Correlated Equilibrium and Communication in Games
Francoise Forges, CEREMADE, Université Paris-Dauphine

Article Outline

Glossary

I. Definition of the Subject and its Importance

II. Introduction

III. Correlated Equilibrium: Definition and Basic Properties
IV. Correlated Equilibrium and Communication

V. Correlated Equilibrium in Bayesian Games

VI. Related Topics and Future Directions

VII. Bibliography

Acknowledgements

The author wishes to thank Elchanan Ben-Porath, Frédéric Koessler, R.
Vijay Krishna, Ehud Lehrer, Bob Nau, Indra Ray, Jérome Renault, Eilon
Solan, Sylvain Sorin, Bernhard von Stengel, Tristan Tomala, Amparo Ur-
bano, Yannick Viossat and, especially, Olivier Gossner and Péter Vida, for
useful comments and suggestions.

Glossary

Bayesian game: an interactive decision problem consisting of a set of n
players, a set of types for every player, a probability distribution which ac-
counts for the players’ beliefs over each others’ types, a set of actions for
every player and a von Neumann-Morgenstern utility function defined over
n-tuples of types and actions for every player.

Nash equilibrium: in an n-person strategic form game, a strategy n-tuple
from which unilateral deviations are not profitable.

von Neumann-Morgenstern utility function: a wtility function which
reflects the individual’s preferences over lotteries. Such a utility function
is defined over outcomes and can be extended to any lottery A by taking
expectation with respect to A.



Pure strategy (or simply strategy): a mapping which, in an interac-
tive decision problem, associates an action with the information of a player
whenever this player can make a choice.

Sequential equilibrium: a refinement of the Nash equilibrium for n-person
multistage interactive decision problems, which can be loosely defined as a
strategy n-tuple together with beliefs over past information for every player,
such that every player maximizes his expected utility given his beliefs and
the others’ strategies, with the additional condition that the beliefs satisfy
(possibly sophisticated) Bayes updating given the strategies.

Strategic (or normal) form game: an interactive decision problem con-
sisting of a set of n players, a set of strategies for every player and a (typ-
ically, von Neumann-Morgenstern) utility function defined over n-tuples of
strategies for every player.

Utility function: a real valued mapping over a set of outcomes which re-
flects the preferences of an individual by associating a utility level ( a “pay-
off”) with every outcome.

I. Definition of the Subject and its Importance

The correlated equilibrium is a game theoretic solution concept. It was
proposed by Aumann (1974, 1987) in order to capture the strategic corre-
lation opportunities that the players face when they take into account the
extraneous environment in which they interact. The notion is illustrated in
Section II. A formal definition is given in Section III. The correlated equilib-
rium also appears as the appropriate solution concept if preplay communi-
cation is allowed between the players. As shown in Section IV, this property
can be given several precise statements according to the constraints imposed
on the players’ communication, which can go from plain conversation to ex-
change of messages through noisy channels. Originally designed for static
games with complete information, the correlated equilibrium applies to any
strategic form game. It is geometrically and computationally more tractable
than the better known Nash equilibrium. The solution concept has been
extended to dynamic games, possibly with incomplete information. As an
illustration, we define in details the communication equilibrium for Bayesian
games in Section V.



II. Introduction

Ezxample
Consider the two-person game known as “chicken”, in which each player ¢
can take a “pacific” action (denoted as p’) or an “aggressive” action (denoted
as a'):
P a2
p' (88) (3,10)
a' (10,3) (0,0)

The interpretation is that player 1 and player 2 simultaneously choose an
action and then get a payoff, which is determined by the pair of chosen
actions according to the previous matrix. If both players are pacific, they
both get 8. If both are aggressive, they both get 0. If one player is aggressive
and the other is pacific, the aggressive player gets 10 and the pacific one
gets 3. This game has two pure Nash equilibria (p',a?), (a!,p?) and one
mixed Nash equilibrium in which both players choose the pacific action with
probability %, resulting in the expected payoff 6 for both players. A possible
justification for the latter solution is that the players make their choices as
a function of independent extraneous random signals. The assumption of
independence is strong. Indeed, there may be no way to prevent the players’
signals from being correlated.

