirements to the

21

available GPU capacity. Since we need GPU global memory to store packets, we allocate

80% of global memory to store DFAs.

In order to limit the number of DFAs encoding a particular pattern-set, we need to

consider the complexity of each regular expression in that set. Combining many complex

patterns in a single DFA can lead to state explosion and prohibitive memory requirements

[3, 33]; on the other hand, equally distributing complex regular expressions into multiple

DFAs allows limiting the size of each DFA. Smaller DFA have also the benefit of faster

generation and compression (for example, alphabet compression has a time complexity

which is quadratic in the number of DFA states). Below, we present two schemes to

achieve this goal.

3.5.1 Single Set Implementation

As explained in previous work [3, 33], state explosion is linked to the presence of

particular sub-patterns in the regular expressions (typically repetitions of wildcards and

large character sets). To drive our clustering scheme, we assign a weight to problematic

sub-patterns that are frequently found in practical datasets. Specifically, the selected

weights depend on the degree of state explosion that each sub-pattern may cause when

combining multiple regular expressions into a single DFA. Table 3.1 shows the weights

associated to various character set repetitions. Sub-patterns .*, [^\n\r]* and [^\n\r]+ are

the most problematic, since they always lead to combinatorial state explosion when com-

bining regular expressions; therefore, they are associated the maximum weight value.

Other character set repetitions, such as \w+, \d+ and [c1..cn]+ (with n<20), may also in-

crease the DFA size: this happens when the repeated character appears in other regular

22

expressions in the same set. Since \w represents all alphanumerical characters, the weight

associated to \w+ is larger than that associated to \d+ (\d represents only digits) and

[c1..cn]+ (for small n).

Figure 3.1(a) shows the flow diagram of the single set clustering algorithm. As we can

see from it, after preprocessing the weights of each regular expression rule, we start from

trying to generate a single DFA (N=1). We double the number N and distribute rules to

get N rule partitions with even total weights until the total size of N DFAs fits the

memory requirement (80% of global memory). At the same time, we update the lower

bound L to be N+1 and upper bound U to be 2N each time we need to double the value of

N. Then we continue to search for the minimum number of DFAs between the lower

bound L and upper bound U. By using a method similar to binary search, each time we

set N = (L+U)/2 and redefine the value of upper or lower bound. When we reach the

edge condition (N==L or N==U), we will export the smallest number of DFAs that fit

memory requirement. In this way, we can find the smallest number of DFAs which satis-

fy the GPU memory requirement relatively fast.

Table 3.1: Weight assigned to different character sets.

Character set .* [^\n\r]* [^\n\r]+ \w+

Weight 1 1 1 0.5

Character set [c1..cn]* [c1..cn]+ \d+

Weight 0.3 0.3 0.2

23

3.5.2 Double Set Implementation

Single set implementation distributes rules with similar complexity evenly to DFAs

in order to get as small number of DFAs as possible. We make the following observa-

tions. First, since we want to get a small number of DFAs, we need to gather as many

rules, both simple and complex ones, as possible. Second, a complex rule with weight

larger than 3 will increase the DFA number of states and potentially causes large DFA.

This conflict occurs when we want to gather as many simple rules as possible and at the

same time combine them with complex rules. The more simple rules we gather, the larger

the DFA size will become and also the larger DFA state replication we will get when

Fig. 3.1: Flow charts of (a) single set implementation and (b) double set implementation.

Yes

Rule Partitioning to
N Partitions with
Similar Weights

Rule Partitioning to N
Partitions with Similar

Weights

DFAs Generation

Export MIN DFAs

Fit Maximum
Memory?

N==L or

N==U ?

Yes

N = 1 L = 1 U = 1
Pattern-set

No

No

N = 1
Pattern-set

Single Set Implementation Single Set Implementation

Rule Sorting

Merge Currently
2 Smallest DFAs

to 1 DFA

Fit Maximum
Memory?

Fit Maximum
Memory?

Alphabet Reduction

Export N DFAs Export MIN DFAs

No

Yes

Yes

No

Simple Set Complex Set

(a) (b)

L = N + 1
N = N X 2
U = N

DFAs Generation

MIN = N
N = (L + U) /2

Fit
Maximum
Memory?

No
Yes

L = N + 1
N = (L + U) /2

MIN = N
U = N
N = (L + U) / 2

N = N – 1
MIN = N

N = N1 + N2
MIN = N

N1 DFAs N2 DFAs

N = N – 1

N==L or

N==U ?

No

Yes

24

combined with complex rules. In this case, large state replication will prevent us from

getting relatively small number of DFAs that fit the memory requirement. Therefore, we

need to divide relatively simple rules and complex rules into two sets to avoid rapid state

increase. We allocate the memory size for each set according to the formulas below:

Memcomplex =Weightcomplex/(Weightcomplex+Weightsimple) *MemTotal

Memsimple=Weightsimple/(Weightcomplex+Weightsimple) *MemTotal

Since we need GPU global memory to store packets, we define Memtotal as 80% the size

of global memory and use it to store DFAs generated from both simple set and complex

set. We then allocate the percentage of Memtotal to complex set according to the ratio of

its total weight (Weightcomplex) to the total weight of this pattern-set (Weightcom-

plex+Weightsimple). Similarly, we give the percentage of Memtotal to simple set according to

the ratio of its weight (Weightsimple) to the total weight of this pattern-set.

The details about double set implementation are shown in Figure 3.1(b). As we can

see from it, we divide the rules into two sets named simple and complex by sorting all the

rules. If there are rules with weight larger than the threshold we defined, they are classi-

fied as complex rules. Otherwise, they belong to the simple set. We then implement the

single set implementation discussed in Section 3.5.1 for both simple and complex sets

separately to find the minimum number of DFAs. In addition, we define the maximum

memory size as Memcomplex and Memsimple for complex set and simple set respectively in

the single set implementation. We then merge the smallest two DFAs to one among all

the DFAs and update the smallest number (MIN) of DFAs until the total size of DFAs is

larger than Memtotal. Finally, we perform alphabet reduction. If the total size is not larger

than Memtotal after alphabet reduction, we export all DFAs into files to be used by GPU

25

implementation. Otherwise, we export the smallest number (MIN) of DFAs that fit

Memtotal before the last merging. We add merge stage to our new algorithm because of the

potential to merge DFAs in these two sets. In this way, we can avoid the case that some

DFAs in either set are very small which can be further combined to get smaller total

number of DFAs.

3.6 Experimental Evaluation

In this section, we evaluate different alphabet reduction implementations for regular

expression matching on GPUs. In addition, we compare the results of our DFA

generation algorithms designed for regular expression matching on GPUs. Our

experiments are conducted on an 8-core Intel Xeon E5620, running Centos 5.9. The

system is equipped with an Nvidia GeForce GTX 480 GPU, comprising 15 32-core SMs.

We used CUDA 5.5.

3.6.1 Pattern-sets

We use both real and synthetic pattern-sets in our experiments to evaluate the

performances of our system. The real pattern-sets, consisting of backdoor and spyware

rules are drawn from Snort NIDS [26]. These real pattern-sets have various symbol sets

(.*, [^\n\r]* and counters) and up to 7 .* in the most complex patterns. The synthetic

pattern-sets are generated by using the tool from [5] and tokens from the Snort rules. We

used 4 synthetic pattern-sets called exact-match (E-M), dotstar0.05, dotstar0.1 and

dotstar0.2. Exact-match only has exact match patterns, while dot-star pattern-sets contain

26

a varying fraction of unbounded repetition of wildcards (5%, 10% and %20 respectively).

