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Abstract

We consider a financial market with liquidity cost as in Çetin, Jarrow and Protter
[3] where the supply function Sε(s, ν) depends on a parameter ε ≥ 0 with S0(s, ν) = s

corresponding to the perfect liquid situation. Using the PDE characterization of Çetin,
Soner and Touzi [6] of the super-hedging cost of an option written on such a stock, we
provide a Taylor expansion of the super-hedging cost in powers of ε. In particular, we
explicitly compute the first term in the expansion for a European Call option and give
bounds for the order of the expansion for a European Digital Option.
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1 Introduction

The classical option pricing equation of Black & Scholes is derived under several simplifying
assumptions. The “infinite” liquidity of the underlying stock process is one of them. In
an attempt to understand the impact of liquidity, Çetin, Jarrow, Protter and collaborators
[3, 4, 5] postulated the existence of a supply curve S(t, s, ν) which is the price of a share of
the stock when one wants to buy ν shares at time t. In the Black & Scholes setting, this
price function is taken to be independent of ν corresponding to infinite amount of supply,
hence infinite liquidity. In a recent paper, Çetin, Soner and Touzi [6] used this model and
studied the liquidity premium in the price of an option written on such a stock with less
than infinite liquidity. They characterized the option price by a nonlinear Black & Scholes
equation, given in (2.3) below. In this pricing equation the liquidity manifests itself by
means of a liquidity function `, which is given by

`(t, s) :=
[
4
∂S
∂ν

(t, s, 0)
]−1

, (t, s) ∈ [0, T ]× R+.

The liquidity function ` measures the level of liquidity of the market. Namely, the larger `
is, the more liquid the market is.

The main result of [6] is the characterization of the liquidity premium as the unique
viscosity solution of a nonlinear Black-Scholes equation (2.3), which is very similar to
the one derived by Barles and Soner [2]. This nonlinear equation can only be solved
numerically as no explicit solutions are available. Motivated by this fact, in this paper we
obtain rigorous asymptotic expansions for the liquidity premium. For vanilla options with
sufficiently regular payoff, this expansion can be calculated explicitly giving further insight
into the liquidity effects.
As stated the chief objective of this paper is to analyze the large liquidity effect. Thus, we
assume that the supply function depends on a small parameter ε

Sε(t, s, ν) := S(t, s, εν), (t, s) ∈ [0, T ]× R+.

Then, the corresponding liquidity function is given by

`ε(t, s) :=
1
ε
`(t, s), (t, s) ∈ [0, T ]× R+ .

Hence, as ε tends to zero, the market becomes completely liquid. So we expect the price
of an option V ε to converge to the classical Black-Scholes price, vBS , and we are interested
in expansions of the form

V ε = vBS + εv(1) + . . .+ εnv(n) + +o(εn).

Indeed, we prove this type of results and identify the functions v(n) in some cases. In
particular, we show that

v(1)(t, s) =
∫ T

t
Et,s

[
S2
uσ

2(u, Su)
4`(u, Su)

(
vBSss (u, Su)

)2]
du. (1.1)

This is exactly the liquidity premium of the standard Black-Scholes hedge.
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The paper is organized as follows. The problem is introduced in the next section and the
approach is formally introduced in Section 3. Under a strong smoothness assumption, full
expansion is obtained in Section 4. A quick convergence result is proved in Section 5. The
Call option is studied in Section 6 and the Digital option in the final section.

2 The general setting

Let (Ω,F ,P) be a complete probability space endowed with a Brownian motion W with
completed canonical filtration F = {Ft, t ∈ [0, T ]}, where T > 0 is fixed maturity. The
marginal price process St is defined by the stochastic differential equation

dSt
St

= σ(t, St)dWt,

where σ is assumed to be bounded, Lipschitz-continuous and uniformly elliptic.
Given a continuous portfolio strategy Y with finite quadratic variation process 〈Y 〉, the
small time liquidation value of the portfolio is given by

dZε,Yt = YtdSt − [4`ε(t, St)]
−1 d〈Y 〉t = YtdSt − ε [4`(t, St)]

−1 d〈Y 〉t.

The dependence of the process Z on its initial condition is suppressed for simplicity.
Given a function g : R+ −→ R satisfying

g is bounded from below and sup
s>0

g(s)
1 + s

< ∞, (2.1)

the super-hedging cost is defined by

V ε(t, s) := inf
{
z : Zε,Yt = z and Zε,YT ≥ g (ST ) P-as for some Y ∈ At,s

}
, (2.2)

where the time origin is removed to t and the initial condition for the price process is St = s.
We refer to [6] for the precise definition of the set of admissible strategies At,s.
This problem is similar to the super-replication problem studied extensively in [7, 8, 9,
17, 18, 19, 20]. In the above setting, it is shown in Çetin, Soner and Touzi [6] that the
value function of the super-hedging problem is the unique viscosity solution of the following
nonlinear equation,