Consider a random signal which has no effect on the players’ payoffs
and takes three possible values: low, medium or high, occurring each with
probability % Assume that, before the beginning of the game, player 1
distinguishes whether the signal is high or not, while player 2 distinguishes
whether the signal is low or not. The relevant interactive decision problem
is then the extended game in which the players can base their action on the
private information they get on the random signal, while the payoffs only
depend on the players’ actions. In this game, suppose that player 1 chooses
the aggressive action when the signal is high and the pacific action otherwise.
Similarly, suppose that player 2 chooses the aggressive action when the signal
is low and the pacific action otherwise. We show that these strategies form
an equilibrium in the extended game. Given player 2’s strategy, assume that
player 1 observes a high signal. Player 1 deduces that the signal cannot be
low so that player 2 chooses the pacific action; hence player 1’s best response
is to play aggressively. Assume now that player 1 is informed that the signal
is not high; he deduces that with probability %, the signal is medium (i.e.,
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not low) so that player 2 plays pacific and with probability %, the signal
is low so that player 2 plays aggressive. The expected payoff of player 1 is
5.5 if he plays pacific and 5 if he plays aggressive; hence, the pacific action
is a best response. The equilibrium conditions for player 2 are symmetric.
To sum up, the strategies based on the players’ private information form a
Nash equilibrium in the extended game in which an extraneous signal is first
selected. We shall say that these strategies form a “correlated equilibrium”.
The corresponding probability distribution over the players’ actions is

P a?
11 1

p 3 3 (1)

al % 0

and the expected payoft of every player is 7. This probability distribution
can be used directly to make private recommendations to the players before
the beginning of the game (see the canonical representation below).

III. Correlated Equilibrium: Definition and Basic Properties

Definition

A game in strategic form G = (N, (3%);cn, (u')ien) consists of a set of
players N together with, for every player i € N, a set of strategies (for in-
stance, a set of actions) ¥’ and a (von Neumann-Morgenstern) utility function
u' 1Y — R, where ¥ = [,y ¥ is the set of all strategy profiles. We assume
that the sets N and >, i € N, are finite.

A correlation device d = (€, q, (P");en) is described by a finite set of
signals ), a probability distribution ¢ over Q and a partition P! of Q for
every player ¢ € N. Since €2 is finite, the probability distribution ¢ is just a
real vector ¢ = (q(w))weq such that g(w) > 0 and Zweﬂ q(w) =1.

From G and d, we define the extended game G, as follows:

e w is chosen in (2 according to ¢
e cvery player i is informed of the element P’(w) of P? which contains w

e G is played: every player i chooses a strategy o' in X' and gets the
utility u'(0), o = (07)en-



A (pure) strategy for player i in Gy is a mapping o' :  — X! which is
Pi-measurable, namely, such that o'(w') = o'(w) if W' € P'(w). The inter-
pretation is that, in Gy, every player i chooses his strategy o' as a function
of his private information on the random signal w which is selected before
the beginning of G.

According to Aumann (1974), a correlated equilibrium of G is a pair
(d,a), which consists of a correlation device d = (£, ¢, (P*)icn) and a Nash
equilibrium o = (a');en of Gy. The equilibrium conditions of every player i,
conditionally on his private information, can be written as:

Y. aWP)d(aW) = Y g P W) aTi(W)  (2)

w'€Pt(w) w'€Pt(w)

Vie NV e £ Vw € Q: g(w) >0
where o' = (o) 4.

A mixed Nash equilibrium p = (p');en of G can be viewed as a correlated
equilibrium of G. By definition, every p’ is a probability distribution over
»?, the finite set of pure strategies of player i. Let us consider the correlation
device d = (2,¢,(P")ien) in which Q@ = ¥ = [[;.y ¥, ¢ is the product
probability distribution induced by the mixed strategies (i.e., q((07);en) =
[Ljen /(07)) and for each i, P" is the partition of Q generated by X' (i.e., for
w,v €N ve P(w) & v =uw). Let o' : ¥ — X be the projection over X
(i.e., a'(o) = o%). The correlation device d and the strategies o' defined in
this way form a correlated equilibrium. As we shall see below, this correlated
equilibrium is “canonical”.

