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ABSTRACT 
 

 

Regular expression matching is a central task for many networking and 

bioinformatics applications. For example, network intrusion detection systems, which 

perform deep packet inspection to detect malicious network activities, often encode 

signatures of malicious traffic through regular expressions. Similarly, several 

bioinformatics applications perform regular expression matching to find common 

patterns, called motifs, across multiple gene or protein sequences. Hardware 

implementations of regular expression matching engines fall into two categories: 

memory-based and logic-based solutions. In both cases, the design aims to maximize the 

processing throughput and minimize the resources requirements, either in terms of 

memory or of logic cells.   

Graphical Processing Units (GPUs) offer a highly parallel platform for memory-

based implementations, while Field Programmable Gate Arrays (FPGAs) support 

reconfigurable, logic-based solutions. In addition, Micron Technology has recently 

announced its Automata Processor, a memory-based, reprogrammable hardware device. 

From an algorithmic standpoint, regular expression matching engines are based on finite 

automata, either in their non-deterministic or in their deterministic form (NFA and DFA, 

respectively). Micron’s Automata Processor is based on a proprietary Automata Network, 



 

x 

 

which extends classical NFA with counters and boolean elements.  

In this work, we aim to implement highly parallel memory-based and logic-based 

regular expression matching solutions. Our contributions are summarized as follows. 

First, we implemented regular expression matching on GPU. In this process, we explored 

compression techniques and regular expression clustering algorithms to alleviate the 

memory pressure of DFA-based GPU implementations. Second, we developed a parser 

for Automata Networks defined through Micron’s Automata Network Markup Language 

(ANML), a XML-based high-level language designed to program the Automata 

Processor. Specifically, our ANML parser first maps the Automata Networks to an 

internal representation. We then apply NFA optimization techniques designed for other 

architectures to this internal representation. Finally, we implemented a tool to convert our 

internal representation to Verilog, thus allowing automatic deployment on FPGA. Our 

toolchain allows the user to apply existing optimization techniques to Micron’s Automata 

Processor and to directly compare this new platform with FPGA-based solutions. 
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Chapter1 Introduction 
 

 

 

Pattern matching is at the center of many applications in a variety of domains. For 

example, deep packet inspection in network security and genome sequence search in the 

bioinformatics area highly rely on pattern matching. To detect malicious network 

activities and avoid network intrusion, most networking applications perform regular 

expression matching on packets. To discover specified gene sequences which may cause 

particular diseases, the searches of common gene sequences are conducted for different 

sequence samples.  

Regular expression matching has been traditionally performed using finite automata, 

either in their deterministic or in their non-deterministic form (DFA and NFA, 

respectively). These data structures reduce the search process to a basic graph traversal 

guided by the symbols in the input stream. Both the NFA and DFA data structures can be 

deployed on different hardware platforms. Network processors, ASICs (Application-

Specific Integrated Circuits) and FPGAs are widely used in network devices for packet 

inspection. Due to their massive computational power, GPGPUs (General Purpose GPUs) 

have proven to be a viable candidate for regular expression matching on large datasets. In 

addition, Micron Technology has recently announced their Automata Processor, a 

memory-based accelerator of NFA-wise computations. 

In this thesis, we study the deployment of regular expression matching on three 

hardware platforms: GPUs, FPGAs and Micron’s Automata Processor. In particular, we 

consider the effective deployment of DFA-based search engines on GPU, and of NFA-

based search engines on FPGA and on the Automata Processor. 
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1.1 Contributions 
 

 

In this thesis, we discuss regular expression matching on different hardware 

platforms and propose algorithms to further optimize these implementations. Our main 

contributions can be summarized as follows. 

First, we implement a compression algorithm for DFA to fit the limited GPU 

memory resources. We consider different implementation alternatives that are suited to 

the GPU architecture and its memory hierarchy. Furthermore, we propose two regular 

expression clustering algorithms that allow generating relative compact DFAs to fit the 

GPU memory even in the presence of complex pattern-sets.   

Second, we develop a programming interface for Micron’s Automata Processor. 

Micron’s Automata Processor accelerates the traversal of so-called Automata Networks, 

which are extensions to NFA with counter and boolean element. Those Automata 

Networks can be represented through an XML-based language called ANML (Automata 

Network Markup Language). We develop an ANML generator and parser. The former 

allows deploying our optimized NFA onto the Automata Processor. The latter allows 

importing existing ANML specification into C++ data structures for optimizations (such 

as NFA reduction, alphabet reduction and so on). 

Finally, we develop an automatic Verilog generator to transfer Automata Networks 

to Verilog files that target FPGA implementation.  

 

1.2 Organization 
 

 

The remainder of this thesis is organized as follows. In Chapter 2, we provide 
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background on finite automata and the hardware platforms we used in our research. In 

Chapter 3, we describe the design of our DFA-based search engine targeting GPU. We 

also propose a DFA compression algorithm and two regular expressions clustering 

algorithms. In Chapter 4, we present the implementation of our ANML parser and 

ANML generator as useful tools for both Micron’s Automata Processor and FPGA. In 

Chapter 5, we discuss the deployment of Automata Networks on FPGAs by developing a 

generator to convert NFA or Automata Networks to Verilog files. Finally, in Chapter 6, 

we summarize our main results and discuss several future research directions.   
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Chapter 2 Background 
 

 

 

In this chapter, we provide background on regular expressions matching. In Section 

2.1, we discuss regular expression. In Section 2.2, we provide an introduction to NFA 

and DFA. In the remaining sections, we provide background on the considered hardware 

platforms, namely GPU, FPGA and Micron’s Automata Processor. 

 

2.1 Regular Expressions  
 

 

A regular expression is a sequence of characters and special symbols that represent a 

set (possible infinite) of exact-match strings. The features found in regular expressions 

can be classified into different categories.   

Exact-match patterns represent a simple string with fixed length. The Aho-Corasick 

DFA construction algorithm [1] can be used in the case of exact-match patterns. 

Character sets accept a set of symbols and can be represented in two ways. First, it 

can be represented in the form [c1-c2c3], ci being any character of the alphabet. For ex-

ample, [a-cz] represents the combination of character ‘z’ and a character range that starts 

from ‘a’ and ends at ‘c’. The second way is by special symbols, such as space characters 

(\s), all digits (\d), all alphanumerical characters (\w), and their complements (\S, \D, \W). 

In addition, both single characters and character sets can be repeated, using expressions 

such as c+, c*, [c1c2]+ and [c1c2]*.   

Wildcards are represented by a single dot symbol. The wildcard repetition called 

dot-star (.*) is commonly found in complex regular expressions derived from anti-viruses 
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and network intrusion detection systems and may cause DFA size explosion when large 

sets of regular expressions are combined. 

Finally, counters allow bounded or infinite repetitions of particular characters or pat-

terns. For instance, a{1,99} matches a sequence of characters ‘a’ ranging from 1 to 99 in 

length. As analyzed in [3], both counters and wildcards may lead to state blow-up when 

performing NFA to DFA transformation.  

 

2.2 Finite Automata 
 

 

Regular expression matching has traditionally been implemented by representing the 

pattern-set through finite automata (FA) [14], either in their deterministic or in their non-

deterministic form (DFA and NFA, respectively). The matching operation is equivalent 

to a FA traversal guided by the content of the input stream. Worst-case guarantees can be 

met by bounding the amount of processing performed per character. Being the basic data 

structure in the regular expression matching engine, the finite automaton must be 

deployable on a reasonably provisioned hardware platform. As the size of pattern sets and 

the expressiveness of individual patterns increase, limiting the size of the automaton 

becomes challenging. The exploration space is characterized by a trade-off between the 

size of the automaton and the worst-case bound on the amount of per character 

processing. 

NFAs and DFAs are at the two extremes in this exploration space. NFAs [14, 19] 

have a limited size but can require expensive per-character processing, whereas DFAs 

offer limited per-character processing (only one state transition is taken for each input 

character) at the cost of a possibly large automaton.  
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2.2.1 Introduction to NFA and DFA 

 
In Figure 2.1, we show the NFA and DFA accepting three simple patterns (a+bc, 

bcd+ and cde). In the two diagrams, states active after processing text aabc are colored 

gray. In the NFA, the number of states and transitions is limited by the number of sym-

bols in the pattern-set. In the DFA, every state presents one transition for each character 

in the alphabet (Σ). Each DFA state corresponds to a set of NFA states that can be simul-

taneously active [14]; therefore, the number of states in a DFA equivalent to an N-state 

NFA can potentially be 2N. In reality, previous work [3, 7, 17, 24] has shown that this so-

called state explosion happens only in the presence of complex patterns (typically those 

containing bounded and unbounded repetitions of large character sets). 

From an implementation perspective, existing regular expression matching engines 

can be classified as either memory-based [3-4, 7-8, 12, 15-17, 24, 33] or logic-based [6, 

9, 23, 27]. For the former, the FA is stored in memory; for the latter, it is stored in com-

binatorial and sequential logic. Memory-based implementations can be deployed on vari-

ous platforms (GPUs, network processors, ASICs, FPGAs); logic-based implementations 

typically target FPGAs. In the latter case, updates in the pattern-set require the underlying 

platform to be reprogrammed. In a memory-based implementation, the design goals are to 

 
Fig. 2.1: (a) NFA and (b) DFA accepting regular expressions a+bc, bcd+ and cde. Accepting 

states are bold. States active after processing text aabc are colored gray. In the NFA, ∑ rep-

resents the whole alphabet. In the DFA, state 4 has an incoming transition on character b 
from all states except 1 (incoming transitions to states 0, 1 and 8 can be read the same way).  
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minimize the memory size needed to store the automaton and the memory bandwidth 

needed to operate it. Similarly, in a logic-based implementation, the design should aim at 

minimizing the logic utilization while allowing fast operation (that is, a high clock fre-

quency). Typically memory-based implementations use a DFA representation, whereas 

logic-based implementations use an NFA design. 

