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Chapter 1              
 

 

Introduction    
 

 

 

1.1 Research focus and motivations 
 

Falling within the framework of a larger research project (SHAPES) dealing with 

the estimation of costs and benefits related to commuter cycling, this thesis aims 

at identifying some of the factors that influence the spatial variation of cycle 

commuting to work and cycling accidents. Our motivation is twofold. Of interest 

is, first, the fact that bicycle use might act as a catalyst for policies oriented 

towards a sustainable development of the society. It indeed holds the potential 

to mitigate some of the main car-related concerns with which our society is faced 

nowadays. Lying at the heart of sustainability-related issues, this thesis then 

aspires to deliver a sound scientific support for policies aiming at encouraging 

bicycle use and making it safer. Second, focusing on bicycle use and cycling 

accidents implies taking up many methodological challenges. Starting from a 

broad-minded standpoint, it is thus decided to position this thesis at the 

crossroad of the research carried out in several scientific fields, with the intent to 

take advantage of their respective methodological strengths to deliver robust 

results and policy recommendations. Quantitative and transport geography, 

spatial econometrics, ecology and epidemiology are some of these fields into 

which special attention is devoted in this thesis, because of their close 

connections with the spatial dimension of the data. A multidisciplinary 

approach, with a particular focus on space, is then opted to achieve our main 

goals. 
 

The present chapter is structured as follows. It first addresses the international 

background to bicycle use from a societal point of view (Section 1.2.1), after 

which it focuses on the Belgian context since our empirical analyses are 

conducted in Belgium (Section 1.2.2). Section 1.3 then describes and motivates 

the general objectives of this thesis. In Section 1.4, some generic terms used 

throughout the thesis are explicitly defined. Section 1.5 briefly reviews the 

current literature on bicycle use and cycling accidents, and then describes some 

of the main challenges we decided to take up. Section 1.6 concludes this chapter 

by presenting the general outline of this thesis. 
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1.2 Background 

1.2.1 International context: cycling as a sustainable 

alternative to car use 
 

Most developed countries nowadays face environmental and mobility problems as 

a consequence of widespread car use. Partly due to long-term trends such as the 

increase in per capita income, car ownership has increased substantially since 

1950 (Pooley and Turnbull, 2000; Rietveld, 2001). This has induced many 

changes, and made our societies more car dependent, leading to the progressive 

development of new low-density residential estates as well as commercial and 

industrial activities in peripheral locations (peri-urbanisation). Individuals now 

have higher levels of mobility and they travel more often, over larger distances, 

and carry out more complex trips (i.e. they undertake several activities in one 

trip) (Jensen, 1999; Knowles, 2006). Such a car-oriented lifestyle has however 

various negative impacts upon society and the environment. Among other 

impacts, it causes increasing congestion, air and noise pollution, vibrations, 

health problems (e.g. due to a lack of physical activity or the inhalation of 

polluting agents), space and energy consumption, traffic accidents, infrastructure 

costs, and accessibility problems for low-income groups (Dobruszkes and 

Marissal, 1994; Peirson et al., 1998; EC, 2000; Kingham et al., 2001; Bergström 

and Magnusson, 2003; Witlox and Tindemans, 2004; Knowles, 2006; EEA, 2007). 

From an economic point of view, such a popularity of car use also results in a 

market failure since most of these indirect external costs are borne by the 

society, instead of being imposed on car users (Woodcock et al., 2007). Since the 

last few decades, the desire to reduce the massive car use is hence growing 

quickly as a result of these costs and negative externalities. Although the car is 

still widely used for transport in our travel-demanding society, current policies 

are now being reappraised in favour of more sustainable modes of transport and 

measures are gradually taken to put a stop to the growth in car use and urban 

sprawl. Both in Europe as well as in an increasing number of North American 

towns (Larsen and El-Geneidy, 2010; Pucher et al., 2011), planners and policy 

makers nowadays concentrate ever-increasing efforts and attention to promote 

bicycle use as an effective way of reducing car dependence and its attendant 

negative externalities. 
 

Such a growing interest in cycling – and, more generally, in active transport – 

results from the fact that it can help to achieve a variety of health, transport 

and environment policies oriented towards a sustainable development. It offers 

numerous benefits for the entire society as well as for the user itself since it is a 

‘green’ and healthy alternative to commuting by car (Chapman, 2007; Woodcock 
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et al., 2007). Cycling is indeed a cheap way of being physically active and 

preventing the health risks of a sedentary lifestyle, which are the second major 

cause of premature death in industrial countries after tobacco smoking (BMA, 

1992; Pucher et al., 1999; WHO, 2002a, 2002b; Pucher and Dijkstra, 2003; de 

Geus, 2007, 2008a, 2008b, 2009; Buehler et al., 2011; Oja et al., 2011). When 

performed on a regular basis (i.e. at least 30 minutes of moderate physical 

activity per day), bicycle use may provide a 50% reduction in the risk of 

developing physical disorders related to a sedentary lifestyle (e.g. coronary heart 

disease, obesity and type 2 diabetes), as well as it may reduce hypertension (–

30% in the risk), and psychological consequences related to inactivity (such as 

stress, anxiety or depression). Growing evidence from the literature also indicates 

that health benefits of cycling are likely to exceed (health) risks associated with 

its activity (i.e. the traffic injuries and the adverse health effects due to the 

exposure to traffic exhaust) (ERSO, 2006; Woodcock et al., 2009; de Hartog et 

al., 2010; Aertsens et al., 2010; Int Panis et al., 2010; Rojas-Rueda et al., 2011; 

Rabl and de Nazelle, 2012).  
 

Beyond bringing direct health benefits to the cyclists, the use of the bicycle 

provides indirect health benefits for the entire society as well as an 

environmentally friendly alternative to the car given that it does not emit air 

pollutants and does not have any noise pollution impact (Pucher et al., 1999; 

WHO, 2002a, 2002b; Rietveld and Daniel, 2004; Gatersleben and Appleton, 

2007). As suggested by EC (2000) and ERSO (2006), a substantial shift from car 

to alternative modes of transport – such as the bicycle – could strongly reduce 

the environmental and health hazards caused by air and noise pollution. For 

instance, it is estimated that a one-third reduction in the number of car trips 

from 44 to 30% in Graz (Austria) would involve a 25% reduction in pollution 

from motorised vehicles (EC, 2000; ERSO, 2006). Increasing evidence in the 

literature also indicates that air and noise pollution (caused by motorized road 

transport) is at the root of major health hazards, such as allergic illnesses, 

deficits in lung-function development in children, non-allergic respiratory 

diseases, or increased cardiovascular risks (WHO, 2002a, 2002b; Gauderman et 

al., 2007; Woodcock et al., 2007). Mitigating such forms of pollution – e.g. 

through a modal shift from car to bicycle – is then expected to make the 

environment healthier as a whole, which is even truer in urban areas and during 

peak hours. 
 

Although a relation of cause and effect is not yet well-established in the 

literature, evidence is also growing about the fact that lower fatality rates of 

accidents are associated with higher levels of cycling and walking (in terms of 

distance travelled) (Jacobsen, 2003; Pucher and Dijkstra, 2003). Interestingly, 

Elvik (2009) showed that a substantial shift from motorised trips to bicycle or 



Chapter 1.  Introduction 

6 

 

walking is – in theory – expected to reduce the total number of accidents. 