Canonical representation

A canonical correlated equilibrium of G is a correlated equilibrium in
which Q@ = % = [, 5 ¥/ while for every player 4, the partition P’ of ¥ is
generated by ¥’ and o' : ¥ — X' is the projection over ¥'. A canonical cor-
related equilibrium is thus fully specified by a probability distribution g over
3. A natural interpretation is that a mediator selects ¢ = (07),cn according
to ¢ and privately recommends o° to player i, for every i € N. The players
are not forced to obey the mediator, but o is selected in such a way that
player ¢ cannot benefit from deviating unilaterally from the recommendation
o', i.e., " = o' maximizes the conditional expectation of player i’s payoff
u' (7%, 07") given the recommendation ¢*. A probability distribution ¢ over ¥



thus defines a canonical correlated equilibrium if and only if it satisfies the
following linear inequalities:

Y aloTleYd(et o) = Y (o ol (o)

o—iex—t o—iex—i
Vi € N,Vo' € X' : q(o") > 0,V7' € &

or, equivalently,

Z q(Ui,O'_i)ui(a'i,O'_i) > Z q(O'i,U_i)ui(Ti,O'_i)

o—iex—i otenTt
Vi € N,VYo', 7" € &' (3)

The equilibrium conditions can also be formulated ex ante:

Y alo)u(o) =) qloyu'(a’(a'),07)

oex oex
Vi e N,Vao': ¥ — %

The following result is an analog of the “revelation principle” in mech-
anism design (see, e.g., Myerson (1982)): let (a,d) be a correlated equilib-
rium associated with an arbitrary correlation device d = (2, q, (P")icn). The
corresponding “correlated equilibrium distribution”, namely, the probability
distribution induced over ¥ by q and «, defines a canonical correlated equi-
librium. For instance, in the introduction, (1) describes a canonical correlated
equilibrium.

Duality and existence

From the linearity of (3), duality theory can be used to study the prop-
erties of correlated equilibria, in particular to prove their existence without
relying on Nash (1951)’s theorem and its fixed point argument (recall that
every mixed Nash equilibrium is a correlated equilibrium). Hart and Schmei-
dler (1989) establish the existence of a correlated equilibrium by constructing
an auxiliary two person zero-sum game and applying the minimax theorem.
Nau and McCardle (1990) derive another elementary proof of existence from
an extension of the “no arbitrage opportunities” axiom that underlies sub-
jective probability theory. They introduce jointly coherent strategy profiles,
which do not expose the players as a group to arbitrage from an outside
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observer. They show that a strategy profile is jointly coherent if and only
if it occurs with positive probability in some correlated equilibrium. From a
technical point of view, both proofs turn out to be similar. Myerson (1997)
makes further use of the linear structure of correlated equilibria by introduc-
ing dual reduction, a technique to replace a finite game with a game with
fewer strategies, in such a way that any correlated equilibrium of the reduced
game induces a correlated equilibrium of the original game.

Geometric properties

As (3) is a system of linear inequalities, the set of all correlated equilib-
rium distributions is a convex polytope. Nau et al. (2004) show that if it
has “full” dimension (namely, dimension |3| — 1), then all Nash equilibria lie
on its relative boundary. Viossat (2006) characterizes in addition the class
of games whose correlated equilibrium polytope contains a Nash equilibrium
in its relative interior. Interestingly, this class of games includes two person
zero-sum games but is not defined by “strict competition” properties. In
two person games, all extreme Nash equilibria are also extreme correlated
equilibria (Evangelista and Raghavan (1996), Gomez-Canovas et al. (1999));
this result does not hold with more than two players. Finally, Viossat (2005)
proves that having a unique correlated equilibrium is a robust property, in
the sense that the set of n person games with a unique correlated equilibrium
is open. The same is not true for Nash equilibrium (unless n = 2).

Complezity

From (3), correlated equilibria can be computed by linear programming
methods. Gilboa and Zemel (1989) show more precisely that the complexity
of standard computational problems is “NP-hard” for the Nash equilibrium
and polynomial for the correlated equilibrium. Examples of such problems
are: “Does the game G have a Nash (resp., correlated) equilibrium which
yields a payoff greater than r to every player (for some given number r)?”
and “Does the game G have a unique Nash (resp., correlated) equilibrium?”.
Papadimitriou (2005) develops a polynomial-time algorithm for finding cor-
related equilibria, which is based on a variant of the existence proof of Hart
and Schmeidler (1989).