As for the number of rules, backdoor and spyware have 226 and 462 rules respectively.

All synthetic pattern-sets consist of 1000 rules. In Table 3.2, we show the weight

distributions of regular expressions in each of these pattern-sets.

All the packets used in our experiments are generated from the tool described in [5].

By giving 15 probabilistic seeds and 4 traversal probabilities called PM (35%, 55%, 75%

and 95%) which indicate the malicious level of the packets, we generate 15 1-MB trace

files for each pattern-set. In addition, we conduct all our experiments by setting the

packet size to 64KB.

3.6.2 Effect of GPU Memories

Our first goal is to compare the performances of the three GPU implementations of

alphabet reduction described in Section 3.3 (namely implementations using global

memory, shared memory and constant memory). Table 3.3 shows the basic characteristics

of the DFAs generated for different pattern-sets in our experiments. Since the original

alphabet size is 256, by comparing this value with the number of classes after alphabet

reduction in column 4 of Table 3.3, we find that the memory size requirement can be

saved up to 7.8 times for a single DFA. By comparing column 4 and column 5 in Table

3.3, we can see the merging of multiple alphabet transition tables would increase the

Table 3.2: Weight distribution of regular expressions in pattern-sets.

Dataset
Regular

expressions
<1 [1,2) [2,3) [3,4) [4,6) >=6

Spyware 462 83 337 12 20 2 8

Backdoor 226 147 63 9 5 2 0

Dotstar0.05 1000 953 44 3 0 0 0

Dotstar0.1 1000 911 78 11 0 0 0

Dotstar0.2 1000 825 151 23 1 0 0

27

overall alphabet size. Since characters that belong to the same class in one DFA may lead

to different transitions in other DFAs, we need to do further classifications within a single

class when merging multiple alphabet transition tables. In Table 3.4, we compare the per-

formances of multiple-table implementation using different GPU memories. We perform

our experiments using different number of 64KB packet flows per SM. The use of the

optimal number of packet flows per SM (5 in this case) leads to up to 3X speedup over

single packet flow per SM. We can first easily discover that the implementation on

shared memory achieves the best performance across all the pattern-sets with different

trace files because of its low memory access latency. The largest number of DFAs for a

pattern-set (dotstar0.2) is 38 which require total 9.5KB to store all the tables per block.

Therefore, the memory requirements to store alphabet transition tables don’t exceed the

size of shared memory for all these pattern-sets and shared memory is the ideal location

to store alphabet transition tables. Also, the performance by using global memory is be-

tween shared memory and constant memory. The relatively high access penalty and low

memory coalescing cause the performance of global memory to be not as good as those

of shared memory. Finally, we notice the large performance gap between constant

memory and the other two memories except for E-M pattern-set. The performance loss is

Table 3.3: Characteristics of DFAs.

Dataset # DFA # Total states

Classes

(before

merging)

Classes (after

merging)

E-M 1 28744 88 88

Backdoor 13 960114 33 ~ 66 110

Spyware 32 95482 18 ~ 51 89

Dotstar.05 16 219330 43 ~ 87 90

Dotstar.1 32 157385 39 ~ 87 90

Dotstar.2 38 1194921 51 ~ 88 90

28

due to the serialization of the constant memory access. Since each thread in a block reads

data from different tables (and different memory addresses), all the memory accesses in a

half thread warp will be serialized. In the case of E-M, only one thread per block will be

active and so constant memory accesses won’t be serialized.

3.6.3 Multiple Tables vs. Single Table

In Table 3.5 we show the results of performing regular expression matching on GPU

using a single alphabet transition table. The following observations can be made. First,

the implementation of single table on global memory has throughput improvement over

the multiple alphabet transition tables one. Since a single alphabet transition table only

occupies 256 bytes of memory (one byte for each character in ASCII table), the range of

memory accessed for alphabet translation is limited to 256 bytes. Therefore, single table

provides much larger potential of the GPU global memory coalescing which contributes

 Table 3.4: Throughput (in Mbps) obtained with multiple tables and different memory imple-
mentations.

Dataset
PM = 0.35 PM = 0.55

Global Shared Constant Global Shared Constant

E-M 227.1 233.9 230.5 220.0 228.0 221.5

Backdoor 131.3 140.4 122.9 127.6 136.8 119.2

Spyware 111.9 122.6 87.9 112.5 121.9 91.7

Dotstar.05 144.6 162.6 132.1 145.0 162.2 139.5

Dotstar.1 111.0 122.4 86.8 111.9 122.6 95.2

Dotstar.2 53.1 59.2 25.0 12.8 13.2 10.6

Dataset
PM = 0.75 PM = 0.95

Global Shared Constant Global Shared Constant

E-M 209.0 216.2 212.5 169.6 174.8 171.4

Backdoor 113.6 122.4 110.3 94.5 101.3 91.2

Spyware 111.4 120.5 89.5 96.6 101.8 77.3

Dotstar.05 108.1 116.3 105.9 113.6 119.4 111.0

Dotstar.1 111.6 119.8 90.0 91.8 96.2 76.6

Dotstar.2 53.0 58.8 26.8 12.7 13.2 10.6

29

to performance gain. Higher cache hit rate achieved by single table also has positive ef-

fect on the results. Second, we can see the performance improvements by using shared

memory. Because the GPU kernel needs to copy table information from global memory

to shared memory at the beginning for each packet, better performances can be explained

by fewer write operations on shared memory during each iteration. Third, the constant

memory implementation benefits largely from single table and its performances are quite

close to those of the shared memory implementation. In our single table implementation,

the threads in a half warp are much more likely to access the same constant memory ad-

dress. So there will be much less memory access serialization and the broadcast mecha-

nism can further save certain amount of memory traffic. However, the weakness of single

table is obvious compared to multiple-table implementation. We can see from Table 3.3

that merging alphabet transition tables will always create a single table with larger num-

ber of character classes, thus requiring more global memory to store DFA state transition

table.

Table 3.5: Throughput (in Mbps) obtained with single table and different memory implementation.

Dataset
PM = 0.35 PM = 0.55

Global Shared Constant Global Shared Constant

E-M 230.5 237.4 235.6 223.9 230.5 228.0

Backdoor 147.3 150.1 153.1 142.0 145.0 146.0

Spyware 133.3 141.4 141.4 133.3 141.1 140.4

Dotstar.05 174.3 179.2 178.7 171.4 177.7 176.7

Dotstar.1 133.6 141.4 141.4 136.8 140.4 141.1

Dotstar.2 65.1 71.0 70.9 13.4 13.8 13.8

Dataset
PM = 0.75 PM = 0.95

Global Shared Constant Global Shared Constant

E-M 215.5 216.9 219.2 174.8 173.8 175.7

Backdoor 126.1 128.7 131.1 98.9 103.8 103.5

Spyware 133.9 140.7 140.7 111.6 115.0 115.4

Dotstar.05 120.5 124.1 124.1 125.6 127.6 128.1

Dotstar.1 134.1 140.1 138.6 104.2 109.2 108.3

Dotstar.2 64.8 71.9 72.1 13.4 13.8 13.8

30

3.6.4 Effect of Number of DFAs

In this section, we analyze how the number of DFAs affects the overall

performance. In Table 3.6, we can see the DFAs generated by our double set

implementation. Table 3.7 shows the corresponding performance results and compares

them with the original uncompressed version. Similar to the results in Table 3.5, shared

memory and constant memory achieve competitive performances while the global

memory-based implementation is not as good as the other two. We can also notice that in

some cases, the implementation with alphabet reduction leads to higher throughput than

the uncompressed one. This is because the smaller DFA state transition table can lead to

more regular memory access patterns and therefore higher cache hit rate. By comparing