Existing proposals targeting DFA-based, memory-centric solutions have focused on 

two aspects: (i) designing compression mechanisms to minimize the DFA memory foot-

print; and (ii) devising novel automata to be used as an alternative to DFAs in case of 

state explosion. Despite the complexity of their design, memory-centric solutions have 

three advantages (i) fast reconfigurability, (ii) low power consumption, and (iii) limited 

flow state; the latter leading to scalability in the number of flows. The one-hot encoding 

scheme [13] is at the center of all logic-based designs listed above. By encoding each FA 

state through a flip-flop, this scheme enables easy implementation of NFAs in logic, 

while limiting the processing time to one clock cycle per input character (both in the av-

erage and in the worst case). Unfortunately, by distributing the state information across 

the FPGA, this solution does not allow easy and efficient context switching between 

packet flows. In other words, NFA-based, logic-centric solutions allow one to easily 

achieve peak worst-case performance on a single flow, at the expense of higher power 

consumption and of a lack of scalability in the number of concurrent flows.  

 

2.3 Introduction to GPUs 
 

 

GPUs were originally designed for graphic processing. Nowadays, these platforms 

are considered more general purpose, and regarded as efficient accelerators for a variety 
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of applications. Many scientific applications have been accelerated on NVIDIA GPUs, 

whose programmability has greatly improved since the advent of the CUDA 

programming model. We will give a brief introduction to NVIDIA Fermi GPUs [20] that 

we have used in this research. 

 

2.3.1 General GPU Architecture 

 

 
In general, GPUs are composed of a number of Streaming Multiprocessors (SMs). 

Figure 2.2 shows the baseline architecture of Fermi GPU, which consists of 16 SMs and 

has up to 6 GB of global memory. The host interface connects the GPU to the CPU via a 

PCI-Express. 

In Figure 2.3, we can see the general architecture of a single SM. As can be seen, 

each SM consists of many simple, in-order cores (usually 32 or 48 for Fermi 

architecture). 32 threads are grouped into a warp and warps are scheduled on each SM 

through a warp scheduler. At the same time, a dispatch unit will dispatch different threads 

to different cores and functional units that will execute the threads’ computation. Threads 

are also grouped into thread-blocks. Multiple thread-blocks can be mapped to a single 

SM and multiple threads can be mapped to a single core. 

 
Fig. 2.2: Baseline architecture of Fermi GPU. 
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2.3.2 GPU Memory Hierarchy 

 

 

GPUs have a different memory hierarchy compared to CPU. GPU memories can be 

classified into 2 categories: on-chip and off-chip memories. First, as for on-chip memory, 

registers have low access latency and are shared by thread-blocks mapped to the same 

SM. Second, each SM has a configurable shared memory/L1 cache. Threads within the 

same block can share the data that reside in the on-chip shared memory on each SM. On 

the other hand, as a representation of off-chip memory, global memory is the most 

frequently used one with the largest size and is responsible for the direct communication 

with host through PCI-e. In addition, constant memory is a cached 64KB read-only 

memory that belongs to off-chip memory and is shared by all the thread blocks.  

As shown in Table 2.1, different kinds of memories provide different access 

latencies. In general, the GPU memory organization consists of high latency global 

 
Fig. 2.3: Architecture of streaming multiprocessor on Fermi GPU. 
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memory, high latency local memory, low latency read-only constant memory, low-

latency read-write shared memory. Therefore, shared memory and constant memory 

should be preferred when latency is a concern, while global memory needs to be used 

when memory size requirements become large. Therefore, the judicious use of the 

memory hierarchy and of the available memory bandwidth is essential to achieve good 

performance. Detailed considerations about the selection of GPU memories for our DFA-

based search engine will be described in Section 3.3.  

 

2.3.3 Threads and blocks on GPUs 

 

 

Different from other parallel programming models, like POSIX threads [22] and 

OpenMP [21], CUDA [10] exposes to the programmer two degrees of parallelism: fine-

grained parallelism within a thread-block and coarse-grained parallelism across multiple 

thread-blocks. We can distribute work to a large number of threads by using unique iden-

tifiers assigned to threads and blocks. Threads are grouped into warps (32 threads/warp), 

which operate in a SIMD (Single instruction, multiple data) manner. The configurations 

of threads and thread-blocks affect the overall performance. Too small configurations 

cause GPU resource underutilization, while too large configurations result in resource 

conflicts and in the serialization of parallel computations.  

Table 2.1: Access latency of GPU memories. 
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2.4 Introduction to Automata Processor 

 
 

The Automata Processor (AP) [11], as shown in Figure 2.4, is an adoption of 

SDRAM technology designed to be used as a reconfigurable device for the direct 

implementation of non-deterministic finite automata (NFA) [11].  

 

2.4.1 General Design 

 

 

The Automata Processor comprises of an array of thousands of state transition 

elements (STEs) and a routing matrix. An STE is associated with each state in the 

mapped automata and stores one state bit that marks if the corresponding state is active or 

not. Each STE also contains a 256-bit symbol array (indexed by the current input) to 

process the input symbol.  The output of symbol recognition and state bit determine the 

output of the STE. The output of each STE determines if another STE will become active 

or inactive after the current input symbol. The next state outputs from all the STEs are 

connected in parallel to a programmable routing fabric called the “routing matrix”. The 

routing fabric is comprised of an array of switching blocks that allows any STE to 

communicate with any other STE within a certain physical distance, allowing for a 

 
Fig. 2.4: Micron Technology’s Automata Processor.  
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maximum out-degree (fan out) of 16 from most states. Larger out-degrees are possible at 

the cost of reduced clock rate. Since one STE is associated with each state and is capable 

of activating another STE, each STE can conceptually be thought of as representing an 

edge, instead of a state, from the automaton description. The next state tables (and thus 

edge labels) are stored in the STEs, while the NFA topology is encoded into the 

configuration of the routing matrix. STEs can be individually marked as being an 

incoming edge into a start state or an outgoing edge into an accepting state, allowing for 

multiple start and accepting states. Also, start edges can be further classified as start-of-

data or all-input-start, allowing for a simple representation of automata that match 

substrings. 

In general, the Automata Processor consists of 6 ranks, each comprising 8 chips. 

Patterns can be loaded into the Automata Processor from an object file. Multiple input 

streams can be scanned in parallel. The Automata Processor thus is able to scan 8~48 

flows in parallel and operate at the rate of 128MBps for each rank.  

The Automata Processor implements Automata Networks, an extension to NFA, ei-

ther from PCRE (Perl Compatible Regular Expressions) or from ANML (Automata Net-

work Markup Language). PCRE file can be automatically compiled into a loadable object 

file by using a compiler provided by Micron Technology. At the same time, ANML, an 

XML-based language for programming Automata Networks, can be used to construct 

patterns in the form of XML files that can be further compiled into loadable objects. 
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2.4.2 Automata Processor Elements 

 

 
The Automata Processor has 3 basic functional elements: STEs, counters and boole-

an elements. Each STE represents the normal state in a classical NFA, while counters and 

boolean elements are used along with STEs to increase the space efficiency of automata 

implementations and extend the computational capabilities beyond NFA.  

A STE can be either configured as start-of-data or all-input to represent a start state 

as provided in Figure 2.5. In addition, a matching STE has an ‘R’ symbol in the lower 

right corner. Furthermore, a STE can also be defined as latched which means it will keep 

being active after once being activated. Finally, unlike classical NFA with labeled transi-

tions, the matching symbols are integrated with the STE (that is, the accepted symbols are 

associated to the states rather than to the transitions). 

Counters allowed some specified patterns to occur for a specified amount of times. 

Counters include two input ports: count and reset respectively. A target count and counter 

type should be configured for each counter in advance. In particular, there are three dif-

ferent counter types that can be implemented, namely roll, pulse and latch counters. Like 

normal counters, the roll counter is reset each time the target value is reached and ready 

for the next activation.  The latch counter persistently activates the elements connected to 

        
 

        
Fig. 2.5: Use of start-of-data and all-input STEs to identify if matching starts 

  at the beginning or anywhere in a given string respectively. 

*

a b

a b
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it on the cycle on which the counter value reaches the target count. The counter value 

holds at the target and always activates the elements connected to it. The pulse counter 

activates the elements connected to it on the cycle on which the counter value reaches the 

target count and on subsequent cycles does not activate the connected elements. The 

counter value holds at the target but never activate the elements connected to it. 

Boolean elements are particularly useful to achieve the functionality of boolean op-

erators, like OR, AND, NOR, NAND, SoP (Sum of products) and PoS (Product of sums). 

Table 2.2 shows the resource availability in one chip on the Automata Processor. 

Each chip consists of two cores and each core has 96 blocks. We have rich STE resource 

while have limited number of counters and boolean elements in each block. In general, 

the Automata Network is a powerful extension of classical NFA and therefore especially 

useful for implementing a variety of pattern matching applications. 

 

 

2.5 Introduction to FPGAs 
 

 

An FPGA [18] is a type of integrated circuit (IC) that can be configured to imple-

ment a variety of functions in hardware. An FPGA consists of thousands of programma-

ble logic cells shown in Figure 2.6(a). As we can see in this figure, each cell is composed 

of a look-up table (LUT), a flip-flop and a multiplexer. 

Table 2.2: Resource availability in one chip on Automata Processor. 

Element Availability in one chip 

STE 

49152 in two cores with 96 blocks per core 

(24576 per core, 256 per block). 