−V ε
t + Ĥε (t, s, V ε

ss) = 0, on [0, T )× (0,∞), (2.3)

satisfying the terminal condition V ε(T, .) = g and the growth condition

−C ≤ V ε(t, s) ≤ C(1 + s), (t, s) ∈ [0, T ]× R+, for some constant C > 0 . (2.4)

Here, Ĥε denotes the elliptic majorant of the first guess operator Hε:

Ĥε(t, s, γ) := sup
β≥0

Hε(t, s, γ + β),

Hε(t, s, γ) := −1
2
s2σ2(t, s)γ − ε[4`(t, s)]−1s2σ2(t, s)γ2.
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By direct calculation, it follows that

Ĥε(t, s, γ) = −1
2
s2σ2(t, s)

γ +
(
γ +

`(t, s)
ε

)−
+

ε

2`(t, s)

(
γ +

(
γ +

`(t, s)
ε

)−)2
 .

For ε = 0, both Ĥε, Hε coincides with the following standard elliptic operator,

Ĥ0(t, s, γ) = H0(t, s, γ) = −1
2
s2σ2(t, s)γ, (t, s, γ) ∈ [0, T ]× R+ × R.

Hence, the equation (2.3) reduces to the linear Black-Scholes equation

−∂v
BS

∂t
− 1

2
s2σ2(t, s)vBSss = 0. (2.5)

We recall the well-known fact that its unique solution, vBS , is the Black-Scholes price,

vBS(t, s) = Et,s [g(ST )] , (t, s) ∈ [0, T ]× R+,

where we used the notation Et,s = E[ · | St = s].

3 Formal calculations and Assumptions

It is formally clear that as the market becomes more liquid, V ε should converge to the
Black-Scholes price vBS . Indeed, this is proved in Section 5. We are also interested in a
Taylor expansion of V ε in the parameter ε, i.e.,

V ε(t, s) = vBS(t, s) + εv(1)(t, s) + ε(2)v2(t, s) + . . .+ εnv(n)(t, s) + o(εn), (3.1)

where o(εn) is the standard notation, indicating that o(εn)/εn converges to zero as ε tends
to zero.
Indeed, under sufficient regularity

v(n)(t, s) =
1
n!

∂nV ε(t, s)
∂εn

∣∣∣∣
ε=0

.

Thus, formally differentiate the equation (2.3) n-times with respect to ε and then set ε to
zero. Using the above formal definition of v(n), we arrive at,

0 = −v(n)
t − 1

2
s2σ2(t, s)v(n)

ss − Fn(t, s), (3.2)

Fn(t, s) =
s2σ2(t, s)
4`(t, s)

n−1∑
k=0

[
v(k)
ss (t, s) v(n−1−k)

ss (t, s)
]
, (3.3)

where we set v(0) := vBS . For all n ≥ 1, the terminal data is v(n)(T, ·) ≡ 0, so that the
Feymann-Kac formula yields

v(n)(t, s) =
n−1∑
k=0

Et,s
[∫ T

t

(
S2
uσ

2

4`
v(k)
ss v

(n−1−k)
ss

)
(u, Su)du

]
. (3.4)
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In particular, v(1) is given as in (1.1).
The above calculations yield a rigorous proof when the pay-off is sufficiently regular. We
will prove this in Section 4. On the other hand, for some discontinuous pay-offs the above
functions may not be finite. For instance, for a digital option, v(1) ≡ ∞. Indeed, if we take

g(s) := 1s≥K , σ(t, s) ≡ σ and `(t, s) ≡ `,

we compute that

v(1)(t, s) =
1

8π`σ2

∫ T

t

(u− t)e−
“

1
σ
√
T+u−2t

ln( s
K )+σ

2
T−2u+t√
T+u−2t

”2

(T − u)
3
2 (T + u− 2t)

3
2

+
1

8π`σ2

∫ T

t

e
−

“
1

σ
√
T+u−2t

ln( s
K

)+σ
2
T−2u+t√
T+u−2t

”2

√
T − u(T + u− 2t)

3
2

(
ln
(
s
K

)
σ
√
T + u− 2t

+
σ

2
T − 2u+ t√
T + u− 2t

)2

.

The first term above is actually +∞ because of the non-integrability of (T − u)−3/2 near
T .

In such cases, the expansion is not valid and a careful study of the behavior of V ε near the
terminal data is needed. This will be done in Section 7. However, we first prove the full
expansion in the ”smooth” case. Then, in Section 6, we consider the Call option proving
the expansion up to n = 2. Clearly, this later result extends to all Put options. Also,
remarks on other payoffs and higher expansions are given in Remarks 6.2 and 6.1.

4 Expansion for smooth pay-offs

In this section, we prove the expansion under the assumption that there is a constant Ĉ so
that

−Ĉ ≤ v(n)(t, s) ≤ Ĉ(1 + s),
∣∣∣(s2 + 1)v(n)

ss (t, s)
∣∣∣ ≤ Ĉ, (4.1)

|Fn(t, s)| ≤ Ĉ, ∀ (t, s) ∈ [0, T ]× R+, n = 1, 2, . . . .