Cyclists indeed impose low (injury) risks to other road users as well as they get 

an improved visibility and experience in the traffic, which in turn increases the 

demand for cycle infrastructures and encourages even more cycling (given that 

the perceived safety about cycling is improved). A shift from car to bicycle is 

then expected to mitigate to some extent the (high) economic and social costs 

related to traffic accidents. Unlike motorised modes of transport, cycling also has 

the advantage of being a space- and energy-efficient mode of transport (Pucher 

et al., 1999; Rietveld, 2001; Gatersleben and Appleton, 2007; Woodcock et al., 

2007). It indeed preserves non-renewable natural resources from consumption, 

reduces the dependence of the economy upon (imported) fossil fuels, as well as it 

leaves land free for future investments and reduces road congestion in urban 

areas (and thus, indirectly, air and noise pollution) (Litman, 2004; Krizek, 2007; 

Woodcock et al., 2007). Of importance is also the fact that increased cycling 

reduces the (high) infrastructure costs caused by massive car use and the 

attendant urban sprawl. At best, the promotion of cycling can even help to 

strengthen the economic performance of specific parts of the public transport 

system by attracting more consumers (through e.g. bike-and-ride). Furthermore, 

it is also likely to cope with the current dynamic of social exclusion generated by 

the unequal accessibility to different modes of transport, since the costs related 

to its use (e.g. in terms of maintenance, fuel consumption, parking, etc.) make it 

affordable for a large majority of households compared to car use (Litman, 2004; 

Martens, 2004; Witlox and Tindemans, 2004; Martens, 2007). 
 

Although an increase in bicycle use results in obvious benefits for the entire 

society and for the cyclists themselves, there are still important barriers that 

deter people from cycling. In particular, the risk of having an accident – as 

perceived by road users – is one of the most important hurdles that discourage 

people from cycling (McClintock and Cleary, 1996; Pucher et al., 1999; Parkin et 

al., 2007; Winters et al., 2011). Except in some countries or regions benefiting 

from the ‘safety in numbers’ effect (owing to e.g. high levels of bicycle use, 

strong policy support, appropriate infrastructures, etc., as it is the case in the 

Netherlands or Denmark), the risk for a cyclist to be involved in a road accident 

is high compared with motor vehicle occupants (Elvik, 2009; Reynolds et al., 

2009). As vulnerable road user, the cyclist also incurs a higher risk of injury if a 

motorised vehicle is involved in the accident (ERSO, 2006). Besides the medical 

and non-medical costs (e.g. bike repair, damaged clothes, etc.), some of the main 

adverse consequences associated with road traffic accidents are physical pain, 

possible permanent disability/invalidity, psychological complications, as well as 

productivity and leisure time loss (Mayou and Bryant, 2003; Aertsens et al., 

2010).  
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Finally, other barriers discouraging the use of the bicycle are large commuting 

distances, steep slopes, lack of proper cycle facilities, high traffic volumes, poor 

accessibility to urban facilities, or company-related constraints (such as the dress 

code or the need to carry bulk goods). Importantly, most of the observations 

related to these barriers are embedded on the earth’s surface and often vary in 

intensity over space. They also distribute seldom if ever at random over this 

space and – in many cases – may lead to specific spatial trends, or patterns. 

Conducting analyses within a geographical framework then appears to be 

obvious if the intent is to provide further knowledge about the factors that affect 

cycling as well as the risks of accident linked to its practice. Ignoring such spatial 

aspects would otherwise carry the risk to result in wrong inferences… 

 

1.2.2 The Belgian context 
 

This thesis applies to Belgium, where the popularity of cycling is high on 

average, although far below the levels reported in the Netherlands and Denmark 

(Witlox and Tindemans, 2004). At the European level (EU 15), Belgium is 

ranked fourth, with a bicycle share of 2.4% (in traveller-kilometres/person/year), 

and stands out as one of the countries with the highest share of cyclists 

(Denmark: 5.5%; the Netherlands: 6.7%) (EU, 2003; Rietveld and Daniel, 2004). 

There has been a substantial decline in the use of bicycles since 1950, as the use 

of cars for routine trips has increased. The bicycle is now relegated to a marginal 

role, and is mainly used for recreational activities: indeed, in 2001, only 6.2% of 

commuters regularly used a bicycle as their main mode of transport (7.4% when 

bicycles were integrated into a multimodal chain). This compares to 68.6% of 

commuters who travelled by car (Verhetsel et al., 2007). However, in recent 

years there have been suggestions that a cycling renaissance is occurring in 

Belgium, as well as in a number of other European countries (Rietveld, 2001; 

Witlox and Tindemans, 2004).  
 

Compared with other modes of transport, the risk of having an accident while 

cycling is high in Belgium: while the bicycle share is estimated at 2.4%, cyclists 

account for about 9.0% of the total number of traffic fatalities (EU, 2003; 

Rietveld and Daniel, 2004; BRSI, 2009a). Moreover, the accident risk is 

estimated to be four times higher than for motor vehicle occupants (and twofold 

when highways are not taken into account). As shown in Figure 1.1, the risk of 

being killed for a cyclist is also relatively high compared with European countries 

reporting similar levels of cycling (such as Germany or Sweden), which suggests 

that bicycle use could be made safer in Belgium (BRSI, 2009a). 
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Figure 1.1: Fatality rates for cyclists and bicycle share (%) in 2000 – A 

European comparison. EU 15 = European Union and its 15 former member 

countries. Data sources: EU, 2003; Rietveld and Daniel, 2004; BRSI, 2009a. 

 
 

Beyond differences between European countries (Figure 1.1), Belgium also masks 

strong regional differences, making it a ‘fascinating’ ‘laboratory’ for observing 

spatial variations in bicycle use and accident risks at a meso-scale level. As 

further suggested in this thesis (see Chapters 2 and 3), the northern part of the 

country is characterised by high levels of cycling and low risks of accidents, while 

the opposite situation is observed in the southern part of the country (low 

proportions of cyclists and high risk of accident). At an intermediate level, the 

Brussels-Capital Region (centrally located in Belgium) also exhibits low 

proportions of cyclists and high risks of accident, although fatality and serious 

injury risks are low for cyclists owing to the urban nature of the region. Cultural, 

historical, political (investments), socio-economic, demographic, and 

environmental factors are likely to explain to a large extent (together or 

separately) such strong spatial differences. As mentioned below, examining which 

factors significantly explain these differences constitutes one of the main 

challenges of this thesis. 

 

1.3 General objective 
 

Encouraging bicycle use requires tackling some of the main barriers to cycling 

through the implementation of a comprehensive package of transport and land-

use policies. Barriers such as these mentioned in Section 1.2 then need to be 

clearly identified (and quantified) to enable policy makers and planners to 
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develop supportive environmental conditions for more cycling. Of particular 

importance are also the factors that are associated with an increased/reduced 

probability of having a cycling accident. Identifying such factors within a 

scientific framework would indeed provide greater support to make bicycle use 

safer and, then, more common (Figure 1.2). Focussing on cycle commuting and 

accident risks for cyclists, the general objective of this thesis is then two-fold. 

More particularly, it aims at: 
 

i. examining which spatial factors influence the spatial variation of the use 

of the bicycle for commuting to work at the level of the municipalities in 

Belgium; 

ii. examining which spatial factors are associated with the risk of being 

involved in a road accident when cycling in the Brussels-Capital Region. 
 