6144 can report. (3072 per core, 32 per block) 

Counter 768 in two cores (384 per core, 4 per block) 

Boolean 2304 in two cores (1152 per core, 12 per block) 
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The LUT allows performing logic operations. It can be configured to encode simple logic 

functions like in Figure 2.6(b). It can also be used as distributed memory. Flip-flops are 

memory elements storing 1-bit of information. They can be configured to be triggered by 

a positive- or negative-edge clock. The multiplexer feeding the flip-flop could be config-

ured to accept the output from the LUT or a separate input to the logic block. 

In Xilinx FPGAs, a slice consists of multiple programmable logic cells and a con-

figurable logic block (CLB) is made up of multiple slices. As shown in Figure 2.7, fast 

programmable interconnections also exist between different CLBs. 

FPGAs can be programmed using a hardware description language (HDL), like Ver-

ilog and VHDL. By making use of these languages, we can easily construct the logic 

functions that we need to implement. HDL specification can then be processed by synthe-

sis, map, place and route. The outcome of this process is a bit file that can be loaded on 

the FPGA thus programming its hardware. 

 

 
Fig. 2.7: Interconnections between CLBs.  

 

         
Fig. 2.6: (a) Structure of a logic cell and (b) LUT encoding scheme.  

(a) (b) 
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Chapter 3 Regular Expression Matching On GPU 
 

 

 

Since DFAs have the potential of state explosion for complex regular expressions, 

generating DFA representations without exceeding the GPU memory size becomes an 

important problem. We propose techniques to reduce the DFA size and optimize regular 

expression matching on GPU. This chapter is structured as follows. 

In Section 3.1, we show the basic approach to implement regular expression 

matching on GPU. In Section 3.2, we discuss an optimization algorithm called alphabet 

reduction. We propose different approaches to implement alphabet reduction on GPU in 

Section 3.3 and 3.4. In Section 3.5, we describe two novel clustering algorithms for 

regular expressions. Our algorithms allow achieving smaller number of DFAs that fit 

GPU memory. Finally, in Section 3.6 we perform experiments on both real and synthetic 

pattern-sets using our DFA-based search engine. 

 

3.1 Basic Implementation on GPU 
 

 

Since GPUs are memory-based hardware platforms. In this case, DFA representation 

is preferred. DFAs need to be stored in GPU global memory. We take advantage of the 

uncompressed DFA-based solution from [34]. In general, different threads process 

different DFAs in the same thread-block. Different input streams are again mapped onto 

different thread-blocks. Because the ASCII table size is 256, we will store 256 transitions 

for each state in the memory layout. However, if the regular expression is complex and 

causes the DFA to have large number of states, the memory requirement may exceed the 
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GPU memory capacity. In this case, we can apply the alphabet reduction algorithm 

described in Section 3.2 to reduce the size of transition table and we can implement the 

clustering algorithms discussed in Section 3.5 to divide the regular expressions into 

partitions and generate smaller number DFAs that fit memory size.  

 

3.2 Alphabet Reduction  

 
The idea at the basis of alphabet reduction is the following: in a DFA recognizing 

regular expressions over an alphabet , each state has potentially || outgoing transitions, 

one for each symbol in . However,  can be partitioned into classes of symbols C1,..,Ck 

which are indistinguishable for the purposes of the DFA operation. Two symbols ci and cj 

will fall into the same class if they are treated the same way in all DFA states. In other 

words, given the transition function (states, )states, (s,ci)= (s,cj) for each state s in 

the DFA. Once the class translation C() {1..k} has been computed, the alphabet is 

reduced from cardinality || to k. k next state transitions will therefore suffice at each 

 
procedure alphabet_reduction (DFA dfa=(n, δ(states, Σ)), modifies set class); 

(1) int alphabet_size = 0; 

(2)     for state s ∈ states do 

(3)         for state t ∈ states do 

(4)             set char_covered[|Σ|] = false;  
(5)             set class_covered[|Σ|] = false; 

(6)             set remap[|Σ|] = 0; 

(7)             for (char c ∈ Σ & δ(s,c)=t) do 

(8)                 char_covered[c] = true; 

(9)                 class_covered[class[c]]=true; 

(10)           for (char c ∈ Σ) do 

(11)               if (!char_covered [c] & class_covered[class[c]]) then 

(12)                   if (remap[class[c]]==0) then remap[class[c]]= ++alphabet_size; 

(13)                   class[c]=remap[class[c]]; 

end; 
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state. An additional alphabet translation table encoding the symbol-to-class mapping is 

required to allow the pattern matching operation. In practical scenarios (ASCII alphabet) 

this table will contain 256 entries, with a maximum width of 1 byte (for heavily 

compressed alphabets 5-6 bits per character may suffice). This indexing table can be 

efficiently cached or stored in on-chip memory. The algorithm of alphabet reduction is 

shown in the pseudo code above.  

To compute the required alphabet translation tables, we use a parallel variant of the 

alphabet compression algorithm proposed in [4], which has O(n2) time complexity. Spe-

cifically, we first construct a separate translation table for each state and then build a 

global alphabet translation table by progressively merging the state-specific tables from 

the first phase. On a 8-core processor, our implementation achieves a 4-5x speedup com-

pared to the original single-threaded version [4]. 

Unfortunately, alphabet reduction becomes less effective as the size of the dataset 

(and of the corresponding DFA) increases. In fact, on large DFAs it is less likely for 

different symbols to cause transitions to the same target states. Therefore, in this study we 

combine alphabet compression with regular expression partitioning. In particular, we 

propose two new regular expression clustering methods in Section 3.5, and we compare 

them with the bisection-based scheme proposed in [5].  

 

3.3 Selection of GPU Memory for Alphabet Transition Table 
 

 

In our implementation, each alphabet translation table consists of 256 1-byte entries, 

thus requiring 256 B of memory. Below, we discuss advantages and disadvantages of 

storing the alphabet translation tables in different GPU memories. 
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• Given its large size (from 1 to about 12 GB depending on the GPU), global 

memory can easily accommodate a large number of alphabet translation tables. The main 

disadvantage of global memory is its high access latency.  

• Shared memory offers low access latency at the cost of a limited capacity (from 

16KB to 48KB per SM, depending on the configuration). The main limitation of shared 

memory is the following. Shared memory is SM-specific and has the scope of a single 

thread-block. If multiple thread-blocks with cumulative shared memory requirements 

exceeding the available capacity are mapped onto the same SM, their execution is 

serialized. Thus, storing a large number of alphabet translation tables in shared memory 

will limit the scalability in the number of packet flows. Specifically, given nAT alphabet 

translation tables, a shared-memory based implementation can scale up to 

48KB/(256B×nAT) concurrent flows, and is more suited to pattern-sets that can be easily 

compiled into a small number of DFAs. 

• Constant memory is read-only, has a 64KB size, is shared by all the thread-

blocks, offers low access latency, and can be accessed in parallel to shared memory. If 

every thread in a half-warp requests data from the same address in constant memory, the 

GPU will generate only a single read request and subsequently broadcast the data to 

every thread. In addition, constant memory is cached, and therefore consecutive reads to 

the same address will not lead to any additional memory traffic. However, if the threads 

in a half-warp require different data, the corresponding 16 reads will be serialized. If 

multiple, per-DFA alphabet translation tables are used, this memory accesses serialization 

may impact the performance of our implementation, since different threads process 

different DFAs. 
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3.4 Per-DFA vs. Shared Alphabet Translation Tables 
 

 

In general, alphabet translation tables can be either DFA-specific or shared across 

multiple DFAs. This design choice involves the following trade-off. Per-DFA alphabet 

translation tables typically result in smaller alphabets, thus reducing the amount of 

memory required to store the DFA state transition tables.  However, as discussed above, 

multiple alphabet translation tables limit the flow scalability of shared-memory based 

implementations, and cause access serialization in constant-memory based 

implementations. On the other hand, sharing a single alphabet translation table across 

multiple DFAs generally leads to larger alphabets (it is more likely for a character to be 

treated differently in distinct DFAs), and thus to larger state transition tables (and 

memory requirements). As we will discuss in Section 3.6.3, we found the use of a single, 

shared alphabet translation table to be preferable. 

 

3.5 Regular Expression Clustering Algorithm 

 

 

In this section, we propose two regular expression clustering schemes aimed to 

mitigate the state explosion problem [3, 17, 33, 25]. Recall that, in our implementation 

(Section 3.1), each thread is responsible for the traversal of one DFA, and branch and 

memory divergence are the main obstacles to achieving high processing throughput. 

Therefore, when performing regular expression partitioning, it is important to alleviate 

this performance degradation by limiting the number of DFAs. At the same time, the size 

of each DFA must be kept small, so to limit the DFA memory requirements to the 
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available GPU capacity. Since we need GPU global memory to store packets, we allocate 

80% of global memory to store DFAs. 

In order to limit the number of DFAs encoding a particular pattern-set, we need to 

consider the complexity of each regular expression in that set. Combining many complex 

patterns in a single DFA can lead to state explosion and prohibitive memory requirements 

[3, 33]; on the other hand, equally distributing complex regular expressions into multiple 

DFAs allows limiting the size of each DFA. Smaller DFA have also the benefit of faster 

generation and compression (for example, alphabet compression has a time complexity 

which is quadratic in the number of DFA states). Below, we present two schemes to 

achieve this goal. 

 

3.5.1 Single Set Implementation 

 

 

As explained in previous work [3, 33], state explosion is linked to the presence of 

particular sub-patterns in the regular expressions (typically repetitions of wildcards and 

large character sets). To drive our clustering scheme, we assign a weight to problematic 

sub-patterns that are frequently found in practical datasets. Specifically, the selected 

weights depend on the degree of state explosion that each sub-pattern may cause when 

combining multiple regular expressions into a single DFA. Table 3.1 shows the weights 

associated to various character set repetitions. Sub-patterns .*, [^\n\r]* and [^\n\r]+ are 

the most problematic, since they always lead to combinatorial state explosion when com-

bining regular expressions; therefore, they are associated the maximum weight value. 