Table 3.5 and Table 3.7, we can see that fewer DFAs result in better performances for the

same pattern-set. As mentioned before, the number of threads per block to conduct

pattern matching is reduced with smaller number of DFAs. In the GPU kernel function,

each thread needs to check whether an accepting state is reached, which potentially leads

to branch divergence. Also, each thread performs an atomic operation to record the match

information further impacts the matching speed. Therefore, larger number of threads

causes poorer performance. In general, from the experiments, we can conclude that the

best performances are achieved when minimum number of DFAs that fit the available

Table 3.6: Characteristics of DFAs generated by double set implementation

Dataset # DFA # Total states

Classes

(before

merging)

Classes (after

merging)

E-M 1 28744 88 88

Backdoor 11 1709391 24 ~ 73 111

Spyware 16 1374986 32 ~ 61 89

Dotstar.05 11 1064994 74 ~ 87 90

Dotstar.1 21 1004455 71 ~ 81 90

Dotstar.2 38 1367862 60 ~ 77 90

31

memory capacity is used. Another aspect to point out is that the total size of the DFAs

generated for backdoor pattern-set before alphabet reduction is about 1.67GB, which is

larger than our GPU global memory size. Therefore, the uncompressed approach is

unable to process this pattern-set. Alphabet reduction can make this possible by reducing

the size by nearly half.

3.6.5 Comparison of DFAs generation algorithms

In this section, we compare different DFAs generation algorithms discussed in

Section 3.5. In Figure 3.2, we can see that the results of single set implementation are not

as good as the others when dealing with complex pattern-sets like spyware. In spyware

pattern-set, about 6.5% of the rules have weight larger than 3 and combining them with

large amount of simple rules can cause large DFA state replication. Therefore, the

number of DFAs generated for spyware using single-set implementation is relatively

large. The number of DFAs generated using the single set implementation for backdoor

Table 3.7: Throughput (in Mbps) obtained from DFAs generated by double sets implementa-
tion.

Dataset
Uncompressed Global Shared Constant Uncompressed Global Shared Constant

PM=0.35 PM=0.65

E-M 236.5 230.5 237.4 235.6 229.6 223.9 230.5 228.0

Backdoor - 154.6 159.7 157.7 - 150.9 153.8 152.7

Spyware 178.2 177.7 185.6 185.6 179.2 180.3 182.4 185.0

Dotstar.05 186.1 186.7 191.2 193.6 187.2 182.9 187.8 190.7

Dotstar.1 158.9 150.9 160.1 158.9 163.8 156.9 165.6 164.3

Dotstar.2 71.3 65.1 70.4 70.8 14.1 13.5 13.8 13.8

 PM=0.75 PM=0.95

E-M 219.2 215.5 216.9 219.2 176.2 174.8 173.8 175.7

Backdoor - 133.9 135.6 134.4 - 106.3 107.2 106.5

Spyware 172.4 168.2 176.2 175.2 138.3 132.5 136.8 137.7

Dotstar.05 130.8 128.1 129.5 131.9 133.3 131.3 131.9 133.3

Dotstar.1 161.2 153.1 158.5 160.1 119.8 116.3 118.3 118.9

Dotstar.2 71.4 63.9 70.9 71.8 13.7 13.5 13.5 13.6

32

and dotstar0.2 pattern-sets are also affected by the combination of complex regular

expressions and large amount of simple regular expressions. By comparing these two

algorithms, we can conclude that the double set algorithm is general enough to deal with

both simple and complex pattern-sets. On the other hand, we need to identify the

threshold to be used to divide simple and complex sets. According to the weight

distributions of regular expressions in different pattern-sets shown in Table 3.2, we

conduct experiments to see how the performances are affected by the weight threshold

that distinguishes simple regular expression from complex one. As can be seen in Table

3.2, if we define the threshold to be 2, the percentage of complex regular expressions is

not larger than 9% for all the pattern-sets. By separating the small amount of complex

regular expressions from large number of simple regular expressions, we can avoid too

many state replications. When the threshold becomes larger, more complex regular

expressions are combined with simple regular expressions. Therefore, the number of

DFAs generated tends to be larger.

Fig. 3.2: Comparison of number of DFAs generated by two algorithms.

0

5

10

15

20

25

30

35

40

45

E-M Backdoor Spyware Dotstar0.05 Dotstar0.1 Dotstar0.2

N
u

m
b

e
r
o

f
D

F
A

s

Threshold 2 Threshold 3 Threshold 4 Threshold 5 Threshold 6 Single set

33

Chapter 4 ANML Implementation

One of the central tasks in our research is related to pattern matching on Micron’s

Automata Processor. Recall that this platform can be programmed by using ANML, an

XML-based language to construct Automata Networks. Micron Technology also

developed a graphic tool called ANML workbench to construct Automata Networks and

export Automata Networks to XML files. We give an introduction to ANML workbench

in Section 4.1. We develop tools to parse XML files and construct Automata Networks

by using our C++ data structures. We show these data structures in Section 4.2. We

created an ANML parser that allows transforming Automata Networks represented by

these data structures for further optimizations (such as NFA reduction and alphabet

reduction). We describe ANML parser in Section 4.3. In Section 4.4, we discuss a

programming interface called ANML generator to generate Automata Networks using

our data structures. Finally, in Section 4.5, we discuss optimization techniques for

Automata Networks.

4.1 ANML Workbench

As shown in Figure 4.1, ANML workbench is the graphic tool to construct

Automata Networks. We can use the available elements including STEs, counters and

boolean elements in the upper right window on ANML workbench. We can also

configure the properties for these elements, such as start properties of STEs, symbol sets

of STEs, target count of counters and counter types of counters, in the lower right

34

window. We can add transitions between elements by drawing lines connecting them.

Furthermore, we can encapsulate a particular pattern in a block called Macro object and

then replicate Macro objects to represent the patterns that appear frequently in our

designs. Therefore, the Macro object increases the reusability of patterns on ANML

workbench and makes our design more convenient. The block in the middle right window

is a Macro object that stores the pattern shown in the left window. To check the

correctness of our designs, ANML workbench provides a simulator to simulate the

matching process for the user provided input stream. In addition, we can use ANML

workbench to export our designs to XML files in the format shown in the left of Figure

4.7.

Fig. 4.1: ANML workbench.

35

4.2 Data Structures for ANML Parser and Generator

We use ANML parser to parser the XML files generated by ANML workbench and

represent corresponding Automata Networks using our C++ data structures. On the other

hand, we use ANML generator as the programming interface to construct Automata

Networks. Therefore, both ANML parser and generator rely on the data structures we

used to represent Automata Networks. In Figure 4.2, we show the general organization of

our data structures. We create a base class Element to achieve the features shared by all

the three elements. We then use 3 child classes inheriting from Element to represent

STEs, counters, and boolean elements.

Figure 4.3 shows the base structure of Element class. The general design of Element

class has the variable type to indicate which type this element belongs to. It also stores

transition information between different elements and has the variable report to indicate

if it is an accepting element. The ANFA class in Figure 4.4 has variables that are unique

to STEs. In particular, ANML parser stores symbol information associate to STEs in the

variable symbols. The start variable shows whether the STE is an all-input, start-of-data

or normal state. If the STE keeps being active after once being activated, the latch

variable is set to be true. In Figure 4.5, the counter class stores the information about

target count in the variable count. We use the variable at_target to determine the type of

counter (roll, pulse and latch). Similar to counter class, we use boolType to store the type

Fig. 4.2: Organization of data structures to represent Automata Networks.