Clearly, this is an implicit assumption on the pay-off g. Essentially, it holds for all smooth
pay-offs growing at most linearly. In particular, (4.1) holds if σ(t, s) ≡ σ, `(t, s) ≡ ` and if
there exists a constant C so that

−C ≤ g(s) ≤ C(1 + s),
∣∣∣∣(s2 + 1)

∂n

∂sn
g(s)

∣∣∣∣ ≤ C, ∀ s ∈ R+, n = 2, 3, . . . .

This is proved by using the homogenity of the Black-Scholes equation and differentiating
it repeatedly.
Following the techniques developed in the papers [13, 11, 14, 15, 16], for an integer n ≥ 0
we define,

V ε,n(t, s) :=
V ε(t, s)−

∑n−1
k=0 ε

kv(k)(t, s)
εn

, (4.2)

where as before we set v(0) = vBS .
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Theorem 4.1 Assume (4.1). Then, for every n = 1, 2, . . ., there are constants Cn and
ε0 > 0 so that for every ε ∈ (0, ε0], and n = 1, 2, . . .,

vBS(t, s) ≤ V ε(t, s) ≤ vε,n(t, s) :=
n−1∑
k=0

[εkv(k)(t, s)] + εnCn(T − t). (4.3)

In particular, as ε ↓ 0, V ε converges to the Black-Scholes price vBS uniformly on compact
sets. Moreover, for every n ≥ 1, V ε,n converges to v(n), again uniformly on compact sets.

Proof. Clearly, vBS ≤ V ε. We continue by proving the upper bound. Let vε,n be as in
(4.3) with a constant Cn to be determined below. Using (3.2), we calculate that

−vε,nt (t, s) + Ĥε(t, s, vε,nss (t, s)) ≥ −vε,nt (t, s) +Hε(t, s, vε,nss (t, s))

= −vε,nt −
1
2
s2σ2vε,nss −

εs2σ2

4`(t, s)
(vε,nss )2

= εnCn +
n−1∑
k=1

[εk Fk(t, s)]−
εs2σ2

4`(t, s)
(vε,nss )2 .

In view of (3.3),

εs2σ2

4`(t, s)
(vε,nss )2 −

n−1∑
k=1

[εk Fk(t, s)] = εnFn(t, s) + εn+1 s2σ2

4`(t, s)
gε(t, s),

where gε(t, s) is a quadratic function v
(k)
ss (t, s) for k ≤ n and possibly powers of ε. Hence

by (4.1), there is a constant Cn,∣∣∣∣∣
n−1∑
k=1

[εk Fk(t, s)]−
εs2σ2

4`(t, s)
(vε,nss )2

∣∣∣∣∣ ≤ εnCn.
Hence, we conclude that vε,n is a supersolution of (2.3). Moreover, by (4.1), −C ≤
vε,n(t, s) ≤ C(1 + s). Then, by the comparison theorem for (2.3) (Theorem 6.1 of [6]),
we conclude that V ε(t, s) ≤ vε,n(t, s).
In particular, this estimate implies the convergence of V ε to vBS . To prove the convergence
of V ε,n, we first observe that

V ε =
n∑
k=0

[εkv(n)(t, s)] + εnV ε,n.

Using the equations (2.3) and (3.2), we conclude that V ε,n is a viscosity solution of

−V ε,n
t − 1

2
s2σ2(t, s)V ε,n

ss + F ε,n (t, s, V ε,n
ss ) = 0, (t, s) ∈ [0, T )× R+,

where

F ε,n(t, s, γ) :=
1
εn

[
Ĥε(t, s, vε,nss (t, s) + εnγ) +

1
2
s2σ2vε,nss +

n−1∑
k=1

εkF k(t, s)

]
.
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Tedious but a straightforward calculation shows that

lim
(t′,s′,γ′,ε)→(t,s,γ,0)

F ε,n(t′, s′, γ′) = Fn(t, s),

where Fn is as in (3.3). Then, by the classical stability results of viscosity solutions [1, 10,
12], the Barles-Perthame semi-relaxed limits

v(n)(t, s) := lim inf
(t′,s′,ε)→(t,s,0)

V ε,n(t′, s′) and v(n)(t, s) := lim sup
(t′,s′,ε)→(t,s,0)

V ε,n(t′, s′),

are, respectively, a viscosity supersolution and a subsolution of the equation (3.2) satisfied
by v(n). Moreover it follows from (4.3) that

v(n)(T, ·) = v(n)(T, ·) = 0 = v(n)(T, ·).

We now use the comparison result for the linear partial differential equation (3.2), and
conclude that v(n) ≥ v(n). Since

v(n)(t, s) ≤ lim inf
ε→0

V ε,n(t, s) ≤ lim sup
ε→0

V ε,n(t, s) ≤ v(n)(t, s)

on [0, T ] × R+, this proves that v(n) = v(n) = v(n). Hence, V ε,n converges to the unique
solution v(n), uniformly on compact sets.