Other character set repetitions, such as \w+, \d+ and [c1..cn]+ (with n<20), may also in-

crease the DFA size: this happens when the repeated character appears in other regular 
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expressions in the same set. Since \w represents all alphanumerical characters, the weight 

associated to \w+ is larger than that associated to \d+ (\d represents only digits) and 

[c1..cn]+ (for small n).  

Figure 3.1(a) shows the flow diagram of the single set clustering algorithm. As we can 

see from it, after preprocessing the weights of each regular expression rule, we start from 

trying to generate a single DFA (N=1). We double the number N and distribute rules to 

get N rule partitions with even total weights until the total size of N DFAs fits the 

memory requirement (80% of global memory). At the same time, we update the lower 

bound L to be N+1 and upper bound U to be 2N each time we need to double the value of 

N. Then we continue to search for the minimum number of DFAs between the lower 

bound L and upper bound U. By using a method similar to binary search, each time we 

set N = (L+U)/2 and redefine the value of upper or lower bound. When we reach the 

edge condition (N==L or N==U), we will export the smallest number of DFAs that fit 

memory requirement. In this way, we can find the smallest number of DFAs which satis-

fy the GPU memory requirement relatively fast.  

 

Table 3.1: Weight assigned to different character sets. 

Character set .* [^\n\r]* [^\n\r]+ \w+ 

Weight 1 1 1 0.5 

Character set [c1..cn]* [c1..cn]+ \d+  

Weight 0.3 0.3 0.2 
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3.5.2 Double Set Implementation 

 

 

Single set implementation distributes rules with similar complexity evenly to DFAs 

in order to get as small number of DFAs as possible. We make the following observa-

tions. First, since we want to get a small number of DFAs, we need to gather as many 

rules, both simple and complex ones, as possible. Second, a complex rule with weight 

larger than 3 will increase the DFA number of states and potentially causes large DFA. 

This conflict occurs when we want to gather as many simple rules as possible and at the 

same time combine them with complex rules. The more simple rules we gather, the larger 

the DFA size will become and also the larger DFA state replication we will get when 

 
 

Fig. 3.1: Flow charts of (a) single set implementation and (b) double set implementation. 
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combined with complex rules. In this case, large state replication will prevent us from 

getting relatively small number of DFAs that fit the memory requirement. Therefore, we 

need to divide relatively simple rules and complex rules into two sets to avoid rapid state 

increase. We allocate the memory size for each set according to the formulas below:  

Memcomplex =Weightcomplex/(Weightcomplex+Weightsimple) *MemTotal 

Memsimple=Weightsimple/(Weightcomplex+Weightsimple) *MemTotal 

Since we need GPU global memory to store packets, we define Memtotal as 80% the size 

of global memory and use it to store DFAs generated from both simple set and complex 

set.  We then allocate the percentage of Memtotal to complex set according to the ratio of 

its total weight (Weightcomplex) to the total weight of this pattern-set (Weightcom-

plex+Weightsimple). Similarly, we give the percentage of Memtotal to simple set according to 

the ratio of its weight (Weightsimple) to the total weight of this pattern-set. 

The details about double set implementation are shown in Figure 3.1(b). As we can 

see from it, we divide the rules into two sets named simple and complex by sorting all the 

rules. If there are rules with weight larger than the threshold we defined, they are classi-

fied as complex rules. Otherwise, they belong to the simple set. We then implement the 

single set implementation discussed in Section 3.5.1 for both simple and complex sets 

separately to find the minimum number of DFAs.  In addition, we define the maximum 

memory size as Memcomplex and Memsimple for complex set and simple set respectively in 

the single set implementation. We then merge the smallest two DFAs to one among all 

the DFAs and update the smallest number (MIN) of DFAs until the total size of DFAs is 

larger than Memtotal. Finally, we perform alphabet reduction. If the total size is not larger 

than Memtotal after alphabet reduction, we export all DFAs into files to be used by GPU 
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implementation. Otherwise, we export the smallest number (MIN) of DFAs that fit 

Memtotal before the last merging. We add merge stage to our new algorithm because of the 

potential to merge DFAs in these two sets. In this way, we can avoid the case that some 

DFAs in either set are very small which can be further combined to get smaller total 

number of DFAs. 

 

3.6 Experimental Evaluation 

 

 

In this section, we evaluate different alphabet reduction implementations for regular 

expression matching on GPUs. In addition, we compare the results of our DFA 

generation algorithms designed for regular expression matching on GPUs. Our 

experiments are conducted on an 8-core Intel Xeon E5620, running Centos 5.9. The 

system is equipped with an Nvidia GeForce GTX 480 GPU, comprising 15 32-core SMs. 

We used CUDA 5.5. 

 

3.6.1 Pattern-sets 

 

 

We use both real and synthetic pattern-sets in our experiments to evaluate the 

performances of our system. The real pattern-sets, consisting of backdoor and spyware 

rules are drawn from Snort NIDS [26]. These real pattern-sets have various symbol sets 

(.*, [^\n\r]* and counters) and up to 7 .* in the most complex patterns. The synthetic 

pattern-sets are generated by using the tool from [5] and tokens from the Snort rules. We 

used 4 synthetic pattern-sets called exact-match (E-M), dotstar0.05, dotstar0.1 and 

dotstar0.2. Exact-match only has exact match patterns, while dot-star pattern-sets contain 
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a varying fraction of unbounded repetition of wildcards (5%, 10% and %20 respectively). 

As for the number of rules, backdoor and spyware have 226 and 462 rules respectively. 

All synthetic pattern-sets consist of 1000 rules. In Table 3.2, we show the weight 

distributions of regular expressions in each of these pattern-sets. 

All the packets used in our experiments are generated from the tool described in [5]. 

By giving 15 probabilistic seeds and 4 traversal probabilities called PM (35%, 55%, 75% 

and 95%) which indicate the malicious level of the packets, we generate 15 1-MB trace 

files for each pattern-set. In addition, we conduct all our experiments by setting the 

packet size to 64KB. 

 

3.6.2 Effect of GPU Memories 

 

 

Our first goal is to compare the performances of the three GPU implementations of 

alphabet reduction described in Section 3.3 (namely implementations using global 

memory, shared memory and constant memory). Table 3.3 shows the basic characteristics 

of the DFAs generated for different pattern-sets in our experiments. Since the original 

alphabet size is 256, by comparing this value with the number of classes after alphabet 

reduction in column 4 of Table 3.3, we find that the memory size requirement can be 

saved up to 7.8 times for a single DFA. By comparing column 4 and column 5 in Table 

3.3, we can see the merging of multiple alphabet transition tables would increase the 

Table 3.2: Weight distribution of regular expressions in pattern-sets.  

Dataset 
# Regular 

expressions 
<1 [1,2) [2,3) [3,4) [4,6) >=6 

Spyware 462 83 337 12 20 2 8 

Backdoor 226 147 63 9 5 2 0 

Dotstar0.05 1000 953 44 3 0 0 0 

Dotstar0.1 1000 911 78 11 0 0 0 

Dotstar0.2 1000 825 151 23 1 0 0 
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overall alphabet size. Since characters that belong to the same class in one DFA may lead 

to different transitions in other DFAs, we need to do further classifications within a single 

class when merging multiple alphabet transition tables. In Table 3.4, we compare the per-

formances of multiple-table implementation using different GPU memories. We perform 

our experiments using different number of 64KB packet flows per SM. The use of the 

optimal number of packet flows per SM (5 in this case) leads to up to 3X speedup over 

single packet flow per SM. We can first easily discover that the implementation on 

shared memory achieves the best performance across all the pattern-sets with different 

trace files because of its low memory access latency. The largest number of DFAs for a 

pattern-set (dotstar0.2) is 38 which require total 9.5KB to store all the tables per block. 

Therefore, the memory requirements to store alphabet transition tables don’t exceed the 

size of shared memory for all these pattern-sets and shared memory is the ideal location 

to store alphabet transition tables. Also, the performance by using global memory is be-

tween shared memory and constant memory. The relatively high access penalty and low 

memory coalescing cause the performance of global memory to be not as good as those 

of shared memory. Finally, we notice the large performance gap between constant 

memory and the other two memories except for E-M pattern-set. The performance loss is 

Table 3.3: Characteristics of DFAs.  

Dataset # DFA # Total states 

# Classes 

(before 

merging) 

# Classes (after 

merging) 

E-M 1 28744 88 88 

Backdoor 13 960114 33 ~ 66 110 

Spyware 32 95482 18 ~ 51 89 

Dotstar.05 16 219330 43 ~ 87 90 

Dotstar.1 32 157385 39 ~ 87 90 

Dotstar.2 38 1194921 51 ~ 88 90 
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due to the serialization of the constant memory access. Since each thread in a block reads 

data from different tables (and different memory addresses), all the memory accesses in a 

half thread warp will be serialized. In the case of E-M, only one thread per block will be 

active and so constant memory accesses won’t be serialized.  

 

3.6.3 Multiple Tables vs. Single Table 

 

 

In Table 3.5 we show the results of performing regular expression matching on GPU 

using a single alphabet transition table. The following observations can be made. First, 

the implementation of single table on global memory has throughput improvement over 

the multiple alphabet transition tables one. Since a single alphabet transition table only 

occupies 256 bytes of memory (one byte for each character in ASCII table), the range of 

memory accessed for alphabet translation is limited to 256 bytes. Therefore, single table 

provides much larger potential of the GPU global memory coalescing which contributes 

         Table 3.4: Throughput (in Mbps) obtained with multiple tables and different memory imple-
mentations. 