Foundations
By re-interpreting the previous canonical representation, Aumann (1987)
proposes a decision theoretic foundation for the correlated equilibrium in



games with complete information, in which ¥ for ¢ € N, stands merely for
a set of actions of player 7. Let €2 be the space of all states of the world;
an element w of €} thus specifies all the parameters which may be relevant
to the players’ choices. In particular, the action profile in the underlying
game G is part of the state of the world. A partition P’ describes player
1’s information on €). In addition, every player ¢ has a prior belief, i.e., a
probability distribution, ¢° over Q. Formally, the framework is similar as
above except that the players possibly hold different beliefs over Q. Let af(w)
denote player i’s action at w; a natural assumption is that player ¢ knows the
action he chooses, namely that o' is P-measurable. According to Aumann
(1987), player i is Bayes-rational at w if his action o’(w) maximizes his
expected payoff (with respect to ¢') given his information P?(w). Note that
this is a separate rationality condition for every player, not an equilibrium
condition. Aumann (1987) proves the following result: Under the common
prior assumption (namely, ¢' = q, i € N ), if every player is Bayes-rational
at every state of the world, the distribution of the corresponding action profile
a s a correlated equilibrium distribution. The key to this decision theoretic
foundation of the correlated equilibrium is that, under the common prior
assumption, Bayesian rationality amounts to (2).

If the common prior assumption is relaxed, the previous result still holds,
with subjective prior probability distributions, for the subjective correlated
equilibrium which was also introduced by Aumann (1974). The latter solu-
tion concept is defined in the same way as above, by considering a device
(22, (¢")ien, (PY)ien), with a probability distribution ¢° for every player 4,
and by writing (2) in terms of ¢’ instead of q. Brandenburger and Dekel
(1987) show that (a refinement of) the subjective correlated equilibrium is
equivalent to (correlated) rationalizability, another well-established solution
concept which captures players’ minimal rationality. Rationalizable strate-
gies reflect that the players commonly know that each of them makes an
optimal choice given some belief. Nau and McCardle (1991) reconcile ob-
jective and subjective correlated equilibrium by proposing the no arbitrage
principle as a unified approach to individual and interactive decision prob-
lems. They argue that the objective correlated equilibrium concept applies
to a game that is revealed by the players’ choices, while the subjective corre-
lated equilibrium concept applies to the “true game”; both lead to the same
set of jointly coherent outcomes.



IV. Correlated Equilibrium and Communication

As seen in the previous section, correlated equilibria can be achieved in
practice with the help of a mediator and emerge in a Bayesian framework
embedding the game in a full description of the world. Both approaches
require to extend the game by taking into account information which is not
generated by the players themselves. Can the players reach a correlated
equilibrium without relying on any extraneous correlation device, by just
communicating with each other before the beginning of the game?

Consider the game of “chicken” presented in the introduction. The prob-

ability distribution
2

=3
IS
N

pl

al

(4)

Wi O
O NI

describes a correlated equilibrium, which amounts to choosing one of the
two pure Nash equilibria, with equal probability. Both players get an ex-
pected payoff of 6.5. Can they safely achieve this probability distribution if
no mediator tosses a fair coin for them? The answer is positive, as shown by
Aumann et al. (1968). Assume that before playing “chicken”, the players
independently toss a coin and simultaneously reveal to each other whether
heads or tails obtains. Player 1 tells player 2 “A'” or “t!” and, at the same
time, player 2 tells player 1 “h?” or “t2”. If both players use a fair coin, reveal
correctly the result of the toss and play (p', a?) if both coins fell on the same
side (i.e., if (', h?) or (t!,t?) is announced) and (a',p?) otherwise (i.e., if
(R, %) or (!, h?) is announced), they get the same effect as a mediator using
(4). Furthermore, none of them can gain by unilaterally deviating from the
described strategies, even at the randomizing stage: the two relevant out-
comes, [(h',h?) or (t!,1?)] and [(h',t?) or (¢!, h?)], happen with probability
% provided that one of the players reveals the toss of a fair coin. This proce-
dure is known as a “jointly controlled lottery”. An important feature of the
previous example is that, in the correlated equilibrium described by (4), the
players know each other’s recommendation. Hence, they can easily reproduce
(4) by exchanging messages that they have selected independently. In the cor-
related equilibrium described by the probability distribution (1), the private
character of recommendations is crucial to guarantee that (p', p?) be played
with positive probability. Hence one cannot hope that a simple procedure
of direct preplay communication be sufficient to generate (1). However, the



fact that direct communication is necessarily public is typical of two-person
games.