2

5 A general convergence result

In this section, we prove an easy convergence result under the following general assumption.
We assume that

cs2 ≤ `(t, s), (5.1)

for some constant and

Assumption 5.1 There is a decreasing sequence of smooth approximation gm ≥ g of the
pay-off g satisfying (4.1) with n = 1, 2. Let v(n)

m , Fnm be the previously defined functions
with pay-off gm. Then, F 1

m(t, s) ≤ cm for some constant cm.

This assumption is satisfied by all Lipschitz or for all bounded pay-offs.

Theorem 5.1 Assume (2.1), (5.1) and that Assumption 5.1 holds true. Then, as the
liquidity parameter goes to infinity, or equivalently as ε ↓ 0, V ε converges to the Black-
Scholes price vBS.

Proof. Let cm be as above and set

uε(t, s) := vBSm (t, s) + εcm(T − t).
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As in the proof of Theorem 4.1, we can show that uε is a super-solution of (2.3). Hence,
V ε ≤ uε. Therefore,

lim sup
ε↓0

V ε(t, s) ≤ vBSm (t, s).

By (2.1), vBSm (t, s) converges to vBS(t, s). Since V ε ≥ vBS , this proves the convergence of
V ε to vBS .

2

6 First order expansion for convex payoffs

One major limitation of our previous result is that the Call pay-off does not satisfy the
Assumption (4.1). Therefore, in this section, we prove the first term in the Taylor expansion
(3.1), i.e.,

V ε(t, s) = vBS(t, s) + εv(1)(t, s) + o(ε), (6.1)

for convex payoffs satisfying weaker assumptions than (4.1). In particular, we will show
that call options verify those assumptions.

6.1 The general result

In order to capitalize on the results we have already obtained for smooth payoffs, we will
also consider a regularized version of our problem

−V ε,α
t + Ĥε(t, s, V ε,α

ss ) = 0, for (t, s) ∈ [0, T )× R+,

V ε,α(T, s) = ĝα(s), (6.2)

where ĝα(s) = φα ∗ g(s) with φα(·) := 1
αφ( ·α) and φ is a positive, symmetric bump function

on R, compactly supported in [−1, 1] and satisfying∫ 1

−1
φ(u)du = 1.

By convexity of g, for all α > 0 we have ĝα ≥ g, so that by monotony of our problem

V ε ≤ V ε,α.

Thus, since the main idea of our proof is to find a super-solution of (2.3), we see that it is
enough to find a super-solution of (6.2). Let vBS,α and v(1),α, respectively, be the Black-
Scholes price and the first-order expansion term for the regularized option. We now state
our assumptions

Assumption 6.1 (i) vBS + vBS,α + v(1) + v(1),α < +∞.
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(ii) As α tends to 0 we have

vBS,α(t, s) = vBS(t, s) +O(α2),

v(1),α(t, s) = v(1)(t, s) + o(1).

(iii) There exists a constant c∗ independent of s, T − t and α and (ν, β) ∈ [0, 1]× [1/2, 1]
such that 1 < 2β + ν < 2 and

s2σ2

4`
(v(1),α
ss (t, s))2 ≤ c∗

(T − t)1−να2+2ν
, s

∣∣vBS,αss (t, s)
∣∣ ≤ c∗

(T − t)1−βα2β−1
.

This assumption will be proved to be verified by Call options payoffs in subsection 6.2.

Let V ε,1 be as (4.2), i.e.

V ε,1(t, s) :=
V ε(t, s)− vBS(t, s)

ε
.

Theorem 6.1 Let Assumption 6.1 hold true and let a ∈ (1
2 ,

1
2β+ν ). Then for every (t, s) ∈

[0, T ]× R+ we have,

vBS ≤ V ε ≤ vBS,εa + εv(1),εa + c∗(T − t)β+ ν−1
2 ε2−a(ν+2β) + c∗(T − t)νε3−2a(1+ν).

Moreover, V ε → vBS, V ε,1 → v(1) uniformly on compact sets, and (6.1) holds true.

Proof. It is clear that V ε ≥ vBS . To prove the reverse inequality, we start by following a
technique similar to the one used in the proof of Theorem 4.1. Set

vε,2 := vBS,ε
a

+ εv(1),εa + c∗(T − t)β+ ν−1
2 ε2−a(ν+2β) + c∗(T − t)νε3−2a(1+ν).

We calculate that for (t, s) ∈ [0, T )× R+

− vε,2t + Ĥε(t, s, vε,2ss ) ≥ −vε,2t +Hε(t, s, vε,2ss )

=
c∗ε

2−a(ν+2β)

(T − t)1−β−
ν−1
2

+
c∗ε

3−2a(1+ν)

(T − t)1−ν
− vBS,ε

a

t − εv(1),εa

t − 1
2
s2σ2vε,2ss −

εs2σ2

4`
(
vε,2ss
)2

=
c∗ε

2−a(ν+2β)

(T − t)1−β−
ν−1
2

+
c∗ε

3−2a(1+ν)

(T − t)1−ν
− s2σ2

4`
(v(1),εa

ss )2ε3 − s2σ2

2`
vBS,ε

a

ss v(1),εa

ss ε2.