Dataset 
PM = 0.35 PM = 0.55 

Global Shared Constant Global Shared Constant 

E-M 227.1 233.9 230.5 220.0 228.0 221.5 

Backdoor 131.3 140.4 122.9 127.6 136.8 119.2 

Spyware 111.9 122.6 87.9 112.5 121.9 91.7 

Dotstar.05 144.6 162.6 132.1 145.0 162.2 139.5 

Dotstar.1 111.0 122.4 86.8 111.9 122.6 95.2 

Dotstar.2 53.1 59.2 25.0 12.8 13.2 10.6 

Dataset 
PM = 0.75 PM = 0.95 

Global Shared Constant Global Shared Constant 

E-M 209.0 216.2 212.5 169.6 174.8 171.4 

Backdoor 113.6 122.4 110.3 94.5 101.3 91.2 

Spyware 111.4 120.5 89.5 96.6 101.8 77.3 

Dotstar.05 108.1 116.3 105.9 113.6 119.4 111.0 

Dotstar.1 111.6 119.8 90.0 91.8 96.2 76.6 

Dotstar.2 53.0 58.8 26.8 12.7 13.2 10.6 
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to performance gain. Higher cache hit rate achieved by single table also has positive ef-

fect on the results. Second, we can see the performance improvements by using shared 

memory. Because the GPU kernel needs to copy table information from global memory 

to shared memory at the beginning for each packet, better performances can be explained 

by fewer write operations on shared memory during each iteration. Third, the constant 

memory implementation benefits largely from single table and its performances are quite 

close to those of the shared memory implementation. In our single table implementation, 

the threads in a half warp are much more likely to access the same constant memory ad-

dress. So there will be much less memory access serialization and the broadcast mecha-

nism can further save certain amount of memory traffic. However, the weakness of single 

table is obvious compared to multiple-table implementation. We can see from Table 3.3 

that merging alphabet transition tables will always create a single table with larger num-

ber of character classes, thus requiring more global memory to store DFA state transition 

table.  

Table 3.5: Throughput (in Mbps) obtained with single table and different memory implementation. 

Dataset 
PM = 0.35 PM = 0.55 

Global Shared Constant Global Shared Constant 

E-M 230.5 237.4 235.6 223.9 230.5 228.0 

Backdoor 147.3 150.1 153.1 142.0 145.0 146.0 

Spyware 133.3 141.4 141.4 133.3 141.1 140.4 

Dotstar.05 174.3 179.2 178.7 171.4 177.7 176.7 

Dotstar.1 133.6 141.4 141.4 136.8 140.4 141.1 

Dotstar.2 65.1 71.0 70.9 13.4 13.8 13.8 

Dataset 
PM = 0.75 PM = 0.95 

Global Shared Constant Global Shared Constant 

E-M 215.5 216.9 219.2 174.8 173.8 175.7 

Backdoor 126.1 128.7 131.1 98.9 103.8 103.5 

Spyware 133.9 140.7 140.7 111.6 115.0 115.4 

Dotstar.05 120.5 124.1 124.1 125.6 127.6 128.1 

Dotstar.1 134.1 140.1 138.6 104.2 109.2 108.3 

Dotstar.2 64.8 71.9 72.1 13.4 13.8 13.8 
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3.6.4 Effect of Number of DFAs 

 

 
In this section, we analyze how the number of DFAs affects the overall 

performance. In Table 3.6, we can see the DFAs generated by our double set 

implementation. Table 3.7 shows the corresponding performance results and compares 

them with the original uncompressed version. Similar to the results in Table 3.5, shared 

memory and constant memory achieve competitive performances while the global 

memory-based implementation is not as good as the other two. We can also notice that in 

some cases, the implementation with alphabet reduction leads to higher throughput than 

the uncompressed one. This is because the smaller DFA state transition table can lead to 

more regular memory access patterns and therefore higher cache hit rate. By comparing 

Table 3.5 and Table 3.7, we can see that fewer DFAs result in better performances for the 

same pattern-set. As mentioned before, the number of threads per block to conduct 

pattern matching is reduced with smaller number of DFAs. In the GPU kernel function, 

each thread needs to check whether an accepting state is reached, which potentially leads 

to branch divergence. Also, each thread performs an atomic operation to record the match 

information further impacts the matching speed. Therefore, larger number of threads 

causes poorer performance. In general, from the experiments, we can conclude that the 

best performances are achieved when minimum number of DFAs that fit the available 

Table 3.6: Characteristics of DFAs generated by double set implementation 

Dataset # DFA # Total states 

# Classes 

(before 

merging) 

# Classes (after 

merging) 

E-M 1 28744 88 88 

Backdoor 11 1709391 24 ~ 73 111 

Spyware 16 1374986 32 ~ 61 89 

Dotstar.05 11 1064994 74 ~ 87 90 

Dotstar.1 21 1004455 71 ~ 81 90 

Dotstar.2 38 1367862 60 ~ 77 90 
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memory capacity is used. Another aspect to point out is that the total size of the DFAs 

generated for backdoor pattern-set before alphabet reduction is about 1.67GB, which is 

larger than our GPU global memory size. Therefore, the uncompressed approach is 

unable to process this pattern-set. Alphabet reduction can make this possible by reducing 

the size by nearly half.  

 

3.6.5 Comparison of DFAs generation algorithms 

 

 

In this section, we compare different DFAs generation algorithms discussed in 

Section 3.5. In Figure 3.2, we can see that the results of single set implementation are not 

as good as the others when dealing with complex pattern-sets like spyware. In spyware 

pattern-set, about 6.5% of the rules have weight larger than 3 and combining them with 

large amount of simple rules can cause large DFA state replication. Therefore, the 

number of DFAs generated for spyware using single-set implementation is relatively 

large. The number of DFAs generated using the single set implementation for backdoor 

Table 3.7: Throughput (in Mbps) obtained from DFAs generated by double sets implementa-
tion. 

Dataset 
Uncompressed Global Shared Constant Uncompressed Global Shared Constant 

PM=0.35 PM=0.65 

E-M 236.5 230.5 237.4 235.6 229.6 223.9 230.5 228.0 

Backdoor - 154.6 159.7 157.7 - 150.9 153.8 152.7 

Spyware 178.2 177.7 185.6 185.6 179.2 180.3 182.4 185.0 

Dotstar.05 186.1 186.7 191.2 193.6 187.2 182.9 187.8 190.7 

Dotstar.1 158.9 150.9 160.1 158.9 163.8 156.9 165.6 164.3 

Dotstar.2 71.3 65.1 70.4 70.8 14.1 13.5 13.8 13.8 

 PM=0.75 PM=0.95 

E-M 219.2 215.5 216.9 219.2 176.2 174.8 173.8 175.7 

Backdoor - 133.9 135.6 134.4 - 106.3 107.2 106.5 

Spyware 172.4 168.2 176.2 175.2 138.3 132.5 136.8 137.7 

Dotstar.05 130.8 128.1 129.5 131.9 133.3 131.3 131.9 133.3 

Dotstar.1 161.2 153.1 158.5 160.1 119.8 116.3 118.3 118.9 

Dotstar.2 71.4 63.9 70.9 71.8 13.7 13.5 13.5 13.6 
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and dotstar0.2 pattern-sets are also affected by the combination of complex regular 

expressions and large amount of simple regular expressions. By comparing these two 

algorithms, we can conclude that the double set algorithm is general enough to deal with 

both simple and complex pattern-sets. On the other hand, we need to identify the 

threshold to be used to divide simple and complex sets. According to the weight 

distributions of regular expressions in different pattern-sets shown in Table 3.2, we 

conduct experiments to see how the performances are affected by the weight threshold 

that distinguishes simple regular expression from complex one. As can be seen in Table 

3.2, if we define the threshold to be 2, the percentage of complex regular expressions is 

not larger than 9% for all the pattern-sets. By separating the small amount of complex 

regular expressions from large number of simple regular expressions, we can avoid too 

many state replications. When the threshold becomes larger, more complex regular 

expressions are combined with simple regular expressions. Therefore, the number of 

DFAs generated tends to be larger. 

 
 

 

 
Fig. 3.2: Comparison of number of DFAs generated by two algorithms. 

 

0

5

10

15

20

25

30

35

40

45

E-M Backdoor Spyware Dotstar0.05 Dotstar0.1 Dotstar0.2

N
u

m
b

e
r 
o

f 
D

F
A

s

Threshold 2 Threshold 3 Threshold 4 Threshold 5 Threshold 6 Single set



 

33 

 

Chapter 4 ANML Implementation 
 

 

 

One of the central tasks in our research is related to pattern matching on Micron’s 

Automata Processor. Recall that this platform can be programmed by using ANML, an 

XML-based language to construct Automata Networks. Micron Technology also 

developed a graphic tool called ANML workbench to construct Automata Networks and 

export Automata Networks to XML files. We give an introduction to ANML workbench 

in Section 4.1. We develop tools to parse XML files and construct Automata Networks 

by using our C++ data structures. We show these data structures in Section 4.2. We 

created an ANML parser that allows transforming Automata Networks represented by 

these data structures for further optimizations (such as NFA reduction and alphabet 

reduction). We describe ANML parser in Section 4.3. In Section 4.4, we discuss a 

programming interface called ANML generator to generate Automata Networks using 

our data structures. Finally, in Section 4.5, we discuss optimization techniques for 

Automata Networks.    

 

4.1 ANML Workbench 
 

 

As shown in Figure 4.1, ANML workbench is the graphic tool to construct 

Automata Networks. We can use the available elements including STEs, counters and 

boolean elements in the upper right window on ANML workbench. We can also 

configure the properties for these elements, such as start properties of STEs, symbol sets 

of STEs, target count of counters and counter types of counters, in the lower right 
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window. We can add transitions between elements by drawing lines connecting them. 