STE Counter

Element

Boolean

36

of boolean elements in the boolean class shown in Figure 4.6. In addition to variables

shown in these classes, we also implement various functions related to the construction of

Automata Networks based on these variables, such as defining the symbol set associated

to STEs, adding transitions between different elements and so on.

4.3 ANML Parser

The ANML parser allows transforming ANML XML files to our internal data struc-

tures shown in Section 4.2. Figure 4.7 shows a simple example of the mapping between

Class boolean:public Element {
 /* boolean type */

 string boolType;

}

Fig. 4.6: Structure of boolean class.

Class counter:public Element {
 /* target count number */

 int count;

 /* state upon activation */

 string at_target;

}

Fig. 4.5: Structure of counter class.

Class ANFA:public Element
{
 // symbol set

 int_set *symbols;

 // start info

 string start;

 //latch info

 bool latch;

}

Fig. 4.4: Structure of STE
class.

Class Element {
 //type of element

 int type;

 //labeled transitions to STEs

 set<pair<symbol, Element*> > transition_pair;

 //transitions to count port of counters and boolean elements

 set<Element*> transition;

 //transitions to reset port of counters

 set<Element*> reset_tx;

 //if it is an accepting element

 bool report;

}

Fig. 4.3: Structure of Element class.

37

the XML file and its corresponding Automata Network. Libxml2 is a XML C parser li-

brary that is developed for the Gnome project. Because of its easy usage and high porta-

bility, we use Libxml2 to extract the Automata Network information, including the char-

acteristics of elements and edges, from XML files. To have the intact Automata Network

structure stored in the XML file, the ANML parser takes all the characteristics of these

elements described in Section 2.4.2 into account. ANML parser makes it convenient for

us to apply further optimization algorithms that will be described in Section 4.4 to the

patterns constructed on ANML workbench and enables the further conversion to Verilog

files targeting FPGA implementation.

Fig. 4.7: Transfer from XML file to Automata Network.

38

4.3.1 API functions of ANML parser

We show the API functions of ANML parser in Figure 4.8. The anml_parser class

implements all the functions related to the parsing of XML files by using functions in

Libxml2 library. We only need to provide the name of XML file(example.xml in this

case) to the parse function and the start element elem of the Automata Network is

returned by this function.

4.4 ANML Generator

Micron Technology developed ANML workbench to construct Automata Networks.

However, when the design has large amount of elements and complex transitions

between elements, we have to make large efforts to construct the design manually. Since

the easy construction of Automata Networks is important for usability, we provide the

programming interface called ANML generator to make it easier for users to construct

their own Automata Networks. By simply utilizing the data structures we have, we can

create element objects and add transition between them. In this way, we can create the

corresponding pattern with small efforts. On the other hand, since we already have the

NFA generation tool allowing different optimizations, such as alphabet reduction, NFA

state reduction and stride doubling which will be described in Section 4.5. We can apply

these optimizations on the Automata Networks and use ANML generator to export

//parse example.xml to our data structures

anml_parser *ap = new anml_parser();

Element* elem = ap->parse(“example.xml”);

Fig. 4.8: API functions of ANML parser.

39

optimized Automata Networks to XML files. Therefore, we can further deploy Automata

Networks stored in XML files on the Automata Processor. The detailed example is

illustrated in Figure 4.9. It shows the conversion from the representation using our data

structures to ANML representation. ANML generator takes the existing Automata

Network and exports it to the XML file which is compatible with ANML workbench. In

order to check the correctness of the pattern we generated, ANML generator provides a

way to visualize the Automata Network structural information with diagrams of abstract

graphs. Graphviz, an open source graph visualization library, is used to achieve this

visualization purpose and export the structure to corresponding JPEG file.

Fig. 4.9: ANML generator workflow.

40

4.4.1 API functions of ANML generator

Figure 4.10 shows the sample code to use API functions in ANML generator to

construct Automata Networks. We can first define the symbol set chars that leads to the

transition from STE nfa1 to STE nfa2. We need to insert an integer number

corresponding to the position of the symbol in ASCII table to chars. We can also create

counters by configuring the target count and type. We can see the counter types in Table

4.1. Furthermore, we can add transitions to both the count port and reset port of counters

as shown in Figure 4.10. Similar to counters, we need to set the boolean type by

providing the type number to set_type() function each time when we create boolean

elements. Table 4.2 shows the mapping between boolean elements and type numbers.

Table 4.1: Counter Types.

Counter Type

roll

pulse

latch

Table 4.2: Mapping between boolean ele-
ments and type numbers.

Boolean Type Type Number

Inverter 2

Or 3

And 4

Nand 5

Nor 6

Sum of Products 7

Product of Sums 8

Not Sum of Products 9

Not Product of Sums 10

//create symbol set

int_set *chars = new int_set();

//add symbol ’a’

chars->insert(97);

ANFA *nfa1 = new ANFA();

ANFA *nfa2 = new ANFA();

//add transition between STEs

nfa1->add_transition(chars, nfa2);

Counter *cnt = new Counter();

//set target count

cnt->set_count(3);

//set counter type to roll counter

cnt->set_at_target("roll");

//add transition to the count port of counter

nfa1->add_transition(cnt);

//add transition to the reset port of counter

nfa2->add_transition(cnt, true);

Boolean *boolean = new Boolean();

//set boolean type to “or”

boolean->set_type(3);

//add transition to boolean

nfa1->add_transition(boolean);

…

Fig. 4.10: Sample code to construct Autom-

ata Networks.

41

Besides the construction of Automata Networks, ANML generator provides the

feature of converting Automata Networks to XML files. Therefore, XML files can be

further compiled and deployed on the Automata Processor. In Figure 4.9, we can see that

our data structures use labeled transition for STEs. However, Automata Networks created

on ANML workbench associate symbols with STEs rather than with transitions and XML

files store information of Automata Networks in the same format. In order to export our

data structures to XML files, we thus first convert our data structures to the

corresponding structures that integrate symbols with STEs and then we can export these

converted structures to XML files directly. We use the sample code in Figure 4.11 to

achieve the conversion from Automata Networks represented by our data structures to

XML files.

4.5 Optimization Techniques

Since useful optimization techniques originally designed for classical NFA can also

be useful to Automata Networks that has only STEs, we integrate efficient NFA optimi-

zation techniques in [6] to our programming interface.

The first optimization is called NFA reduction algorithm [6]. As can be observed in

Figure 4.12, this algorithm causes common prefixes to merge and reduces the total num-

//convert our structures of Automata Networks to intermediate structures

ANML_ELEMENT *anml_elem;

anml_elem=nfa1->to_ANML();

//export intermediate structures to XML file named “ANML”

anml_elem->to_xml(file,"ANML");

Fig. 4.11: Sample code to export Automata Networks to XML file.

42

ber of states in the NFA. Therefore, NFA reduction algorithm leads to more compact

NFA which will contribute to the implementations on both FPGA and the Automata Pro-

cessor. We will discuss the FPGA implementation of regular expression matching and

show how the size of NFA can affect the overall performance of FPGA in Chapter 5.

Secondly, we can apply alphabet reduction to reduce alphabet size as mentioned in

Section 3.2. As shown in Figure 4.13, if we only use a small subset of symbols from

ASCII table in the NFA, we can apply alphabet reduction algorithm to divide symbols

into different classes. Therefore, the number of transitions per state is significantly re-

duced to be the number of classes. Alphabet reduction leads to NFA with smaller size and

is important for implementations on both memory-based and logic-based hardware plat-

forms.