In view of Assumption 6.1(iii), this quantity is always positive. We now analyze the terminal
condition. In view of the conditions imposed on a, β and ν

vε,2(T, s) = vBS,ε
a
(T, s) = ĝεa(s).

Hence, vε,2 is a super-solution of (6.2) and therefore of (2.3). Then, by the comparison
theorem for (2.3) (proved in [6]), we conclude that V ε(t, s) ≤ vε,2(t, s).

We now let ε go to 0 in the above inequalities. This proves that V ε converges to vBS

uniformly on compact sets.

Finally, by Assumption 6.1(ii)

0 ≤ V ε,1(t, s) ≤ v(1)(t, s) + o
(
εmin{1−a(2β+ν),2−2a(1+ν)}

)
+O

(
ε2a−1

)
,
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where it is clear with our conditions on a, β and ν that the o(·) and O(·) above go to 0 as
ε tends to 0.

Using this estimate, we then prove the convergence of V ε,1 exactly as in Theorem 4.1. 2

Remark 6.1 Higher expansions can be proved similarly, provided that we extend Assump-
tion 6.1 for n ≥ 2.

6.2 Expansion for the Call option

In this section, we take

g(s) = (s−K)+, σ(t, s) ≡ σ, `(t, s) ≡ `,

and we verify that Assumptions 6.1(ii) and 6.1(iii) are satisfied, since Assumption 6.1(i) is
trivial.

Straightforward but tedious calculations using the Feynman-Kac formula yield

vBS,αss (t, s) =
1

σs
√

2πτ

∫ 1

−1
φ(u) exp

(
−1

2
d1(s,K + αu, τ)2

)
du,

v(1),α(t, s) =
1

8`π

∫ τ

0

∫ 1

−1

∫ 1

−1

φ(x)φ(y)hα(τ, v, s,K, x, y)√
v(2τ − v)

dxdydv,

where

τ = T − t,

d1(s, k, t) =
1
σ
√
t

ln(s/k) +
1
2
σ
√
t,

δ(τ, v, s, k) =
1

σ
√

2τ − v
ln(s/k)− σ

2
τ − 2v√
2τ − v

,

hα(τ, v, s, k, x, y) = exp
(
−δ(τ, v, s, k)2 +

δ(τ, v, s, k)
σ
√

2τ − v

(
log
(

1 +
αx

k

)
+ log

(
1 +

αy

k

)))
× exp

(
− τ

2σ2v(2τ − v)

(
log
(

1 +
αx

k

)
− log

(
1 +

αy

k

))2
)

× exp
(
− 1
σ2(2τ − v)

log
(

1 +
αx

k

)
log
(

1 +
αy

k

))
.

The following two propositions, whose proof is relagated to the appendix, ensure that
Assumptions 6.1(ii) and 6.1(iii) are satisfied

Proposition 6.1 There exists a constant c∗, independent of s, τ and α so that for all
(ν, β) ∈ [0, 1]× [1/2, 1]:

s
∣∣vBS,αss (t, s)

∣∣ ≤ c∗
τ1−βα2β−1

,
s2σ2

4`
(v(1),α
ss (t, s))2 ≤ c∗

τ1−να2+2ν
.
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Proposition 6.2 As α tends to 0 we have the following expansions

vBS,α(t, s) = vBS(t, s) + α2 e
− 1

2
d0(s,K,τ)2

2Kσ
√

2πτ

∫ 1

−1
φ(v)v2dv +O(α4),

v(1),α(t, s) = v(1)(t, s)− αe
− 1

2
d0(s,K,τ)2

8Kσ`
√

2πτ

∫ 1

−1

∫ 1

−1
φ(x)φ(y)|x− y|dxdy + o(α),

where d0(s, k, τ) = 1
σ
√
τ

ln(s/k)− 1
2σ
√
τ .

Remark 6.2 It is not hard to show that the results of Propositions 6.1 and 6.2 hold for all
convex linear combination of call or put options. However, we cannot use the above proof
for, say, a call spread option whose payoff is neither convex nor concave.

6.3 Numerical Experiments

In order to have a better grasp of the liquidity effects, we also solved numerically (with
simple finite difference methods) the PDE (2.3). We represent below the behaviour of the
liquidity premium (that is to say V ε−vBS) when the time to maturity t and the spot price
vary

Figure 1: Call liquidity premium - T = 10, K = 15, σ = 0.5, ε = 0.1, ` = 1

In the above figure, the liquidity effect is strongly marked for ATM options and disapears
quickly for ITM and OTM options. This was to be expected. Indeed, our calculations
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showed that the liquidity effect is, for the first order, driven by the Γ of the call option
(see (A.1)), which explodes for ATM options near maturity. Moreover, with our set of
parameters, the first order correction is at most 0.06 for a BS price of 8.56, which means
that the hedge against liquidity risk is not that expensive when the illiquidity is not too
strong.