Given the game G = (N, (Z)ien, (u')ien), let us define a (bounded)
“cheap talk” extension ext(G) of G as a game in which T stages of costless,
unmediated preplay communication are allowed before G is played. More
precisely, let M be a finite set of messages for player i, i € N, at stage t,
t =1,2,..T; at every stage t of ext(G), every player i selects a message in
M;}; these choices are made simultaneously before being revealed to a subset
of players at the end of stage ¢. The rules of ext(G) thus determine a set of
“senders” for every stage t (those players ¢ for whom M/ contains more than
one message) and a set of “receivers” for every stage t. The players perfectly
recall their past messages. After the communication phase, they choose their
strategies (e.g., their actions) as in G; they are also rewarded as in G, in-
dependently of the preplay phase, which is thus “cheap”. Communication
has an indirect effect on the final outcome in G, since the players make their
decisions as a function of the messages that they have exchanged. Specific
additional assumptions are often made on ext(G), as we will see below.

Let us fix a cheap talk extension ezt(G) of G and a Nash equilibrium
of ext(G). As a consequence of the previous definitions, the distribution
induced by this Nash equilibrium over ¥ defines a correlated equilibrium
of G (this can be proved in the same way as the canonical representation of
correlated equilibria stated in Section III). The question raised in this section
is whether the reverse holds.

If the number of players is two, the Nash equilibrium distributions of
cheap talk extensions of G form a subset of the correlated equilibrium dis-
tributions: the convex hull of Nash equilibrium distributions. Indeed, the
players have both the same information after any direct exchange of mes-
sages. Conversely, by performing repeated jointly controlled lotteries like in
the example above, the players can achieve any convex combination (with
rational weights) of Nash equilibria of G' as a Nash equilibrium of a cheap
talk extension of G.. The restriction on probability distributions whose com-
ponents are rational numbers is only needed as far as we focus on bounded
cheap talk extensions.

Barany (1992) establishes that, if the number of players of G is at least
four, every (rational) correlated equilibrium distribution of G' can be realized
as a Nash equilibrium of a cheap talk extension ext(G), provided that ext(G)
allows the players to publicly check the record of communication under some
circumstances. The equilibria of ext(G) constructed by Bardny involve that
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a receiver gets the same message from two different senders; the message is
nevertheless not public thanks to the assumption on the number of players.
At every stage of ext(G), every player can ask for the revelation of all past
messages, which are assumed to be recorded. Typically, a receiver can claim
that the two senders’ messages differ. In this case, the record of communi-
cation surely reveals that either one of the senders or the receiver himself
has cheated; the deviator can be punished (at his minmax level in G) by the
other players.

The punishments in Bédrany (1992)’s Nash equilibria of ext(G) need not
be credible threats. Instead of using double senders in the communication
protocols, Ben-Porath (1998, 2003) proposes a procedure of random moni-
toring, which prescribes a given behavior to every player in such a way that
unilateral deviations can be detected with probability arbitrarily close to 1.
This procedure applies if there are at least three players, which yields an
analog of Barany’s result already in this case. If the number of players is
exactly three, Ben-Porath (2003) needs to assumes, as Bardny (1992), that
public verification of the record of communication is possible in ext(G) (see
Ben-Porath (2006)). However, Ben-Porath concentrates on (rational) corre-
lated equilibrium distributions which allow for strict punishment on a Nash
equilibrium of G; he constructs sequential equilibria which generate these
distributions in ext(G), thus dispensing with incredible threats. At the price
of raising the number of players to five or more, Gerardi (2004) proves that
every (rational) correlated equilibrium distribution of G can be realized as a
sequential equilibrium of a cheap talk extension of G which does not require
any message recording. For this, he builds protocols of communication in
which the players base their decisions on majority rule, so that no punish-
ment is necessary.