This thesis hence aims at contributing to the knowledge of the spatial 

determinants of cycle commuting and of one of its major deterrent factors, i.e. 

the risk of accident for cyclists. Obtaining further insight about such spatial 

determinants is of great interest as it allows identifying the main 

environmental/contextual factors that make a location more or less prone to the 

use of the bicycle (objective i), or more or less ‘risky’ for cyclists (objective ii). 

For instance, the risk of being involved in a road accident when cycling is not 

the same from one location to another: it spatially varies, depending on a 

number of inter-related factors (e.g. driver behaviour, quality of infrastructures, 

traffic conditions, etc.) that determine this risk and explain why some locations 

are more prone to generate accidents than others. Accumulated knowledge about 

these factors then allows establishing sound recommendations intended for policy 

makers and planners, especially by pinpointing locations where measures should 

be taken to encourage bicycle use and make it safer. 
 

From a conceptual point of view (Figure 1.2), measures resulting from our two-

fold objective may act as interrelated parts of a virtuous circle in which pro-

cycling strategies and improvements in the bicyclist’s safety may support and 

influence each other, thus contributing to continuously increase bicycle use and 

make it safer (until time t, after which all the ‘cycling potential’ is assumed to be 

fully exploited). More concretely, it means on the one hand that improving the 

safety and convenience of cycling is of prime importance to encourage the use of 

the bicycle as it is well-known that the (perceived) risk of cycling accident 

strongly deters it. Indeed, reducing the actual risk of accident – e.g. through an 

appropriate package of policy measures implemented at target locations – holds 

the potential to lower the individuals’ overall perception of the risk associated 

with cycling, which in turn encourages even more people cycling.  
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Figure 1.2: General objectives of the thesis (i & ii) within the contextual 

framework 
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On the other hand, increasing bicycle use through a comprehensive set of pro-

cycling measures may also help to create a ‘safety in numbers’ effect (Jacobsen, 

2003). The growing or the extensive use of the bicycle in a given environment 

may indeed be an efficient way to lead potential users questioning about cycling 

here (e.g. how safe and convenient is cycling here?). This may in turn encourage 

even more people cycling (‘mass effect’) and then may improve the safety of all 

cyclists through e.g. a greater visibility and experience of these latter in the 

traffic, or a better availability of high-quality cycle infrastructures (due to a 

higher demand and the achievement of a critical mass of cyclists). Concentrating 

this thesis on both interrelated aspects is then far from being unsubstantiated 

and aims at providing further knowledge for setting such a virtuous circle in 

motion (or at least maintaining it) and for achieving the objectives of sustainable 

development of the society. 
 

From a methodological point of view, this thesis devotes special attention to 

spatial approaches, which are techniques centred on geographical aspects and 

using spatial data/observations with the aim to explore and/or account for their 

(eventual) spatial relationships and their attendant spatial effects or biases (see 

Section 1.5 for further information on these effects/biases encountered 

throughout this thesis). It is hence questioned throughout the general objective 

how do cycle commuting and accidents distribute over space, and why do they 

tend to be more/less frequent in some places than others. In other words, it is 

here aimed at shedding light on the (spatial) factors that explain why cycle 

commuting and accidents are more/less frequent in some places than others. 

Such spatial approaches are hence of great interest for planners and policy 

makers since they allow: (i) identifying which types of environments encourage 

or deter cycling (Objective i); and (ii) which factors (i.e. road infrastructures, 

activities, etc.) increase or lower the risk of having a cycling accident. Note that 

further details on these approaches are provided in Section 1.5.2.  

 

1.4 Terminology 
 

Before going further in describing the main methodological approaches and gaps 

encountered in the literature, this section aims at providing basic definitions for 

some of the key terms used throughout this thesis. The list of these terms is as 

follows: 
 

• Bicycle use – also referred here to as ‘(bi-)cycling’– is the use of the bicycle 

for utilitarian (e.g. work, school) or recreational purposes (e.g. sport, racing, 

recreation/leisure, etc.). People making use of the bicycle for their trips are 

here referred as ‘cyclists’ or ‘bicyclists’. 
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• Commuter cycling is the use of the bicycle as mode of transport for a 

regular travel between the place of residence and the workplace or school. 

People that use the bicycle for commuting are hence referred as ‘commuter 

cyclists’. Note that only commuting trips to work are considered in the 

second part of this thesis (Chapters 2 and 3). 

• A road accident (or traffic accident/crash) is defined as any accident 

occurring on a public road and involving at least one road user. In Belgium, 

road accidents resulting in injuries and fatalities are officially reported by the 

police and afterwards compiled by the Directorate-General Statistics and 

Economic Information (DGSEI). The DGSEI defines the severity of accidents 

as follows: 

o Fatal accident: any accident resulting in one or more road users being 

killed, either at the location of the accident or within the 30 days (due 

to the accident-related injuries); 

o Severe/serious accident: any accident resulting in one or more road 

users being seriously injured and for who an hospitalisation of more than 

24 hours was reported; 

o Slight accident: any accident resulting in one or more road users being 

slightly injured and for who the hospitalisation was less than 24 hours. 

Most accident data used here come from the DGSEI. As further mentioned in 

this thesis, accident data generally face with a number of drawbacks that can 

bias the statistical inference. In particular, some of the main limitations with 

which this thesis is confronted are the underreporting of accidents (especially 

slight accidents), the encoding errors (as regards e.g. the location of the 

accident), and the absence of trip purpose (road users involved in the 

accident are not asked to register their trip purpose). 

• A casualty is defined as any person injured or killed as a result of a slight, 

serious or fatal accident. Also note that a fatality is defined as any person 

killed as a result of a fatal accident. 

• A bicycle accident, or cycling accident, is defined as any road/traffic 

accident occurring on a public road and involving at least one cyclist. Note 

that slight bicycle accidents are particularly prone to the underreporting 

issue, as cyclists generally do not feel the need to register their accident 

(because of the slight injuries, low material damages, etc.). Further 

information about such underreporting issue is provided in several sections of 

this thesis (Section 1.5.2.2, Section 2.2.2.2 and Section 4.3.2.1). 

• The notion of risk is here defined as the probability that the outcome of 

interest will occur, following a particular exposure of the population or study 

group (Burt, 2001; Porta, 2008). In particular, the risk of having a cycling 

accident is the probability that this accident will occur, following the 

exposure of the cyclists in the traffic during a specified period of time (or for 

a specific distance). 
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1.5 Methodological approaches and 

gaps 
 

This section aims at laying down the foundations underlying the methods used 

within the framework of this thesis. It first provides a short overview of research 

into bicycle use and cycling accidents, as well as on the statistical techniques 

customarily used in the scientific literature to identify the determinants of cycle 

commuting and accidents (Section 1.5.1). In a second step, it describes some of 

the main research issues we decided to address within the framework of this 

thesis in order to provide thorough and innovative recommendations for planners 

and decision makers (Section 1.5.2). 
 

Note that it is not the goal here to provide an exhaustive review of the main 

theoretical concepts. Instead of falling into one methodological framework, this 

thesis proposes various frameworks suited to the individual objectives of the 

chapters. As a result, the purpose of this section is rather to briefly review the 

main methods of analysis used in the existing research into cycle commuting and 

accidents, after which it aims at identifying some of the main research gaps 

related to these methods. Further information on the methodological solutions 

selected here to address these gaps is provided subsequently in this thesis 

(notably within the framework of chapters 3, 4 and 5). 