We now compare the real liquidity premium with its first-order expansion term.

Figure 2: Call first order liquidity premium - T = 10, K = 15, σ = 0.5, ε = 0.1, ` = 1

A rapid examination of the above figure shows that the first order approximation remains
excellent as long as we do not go too far from the maturity time T and we stay close to the
money s = K. Otherwise, the first order overvalues the liquidity premium.

7 Digital Option

In this section, we analyze the specific example of a Digital option in the context of Black-
Scholes model with constant liquidity parameter

g(s) := 1s≥K , and σ(t, s) ≡ σ, `(t, s) ≡ `.

12



7.1 Theoretical bounds

As pointed out earlier, for the Digital option, the first-order term that we obtained formally
is equal to +∞. Thus, the expansion (3.1) is no longer valid and our aim in this section is
to find bounds for the first-order of the expansion. We start by approximating the option
by a sequence of regularized call spreads. Then the original problem (2.3) is replaced by

−V ε,α
t + Ĥε(t, s, V ε,α

ss ) = 0, for (t, s) ∈ [0, T )× R+,

V ε,α(T, s) = ĝα(s), (7.1)

where ĝα(s) = φα ∗ gα(s) with gα(s) = (s−K+2α)+−(s−K+α)+

α .

Since φα has compact support in [−α, α], notice that ĝα ≥ g. Then, since the terminal
condition is smooth, it follows from the comparison principle that

V ε(t, s) ≤ V ε,α(t, s), for (t, s, α) ∈ [0, T ]× R+ × R∗+. (7.2)

With the same notations as in the previous section, we directly calculate using again the
Feynman-Kac formula that

vBS,αss (t, s) =
1

σsα
√

2πτ

∫ 1

−1
φ(u)

(
e−

1
2
d1(s,K+αu−2α,τ)2 − e−

1
2
d1(s,K+αu−α,τ)2

)
du,

v(1),α(t, s) =
1

8`πα2

∫ τ

0

∫ 1

−1

∫ 1

−1

φ(x)φ(y)ĥα(τ, v, s,K, x, y)√
v(2τ − v)

dxdydv,

where

ĥα(τ, v, s,K, x, y) =
∑

1≤i,j≤2

hα(τ, v, s,K, x− i, y − j).

Then, we have the two following propositions which are proved exactly as in the call option
case (since the functions involved here are essentially the same)

Proposition 7.1 There exists a constant c∗, independent of s, τ and α so that for all
(ν, β) ∈ [0, 1]× [1/2, 1]

s
∣∣vBS,αss (t, s)

∣∣ ≤ c∗
τ1−βα2β

,
s2σ2

4`
(v(1),α
ss (t, s))2 ≤ c∗

τ1−να6+2ν
.

Proposition 7.2 As α tends to 0 we have the following expansions:

vBS,α(t, s) = vBS(t, s) +
3
2
α
e−

1
2
d0(s,K,τ)2

Kσ
√

2πτ
+O(α2),

v(1),α(t, s) = α−1 e
− 1

2
d0(s,K,τ)2

8Kσ`
√

2πτ

∫ 1

−1

∫ 1

−1
φ(x)φ(y)(|x−y−1|+|x−y+1|−2|x−y|)dxdy + o(α−1).
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Define V ε,1,c by

V ε,1,c(t, s) :=
V ε(t, s)− vBS(t, s)

εc
.

Theorem 7.1 Let (β, ν) ∈ [1/2, 1] × [0, 1] be such that γ := 2β+ν−1
2β+ν+4 ∈ (0, 1) and set

a := 2
5(1− γ). Then for all (t, s) ∈ [0, T ]× R+,

vBS ≤ V ε ≤ vBS,εa + εv(1),εa + c∗(T − t)β+ ν−1
2 ε2−3a−a(ν+2β) + c∗(T − t)νε3−2a(3+ν).

In particular, V ε converges to vBS, uniformly on compact sets and

0 ≤ lim inf
(t′,s′,ε)→(t,s,0)

V ε,1,a(t′, s′, a) ≤ lim sup
(t′,s′,ε)→(t,s,0)

V ε,1,a(t′, s′) ≤ 3
2
e−

1
2
d0(s,K,τ)2

Kσ
√

2πτ
+c∗(T−t)

5γ
2(1−γ) ,

i.e. the order of the expansion is at least 2/5.

Proof. It is clear that V ε ≥ vBS . To prove the reverse inequality, we start by following a
technique similar to the one used in the proof of Theorem 6.1. Set

vε,2 := vBS,ε
a

+ εv(1),εa + c∗(T − t)β+ ν−1
2 ε2−3a−a(ν+2β) + c∗(T − t)νε3−2a(3+ν).