Finally, we can reconstruct the original NFA to k-NFA [6] that receives k symbols

at each transition by using the stride doubling algorithm [6]. Therefore, k symbols can be

processed for each transition and thus the k-NFA is regarded as k-stride NFA. The k-

NFA can achieve much higher throughput than the original NFA. However, given an

NFA defined on alphabet ∑, the corresponding k-NFA is defined on alphabet ∑𝑘. In this

Fig. 4.12: Effect of NFA reduction algorithm. Accepting states are colored grey.

0

16

2 3
c

17 18/4
d-f

7 8
c

b

12 13

4/1

9/2

14/3

d

b

c

e

f

b

*

21 22/5
c

a

d

1

6

11

20

a

a

a

b

b

b

b

b

5

10

15

19

0

8 9 10/4
e-f

2

3c

6

4/1

5/2

7/3

d

e

f

b

11 12/5
c

a

d

1a
b

b
f

*

*

a

43

case, alphabet reduction can be applied to reduce increased alphabet size efficiently.

Fig. 4.13: Implementation of alphabet reduction algorithm. Accepting states are colored grey.

0 1 2 3 4
a

*

[a-z]

[b-z]

A [B-Z]

∑ ∑’

a 0

b-z 1

A 2

B-Z 3

*

0 1 2 3 4
0 0,1 2 3

1

+

44

Chapter 5 FPGA implementation

In this chapter, we focus on the FPGA implementation of regular expression or

Automata Network matching. In Section 5.1, we propose the general design for the

FPGA implementation. In Section 5.2, we discuss optimization techniques. Finally, we

conduct experiments on both synthetic and real datasets.

5.1 General Design

FPGA provides a promising platform for Automata Networks. To perform pattern

matching on FPGA and compare the performances of Automata Processor- and FPGA-

based implementations, we developed a Verilog generator that converts Automata

Networks to Verilog files. These files can then be deployed on FPGA using traditional

Fig 5.1: (a) Automata Network and (b) logic representation through one-hot encoding scheme.
The INIT signal is asserted on the first character of a new input stream. The MATCH signal is
asserted upon matching the pattern.

(a)

(b)

45

HDL synthesis, map, place and route features provided by Xilinx ISE design suite [29].

FPGA implementation based on the one-hot encoding scheme [13] allows pro-

cessing one input character per clock cycle independent of the number of active states. In

one-hot encoding scheme, each NFA state is represented by a flip-flop and each symbol

is represented by one bit. The output of the flip-flop representing a state is and-ed with

the symbols on its outgoing transitions, and the resulting signals are routed toward the

flip-flops representing the target states. This basic scheme, first proposed by Floyd and

Ullman in [13], is later used by most NFA-based implementations on FPGA. Automata

Networks [11] extend NFA with counter and boolean elements. As mentioned in Section

2.4.2, the counter element in Automata Networks has three distinct types, namely roll,

pulse and latch counters. We thus need to create three Verilog counter modules to

achieve the functionality these three types of counters. Since the primitive modules for

logic gates are already provided in Verilog, we can easily make use of these modules to

represent the boolean elements in Automata Networks. We show an Automata Network

and its logic representation using one-hot encoding scheme in Figure 5.1.

Note that, for any given clock cycle, the NFA active set is represented by the set of

flip-flops which are concurrently active. Moreover, interconnections allow multiple state

transitions to occur in a single clock cycle.

The overall design schematic is represented in Figure 5.2. Besides the clock and an

INIT signal, which is set at the beginning of every input stream, the module receives k

characters at every clock cycle. The output of the module is a set of signals representing

the output of accepting elements and therefore the match of the corresponding regular

expressions. The first block stores the alphabet reduction information which will be

46

described in Section 5.2. The output of this block must be decoded to produce a one-hot

encoding of the processed character, which is the input to the NFA block. This operation

is performed by the alphabet decoder. The NFA/Automata Networks module is

implemented as described in Figure 5.1.

We show the sample Verilog code that achieves the features of STEs, counters and

boolean elements in Figure 5.3. First, we can assign the output of elements, including

STEs, counters and boolean elements, to the input of next target elements. To represent

labeled transitions, we use the ‘&’ symbol in Verilog as the and gate for the state output

and input symbol. In addition, the output of each state will be updated at every rising

edge of clock signal. We also create 3 template counter modules, namely counter_latch,

counter_pulse, and counter_roll, to represent three counter types. Therefore, we can reuse

these template modules by providing different target numbers of count, input and output

signals each time. Furthermore, as shown in Figure 5.3, we use the primitive logic

modules provided in Verilog to achieve the logic functions of different boolean elements.

For example, we use three and modules and an or module to represent the SoP boolean

element in the code sample.

Fig 5.2: General FPGA design.

Alphabet
Tx

Decoder
NFA/

Automata
Networks

log ∑’ ∑’INPUT[log ∑: 0]

lNIT

CLK

MATCH

47

…

…

…

5.2 Design Optimizations

As discussed in [6], several optimizations can be performed to reduce resource utili-

always @(posedge clk)

begin

 state3_out <= state3_in;

 state4_out <= state4_in;

 state5_out <= state5_in;

end;

assign and_state4_3 = state4_out & in[3] ;

assign and_state2_1 = state2_out & in[1] ;

assign state3_in = and_state4_3 | and_state2_1;

assign state4_in = cnt6_out;

assign state5_in = bool7_out;

assign cnt6_in = state5_in;

//template counter module using the target count as parameter

counter_latch

 #(.TARGET(3))

 cnt6(

 .clk(clk),

 .init(init),

 . reset(reset6_in),

 . in(cnt6_in),

 .out(cnt6_out)

);

//port1: input: state9_out, state10_out output:bool7_t1

and and7_t1(bool24_t1 ,state9_out ,state10_out);

//port2: input: state11_out, state12_out output:bool7_t2

and and7_t2(bool24_t2 ,state11_out ,state12_out);

//port3: input: state13_out, state14_out output:bool7_t3

and and7_t3(bool24_t3 ,state13_out ,state14_out);

//final output of SoP: bool7_out

or or7(bool7_out, bool7_t1, bool7_t2, bool7_t3);

Fig. 5.3: Verilog sample code to implement Automata Networks.

STE

Counter

Boolean

…

…

…

…

48

zation and lead to a better design.

First, we can apply single input optimization [6]. If one state only accepts a single

transition, we can eliminate the use of logic gate and have the negation of input symbol

directly connected to reset signal of flip-flop. Second, we use multiple outputs optimiza-

tion [6] to further reduce logic utilization. If a state accepts a transition with a symbol set

whose size is larger than a threshold from another state, the transition can be represented

as a negation of symbol set. Both of these optimizations reduce the number of LUTs

needed and facilitate wiring and routing.

Alphabet reduction [6] is used to reduce alphabet size and thus the number of LUTs

used. In order to implement alphabet reduction on FPGA, we need to have alphabet trans-

lator to translate symbols into alphabet classes. The most straightforward and efficient

approach to implement alphabet translator is using combinational logics on FPGA.

For classical NFA without counter and boolean elements, several additional

optimizations can be applied. First, the NFA reduction algorithm [6] mentioned in

Section 4.3 can be used to limit the number of states and thus the number of flip-flops

used on FPGA. Second, hardware stride doubling [6] aims to improve regular expression

matching throughput on FPGAs by having multi-level logic gates. In order to traverse

multiple symbols at each clock cycle, we make use of multiple levels of logic gate while

keeping the number of flip-flops at the same time. Finally, the algorithmic stride doubling

[6] approach described in Section 4.3 can be used to reconstruct the original NFA to

receive multiple symbols at each transition. Therefore, multiple symbols can be

processed during each clock cycle on FPGA and the performance is improved

significantly.