Furthermore, we can encapsulate a particular pattern in a block called Macro object and 

then replicate Macro objects to represent the patterns that appear frequently in our 

designs. Therefore, the Macro object increases the reusability of patterns on ANML 

workbench and makes our design more convenient. The block in the middle right window 

is a Macro object that stores the pattern shown in the left window. To check the 

correctness of our designs, ANML workbench provides a simulator to simulate the 

matching process for the user provided input stream. In addition, we can use ANML 

workbench to export our designs to XML files in the format shown in the left of Figure 

4.7. 

 

 

 

 
Fig. 4.1: ANML workbench. 
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4.2 Data Structures for ANML Parser and Generator 
 

 
We use ANML parser to parser the XML files generated by ANML workbench and 

represent corresponding Automata Networks using our C++ data structures. On the other 

hand, we use ANML generator as the programming interface to construct Automata 

Networks. Therefore, both ANML parser and generator rely on the data structures we 

used to represent Automata Networks. In Figure 4.2, we show the general organization of 

our data structures. We create a base class Element to achieve the features shared by all 

the three elements. We then use 3 child classes inheriting from Element to represent 

STEs, counters, and boolean elements. 

Figure 4.3 shows the base structure of Element class. The general design of Element 

class has the variable type to indicate which type this element belongs to. It also stores 

transition information between different elements and has the variable report to indicate 

if it is an accepting element. The ANFA class in Figure 4.4 has variables that are unique 

to STEs. In particular, ANML parser stores symbol information associate to STEs in the 

variable symbols. The start variable shows whether the STE is an all-input, start-of-data 

or normal state. If the STE keeps being active after once being activated, the latch 

variable is set to be true. In Figure 4.5, the counter class stores the information about 

target count in the variable count. We use the variable at_target to determine the type of 

counter (roll, pulse and latch). Similar to counter class, we use boolType to store the type 

 
Fig. 4.2: Organization of data structures to represent Automata Networks.  

 

STE Counter

Element

Boolean
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of boolean elements in the boolean class shown in Figure 4.6. In addition to variables 

shown in these classes, we also implement various functions related to the construction of 

Automata Networks based on these variables, such as defining the symbol set associated 

to STEs, adding transitions between different elements and so on. 

     
 

           
 

 

4.3 ANML Parser 
 

 

The ANML parser allows transforming ANML XML files to our internal data struc-

tures shown in Section 4.2. Figure 4.7 shows a simple example of the mapping between 

Class boolean:public Element { 
          /* boolean type */ 

        string boolType; 

} 

 
 

 

 
Fig. 4.6: Structure of boolean class.  

 

 

Class counter:public Element { 
          /* target count number */ 

        int count; 

 

        /* state upon activation */ 

       string at_target; 

} 

 

Fig. 4.5: Structure of counter class.  

 

 

Class ANFA:public Element 
{ 
         // symbol set  

        int_set *symbols; 

 

        // start info 

        string start; 

 

        //latch info  

        bool latch; 

} 

 

 

Fig. 4.4: Structure of STE 
class.  

 

 

Class Element { 
         //type of element 

     int type; 
 

   //labeled transitions to STEs 

       set<pair<symbol, Element*> > transition_pair; 
 
       //transitions to count port of counters and boolean elements 

       set<Element*> transition; 
 
      //transitions to reset port of counters 

   set<Element*>  reset_tx; 
       

      //if it is an accepting element 

       bool report; 

} 

Fig. 4.3: Structure of Element class.  
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the XML file and its corresponding Automata Network. Libxml2 is a XML C parser li-

brary that is developed for the Gnome project.  Because of its easy usage and high porta-

bility, we use Libxml2 to extract the Automata Network information, including the char-

acteristics of elements and edges, from XML files. To have the intact Automata Network 

structure stored in the XML file, the ANML parser takes all the characteristics of these 

elements described in Section 2.4.2 into account. ANML parser makes it convenient for 

us to apply further optimization algorithms that will be described in Section 4.4 to the 

patterns constructed on ANML workbench and enables the further conversion to Verilog 

files targeting FPGA implementation. 

 

 
 

Fig. 4.7: Transfer from XML file to Automata Network. 
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4.3.1 API functions of ANML parser  

 

 
We show the API functions of ANML parser in Figure 4.8. The anml_parser class 

implements all the functions related to the parsing of XML files by using functions in 

Libxml2 library. We only need to provide the name of XML file(example.xml in this 

case) to the parse function and the start element elem of the Automata Network is 

returned by this function.  

 

4.4 ANML Generator 
 

 

Micron Technology developed ANML workbench to construct Automata Networks. 

However, when the design has large amount of elements and complex transitions 

between elements, we have to make large efforts to construct the design manually. Since 

the easy construction of Automata Networks is important for usability, we provide the 

programming interface called ANML generator to make it easier for users to construct 

their own Automata Networks. By simply utilizing the data structures we have, we can 

create element objects and add transition between them. In this way, we can create the 

corresponding pattern with small efforts. On the other hand, since we already have the 

NFA generation tool allowing different optimizations, such as alphabet reduction, NFA 

state reduction and stride doubling which will be described in Section 4.5. We can apply 

these optimizations on the Automata Networks and use ANML generator to export 

//parse example.xml to our data structures 

anml_parser *ap = new anml_parser(); 

Element* elem = ap->parse(“example.xml”); 

 
Fig. 4.8: API functions of ANML parser.  
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optimized Automata Networks to XML files. Therefore, we can further deploy Automata 

Networks stored in XML files on the Automata Processor. The detailed example is 

illustrated in Figure 4.9. It shows the conversion from the representation using our data 

structures to ANML representation. ANML generator takes the existing Automata 

Network and exports it to the XML file which is compatible with ANML workbench. In 

order to check the correctness of the pattern we generated, ANML generator provides a 

way to visualize the Automata Network structural information with diagrams of abstract 

graphs. Graphviz, an open source graph visualization library, is used to achieve this 

visualization purpose and export the structure to corresponding JPEG file.  

 

 
Fig. 4.9: ANML generator workflow. 
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4.4.1 API functions of ANML generator 

 

 

Figure 4.10 shows the sample code to use API functions in ANML generator to 

construct Automata Networks. We can first define the symbol set chars that leads to the 

transition from STE nfa1 to STE nfa2. We need to insert an integer number 

corresponding to the position of the symbol in ASCII table to chars. We can also create 

counters by configuring the target count and type. We can see the counter types in Table 

4.1. Furthermore, we can add transitions to both the count port and reset port of counters 

as shown in Figure 4.10. Similar to counters, we need to set the boolean type by 

providing the type number to set_type() function each time when we create boolean 

elements. Table 4.2 shows the mapping between boolean elements and type numbers.  

Table 4.1: Counter Types.  

Counter Type 

roll 

pulse 

latch 

 

 

 
Table 4.2: Mapping between boolean ele-
ments and type numbers. 

Boolean Type Type Number 

Inverter 2 

Or 3 

And 4 

Nand 5 

Nor 6 

Sum of Products 7 

Product of Sums 8 

Not Sum of Products 9 

Not Product of Sums 10 

 

 

//create symbol set 

int_set *chars = new int_set();  

//add symbol ’a’ 

chars->insert(97);   

 

ANFA *nfa1 = new ANFA(); 

ANFA *nfa2 = new ANFA(); 

//add transition between STEs 

nfa1->add_transition(chars, nfa2); 

 

Counter *cnt = new Counter(); 

//set target count 

cnt->set_count(3); 

//set counter type to roll counter 

cnt->set_at_target("roll"); 

//add transition to the count port of counter 

nfa1->add_transition(cnt); 

//add transition to the reset port of counter 

nfa2->add_transition(cnt, true); 

 

Boolean *boolean = new Boolean(); 

//set boolean type to “or” 

boolean->set_type(3);    

//add transition to boolean 

nfa1->add_transition(boolean); 

… 

 
Fig. 4.10: Sample code to construct Autom-

ata Networks.  
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Besides the construction of Automata Networks, ANML generator provides the 

feature of converting Automata Networks to XML files. Therefore, XML files can be 

further compiled and deployed on the Automata Processor. In Figure 4.9, we can see that 

our data structures use labeled transition for STEs. However, Automata Networks created 

on ANML workbench associate symbols with STEs rather than with transitions and XML 

files store information of Automata Networks in the same format. In order to export our 

data structures to XML files, we thus first convert our data structures to the 

corresponding structures that integrate symbols with STEs and then we can export these 

converted structures to XML files directly.  We use the sample code in Figure 4.11 to 

achieve the conversion from Automata Networks represented by our data structures to 

XML files. 

 

 

4.5 Optimization Techniques 
 

 

Since useful optimization techniques originally designed for classical NFA can also 

be useful to Automata Networks that has only STEs, we integrate efficient NFA optimi-

zation techniques in [6] to our programming interface.  

The first optimization is called NFA reduction algorithm [6]. As can be observed in 

Figure 4.12, this algorithm causes common prefixes to merge and reduces the total num-

//convert our structures of Automata Networks to intermediate structures 

ANML_ELEMENT *anml_elem; 

anml_elem=nfa1->to_ANML(); 

 

//export intermediate structures to XML file named “ANML” 

anml_elem->to_xml(file,"ANML");  

 
Fig. 4.11: Sample code to export Automata Networks to XML file. 
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ber of states in the NFA. Therefore, NFA reduction algorithm leads to more compact 

NFA which will contribute to the implementations on both FPGA and the Automata Pro-

cessor. We will discuss the FPGA implementation of regular expression matching and 

show how the size of NFA can affect the overall performance of FPGA in Chapter 5. 