We proceed exactly as in Theorem 6.1 using Proposition 7.1. The result is

−vε,2t (t, s) + Ĥε(t, s, vε,2ss (t, s)) ≥ 0, for (t, s) ∈ [0, T )× R+.

We now analyze the terminal condition. Since 2β + ν > 1, we have

vε,2(T, s) = vBS,ε
a
(T, s).

Hence, vε,2 is a super-solution of (6.2) and therefore of (2.3). Then, by the comparison
theorem for (2.3) (proved in [6]), we conclude that V ε(t, s) ≤ vε,2(t, s).
Then by Proposition 7.2 and the conditions imposed on a, β and ν, we obtain easily the
uniform convergence on compact sets of V ε to vBS by letting ε go to 0.
Now for the first order term, we would like to use our expansions and obtain a finite
majorant for V ε,1,c with the largest possible c. It is easy to argue that c = a is the best
choice possible. This, in turn, imposes the following condition

a ≤ min
{

1
2
,

2
4 + 2β + ν

,
3

7 + 2ν

}
=

2
4 + 2β + ν

.

Now it follows that, for all γ > 0 small enough, there are β and ν satisfying our conditions
so that 2

4+2β+ν = 2
5(1− γ). It suffices then to take the lim inf and lim sup in the inequality

to prove the result. 2
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7.2 Numerical results

The digital option liquidity premium In this section, we provide numerical results
for the case of the Digital option. As in the section 6.3 the PDE (2.3) is solved with finite
difference method. We represent below the behaviour of the liquidity premium when the
time to maturity t and the spot price vary

Figure 3: Digital liquidity premium - T = 10, K = 25, σ = 0.5, ε = 0.1, ` = 1

Qualitatively, the liquidity premium behaves as in the Call case. However, as expected the
effects of illiquidity are even stronger for ATM options near maturity, since the Γ of a digital
option explodes faster. Moreover, with our set of parameters, the first order correction to
the price is at most 0.04 for a BS price of 0.21, which means that the hedge against liquidity
risk is much more expensive in the case of a digital option, for a same level of liquidity in
the market.

Numerical confirmation of the expansion order We represent below the liquidity
premium for a fixed value of the spot when the parameter ε varies with a logarithmic scale.
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Figure 4: log
(
V ε − vBS

)
- T = 1, K = 25, s = 15, σ = 0.5, ε = 0.1, ` = 1

For small values of ε we observe the expected linear behaviour of log
(
V ε − vBS

)
. The slope

of the above curve is roughly equal to 1/2 (the exact value here is 0.54), which is close to
our minimal value of 2/5. The numerical results suggest that the true expansion order lies
in the interval [2/5, 1/2].

It is also important to realize the financial implications of our results. We just have high-
lighted the fact that the first order effect exhibits a phase transition for discontinuous
payoff, in the sense that derivative securities of the type of digital options induce a cost of
illiquidity which vanishes at a significantly slower rate than the continuous payoff case. This
means that derivative with discontinuous payoff are more rapidly affected by the illiquidity
cost.

Acknowledgements The authors whish to thank Reda Chhaibi for letting them use his
Matlab code for the numerical resolution of the PDE (2.3).
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A Technical Proofs

Proof. [Proof of Proposition 6.1] We start by proving the inequality for vBS,αss . By dom-
inated convergence, it is clear that svBS,αss goes to 0 when s approaches 0 or +∞. Hence
for α 6= 0, it also converges to 0 when τ tends to 0. Thus svBS,αss is less than a constant Cα
independent of s and τ . However, when α tends to zero, we obtain the classical expression
of the Γ of a call option

vBSss (t, s) =
e−

1
2
d1(s,K,τ)2

sσ
√

2πτ
, (A.1)

which is known to explode only when s = K and τ → 0. Therefore, to understand the
dependence in α of Cα, we only have to study the behaviour of svBS,αss when s = K and
when both α and τ go to 0.

Let us therefore take α = εa and τ = εb with a and b strictly positive numbers. For all
β ∈ [1/2, 1] we have

τ1−βα2β−1svBS,ε
a

ss =
ε(b/2−a)(1−2β)

σ
√

2π

∫ 1

−1
φ(u)e

− 1
2

„
σεb/2

2
− ε
−b/2
σ

log
“
1+ εau

K

”«2

du

Therefore, if a < b/2 (i.e. if τ goes to 0 faster than α) the quantity above always goes to 0
when ε → 0 due to the exponential term. If a ≥ b/2, the exponential term goes to 1, but
since β ∈ [1/2, 1] the above expression has always a finite limit. Hence the inequality for
svBS,αss .