 

1.5.1 Overview of current research into bicycle use 

and cycling accidents 

1.5.1.1 Research into bicycle use 

 

Although a large number of empirical studies focus on mode choice and trip 

frequency, it is noteworthy that – throughout the scientific research in transport 

– relatively limited attention has been devoted specifically to the use of the 

bicycle for commuting to work, especially when compared to motorised vehicles. 

Overall, the bulk of studies on cycling either focuses on bicycle use in general, or 

examines the mode choice within the framework of all commuting trips (Heinen 

et al., 2010). In the former case, bicycle use is studied regardless of the trip 

purpose (i.e. leisure, school, work, shopping, etc.), while in the latter case the 

choice of commuting by bicycle is investigated considering that other modes of 

transport are available as alternatives to cycling (one commuter will then choose 

to travel on the mode which gives him/her the highest ‘utility’).  
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Much of this research into cycling is conducted throughout studies related to 

transportation, social sciences as well as medical and health education matters. 

In line with the general objective (i) of this thesis, most of these studies 

commonly aim at examining the relationship between the travel behaviour of 

people or commuters (measured as trip frequency, flows, mode share, mode 

choice, etc.) and a number of factors/determinants that are assumed to be 

‘explanatory’ with respect to these behaviours. Invariably, the purpose is thus to 

identify which factors have the greatest influence on the use of a specific mode 

within the framework of a definite trip purpose. Based on an exhaustive 

literature review carried out by Heinen et al. (2010) and in Chapter 3 of this 

thesis, evidence from the academic research shows that travel behaviour – and, 

in particular, bicycle use – is influenced by factors related to the built 

environment (e.g. population densities, presence of cycle facilities, distances, 

etc.), as well as by socio-economic (e.g. income, education, car ownership, etc.), 

demographic (e.g. age, gender, etc.), psychological (e.g. attitudes, social norms, 

habits, etc.), physical (e.g. weather, hilliness, etc.), as well as safety- and cost-

related factors (e.g. perceived safety, travel time, physical effort, etc.). Other 

studies also aim at scrutinising the preferences of cyclists with respect to specific 

routes (e.g. direct vs. safe routes) or factors (e.g. separated vs. on-road cycle 

facilities) (ibid.). 
 

From a methodological point of view, empirical works traditionally use statistical 

analyses to explore and/or explain the travel behaviours and preferences of 

commuters (which are here referred as ‘dependent’ variables) as a function of a 

set of explanatory factors/determinants (‘independent’ variables). Roughly, such 

statistical analyses can be categorised into two complementary groups. Firstly, 

the exploratory analyses generally consist of univariate or bivariate techniques 

that explore the data through simple graphical approaches (e.g. histograms, 

boxplots, scatterplots, maps, etc.) and/or using basic statistics, such as 

descriptive statistics (e.g. mean, standard deviation, etc.) or test statistics (e.g. 

Chi-Square test, Wilcoxon test, t-test, etc.). They also include multivariate 

techniques that aim at investigating the relationships/correlations existing 

between the different factors (using e.g. the Principal Component Analysis) or 

group the observations based on a set of factors (using e.g. a cluster analysis, 

such as the one applied in Chapter 2). Hence, such exploratory analyses mostly 

aim at inspecting the variables and their relationships, and sometimes precede 

more robust techniques (such as regression models) by highlighting the effect 

some factors/determinants might have on travel behaviours and preferences. 

Examples of exploratory analyses are legion throughout the research into bicycle 

use (see e.g. Dickinson et al., 2003; Witlox and Tindemans, 2004; de Geus, 2007; 

Dill and Voros, 2007; Gatersleben and Appleton, 2007). Secondly, a significant 

deal of the research is conducted within an explanatory framework, i.e. within 
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which several factors/variables are considered. It generally makes use of 

statistical regression models, which aim at examining the travel behaviour of 

commuters as well as the relative relevance/significance of factors in explaining 

such travel behaviours. Different types of models are used in the literature, 

depending on how the dependent variable is defined (i.e. whether this latter is 

discrete or continuous). Logit models, probit models, linear regression models, 

and structural equation models are some of the most commonly used 

specifications (Heinen et al., 2010). In particular, binominal/multinomial logit 

models are based on discrete responses and are frequently used in mode choice 

research to evaluate the ‘utility’ one commuter gives to each mode of transport, 

as a function of a set of factors (see e.g. Noland and Kunreutheur, 1995; 

Wardman et al., 1997; Rodriguez and Joo, 2004). Similarly, empirical studies 

based on stated preference surveys also make use of such models to determine 

the preferences cyclists have for specific routes or facilities (see e.g. Stinson and 

Bhat, 2003, 2005; Hunt and Abraham, 2007). Regarding continuous dependent 

variables, the existing research commonly uses regression models in order to 

identify which determinants have a significant effect on the share of cycling or 

on cycle flows (see e.g. Emmerson et al., 1998; Rietveld and Daniel, 2004). 
 

Finally, the selection of a particular model also depends on the level at which the 

data are available. Except for studies based on authors’ own surveys, data are 

not always reported at the individual level and are often aggregated to areas, or 

zones (such as municipalities, agglomerations, towns or countries). When 

available in aggregate form (e.g. variation in the share of cycling per 

municipality), the dependent variable is continuous and may then require an 

appropriate model specification (such as a linear regression model in the simplest 

case). At the opposite, studies conducted at the individual level are generally 

based on discrete dependent variables (e.g. cyclist vs. non-cyclist) and then aim 

at predicting mode choice and cyclists’ preferences using logistic specifications. 

More importantly, different results may be obtained for the same statistical 

analysis depending on the level at which the data are reported or aggregated. 

This latter issue is known as the Modifiable Areal Unit Problem (Openshaw, 

1984) and is well-documented in the literature (see e.g. Bailey and Gatrell, 1995; 

Fotheringham et al., 2000). Further details on this methodological concern are 

provided in Section 1.5.2 of this thesis. 

 

1.5.1.2 Research into cycling accidents and accidents in general 

 

Cycling accidents – and road accidents in general – result from the combination 

and interaction between five categories of factors: human factors (e.g. driver 

behaviour, driver error, response to stimuli, etc.), vehicle-related factors (e.g. size 
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or state of the vehicle), infrastructure factors (e.g. crossroad design, pavement 

type), traffic conditions (e.g. density, speed), and environmental factors (e.g. 

lighting, weather) (Miaou et al., 2003; Li et al., 2007; BRSI, 2008). Despite the 

fact that considerable methodological improvements have been achieved in traffic 

accident research during the last decades, the lack of accurate information about 

the human factors and accident mechanisms (e.g. acceleration, braking, etc.) as 

well as the driver-related privacy issues have often hampered researchers to 

enhance their knowledge about the exact cause and effect relationships with 

regard to the road accidents as a whole (Lord and Mannering, 2010). As a 

consequence of such data limitations, the body of the literature mainly focuses 

on examining the factors that affect either the frequency or the severity of 

accidents. Other studies aim at investigating the association between the type of 

collision (e.g. rear-end accident, side accident, etc.) and a set of factors related to 

the accident mechanisms (Noland and Quddus, 2004; Lord and Mannering, 

2010).  
 

For a number of reasons (e.g. privacy issues, administrative convenience, etc.), 

most of studies also aggregate the accidents over space and/or over some period 

of time (Aguero-Valverde and Jovanis, 2006; Liu and Jarrett, 2008; Quddus, 

2008; Lord and Mannering, 2010). Regarding the aggregation over time, a period 

of one to several years (e.g. 3, 4 or 5 years) is generally chosen and may provide 

an adequate basis for further statistical analysis, although some studies may 

focus on shorter periods of time (several weeks or months). When accidents are 

aggregated over space, typical spatial units used throughout the literature are 

road nodes (intersections), road links (junctions) and administrative areas (such 

as statistical wards, municipalities, counties, regions or countries). 
 