49

The above design optimizations are all integrated with our FPGA implementation to

improve the overall performance.

5.3 Experimental Evaluation

In this section, we present our experimental evaluation of FPGA-based

implementation of Automata Networks.

First, we create a synthetic NFA generator that can automatically generate NFA

according to user-defined parameters (including the number of states and the average

state outdegree). By configuring these parameters, we study how they can affect the

overall performance of FPGA designs.

Second, we evaluate the FPGA implementation on two real pattern-sets, called

spyware and backdoor which are used in Section 3.6 for GPU experiments.

Third, we evaluate our FPGA design using different Automata Networks, namely

1D and 2D cellular automaton. These datasets have been designed by Dr. Skadron’s

group at University of Virginia.

Finally, we estimate the conservative resource utilizations of different datasets on

the Automata Processor according to the hardware resource descriptions of Automata

Processor shown in Table 2.2. Since the hardware of Automata Processor is not available

for experimentation, future work should focus on the comparisons of both resource

utilization and performance between FPGA- and Automata Processor-based

implementations.

To evaluate our design, we synthesized all these datasets on Xilinx Virtex-2P

XC2VP20 [30], Virtex-4 XC4VLX25 [31] and Virtex-5 XC5VLX50 [32] devices. We

50

used Xilinx ISE design suite, v. 10.1 [29].

5.3.1 Effect of Average Node Outdegree

Figure 5.4 and 5.5 shows the slice utilization and performance of NFA, consisting of

1000 states with different average node outdegrees. As we can see, while the number of

Fig. 5.5: FPGA performance of different average outdegrees per state.

Fig. 5.4: Slice utilization of different average outdegrees per state.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6

P
e

rf
o

rm
an

ce
(G

b
p

s)

Outdegree per state

Performance(Gbps)

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

0

5

10

15

20

25

2 3 4 5 6

FP
G

A
 S

lic
e

 U
ti

liz
at

io
n

(%
)

Outdegree per state

Slice Utilization(%)

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

51

average outgoing transitions increases from 2 to 6, the slice utilization increases and the

performance decreases. Recall that transitions are implemented by LUTs in our FPGA

implementation. Therefore, a larger number of average outgoing transitions per state

translates to larger LUT utilization. Since a lower LUT utilization and amount of wires

make the place and route operation more efficient and lead to a higher operating

frequency, performance goes down when the avarage number of outgoing transitions per

state increases. In addition, the estimated Automata Processor block utilization is about

4.16% which is smaller than the FPGA slice utilization.

5.3.2 Effect of Number of States

Fig. 5.6: Resource utilization of different number of states.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

500 1000 2000 3000 4000

A
P

 B
lo

ck
 U

ti
liz

at
io

n
(%

)

FP
G

A
 S

lic
e

 U
ti

liz
at

io
n

(%
)

Number of States

Resource Utilization(%)

Virtex2P XC2VP20 Virtex4 XC4VLX25

Virtex 5 XC5VLX50 Automata Processor

52

Figure 5.6 and Figure 5.7 show the effect of increasing the number of states when

keeping the average node outdegree fixed. As the total numbers of states and transitions

increase, the corresponding number of flip-flops and LUTs used also becomes larger.

Similar to Figure 5.5, the higher performance is achieved from lower penalty on the

operating frequency and larger flip-flop and LUT utilization will suffer from the

overhead caused by more difficult wiring and routing. Therefore, FPGA implementation

of pattern matching should focus on reducing the logic resources utilization and

facilitating wiring and routing. Furthermore, as shown in Figure 5.6, the resource

utilization of the Automata Processor is much smaller than that of FPGA for the same

NFA.

5.3.4 Real Regular Expression Pattern-set Evaluation

In this section, we aim to evaluate the performance of regular expression matching

on FPGA. Since the the NFA representations of the synthetic pattern-sets from Section

Fig. 5.7: FPGA performance of different number of states.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

500 1000 2000 3000 4000

P
e

rf
o

rm
an

ce
(G

b
p

s)

Number of States

FPGA Performance(Gbps)

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

53

3.6.1 have large number of states, the amount of flip-flops needed exceeds the capacity of

FPGA. Therefore, we select two real pattern-sets named spyware and backdoor for our

expriments. As shown in Figure 5.8, spyware has the slice utilization around 60% on

Virtex-5 XC5CLX50 device. In Figure 5.9 spyware achieves performance of 3.5 Gbps.

On the other hand, although the slice utilization of backdoor is smaller than that of

spyware, its performance is not as good as that of spyware. From the expriments, we find

that the ratio between the number of LUTs and flip-flops used by backdoor is nearly 3

times larger than that of spyware. Therefore, the more difficult wiring and routing of

backdoor result in lower clock frequency and thus worse performance. From our

estimation, the block utilizations of spyware and backdoor on the Automata Processor are

32% and 20% respectivly. By comparing them with the data in Figure 5.8, we can see

that both of these pattern-sets consume smaller amount of resources on the Automata

Processor.

Fig. 5.8: Slice utilization of spyware and backdoor.

0

10

20

30

40

50

60

70

80

90

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

FP
G

A
 S

lic
e

 U
ti

liz
at

io
n

FPGA Devices

Slice Utilization(%)

Spyware Backdoor

54

5.3.5 1D Cellular Automaton

Fig. 5.11: 1DCA with 3 cells.

Fig. 5.10: Design of 1DCA cell.

Fig. 5.9: FPGA performance of spyware and backdoor.

0

0.5

1

1.5

2

2.5

3

3.5

4

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

P
e

rf
o

rm
an

ce
(G

b
p

s)

FPGA Devices

Performance(Gbps)

Spyware Backdoor

55

The 1D cellular automaton (1DCA) is a one-dimensional cellular automaton where

there are two possible states and a rule (rule 110 [28]) shown in Table 5.1 to determine

the state of a cell in the next generation. Furthermore, the elementary cellular automaton

with rule 110 is known to be Turing complete and capable of universal computation.

In general, as provided in Figure 5.10 and Figure 5.11, each cell can have the state

of either alive or dead. The next state of each cell depends on the state of central element

and the states of two neighbors. As we can see, the inputs from two neighboring cells and

the cell itself to the SoP (Sum of Products) boolean element determine the next state of

the current cell. Therefore, we can connect different number of cells to simulate the rule

110.

Fig. 5.12: Resource utilization of 1DCA.

Table 5.1: Rule 110 for 1D Cellular Automaton.

0

5

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

12

14

16

8 16 32 64 128 256

A
P

 B
lo

ck
 U

ti
liz

at
io

n
(%

)

FP
G

A
 S

lic
e

 U
ti

liz
at

io
n

(%
)

Number of Cells

Resource Utilization(%)

Virtex2P XC2VP20 Virtex4 XC4VLX25

Virtex 5 XC5VLX50 Automata Processor

56

We conduct experiments on FPGA using 1DCA consisting of 8~256 cells. As

shown in Figure 5.12, the biggest 1DCA design consists of 256 cells and the slice

utilization is around 15% on Virtex5 XC5VLX50. The resource utilization of the

Automata Processor is almost 3 times larger than that of FPGA for the same size of

design. At the same time, in Figure 5.13, the throughput that can be achieved for 256

cells is larger than 3 Gbps on both Virtex 4 XC4VLX25 and Virtex 5 XC5VLX50

devices.