A change of variable and direct calculations imply that, for all ν ∈ [0, 1], we have

τ
1−ν
2 α1+νsv(1),α

ss (t, s) =
α1+ντ−

1+ν
2

8`πs

∫ 1

0

∫
(−1,1)2

φ(x)φ(y)h̃α(τ, τv, s,K, x, y)
√
v(2− v)3/2

dxdydv, (A.2)

where

h̃α(τ, v, s,K, x, y)
hα(τ, v, s,K, x, y)

= 2 +

(
2δ(τ, τv, s,K)−

log
(
1 + αx

K

)
+ log

(
1 + αy

K

)
σ
√
τ(2− v)

)2

+

(
2δ(τ, τv, s,K)−

log
(
1 + αx

K

)
+ log

(
1 + αy

K

)
σ
√
τ(2− v)

)
σ
√
τ(2− v).

Using the same arguments as in the proof of the previous inequality, we can show again
that the only problem corresponds to the case where s = K and α and τ go to 0. Using
the same notations, we have
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hεa(εb, εbv, s, s, x, y) = exp

−σ2εb(1− 2v)2

4(2− v)
+

(1− 2v)
(

log
(
1 + εax

K

)
+ log

(
1 + εay

K

))
2(2− v)


× exp

(
− ε−b

σ2(2− v)
log
(

1 +
εax

K

)
log
(

1 +
εay

K

))
× exp

(
−
ε−b

(
log
(
1 + αx

K

)
− log

(
1 + αy

K

))2
2σ2v(2− v)

)

h̃εa(εb, v, s, s, x, y)
hεa(εb, v, s, s, x, y)

= 2 +

σε b2 (1− 2v)√
2− v

+ ε−b
log
(
1 + εax

K

)
+ log

(
1 + εay

K

)
σ
√

2− v

2

−

σε b2 (1− 2v)√
2− v

+ ε−b
log
(
1 + εax

K

)
+ log

(
1 + εay

K

)
σ
√

2− v

σ
√

2− vε
b
2 .

Therefore, if a < b/2, h̃εa always goes to 0. Otherwise, the integral has a finite limite but
since ν ∈ [0, 1] and a ≥ b/2, the expression in (A.2) has a finite limit. This proves the
second inequality. 2

Proof. [Proof of Proposition 6.2] The first result is straightforward and only uses the
fact that the function φ is symmetric, which allows us to get rid off the odd terms in the
expansion. For the second one, we directly calculate that

v(1),α =
∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e
−δ2− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)

8π`
√
v(2τ − v)

dxdydv

+ α

∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e
−δ2− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)
δ

8π`Kσ
√
v(2τ − v)

(x+ y)dxdydv

+ α2

∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e
−δ2− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)
(2(x+y)2δ2+σ

√
2τ−v(x2+y2)δ−2xy)

16π`K2σ2
√
v(2τ − v)3/2

dxdydv

+ o

α2

∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e
−δ2− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)

8π`
√
v(2τ − v)

dxdydv

 ,

where we suppressed the arguments of the functions v(1),α and δ for notational simplicity.
Note that all the above integrals are well-defined and finite. Then using dominated conver-
gence and the fact that φ is symmetric, it is easy to show that
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v(1),α =
∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e
−δ2− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)√
8π`v(2τ − v)

dxdydv

+ α

∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e−δ
2
δ

8π`Kσ
√
v(2τ − v)

(x+ y)dxdydv

+ α2

∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e−δ
2

(2(x+y)2δ2+σ
√

2τ−v(x2+y2)δ−2xy)
16π`K2σ2

√
v(2τ − v)3/2

dxdydv + o
(
α2
)

=
∫ τ

0

∫ 1

−1

∫ 1

−1
φ(x)φ(y)

e
−δ2− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)

8π`
√
v(2τ − v)

dxdydv + o(α).

Now the first term in the expansion above goes clearly to v(1) as α tends to 0. Then we
have

v(1),α − v(1) =
∫ τ

0

∫ 1

−1

∫ 1

−1

e−δ(τ,v,s,K)2φ(x)φ(y)
8π`
√
v(2τ − v)

(
e
− α2(x−y)2

4K2σ2v(1− v
2τ )

+o(α2)
− 1

)
dxdydv + o(α).

Using the change of variable u = α|x−y|
2Kσ

√
v
, the first term above can be rewritten as

α

8π`Kσ

∫ +∞

α|x−y|
2Kσ

√
τ

∫ 1

−1

∫ 1

−1

e−δ(τ,
α2(x−y)2

4K2σ2u2 ,s,K)2φ(x)φ(y)|x− y|√
2τ − α2(x−y)2

4K2σ2u2

e
− u2

1− α2(x−y)2
8τK2σ2u2

+o(α2)

− 1
u2

dxdydu.

A simple application of the dominated convergence and Fubini theorems shows that the
above integral (without the α factor) has a finite limit as α approaches 0 and is given by

e−
1
2
d0(s,K,τ)2

8π`Kσ
√

2τ

∫ 1

−1

∫ 1

−1
φ(x)φ(y)|x− y|dxdy

∫ +∞

0

e−u
2 − 1
u2

du.

Since the last integral is equal to
√
π, we obtain the second expansion. 2
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