We have concentrated on two extreme forms of communication: mediated
communication, in which a mediator performs lotteries and sends private
messages to the players and cheap talk, in which the players just exchange
messages. Many intermediate schemes of communication are obviously con-
ceivable. For instance, Lehrer (1996) introduces (possibly multistage) “me-
diated talk”: the players send private messages to a mediator, but the latter
can only make deterministic public announcements. Mediated talk captures
real-life communication procedures, like elections, especially if it lasts only
for a few stages. Lehrer and Sorin (1997) establish that whatever the number
of players of G, every (rational) correlated equilibrium distribution of G can
be realized as a Nash equilibrium of a single stage mediated talk extension of
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G. Ben-Porath (1998) proposes a variant of cheap talk in which the players
do not only exchange verbal messages but also “hard” devices such as urns
containing balls. This extension is particularly useful in two-person games
to circumvent the equivalence between the equilibria achieved by cheap talk
and the convex hull of Nash equilibria. More precisely, the result of Ben-
Porath (1998) stated above holds for two-person games if the players first
check together the content of different urns, and then each player draws a
ball from an urn that was chosen by the other player, so as to guarantee
that one player only knows the outcome of a lottery while the other one only
knows the probabilities of this lottery.

The various extensions of the basic game G considered up to now, with
or without a mediator, implicitly assume that the players are fully rational.
In particular, they have unlimited computational abilities. By relaxing that
assumption, Urbano and Vila (2002) and Dodis et al. (2000) build on ear-
lier results from cryptography so as to implement any (rational) correlated
equilibrium distribution through unmediated communication, including in
two-person games.

As the previous paragraphs illustrate, the players can modify their inti-
tial distribution of information by means of many different communication
protocols. Gossner (1998) proposes a general criterion to classify them: a
protocol is “secure” if under all circumstances, the players cannot mislead
each other nor spy on each other. For instance, given a cheap talk extension
ext(G), a protocol P describes, for every player, a strategy in ext(G) and a
way to interpret his information after the communication phase of ext(G).
P induces a correlation device d(P) (in the sense of Section III). P is secure
if, for every game G and every Nash equilibrium o of Ggp), the following
procedure is a Nash equilibrium of ext(G): communicate according to the
strategies described by P in order to generate d(P) and make the final choice,
in G, according to a. Gossner (1998) gives a tractable characterization of
secure protocols.

V. Correlated Equilibrium in Bayesian Games

A Bayesian game I' = (N, (T);cn, p, (A)ien, (v)ien) consists of: a set of
players N; for every player i € N, a set of types T, a probability distribution
plover T =1]] jeN T7, a set of actions A* and a (von Neumann-Morgenstern)
utility function v : T'x A — R, Where A=1]] jeN AJ. For simplicity, we make
the common prior assumption: p* = p for every ¢ € N. All sets are assumed
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finite. The interpretation is that a virtual move of nature chooses t = (#);en
according to p; player i is only informed of his own type t'; the players then
choose simultaneously an action. We will focus on two possible extensions
of Aumann (1974)’s solution concept to Bayesian games: the strategic form
correlated equilibrium and the communication equilibrium. Without loss of

generality, the definitions below are given in “canonical form” (see Section
I1I).

Strategic form correlated equilibrium

A (pure) strategy of player i in I is a mapping o’ : T* — A%, i € N. The
strategic form of I' is a game G(I'), like the game G considered in Section
ITI, with sets of pure strategies ¥; = A;F and utility functions u® over ¥ =
[[;cy X computed as expectations with respect to p: u'(0) = E[v'(t,o(t))],
with o(t) = (0'(t"))sen. A strategic form correlated equilibrium, or simply,
a correlated equilibrium, of a Bayesian game I' is a correlated equilibrium,
in the sense of Section III, of G(I'). A canonical correlated equilibrium of
I' is thus described by a probability distribution () over ¥, which selects an
N-tuple of pure strategies (0%);cn. This lottery can be thought of as being
performed by a mediator who privately recommends ¢! to player i, i € N,
before the beginning of I', i.e., before (or in any case, independently of)
the chance move choosing the N-tuple of types. The equilibrium conditions
express that, once he knows his type t, player 7 cannot gain in unilaterally
deviating from o*(t%).

Communication equilibrium

Myerson (1982) transforms the Bayesian game I' into a mechanism design
problem by allowing the mediator to collect information from the players
before making them recommendations. Following Forges (1986) and Myerson
(1986a), a canonical communication device for I' consists of a system ¢ of
probability distributions ¢ = (q(.|t))ier over A. The interpretation is that
a mediator invites every player i, i € N, to report his type t¢, then selects
an N-tuple of actions a according to ¢(.|t) and privately recommends a’ to
player i. The system ¢ defines a communication equilibrium if none of the
players can gain by unilaterally lying on his type or by deviating from the
recommended action, namely if
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Vi€ NVt st € T' Vo' : A" — A

Correlated equilibrium, communication equilibrium and cheap talk

Every correlated equilibrium of the Bayesian game I" induces a communi-
cation equilibrium of I', but the converse is not true, as the following example
shows.