5.3.6 2D Cellular Automaton

Table 5.2: Rule of 2D Cellular Automaton.

 # of alive

neighbors

 Self

 status

 <2 2 3 >3

Alive Dead Alive Alive Dead

Dead Dead Dead Alive Dead

Fig. 5.13: FPGA performance of 1DCA.

0

1

2

3

4

5

6

8 16 32 64 128 256

P
e

rf
o

rm
an

ce
(G

b
p

s)

Number of Cells

FPGA Performance(Gbps)

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

57

In this section, we evaluate the performance of 2D cellular automaton which

implements the famous Game of Life [2]. Game of Life is an infinite two-dimensional

orthogonal grid of square cells, each with the state of either alive or dead. Every cell

interacts with its eight neighbors, which are the cells that are horizontally, vertically, or

Fig. 5.15: 3x3 2DCA.

Fig. 5.14: Design of 2DCA.

58

diagonally adjacent. At each step in time, transitions obeying the rule shown in Table 5.2

occur. As we can see from the design, counters are used to count the number of alive

neighbors and determine the state of next generation. Game of Life is also known to be

Turing complete. The general ANML design of Game of Life is shown in Figure 5.14

and Figure 5.15.

The resource utilizations of the 2DCA implementation on FPGA and Automata

Processor are shown in Figure 5.16. We show the FPGA performance in Figure 5.17.

2DCA with 8x12 cells is the largest feasible size that can be implemented on the

Automata Processor. As we can see from the figure, its slice utilization is around 20~30%

for different FPGA devices. When the size of design is larger than 15x16, the slice

utilization of Virtex2 and Virtex4 becomes 99% and 88% respectively. In this case, we

can also see the significant performance loss on all three devices. In addition, each cell

has 3 counters in the design and their target counts are 2, 3 and 4. The larger target count

a counter has, the larger number of flip-flops is needed to represent it. Therefore, the

relatively low slice utilization is due to these small target counts. However, automaton

designs using counters with larger target counts would lead to higher slice utilization.

59

Fig. 5.17: FPGA performance of 2DCA.

Fig. 5.16: Resource utilization of 2DCA.

0

0.5

1

1.5

2

2.5

3

3.5

3x3 4x6 6x8 8x12 12x14 15x16 16x18

P
e

rf
o

rm
an

ce
(G

b
p

s)

Number of Cells (row x column)

FPGA Performance(Gbps)

Virtex2P XC2VP20 Virtex4 XC4VLX25 Virtex 5 XC5VLX50

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

3x3 4x6 6x8 8x12 12x14 15x16 16x18

A
P

 B
lo

ck
 U

ti
liz

at
io

n
(%

)

FP
G

A
 S

lic
e

 U
ti

liz
at

io
n

(%
)

Number of Cells(row x column)

Resource Utilization(%)

Virtex2P XC2VP20 Virtex4 XC4VLX25

Virtex 5 XC5VLX50 Automata Processor

60

Chapter 6 Summary

Regular expression matching is a central task in several networking applications,

where the packet payload must be inspected against sets of patterns of interest. Hardware

implementations of regular expression matching engines fall into two categories:

memory-based and logic-based solutions. In both cases, the design aims to maximize the

processing throughput and minimize the resources requirements, either in terms of

memory or of logic cells. In this thesis, we study both the memory-based and logic-based

solutions.

First, as the memory-based implementation of regular expression matching, GPU

implementation achieves good performance because of its massive parallelism. In this

work, we consider different approaches to regular expression matching on GPUs. To this

end, we have used datasets of practical size and complexity and explored advantages and

limitations of DFA-based implementations. Our evaluation shows that, because of the

regularity of its computation, an uncompressed DFA solution achieves good performance

and is scalable in terms of the number of packet-flows that are processed in parallel.

However, on large and complex datasets, such representation may lead to exceeding the

memory capacity of the GPU. By dividing regular expressions into multiple clusters and

applying alphabet reduction to DFAs, we can alleviate the memory pressure efficiently

without much performance impacts.

Second, we present our FPGA implementation. We convert both classical NFA and

Automata Network to the logic representations on FPGA and conduct pattern matching

on real and synthetic datasets. Furthermore, according to the experiment results, FPGA

61

proves to be a preferred platform to conduct regular expression matching. However, the

bottom neck of FPGA implementation comes from the limited number of flip-flops.

When the number of NFA states becomes large, it may exceed the FPGA capacity. In

addition, low reconfigurability, higher power consumption and a lack of scalability in the

number of concurrent flows add constraints to FPGA implementation. On the other hand,

we give conservative estimations of the resource utilization on the Automata Processor

for different datasets. By comparing the resource utilizations of FPGA and Automata

Processor, we can have the following conclusions. First, the resource utilization of FPGA

is much larger than that of Automata Processor if there are no counters and boolean

elements. Second, since the numbers of counters and boolean elements are limited on

Automata Processor, the resource utilizations of FPGA are smaller than the resource

utilizations of Automata Processor for both 1DCA and 2DCA designs. In addition,

because we can conduct pattern matching for 8~48 input streams concurrently on the

Automata Processor, the Automata Processor is preferred in the case of multiple input

streams. Furthermore, as a memory-based solution, the Automata Processor provides

better reconfigurability than FPGA.

6.1 Future Work

First, Micron’s Automata Processor has been announced in November 2013, but is

not yet available for experimentations. Future work should focus on conducting various

experiments on this platform. We can use different benchmarks to evaluate the

performance and efficiency of automata-based tasks on the FPGA versus on the

Automata Processor, providing insight into which technology is best suited for automata-

62

based computations under various circumstances.

Second, hybrid logic-memory based designs for faster reconfiguration can be

implemented for FPGA. Hybrid-FA [3] is a particular class of NFA that consists of

multiple DFA connected in a hierarchical fashion. We will investigate the deployment of

these automata on FPGA. For example, a possible implementation can use the one-hot

encoding scheme [13] to represent interconnections among DFAs, and storing the DFA

states in memory. More generally, given an FPGA, one can imagine partitioning the

design into memory-based and logic-based components. A general way to effectively

perform this partitioning on FPGA can be explored.

Finally, large datasets lead to the need for FA partitioning and judicious partitioning

is required to efficiently leverage the on-board resources. FPGA-based designs require

efficient routing among multiple hardware partitions or memory banks. FA partitioning

can lead to a limited degree of state replication and parallel operating on different

partitions. Therefore, efficient automata partitioning schemes can be explored in the

future work.

63

REFERENCES

[1] V. Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic

Search. In Communication of ACM, 18 (6): 333–340, June 1975.

[2] A. Andrew, “Game of Life Cellular Automata,” Springer, 2012(ISBN 978-1-

84996-216-2).

[3] M. Becchi, and P. Crowley. A Hybrid Finite Automaton for Practical Deep Packet

Inspection. In Proceedings of ACM CoNEXT, December 2007.

[4] M. Becchi, and P. Crowley, “An improved algorithm to accelerate regular

expression evaluation,” in Proc. of ANCS 2007.

[5] M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluating deep packet

inspection architectures,” in Proceedings of the IEEE International Symposium on

Workload Characterization, Seattle, Washington, 2008, pp. 79-89.

[6] M. Becchi, and P. Crowley, “Efficient regular expression evaluation: theory to

practice,” in Proceedings of the 4th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, San Jose, California, 2008, pp. 50-59.