From a methodological point of view, much of the research into traffic accidents 

may be broadly classified into two groups (exploratory vs. explanatory models), 

depending on the purpose of the study. As for the research into cycling, 

exploratory methods may be used as an initial step to ‘look at’ the data, 

before performing explanatory methods. They aim at describing the accident 

data set using basic statistics (i.e. descriptive statistics, test statistics, odds 

ratios, etc.) and/or various spatial approaches. Importantly, the choice of one 

specific exploratory spatial method is strongly conditioned upon the level at 

which the data are available or aggregated (i.e. individual or spatially 

aggregated): 
 

• At an individual level, spatial point pattern analyses are generally carried out 

to explore the accident data. These mainly consist of methods measuring the 

global variation in the mean value of the point pattern (first-order effects) or 

examining the tendency for local deviations from the mean value caused by 

the spatial correlation structure of the pattern (second-order effects) (Bailey 
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and Gatrell, 1995; O’Sullivan and Unwin, 2002). Examples of methods 

exploring the first-order effects of the point pattern are centrographic 

techniques, (network) quadrat count analyses and (network) kernel density 

estimates (see e.g. Bailey and Gatrell, 1995; Levine et al., 1995a; Banos and 

Huguenin-Richard, 2000; Fotheringham et al., 2000; Myint, 2008; Shiode, 

2008; Okabe et al., 2009). Second-order effects, on the other hand, are 

examined using e.g. nearest neighbour distances and (cross) K-function 

methods (see e.g. Bailey and Gatrell, 1995; Fotheringham et al., 2000). Most 

of these exploratory methods are presented in Chapter 4 of this thesis. 

• At a spatially-aggregated level, segment- and area-based methods are 

commonly adopted to explore primarily the second-order effects in the 

accident data (and, to a lesser extent, first-order effects; see e.g. Lassarre and 

Thomas (2005)). Although they strongly depend on the definition of the 

neighbourhood, such methods have the advantage to pinpoint which parts of 

the network or which areas/zones show statistically significant concentrations 

of road accidents. In other words, they identify the significant black zones of 

accidents along the road network (on specific segments) or at the scale of 

areas/zones. On the one hand, the computation of dangerousness indices and 

local indicators of network-constrained spatial autocorrelation are some of the 

most frequently used segment-based method to detect black zones on the 

network (see e.g. Thomas, 1996; Black and Thomas, 1998; Flahaut et al., 

2003; Steenberghen et al., 2004, 2010; Yamada and Thill, 2010). Area-based 

analyses, on the other hand, may be performed using Moran’s I indices 

(Moran, 1948) and/or Getis-Ord Gi* local statistics (Getis and Ord, 1992) to 

identify black zones. Z-scores are then used to test the statistical significance 

of the computed values, and then also the statistical significance of black 

zones. To our knowledge, such methods are rarely applied on accident data in 

the literature, although some recent examples can be found in Khan et al. 

(2008) and Kingham et al. (2011). 
 

Besides exploratory methods, explanatory models are commonly used to 

estimate the relative importance several factors may have on the occurrence and 

severity of accidents. Overall, three types of models are generally identified in 

the literature: the accident-frequency models (also referred as ‘accident-count’ 

models), the accident-collision models, and the accident-severity models. 

Concretely, the first category of model is generally applied to compute the 

probability of observing a definite number of accidents as a function of a set of 

accident-related factors (e.g. characteristics of the accident location, time of the 

accident, road users involved in the accident, etc.), while the second and third 

types of model overall focus on estimating the probability that an accident falls 

into one definite class of collision or injury severity, respectively (still as a 

function of a set of accident-related factors and conditional on the fact that the 
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accident has occurred) (Ye and Lord, 2011). Among the first class of models, 

Poisson and Poisson-gamma (or negative binomial) models are the most common 

choices in the literature as accident-frequency data are Poisson-distributed and 

consist of non-negative integers (which precludes using models based on 

continuous dependent variables, such as ordinary least-square regressions) (Lord 

et al., 2005; Lord and Mannering, 2010). During the last two decades, other 

types of models have also been developed to address important data and 

methodological issues identified throughout the literature on accident-frequency 

models. Zero-inflated Poisson and negative binomial models, for instance, handle 

data that are characterised by a large number of zero-accident observations (or 

more zeros than Poisson or Poisson-gamma models would expect). Other types of 

models also account for various types of issues, such as under-dispersed data 

(Gamma models), temporal correlation (Generalised estimating equation 

models), or non-linear variable interactions (Generalised additive models). Last 

but not least, some of the accident-frequency models may even handle several 

issues at the same time. In particular, the Conway-Maxwell-Poisson model may 

address both over- and under-dispersion issues in the data, while the random-

effect models turn out to be useful to treat both spatial and temporal 

correlations. For information purposes, readers are here urged to refer to Lord 

and Mannering (2010) if they are interested to get a more complete review of the 

literature about accident-frequency models (and their related issues). As regards 

the two remaining categories of models (accident-severity and accident-collision 

models), binomial logistic specifications are widely used throughout the literature 

when the dependent variable is in a binary form (e.g. fatal vs. non-fatal 

accident), while multinomial or ordered logit specifications are generally 

performed when multiple categories are available (e.g. no injury, slight injury, 

serious injury and fatal injury in the case where the responses are ordered). 
 

Focussing on cycling accidents in particular, it turns out that much of the 

empirical work is recent (90’s) and is mainly conducted in social sciences, 

medical and health care research, and transportation (including traffic accident 

analysis, injury prevention, transport geography and engineering) (see Eluru et 

al. (2008) and Reynolds et al. (2009) for a review of the literature). Examples of 

accident-frequency models applied to cycling accidents can be found in Wang 

and Nihan (2004), Hels and Orozova-Bekkevold (2007), and Schepers et al. 

(2011). On the other hand, empirical works aiming at comparing the impact of 

factors on different levels of injury severity for cyclists are far more common and 

can be found notably in Rodgers (1997), Klop and Khattak (1999), Kim et al. 

(2007) and Eluru et al. (2008). As regards accident-collision models, much of the 

work is – to our knowledge – quite recent and mainly aims at finding 

associations between the type of collision/manoeuvre (e.g. door-related accidents, 
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rear-end accidents, overtaking accident, etc.) and a set of factors. Relevant 

examples can be found in Pai (2011) and Yan et al. (2011). 