Consider the two-person Bayesian game in which 7" = {s!, '}, T? = {#?},
At = {a',b'}, A% = {a®, 0%}, p(s*) = p(t') = § and payoffs are described by

t at (0,00  (0,0)
1 1,1

In this game, the communication equilibrium g(a',a?|s') = q(b', b?|t}) = 1
yields the expected payoff of 1 to both players. However the maximal expected
payoft of every player in a correlated equilibrium is % In order to see this,
one can derive the strategic form of the game (in which player 1 has four
strategies and player 2 has two strategies). Let us turn to the game in which
player 1 can cheaply talk to player 2 just after having learned his type. In
this new game, the following strategies form a Nash equilibrium: player 1
truthfully reveals his type to player 2 and plays a'! if s, b' if ¢!; player 2
chooses a? if s!, b2 if t'. These strategies achieve the same expected payoffs
as the communication equilibrium.

As in Section IV, one can define cheap talk extensions ext(I') of I'. A
wide definition of ext(I") involves an ex ante preplay phase, before the play-
ers learn their types, and an interim preplay phase, after the players learn
their types but before they choose their actions. Every Nash equilibrium of
ext(T") induces a communication equilibrium of I'. In order to investigate
the converse, namely whether cheap talk can simulate mediated communica-

tion in a Bayesian game, two approaches have been developed. The first one
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(Forges (1990), Gerardi (2000, 2004), Vida (2007)) proceeds in two steps, by
reducing communication equilibria to correlated equilibria before applying
the results obtained for strategic form games (see Section IV). The second
approach (Ben-Porath (2003), Krishna (2007)) directly addresses the ques-
tion in a Bayesian game.

By developing a construction introduced for particular two person games
(Forges (1985)), Forges (1990) shows that every communication equilibrium
outcome of a Bayesian game I' with at least four players can be achieved as a
correlated equilibrium outcome of a two stage interim cheap talk extension
ezt (T) of T'. No punishment is necessary in ext;,(I'): at the second stage,
every player gets a message from three senders and uses majority rule if the
messages are not identical. Thanks to the underlying correlation device, each
receiver is able to privately decode his message. Vida (2007) extends Forges
(1990) to Bayesian games with three or even two players. In the proof, he
constructs a correlated equilibrium of a long, but almost surely finite, interim
cheap talk extension of I', whose length depends both on the signals selected
by the correlation device and the messages exchanged by the players. No
recording of messages is necessary to detect and punish a cheating player.
If there are at least four players in I', once a communication equilibrium
of I has been converted into a correlated equilibrium of ext;,;(T"), one can
apply Béardny (1992)’s result to ext;,;(I") in order to transform the correlated
equilibrium into a Nash equilibrium of a further, ex ante, cheap talk preplay
extension of I'. Gerardi (2000) modifies this ex ante preplay phase so as to
postpone it at the interim stage. This result is especially useful if the initial
move of nature in I' is just a modelling convenience. Gerardi (2004) also
extends his result for at least five person games with complete information
(see Section IV) to any Bayesian game with full support (i.e., in which all
type profiles have positive probability: p(t) > 0 for every t € T') by proving
that every (rational) communication equilibrium of I' can be achieved as a
sequential equilibrium of a cheap talk extension of I'.

Ben-Porath (2003) establishes that if I' is a three (or more) person game
with full support, every (rational) communication equilibrium of I' which
strictly dominates a Nash equilibrium of T" for every type t' of every player
i, © € N, can be implemented as a Nash equilibrium of an interim cheap
talk extension of I' in which public verification of past record is possible
(see also Ben-Porath (2006)). Krishna (2007) extends Ben-Porath (1998)’s
result on two person games (see Section IV) to the incomplete information
framework. The other results mentioned at the end of Section IV have also
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been generalized to Bayesian games (see Gossner (1998), Lehrer and Sorin
(1997) and Urbano and Vila (2004a)).