[7] M. Becchi, and P. Crowley, “Extending finite automata to efficiently match Perl-

compatible regular expressions,” in Proceedings of the 2008 ACM CoNEXT

Conference, Madrid, Spain, 2008, pp. 1-12.

[8] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A Scalable Architecture For High-

Throughput Regular-Expression Pattern Matching,” in Proceedings of the 33rd

annual international symposium on Computer Architecture, 2006, pp. 191-202.

[9] C. R. Clark, and D. E. Schimmel, “Efficient Reconfigurable Logic Circuits for

Matching Complex Network Intrusion Detection Patterns,” in Proceedings of the

13th International Field Programmable Logic and Application Conference Lisbon,

Portugal, 2003.

[10] CUDA. http://www.nvidia.com/object/cuda_home_new.html.

[11] P. Dlugosch, D. Brown, P. Glendenning et al., “An Efficient and

ScalableSemiconductor Architecture for Parallel Automata Processing,” IEEE

Transactions on Parallel and Distributed Systems, 2013.

[12] D. Ficara, S. Giordano, G. Procissi et al., “An improved DFA for fast regular

expression matching,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp.

29-40, 2008.

[13] R. W. Floyd and J. D. Ullman. The Compilation of Regular Expressions into

64

Integrated Circuits. In Journal of ACM, vol. 29, no. 3, pp 603-622, July 1982.

[14] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory,

Languages, and Computation: Addison Wesley, 1979.

[15] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and scalable

deep packet inspection,” in Proceedings of the 2006 ACM/IEEE symposium on

Architecture for networking and communications systems, San Jose, California,

USA, 2006, pp. 81-92.

[16] S. Kumar, S. Dharmapurikar, F. Yu et al., “Algorithms to accelerate multiple

regular expressions matching for deep packet inspection,” in Proceedings of the

2006 conference on Applications, technologies, architectures, and protocols for

computer communications, Pisa, Italy, 2006, pp. 339-350.

[17] S. Kumar, B. Chandrasekaran, J. Turner et al., “Curing regular expressions

matching algorithms from insomnia, amnesia, and acalculia,” in Proceedings of

the 3rd ACM/IEEE Symposium on Architecture for networking and

communications systems, Orlando, Florida, USA, 2007, pp. 155-164.

[18] C. Maxfield, “The Design Warrior's Guide to FPGAs: Devices, Tools and Flows,”

Newnes, 2004 (ISBN: 0-7506-7604-3).

[19] R. McNaughton and H. Yamada. Regular Expressions and State Graphs for

Automata. In IEEE Transactions on Electronic Computers, EC-9(1), pp. 39–47,

1960.

[20] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,”
http://nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Ar

chitecture_Whitepaper.pdf, 2009.

[21] OpenMP. http://openmp.org/wp/.

[22] POSIX threads. https://computing.llnl.gov/tutorials/pthreads/.

[23] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching Using

FPGAs,” in Proceedings of the the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2001, pp. 227-238.

[24] R. Smith, C. Estan, S. Jha et al., “Deflating the big bang: fast and scalable deep

packet inspection with extended finite automata,” in Proceedings of the ACM

SIGCOMM 2008 conference on Data communication, Seattle, WA, USA, 2008,

pp. 207-218.

[25] R. Smith, C. Estan, and S. Jha, “XFA: Faster Signature Matching With Extended

Automata,” in IEEE Symposium on Security and Privacy, 2008.

65

[26] SNORT NIDS. http://www.snort.org.

[27] I. Sourdis, J. Bispo, J. M. P. Cardoso et al., “Regular Expression Matching in

Reconfigurable Hardware,” Signal Processing Systems, vol. 51, no. 1, pp. 99-121,

2008.

[28] S. Wolfram, Statistical Mechanics of Cellular Automata, Reviews of Modern

Physics, volume 55, pages 601-644 (July 1983).

[29] Xilinx ISE Software: http://www.xilinx.com/products/design-tools/ise-design-

suite/ise-webpack.htm.

[30] Xilinx Virtex-2P: http://www.xilinx.com/support/index.html/content/xilinx/en/

supportNav/silicon_devices/mature_and_discontinued_products/virtex-

ii_pro.html.

[31] Xilinx Virtex-4: http://www.xilinx.com/support/index.html/content/xilinx/en/

supportNav/silicon_devices/fpga/virtex-4.html.

[32] Xilinx Virtex-5: http://www.xilinx.com/support/index.html/content/xilinx/en/

supportNav/silicon_devices/fpga/virtex-5.html.

[33] F. Yu, Z. Chen, Y. Diao et al., “Fast and memory-efficient regular expression

matching for deep packet inspection,” in Proceedings of the 2006 ACM/IEEE

symposium on Architecture for networking and communications systems, San

Jose, California, USA, 2006, pp. 93-102.

[34] X. Yu and M. Becchi, “GPU Acceleration of Regular Expression Matching for

Large Datasets: Exploring the Implementation Space”. In Proc. of CF 2013.

66

VITA

Xiang Wang

EDUCATION
University of Missouri - Columbia Columbia, MO August 2012 to present

Master of Science in Computer Engineering

Research Interests:

 High-performance and parallel computer architectures, GPUs and FPGAs.

 Networking systems architectures, network security and deep packet inspection.

Shanghai University Shanghai, China August 2008 to July 2012

Bachelor of Science in Electrical Engineering

EXPERIENCE
Intern: Micron Technology May 2013 - August 2013 (3 months) San Jose, CA

Ran emulator and hardware tests for Micron’s Automata Processor. Used synthetic regu-

lar expression generation and synthetic traffic generation tools in network security for

benchmark tests.

Graduate Research: GPU and FPGA acceleration of regular expression matching

MS Thesis Advisor: Dr. Michela Becchi University of Missouri – Columbia

Implemented DFA-based search engine on GPUs for regular expression matching. Im-

plemented DFA compression algorithm and regular expression clustering algorithms to

further optimize regular expression matching on GPUs. Converted both classical NFA

67

and Automata Networks (an extension of NFA designed for Micron Technology’s Au-

tomata Processor) to the logic representations on FPGA and conduct pattern matching on

real and synthetic datasets.

Graduate Research: Design of Runtime Technologies to Enable GPUs in HPC Clus-

ters

Graduate Research Advisor: Dr. Michela Becchi University of Missouri – Columbia

Created a benchmark generator for hybrid MPI-CUDA applications. Automatically gen-

erated a set of representative programs with different communication and computation

patterns.

Capstone Project: E-Menu System Design University of Missouri – Columbia

Developed an android application to take restaurant orders with a Java program for PC

terminals to receive those orders. Data communication was performed via WIFI, and

passwords were transmitted through Zigbee.

PUBLICATIONS
K. Sajjapongse, X. Wang and M. Becchi, “A Preemption-based Runtime to Efficiently

Schedule Multi-process Applications on Heterogeneous Clusters with GPUs,” in Proc. of

the 22nd Int’l ACM Symposium on High-Performance Parallel and Distributed Compu-

ting (HPDC 2013), New York, NY, June 2013. [acceptance rate: 15.3%]

X. Wang, X. Yu and M. Becchi, “Evaluating Different Automata Representations for

High-Speed Regular Expression Matching on GPUs”, under submission to IEEE Transac-

tions on Parallel and Distributed Systems

68

COMPUTER SKILLS

Programming languages: C, C++, Matlab, Java, Verilog, VHDL, Linux Shell Scripts

Operating systems: Linux, Windows

Parallel Programming models and libraries: POSIX Threads, MPI, CUDA, OpenMP