 

1.5.2 Research gaps, challenges and spatial aspects 
 

Research into bicycle use and cycling accidents still constitutes a great challenge 

for transport scientists. Important data and methodological limitations have been 

identified as potential sources of bias, in the sense that these may lead to invalid 

inferences/results with respect to the explanatory factors (e.g. biased parameter 

estimates can be obtained). Of concern is notably the lack of reliable data on the 

factors specific to the bicycle (e.g. cycle facilities), as well as the limited 

attention devoted by the researchers to the presence of spatial autocorrelation in 

the data. Markedly, this latter issue is seldom if ever addressed in research into 

bicycle use and cycling accidents (despite the fact that many studies consider 

spatial information). Underreporting of cycling accidents is also a well-known 

issue in the literature, which is likely to affect the results. Given that the large 

bulk of studies only account for cycling accidents reported by official statistics 

(which constitutes the tip of the iceberg), it would be worth to question how 

such reported cycling accidents are representative of the unreported ones (in 

terms of environmental features/factors and spatially). To our knowledge, no 

research has been conducted yet to get such insight. Another concern is the fact 

that cycling accidents – but also road accidents in general – are events that are 

constrained to occur on a network space, which is not always taken into account 

in a number of (exploratory) studies. Last but not least, the risk of cycling 

accident associated with some definite locations or infrastructures is seldom if 

ever estimated in the literature on traffic accidents. Partly because there is no 

reliable exposure variable (e.g. bicycle flows), the strand of the literature is 

limited to examine the impact of several factors on accident frequency and/or on 

various levels of injury severity. On the other hand, surveys aiming at estimating 

such a risk often fail to select valid controls and raise questions about their 

relevance in providing consistent parameter estimates and recommendations 

about explanatory risk factors (see e.g. Lusk et al. (2011) and related 

comments). 
 

This thesis then aims at addressing some of the aspects related to these gaps. 

The intent is to provide sound statistical results and, then, well-founded 

recommendations for policy makers and planners. Such gaps – as well as their 

attendant solutions – are introduced one by one in the following subsections. 
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1.5.2.1 Lack of reliable and high-resolution data 

 

Most data compiled in transportation research are car-based and put little 

emphasis on non-motorised transports in general (i.e. walking and cycling). In 

particular, data on cycling are often collected in short supply and/or are 

generally of limited quality (Iacono et al., 2010). Heinen et al. (2010) also point 

out the fact that bicycle-specific factors, i.e. those directly influencing bicycle use 

and cycling accidents (e.g. cycle facilities, hilliness, etc.), are often neglected in 

the literature, although they would be worth considering since they are likely to 

provide sounder recommendations on how encouraging cycling and making it 

safer. Of concern is mostly the fact that such bicycle-specific factors are seldom 

registered at a local scale. Partly because of time and cost constraints, these are 

commonly aggregated over spatial units and then often impose to carry out 

empirical analyses over areal units, despite the fact that some other data might 

be available at an individual level through surveys or censuses (e.g. socio-

economic and demographic data about cyclists; see Chapter 3). Such a lack of 

reliable and high-resolution data about bicycle-specific factors is hence one of the 

most central issues in research into cycling, as it often hampers to get in-depth 

knowledge on the factors that significantly influence both bicycle use and cycling 

accidents.  
 

More importantly, conducting statistical analyses over areal units in turn 

requires being aware that incorrect inferences may result from the aggregation of 

the data, especially as regards the cycling accidents (see Section 1.5.1.2). Also, 

the obtained results may be conditional upon the definition of the areas/zones 

for which these data are spatially aggregated (Bailey and Gatrell, 1995; 

Fotheringham, 2000). For a same statistical analysis, different results can indeed 

be obtained when different levels of spatial resolution are chosen (Fotheringham, 

2000). Such a sensitivity in the results has been previously demonstrated for 

both bivariate and multivariate analyses as well as for spatial modelling (see e.g. 

Openshaw and Taylor, 1979; Fotheringham and Wong, 1991; Fotheringham et 

al., 1995). This methodological issue is referred in the literature to as the 

Modifiable Areal Unit Problem (Openshaw, 1984).  
 

In the light of all these issues, both Chapters 2 and 3 pay particular attention on 

collecting an exhaustive data set considering both ‘traditional’ factors (i.e. 

factors that are traditionally used in the literature, such as socio-economic 

factors) and bicycle-specific factors (such as cycle facilities, hilliness, motorised 

traffic volume, etc.). More interestingly, within the framework of Chapters 4 and 

5, high-resolution data are created in order to avoid the statistical biases that 

could result from aggregating the data on areas or segments. Such data are 

mostly infrastructure-related (e.g. tram tracks, cycle facilities, etc.) and are 
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digitised into a Geographic Information System (GIS) for the Brussels-Capital 

Region.  
 

From a methodological point of view, spatial autoregressive methods (in 

particular, the spatial error model) may turn out to be useful in suggesting the 

presence of omitted data and, subsequently, in accounting for such unmeasured 

information by specifying a spatial autoregressive process for the error terms (see 

Chapter 3 for further information). The use of multilevel statistical models could 

also be here of interest as it could allow handling our data characterised by a 

hierarchical/multilevel structure, i.e. characterised by different levels of 

hierarchy/aggregation (Schwenkglenks, 2007; Corrado and Fingleton, 2011). For 

instance, observations for workplaces (1st level of the hierarchy) may be nested 

within municipalities (2nd level), which are in turn nested within regions (3rd 

level, which is here the highest level of the hierarchy) (see e.g. Vanoutrive et al., 

2010 for a recent application to Belgium). Multilevel models have the advantage 

of separating the ‘contextual effects’ (i.e. the effects of group-level 

characteristics, or neighbourhood effects) from the ‘compositional’ ones (i.e. the 

effects of individual-level characteristics) (Duncan et al., 1998; Mohan et al., 

2005; French and Jones, 2006; Johnston et al., 2007). Compared to conventional 

regression methods (e.g. ordinary-least squares (OLS) methods), multilevel 

models are also shown to result in better statistical efficiency, better 

identification of effects and unbiased standard errors (Goldstein, 1999; Rice, 

2001). Given that individuals are grouped/aggregated on different levels of 

hierarchy, they also allow accounting for the dependence between observations 

living in a same location1, as well as they allow modelling spatial dependence 

through the error term by applying e.g. the feasible generalized spatial two-stage 

least squares (FG2SLS) method (see e.g. Corrado and Fingleton (2011) for 

further information). Multilevel models however lead to a number of drawbacks 

and are still a subject for debate (see e.g. Oakes, 2004, 2006, 2009). Several 

authors indeed express concerns about the causal interpration of the effects 

obtained and recommend that the results of multilevel models should not be 

interpreted causally, especially when observational data are used (Draper, 1995; 

Oakes, 2004, 2009; Gelman, 2006; Gelman and Hill, 2007; Gelman et al., 2007). 

In such (observational) cases, Oakes (2004) argues that multilevel models do not 

permit to distinguish the contextual/neighbourhood effects from compositional 

ones. Oakes and colleagues (Oakes, 2004; Hearst et al., 2008; Johnson et al., 

2008) also revealed that inferences are strongly dependent on the model 

assumptions, and not on the data. Among other disadvantages, multilevel models 

                                                
1 For instance, individuals coming from a same location are more likely to share the same 

characteristics than individuals drawn at random from the entire population. This dependence 

between observations violates the assumption of standard OLS regression methods as regards 

the independence between observations/individuals (Goldstein, 1999). 
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also involve complex modelling processes and have quite large sample size 

requirements at all levels of the hierarchy (Rice and Jones, 1997; Diez-Roux, 

2000; Greenland, 2000; Hox, 2002; Schwenkglenks, 2007). Within the framework 

of this thesis, multilevel models are not used because of such drawbacks. Instead, 

it is here decided to carry out a spatial econometric framework incorporating the 

higher level unit(s) as dummy variable(s) in the final model. It then leads to a 

‘spatial regime specification’, in which the higher level unit(s) is (are) determined 

on the basis of statistical indicators of spatial association between the 

observations (see Chapter 3). 