VI. Related Topics and Future Directions

In this brief article, we concentrated on two solution concepts: the strate-
gic form correlated equilibrium, which is applicable to any game, and the
communication equilibrium, which we defined for Bayesian games. Other
extensions of Aumann (1974)’s solution concept have been proposed for
Bayesian games, as the agent normal form correlated equilibrium and the
(possibly belief invariant) Bayesian solution (see Forges (1993, 2006) for de-
finitions and references). The Bayesian solution is intended to capture the
players’ rationality in games with incomplete information in the spirit of
Aumann (1987) (see Nau (1992) and Forges (1993)). Lehrer et al. (2006)
open a new perspective in the understanding of the Bayesian solution and
other equilibrium concepts for Bayesian games by characterizing the classes
of equivalent information structures with respect to each of them. Compari-
son of information structures, which goes back to Blackwell (1951, 1953) for
individual decision problems, was introduced by Gossner (2000) in the con-
text of games, both with complete and incomplete information. In the latter
model, information structures basically describe how extraneous signals are
selected as a function of the players’ types; two information structures are
equivalent with respect to an equilibrium concept if, in every game, they
generate the same equilibrium distributions over outcomes.

Correlated equilibria, communication equilibria and related solution con-
cepts have been studied in many other classes of games, like multistage games
(see, e.g., Forges (1986), Myerson (1986a)), repeated games with incomplete
information (see, e.g., Forges (1985, 1988)) and stochastic games (see, e.g.,
Solan (2001), Solan and Vieille (2002)). The study of correlated equilib-
rium in repeated games with imperfect monitoring, initiated by Lehrer (1991,
1992), proved to be particularly useful and is still undergoing. Lehrer (1991)
showed that if players are either fully informed of past actions or get no infor-
mation (“standard-trivial” information structure), correlated equilibria are
equivalent to Nash equilibria. In other words, all correlations can be gener-
ated internally, namely by the past histories, on which players have differen-
tial information. The schemes of internal correlation introduced to establish
this result are widely applicable and inspired those of Lehrer (1996) (see
Section IV). In general repeated games with imperfect monitoring, Renault
and Tomala (2004) characterize communication equilibria but the amount of
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correlation that the players can achieve in a Nash equilibrium is still an open
problem (see, e.g., Gossner and Tomala (2007) and Urbano and Vila (2004b)
for recent advances).

Throughout this article, we defined a correlated equilibrium as a Nash
equilibrium of an extension of the game under consideration. The solution
concept can be strengthened by imposing some refinement, i.e., further ra-
tionality conditions, to the Nash equilibrium in this definition (see, e.g.,
Dhillon and Mertens (1996), Myerson (1986b)). Refinements of communica-
tion equilibria have also been proposed (see, e.g., Myerson (1986a), Gerardi
(2004), Gerardi and Myerson (2007)). Some authors (see, e.g., Milgrom and
Roberts (1996), Moreno and Wooders (1996), Ray (1996)) have also devel-
oped notions of coalition proof correlated equilibria, which resist not only
to unilateral deviations, as in this article, but even to multilateral ones. A
recurrent difficulty is that, for many of these stronger solution concepts, a
useful canonical representation (as derived in Section III) is not available.

Except for two or three references, we deliberately concentrated on the
results published in the game theory and mathematical economics literature,
while substantial achievements in computer science would fit in this survey.
Both streams of research pursue similar goals but rely on different formalisms
and techniques. For instance, computer scientists often make use of crypto-
graphic tools which are not familiar in game theory. Halpern (2007) gives an
idea of recent developments at the interface of computer science and game
theory (see in particular the section “implementing mediators”) and contains
a number of references.

Finally, the assumption of full rationality of the players can also be re-
laxed. Evolutionary game theory has developed models of learning in order
to study the long term behavior of players with bounded rationality. Many
possible dynamics are conceivable to represent more or less myopic attitudes
with respect to optimization. Under appropriate learning procedures, which
express for instance that agents want to minimize the regret of their strategic
choices, the empirical distribution of actions converge to correlated equilib-
rium distributions (see, e.g., Foster and Vohra (1997), Hart and Mas Colell
(2000) and Hart (2005) for a survey). However, standard procedures, as the
“replicator dynamics”, may even eliminate all the strategies which have pos-
itive probability in a correlated equilibrium (see Viossat (2007)).
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