 

Secondly, we can apply alphabet reduction to reduce alphabet size as mentioned in 

Section 3.2. As shown in Figure 4.13, if we only use a small subset of symbols from 

ASCII table in the NFA, we can apply alphabet reduction algorithm to divide symbols 

into different classes. Therefore, the number of transitions per state is significantly re-

duced to be the number of classes. Alphabet reduction leads to NFA with smaller size and 

is important for implementations on both memory-based and logic-based hardware plat-

forms. 

Finally, we can reconstruct the original NFA to k-NFA [6] that receives k symbols 

at each transition by using the stride doubling algorithm [6]. Therefore, k symbols can be 

processed for each transition and thus the k-NFA is regarded as k-stride NFA. The k-

NFA can achieve much higher throughput than the original NFA. However, given an 

NFA defined on alphabet ∑, the corresponding k-NFA is defined on alphabet ∑𝑘. In this 

          
 

Fig. 4.12: Effect of NFA reduction algorithm. Accepting states are colored grey. 
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case, alphabet reduction can be applied to reduce increased alphabet size efficiently.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        
                                                                                                             

 
 

Fig. 4.13: Implementation of alphabet reduction algorithm. Accepting states are colored grey.  
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Chapter 5 FPGA implementation 
 

 

 

In this chapter, we focus on the FPGA implementation of regular expression or 

Automata Network matching. In Section 5.1, we propose the general design for the 

FPGA implementation. In Section 5.2, we discuss optimization techniques. Finally, we 

conduct experiments on both synthetic and real datasets. 

 

5.1 General Design 

 
 

FPGA provides a promising platform for Automata Networks. To perform pattern 

matching on FPGA and compare the performances of Automata Processor- and FPGA-

based implementations, we developed a Verilog generator that converts Automata 

Networks to Verilog files. These files can then be deployed on FPGA using traditional 

 
 

 
 

Fig 5.1: (a) Automata Network and (b) logic representation through one-hot encoding scheme. 
The INIT signal is asserted on the first character of a new input stream. The MATCH signal is 
asserted upon matching the pattern. 

(a) 

(b) 
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HDL synthesis, map, place and route features provided by Xilinx ISE design suite [29]. 

FPGA implementation based on the one-hot encoding scheme [13] allows pro-

cessing one input character per clock cycle independent of the number of active states. In 

one-hot encoding scheme, each NFA state is represented by a flip-flop and each symbol 

is represented by one bit. The output of the flip-flop representing a state is and-ed with 

the symbols on its outgoing transitions, and the resulting signals are routed toward the 

flip-flops representing the target states. This basic scheme, first proposed by Floyd and 

Ullman in [13], is later used by most NFA-based implementations on FPGA. Automata 

Networks [11] extend NFA with counter and boolean elements. As mentioned in Section 

2.4.2, the counter element in Automata Networks has three distinct types, namely roll, 

pulse and latch counters. We thus need to create three Verilog counter modules to 

achieve the functionality these three types of counters. Since the primitive modules for 

logic gates are already provided in Verilog, we can easily make use of these modules to 

represent the boolean elements in Automata Networks. We show an Automata Network 

and its logic representation using one-hot encoding scheme in Figure 5.1.  

Note that, for any given clock cycle, the NFA active set is represented by the set of 

flip-flops which are concurrently active. Moreover, interconnections allow multiple state 

transitions to occur in a single clock cycle. 

The overall design schematic is represented in Figure 5.2. Besides the clock and an 

INIT signal, which is set at the beginning of every input stream, the module receives k 

characters at every clock cycle. The output of the module is a set of signals representing 

the output of accepting elements and therefore the match of the corresponding regular 

expressions. The first block stores the alphabet reduction information which will be 
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described in Section 5.2. The output of this block must be decoded to produce a one-hot 

encoding of the processed character, which is the input to the NFA block. This operation 

is performed by the alphabet decoder. The NFA/Automata Networks module is 

implemented as described in Figure 5.1.  

We show the sample Verilog code that achieves the features of STEs, counters and 

boolean elements in Figure 5.3. First, we can assign the output of elements, including 

STEs, counters and boolean elements, to the input of next target elements. To represent 

labeled transitions, we use the ‘&’ symbol in Verilog as the and gate for the state output 

and input symbol. In addition, the output of each state will be updated at every rising 

edge of clock signal. We also create 3 template counter modules, namely counter_latch, 

counter_pulse, and counter_roll, to represent three counter types. Therefore, we can reuse 

these template modules by providing different target numbers of count, input and output 

signals each time. Furthermore, as shown in Figure 5.3, we use the primitive logic 

modules provided in Verilog to achieve the logic functions of different boolean elements. 

For example, we use three and modules and an or module to represent the SoP boolean 

element in the code sample. 

 
 

Fig 5.2: General FPGA design.  
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… 

… 

… 

 

 

5.2 Design Optimizations  
 

 

As discussed in [6], several optimizations can be performed to reduce resource utili-

always @(posedge clk) 

begin 

 

 

       state3_out <= state3_in;  

       state4_out <= state4_in; 

       state5_out <= state5_in; 

 

 

end; 

 

assign and_state4_3 =  state4_out & in[3] ; 

assign and_state2_1 =  state2_out & in[1] ; 

assign state3_in = and_state4_3 | and_state2_1; 

assign state4_in = cnt6_out; 

assign state5_in = bool7_out; 

 

 

 
assign cnt6_in = state5_in; 

//template counter module using the target count as parameter 

counter_latch 

        #(.TARGET(3)) 

        cnt6( 

             .clk(clk), 

             .init(init), 

    .        reset(reset6_in), 

    .        in(cnt6_in), 

            .out(cnt6_out) 

         ); 

 

 
//port1: input: state9_out, state10_out    output:bool7_t1 

and and7_t1(bool24_t1 ,state9_out ,state10_out); 

 

//port2: input: state11_out, state12_out    output:bool7_t2 

and and7_t2(bool24_t2 ,state11_out ,state12_out); 

 

//port3: input: state13_out, state14_out    output:bool7_t3 

and and7_t3(bool24_t3 ,state13_out ,state14_out); 

 

//final output of SoP: bool7_out 

or or7(bool7_out, bool7_t1, bool7_t2, bool7_t3); 

 

Fig. 5.3: Verilog sample code to implement Automata Networks.  
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… 
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zation and lead to a better design.  

First, we can apply single input optimization [6]. If one state only accepts a single 

transition, we can eliminate the use of logic gate and have the negation of input symbol 

directly connected to reset signal of flip-flop. Second, we use multiple outputs optimiza-

tion [6] to further reduce logic utilization. If a state accepts a transition with a symbol set 

whose size is larger than a threshold from another state, the transition can be represented 

as a negation of symbol set. Both of these optimizations reduce the number of LUTs 

needed and facilitate wiring and routing. 

Alphabet reduction [6] is used to reduce alphabet size and thus the number of LUTs 

used. In order to implement alphabet reduction on FPGA, we need to have alphabet trans-

lator to translate symbols into alphabet classes. The most straightforward and efficient 

approach to implement alphabet translator is using combinational logics on FPGA.  

For classical NFA without counter and boolean elements, several additional 

optimizations can be applied. First, the NFA reduction algorithm [6] mentioned in 

Section 4.3 can be used to limit the number of states and thus the number of flip-flops 

used on FPGA. Second, hardware stride doubling [6] aims to improve regular expression 

matching throughput on FPGAs by having multi-level logic gates. In order to traverse 

multiple symbols at each clock cycle, we make use of multiple levels of logic gate while 

keeping the number of flip-flops at the same time. Finally, the algorithmic stride doubling 

[6] approach described in Section 4.3 can be used to reconstruct the original NFA to 

receive multiple symbols at each transition. Therefore, multiple symbols can be 

processed during each clock cycle on FPGA and the performance is improved 

significantly.  
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The above design optimizations are all integrated with our FPGA implementation to 

improve the overall performance. 

 

5.3 Experimental Evaluation 
 

 

In this section, we present our experimental evaluation of FPGA-based 

implementation of Automata Networks.  

First, we create a synthetic NFA generator that can automatically generate NFA 

according to user-defined parameters (including the number of states and the average 

state outdegree). By configuring these parameters, we study how they can affect the 

overall performance of FPGA designs. 

Second, we evaluate the FPGA implementation on two real pattern-sets, called 

spyware and backdoor which are used in Section 3.6 for GPU experiments. 

Third, we evaluate our FPGA design using different Automata Networks, namely 

1D and 2D cellular automaton. These datasets have been designed by Dr. Skadron’s 

group at University of Virginia. 

Finally, we estimate the conservative resource utilizations of different datasets on 

the Automata Processor according to the hardware resource descriptions of Automata 

Processor shown in Table 2.2. Since the hardware of Automata Processor is not available 

for experimentation, future work should focus on the comparisons of both resource 

utilization and performance between FPGA- and Automata Processor-based 

implementations. 

To evaluate our design, we synthesized all these datasets on Xilinx Virtex-2P 

XC2VP20 [30], Virtex-4 XC4VLX25 [31] and Virtex-5 XC5VLX50 [32] devices. We 
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used Xilinx ISE design suite, v. 10.1 [29]. 

 

5.3.1 Effect of Average Node Outdegree 

 
 

 
Figure 5.4 and 5.5 shows the slice utilization and performance of NFA, consisting of 

1000 states with different average node outdegrees. As we can see, while the number of 

 
Fig. 5.5: FPGA performance of different average outdegrees per state. 

 

 
Fig. 5.4: Slice utilization of different average outdegrees per state. 
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average outgoing transitions increases from 2 to 6, the slice utilization increases and the 

performance decreases. Recall that transitions are implemented by LUTs in our FPGA 

implementation. Therefore, a larger number of average outgoing transitions per state 

translates to larger LUT utilization. Since a lower LUT utilization and amount of wires 

make the place and route operation more efficient and lead to a higher operating 

frequency, performance goes down when the avarage number of outgoing transitions per 

state increases. In addition, the estimated Automata Processor block utilization is about 

4.16% which is smaller than the FPGA slice utilization. 