 

1.5.2.2 Underreporting of cycling accidents 

 

Underreporting of road accidents strongly depends on accident severity, vehicle 

type, age and role of the victims (i.e. passenger or driver), and the number of 

vehicles involved (Hauer and Hakkert, 1988; ERSO, 2006; Ye and Lord, 2011). 

Throughout the literature, it is well-known that cycling accidents are strongly 

underreported by the police, compared to motorised modes of transport. On the 

basis of hospital or survey data, several authors estimate that about 15% of the 

cycling accidents are reported by official statistics in Belgium (see e.g. Hubert 

and Toint, 2002; Lammar and Hens, 2004; De Mol and Lammar, 2006). Such low 

registration rates are explained by the fact that most cycling accidents are 

single-vehicle accidents and generally result in slight injuries and/or material 

damages only. This implies that the cyclist often does not feel the need to call 

the police, and then that there is no official record of the accident.  
 

From a methodological point of view, such incomplete accident reporting may 

result in biased results regarding the probability of falling into one specific level 

of injury severity. In other words, the probability of being seriously injured in a 

cycling accident is overestimated, whereas this of being slightly injured is 

underestimated (Ye and Lord, 2011). Biased parameter estimates can also be 

obtained when underreporting is not taken into account in accident-frequency 

and accident-severity models, which implies that erroneous inferences can be 

made about the relative impact of the explanatory variables (Kumara and Chin, 

2005; Yamamoto et al., 2008; Ma, 2009; Lord and Mannering, 2010; Ye and 

Lord, 2011). 
 

As suggested by Ye and Lord (2011), the Weighted Exogenous Sample 

Maximum Likelihood Estimator (WESMLE) could be used as a suitable solution 

to improve the results when full or partial information is available about the rate 

of underreporting for each level of injury severity. This method indeed gives 

better results than methods based on Maximum Likelihood estimations and 

ignoring the underreporting issue (see Ye and Lord (2011) for further details). 
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However, it is here questioned whether or not reported and unreported accidents 

exhibit different characteristics/risk factors, i.e. whether or not some risk factors 

are specifically related to the underreporting issue itself. It matters in the sense 

that parameter estimates could still be biased in the case where differences (in 

terms of factors) are reported between reported and unreported accidents. Over- 

or underestimation of estimates would indeed still result from the WESMLE 

method if unreported accidents are associated with some specific factors 

(hidden/latent or not). For instance, it is not unlikely that the proportion of 

slight injuries (among all injuries) reported in traffic-calming areas is lower than 

this left unreported in such areas, which implies that the effect of traffic-calming 

areas on the probability of falling into a lower class of injury severity is still 

likely to be under-estimated with the WESMLE method (whereas it would be 

overestimated for the most severe classes of injuries). As a consequence, it would 

be hence of interest to examine whether or not reported and unreported 

accidents exhibit differences in terms of location and characteristics/factors (e.g. 

with regard to the neighbouring built environment). In this thesis, Chapter 4 

focuses on this latter question by adopting a geographical point of view: it not 

only compares the spatial patterns of both reported and unreported cycling 

accidents, but it also examines if they both spatially cluster around similar 

spatial factors/characteristics. Throughout the evaluation of the differences 

between reported and unreported cycling accidents, such an analysis would in 

turn give a first insight in what could be the (importance of the) bias caused by 

the underreporting of cycling accidents on modelling results (such as these 

obtained in Chapter 5). 

 

1.5.2.3 Spatial data and attendant effects 

 

Many observations or data are inherently spatial, i.e. they possess a definite 

spatial reference or location on the earth’s surface. Although they are far from 

being common in the whole academic literature, empirical studies accounting for 

such a spatial dimension are in ever greater numbers in scientific disciplines 

where space lies at the heart of the research (such as social sciences, regional 

sciences and economics, epidemiology, and ecology). Compared to non-spatial 

data, spatial data are indeed unusual in the sense they may give rise to two well-

known types of spatial effects: spatial autocorrelation and spatial heterogeneity 

(Anselin, 1992). Importantly, such effects violate assumptions of the classical 

regression models and may make biased and inconsistent the statistical inference 

procedure if they are ignored (Anselin, 1988; Long and Ervin, 2000). Spatial 

statistics then turn out to be useful in accounting for such effects. There is an 

abundant research into such methods throughout the literature (see e.g. Cliff and 

Ord, 1973, 1981; Upton and Fingleton, 1985; Griffith, 1987; Anselin, 1988; 



Chapter 1.  Introduction 

24 

 

Haining, 1990; Cressie, 1993; Bailey and Gatrell, 1995; Fotheringham et al., 

2000; Lawson, 2009) but it is not the aim here to provide a complete review of 

the topic. We here briefly describe both spatial effects, with a particular 

attention on the literature in spatial econometrics. 
 

On the one hand, spatial autocorrelation – also referred to as spatial dependence 

or spatial association2 – follows directly from Tobler’s first law of Geography 

(Tobler, 1979), which states that “everything is related to everything else, but 

near things are more related than distant things”. In other words, observations 

will tend to exhibit similar values of factors/variables in nearby locations, 

leading to groups or ‘spatial clusters’ (characterised by spatially autocorrelated 

values). For instance, it is well-known that high crime areas are often surrounded 

by other high crime environments. Such a (positive) correlation of the values of 

one variable/factor over space implies that observations are not independent 

from each other over space. This hence violates the assumption of independently 

and identically distributed (i.i.d.) errors of most standard statistical models, 

which inflates type I errors (due to underestimated standard errors) and leads to 

biased and inconsistent estimates as well as poorer fit compared to the case 

where errors are i.i.d. (Anselin, 1992; Legendre, 1993; Legendre et al., 2002). 

Among other statistics, the Moran’s I statistic and the Lagrange Multipliers (as 

well as their robust forms) can be used to detect the presence of residual spatial 

autocorrelation in the model. Methods that account for the presence of spatial 

autocorrelation when analysing spatial data are manifold and mostly include 

autoregressive methods (e.g. autologistic models, conditional autoregressive 

(CAR) models, simultaneous autoregressive (SAR) models), geostatistical 

methods (e.g. regression kriging, co-kriging), parameter estimation methods (e.g. 

generalised linear mixed models (GLMM), generalised estimation equations 

(GEE)) and other methods such as modified specifications of the previous models 

(see Miller et al. (2007) or Dormann et al. (2007) for a complete review of the 

literature). 
 

On the other hand, spatial heterogeneity also affects the statistical validity of the 

model throughout the presence of non-constant variance in the errors 

(heteroskedasticity) and/or structural instability in the estimates between 

different spatial subsets of data. Accounting for both forms of spatial 

heterogeneity in the model is of prominent importance since the presence of 

heteroskedasticity in the model means that one of the major assumptions of the 

standard statistical procedure (assumption of homoscedasticity) is violated, while 

the presence of structural instability implies that parameter estimates take on 

                                                
2 Although they all have similar consequences on statistical analyses (i.e. autocorrelated 

residuals), note that, strictly speaking, spatial autocorrelation, spatial dependence and spatial 

association are not rigorously identical concepts (Anselin, 1992;  Dormann et al., 2007). 
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different values across distinct geographic areas (also referred to as ‘spatial 

regimes’). Another reason for accounting for the presence of spatial heterogeneity 

in the model is that such a spatial effect may also be at the root of residual 

spatial dependence. It is hence likely that spatial autocorrelation diagnosed by 

Moran’s I is produced by an undiagnosed and unmodelled form of spatial 

heterogeneity (Anselin, 1988; Brunsdon et al., 1999; Le Gallo, 2004)3. 