 

5.3.2 Effect of Number of States 

 

 

 
Fig. 5.6: Resource utilization of different number of states. 
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Figure 5.6 and Figure 5.7 show the effect of increasing the number of states when 

keeping the average node outdegree fixed. As the total numbers of states and transitions 

increase, the corresponding number of flip-flops and LUTs used also becomes larger. 

Similar to Figure 5.5, the higher performance is achieved from lower penalty on the 

operating frequency and larger flip-flop and LUT utilization will suffer from the 

overhead caused by more difficult wiring and routing. Therefore, FPGA implementation 

of pattern matching should focus on reducing the logic resources utilization and 

facilitating wiring and routing. Furthermore, as shown in Figure 5.6, the resource 

utilization of the Automata Processor is much smaller than that of FPGA for the same 

NFA. 

 

5.3.4 Real Regular Expression Pattern-set Evaluation 

 

 

In this section, we aim to evaluate the performance of regular expression matching 

on FPGA. Since the the NFA representations of the synthetic pattern-sets from Section 

 
Fig. 5.7: FPGA performance of different number of states. 
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3.6.1 have large number of states, the amount of flip-flops needed exceeds the capacity of 

FPGA. Therefore, we select two real pattern-sets named spyware and backdoor for our 

expriments. As shown in Figure 5.8, spyware has the slice utilization around 60% on 

Virtex-5 XC5CLX50 device. In Figure 5.9 spyware achieves performance of 3.5 Gbps. 

On the other hand, although the slice utilization of backdoor is smaller than that of 

spyware, its performance is not as good as that of spyware. From the expriments, we find 

that the ratio between the number of LUTs and flip-flops used by backdoor is nearly 3 

times larger than that of spyware. Therefore, the more difficult wiring and routing of 

backdoor result in lower clock frequency and thus worse performance. From our 

estimation, the block utilizations of spyware and backdoor on the Automata Processor are 

32% and 20% respectivly. By comparing them with the data in Figure 5.8, we can see 

that both of these pattern-sets consume smaller amount of resources on the Automata 

Processor. 

 

 
Fig. 5.8: Slice utilization of spyware and backdoor. 
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5.3.5 1D Cellular Automaton 

 

 

 

 

 
Fig. 5.11: 1DCA with 3 cells.   

 
Fig. 5.10: Design of 1DCA cell.   

 
Fig. 5.9: FPGA performance of spyware and backdoor. 
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The 1D cellular automaton (1DCA) is a one-dimensional cellular automaton where 

there are two possible states and a rule (rule 110 [28]) shown in Table 5.1 to determine 

the state of a cell in the next generation. Furthermore, the elementary cellular automaton 

with rule 110 is known to be Turing complete and capable of universal computation. 

In general, as provided in Figure 5.10 and Figure 5.11, each cell can have the state 

of either alive or dead. The next state of each cell depends on the state of central element 

and the states of two neighbors. As we can see, the inputs from two neighboring cells and 

the cell itself to the SoP (Sum of Products) boolean element determine the next state of 

the current cell. Therefore, we can connect different number of cells to simulate the rule 

110. 

 

 
Fig. 5.12: Resource utilization of 1DCA.   

 

Table 5.1: Rule 110 for 1D Cellular Automaton.  
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We conduct experiments on FPGA using 1DCA consisting of 8~256 cells. As 

shown in Figure 5.12, the biggest 1DCA design consists of 256 cells and the slice 

utilization is around 15% on Virtex5 XC5VLX50. The resource utilization of the 

Automata Processor is almost 3 times larger than that of FPGA for the same size of 

design. At the same time, in Figure 5.13, the throughput that can be achieved for 256 

cells is larger than 3 Gbps on both Virtex 4 XC4VLX25 and Virtex 5 XC5VLX50 

devices. 

 

5.3.6 2D Cellular Automaton 

 

Table 5.2: Rule of 2D Cellular Automaton.  

        # of alive 

neighbors  

  Self            

  status  

      <2       2  3  >3  

Alive  Dead  Alive  Alive  Dead  

Dead  Dead  Dead  Alive  Dead  

 

 
Fig. 5.13: FPGA performance of 1DCA.   
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In this section, we evaluate the performance of 2D cellular automaton which 

implements the famous Game of Life [2]. Game of Life is an infinite two-dimensional 

orthogonal grid of square cells, each with the state of either alive or dead. Every cell 

interacts with its eight neighbors, which are the cells that are horizontally, vertically, or 

 
Fig. 5.15: 3x3 2DCA.  

 
Fig. 5.14: Design of 2DCA. 
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diagonally adjacent. At each step in time, transitions obeying the rule shown in Table 5.2 

occur. As we can see from the design, counters are used to count the number of alive 

neighbors and determine the state of next generation. Game of Life is also known to be 

Turing complete. The general ANML design of Game of Life is shown in Figure 5.14 

and Figure 5.15.  

The resource utilizations of the 2DCA implementation on FPGA and Automata 

Processor are shown in Figure 5.16. We show the FPGA performance in Figure 5.17. 

2DCA with 8x12 cells is the largest feasible size that can be implemented on the 

Automata Processor. As we can see from the figure, its slice utilization is around 20~30% 

for different FPGA devices. When the size of design is larger than 15x16, the slice 

utilization of Virtex2 and Virtex4 becomes 99% and 88% respectively. In this case, we 

can also see the significant performance loss on all three devices. In addition, each cell 

has 3 counters in the design and their target counts are 2, 3 and 4. The larger target count 

a counter has, the larger number of flip-flops is needed to represent it. Therefore, the 

relatively low slice utilization is due to these small target counts. However, automaton 

designs using counters with larger target counts would lead to higher slice utilization. 
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Fig. 5.17: FPGA performance of 2DCA. 

 
Fig. 5.16: Resource utilization of 2DCA.  
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Chapter 6 Summary 
 

 

 

Regular expression matching is a central task in several networking applications, 

where the packet payload must be inspected against sets of patterns of interest. Hardware 

implementations of regular expression matching engines fall into two categories: 

memory-based and logic-based solutions. In both cases, the design aims to maximize the 

processing throughput and minimize the resources requirements, either in terms of 

memory or of logic cells.  In this thesis, we study both the memory-based and logic-based 

solutions. 

First, as the memory-based implementation of regular expression matching, GPU 

implementation achieves good performance because of its massive parallelism. In this 

work, we consider different approaches to regular expression matching on GPUs. To this 

end, we have used datasets of practical size and complexity and explored advantages and 

limitations of DFA-based implementations. Our evaluation shows that, because of the 

regularity of its computation, an uncompressed DFA solution achieves good performance 

and is scalable in terms of the number of packet-flows that are processed in parallel. 

However, on large and complex datasets, such representation may lead to exceeding the 

memory capacity of the GPU. By dividing regular expressions into multiple clusters and 

applying alphabet reduction to DFAs, we can alleviate the memory pressure efficiently 

without much performance impacts. 

Second, we present our FPGA implementation. We convert both classical NFA and 

Automata Network to the logic representations on FPGA and conduct pattern matching 

on real and synthetic datasets. Furthermore, according to the experiment results, FPGA 
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proves to be a preferred platform to conduct regular expression matching.  However, the 

bottom neck of FPGA implementation comes from the limited number of flip-flops. 

When the number of NFA states becomes large, it may exceed the FPGA capacity. In 

addition, low reconfigurability, higher power consumption and a lack of scalability in the 

number of concurrent flows add constraints to FPGA implementation. On the other hand, 

we give conservative estimations of the resource utilization on the Automata Processor 

for different datasets. By comparing the resource utilizations of FPGA and Automata 

Processor, we can have the following conclusions. First, the resource utilization of FPGA 

is much larger than that of Automata Processor if there are no counters and boolean 

elements. Second, since the numbers of counters and boolean elements are limited on 

Automata Processor, the resource utilizations of FPGA are smaller than the resource 

utilizations of Automata Processor for both 1DCA and 2DCA designs. In addition, 

because we can conduct pattern matching for 8~48 input streams concurrently on the 

Automata Processor, the Automata Processor is preferred in the case of multiple input 

streams. Furthermore, as a memory-based solution, the Automata Processor provides 

better reconfigurability than FPGA. 

 

6.1 Future Work 
 

 

First, Micron’s Automata Processor has been announced in November 2013, but is 

not yet available for experimentations. Future work should focus on conducting various 

experiments on this platform. We can use different benchmarks to evaluate the 

performance and efficiency of automata-based tasks on the FPGA versus on the 

Automata Processor, providing insight into which technology is best suited for automata-
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based computations under various circumstances. 

Second, hybrid logic-memory based designs for faster reconfiguration can be 

implemented for FPGA. Hybrid-FA [3] is a particular class of NFA that consists of 

multiple DFA connected in a hierarchical fashion. We will investigate the deployment of 

these automata on FPGA. For example, a possible implementation can use the one-hot 

encoding scheme [13] to represent interconnections among DFAs, and storing the DFA 

states in memory. More generally, given an FPGA, one can imagine partitioning the 

design into memory-based and logic-based components. A general way to effectively 

perform this partitioning on FPGA can be explored. 

Finally, large datasets lead to the need for FA partitioning and judicious partitioning 

is required to efficiently leverage the on-board resources. FPGA-based designs require 

efficient routing among multiple hardware partitions or memory banks. FA partitioning 

can lead to a limited degree of state replication and parallel operating on different 

partitions. Therefore, efficient automata partitioning schemes can be explored in the 

future work. 
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