Throughout the literature, White, Breusch-Pagan and Koenker-Bassett tests are 

commonly used to test for the presence of heteroskedasticity in the model, while 

(spatial) Chow tests are used to test for the presence of structural instability in 

the parameters. Whenever detected, heteroskedasticity can generally be corrected 

using the ‘White correction’, which is also called ‘Huber-White correction’ (Long 

and Ervin, 2000). Regarding structural instability, the estimation can be carried 

out either by performing a spatial regime regression (which consists of a 

regression with varying estimates across ‘discrete’ spatial subsets of data), or by 

applying a Geographically Weighted Regression (GWR) (for which parameter 

estimates are assumed to vary ‘continuously’ across space, i.e. as a function of 

the latitude and longitude) (see Fotheringham et al. (2000) for further details). 
 

Throughout the literature on cycle commuting (and mode choice in general), 

there is to our knowledge still no or little scientific attention that has been 

devoted to the presence of spatial autocorrelation and spatial heterogeneity in 

the data, despite the fact they may lead to statistical biases in the results. It also 

turns out to be true as regards cycling accidents, although changes are expected 

to occur over the next few years since more and more attention is devoted to 

spatial effects in traffic accident research. Examples of applications conducted at 

the areal level and accounting for spatial autocorrelation and/or spatial 

heterogeneity indeed appear in ever greater numbers in the literature (see e.g. 

Miaou et al., 2003; Flahaut et al., 2004; Aguero-Valverde and Jovanis, 2006; 

Eksler and Lassarre, 2008; Quddus, 2008).  
 

Contrarily to the vast body of literature, this thesis then aims at paying greater 

attention to the spatial effects by implementing the above mentioned statistical 

tests and by performing the appropriate statistical models (if necessary). As 

suggested above (Section 1.2.2) and further in this thesis (Chapters 2), it is a 

priori expected that spatial patterns relative to cycle commuting and accident 

                                                
3 If spatial dependence disappears after the spatial heterogeneity has been taken into account, 

the unmodelled structural instability and/or heteroskedasticity probably caused the observed 

spatial autocorrelation. Performing a model accounting for spatial autocorrelation is 

consequently not required any more. However, if spatial autocorrelation persists, the final 

specification should account for both spatial heterogeneity and spatial autocorrelation. As 

suggested by Le Gallo (2004) and Anselin (2007), this could be simply achieved by 

incorporating spatial regimes in e.g. autoregressive models. 
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risks are strong in Belgium. The importance of cycling policies (including actions, 

investments, etc.) and the popularity of bicycle use for utilitarian purposes are 

indeed quite dissimilar between the northern and southern parts of the country. 

At the network level, exploratory analyses conducted in Chapter 4 also indicate 

that traffic accidents tend to occur in greater numbers in the vicinity of specific 

locations (e.g. at intersections), which suggests that spatial clusters of cycling 

accidents are likely to occur at definite places along the road network. The 

spatial dimension of the data is then expected to play some role in influencing 

the results. As a consequence, the potential spatial effects that could result from 

these data are monitored and, when necessary, are taken into account further in 

this thesis through innovative spatial approaches (in Chapters 3 and 5). 

Importantly, these latter in turn allow providing thorough results and policy 

recommendations with regard to pro-cycling strategies and safety measures. 

 

1.5.2.4 Network phenomena and planar assumption 

 

The bulk of empirical studies aiming at exploring and/or explaining the spatial 

distribution of traffic accidents are based on a planar assumption, i.e. they 

assume that the real world is represented by a plane. As an illustration, planar 

point pattern analyses – such as kernel density estimations (KDE) – are widely 

used in traffic accident research to detect and analyse ‘black spots’ of accidents 

over a planar space. Smooth density surfaces are then obtained and mapped over 

a two-dimensional homogeneous Euclidean space (see e.g. Steenberghen et al., 

2004; Pulugurtha et al., 2007; Delmelle and Thill, 2008; Erdogan et al., 2008; 

Anderson, 2009). However, road accidents are point events constrained to occur 

on a network space (which is here referred to as a ‘one-dimensional space’). In 

such a case, the assumption of planar space is no longer valid as distances are 

Euclidean instead of being network-based. Applying planar methods to network-

constrained events may indeed lead to biased estimates, which in turn may 

invalidate the conclusions drawn from point pattern analyses (Yamada and 

Thill, 2004; Okabe et al., 2006a, 2006b; Xie and Yan, 2008; Okabe et al., 2009). 

In the light of these issues, Okabe and Yamada (2001) and Okabe et al. (2009) 

extended several planar methods to a network space, assuming that point events 

are constrained to a network and that the distance between two of these points 

is network-based (instead of being Euclidean). In this thesis, Chapter 4 took 

advantage of such extensions to explore the spatial patterns of cycling accidents 

along the Brussels’ road network. Recent advances implemented in Geographic 

Information Systems (GIS) by Okabe et al. (2006a; 2006b; 2009) turned out to 

be helpful in this respect.  
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1.5.2.5 Estimation of the accident risk at the network level 

 

Strikingly, little is known about the factors that affect the risk of being involved 

in a traffic accident, although planners and policy makers are generally 

interested to know which locations and infrastructures are associated with the 

highest accident risks for all road users. On the one hand, the lack of detailed 

data on accidents and trip characteristics associated with the different modes of 

transport (e.g. traffic flows) often precludes researchers to get in-depth 

knowledge about such risks. As described in Section 1.5.1.2, traffic accident 

research then either aims at predicting the accident frequency or attempts to 

explain the probability of falling into one level of injury severity, as a function of 

several independent variables/factors (Noland and Quddus, 2004; Lord and 

Mannering, 2010). This however leads to several well-known methodological 

issues (e.g. over- or under-dispersion of accident-frequency data) and then 

requires performing proper statistical approaches in order to avoid invalid 

inferences (Lord and Mannering, 2010). Besides, the implementation of accident-

frequency models within a spatial framework also implies that accident data are 

commonly aggregated over space and/or time (Liu and Jarrett, 2008), which 

carries the danger to make wrong inferences about individual-level relationships 

on the basis of results obtained at an aggregated level of analysis. Such a fallacy 

– known as the ecological fallacy (or ecological bias) – may in turn result in 

erroneous recommendations if not properly taken into account. 
 

On the other hand, surveys aiming at estimating such a risk generally raise some 

questions about their relevance in providing consistent parameter estimates since 

they often fail to select valid controls (see e.g. Lusk et al. (2011) and attendant 

comments). Main issues generally concern the choice and the representativeness 

of the controls (e.g. how many controls should I choose, and are my controls 

representative of the actual traffic flows?). To our knowledge, there is no 

research in the literature that addressed such issues in a rigorous way (from a 

statistical point of view). For instance, there is generally no justification about 

the choice of a definite number of controls. Also, the spatial aspects related to 

the selection of controls (e.g. which sampling method/design should I use to 

select controls, and is this location really ‘safe’?) are totally ignored in the 

literature, although they are expected to play a key role in the estimation of 

accident risks. Indeed, nothing or little is said about why some control sites (e.g. 

reference streets) are selected rather than others, and to what extent such sites 

are spatially representative of traffic flows (or background exposure). 
 

Within the framework of this thesis, it is aimed at providing a methodological 

framework other than this provided by studies focussed on surveys and accident 

models. Chapter 5 then aims at implementing a spatial modelling approach at 
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the level of individuals (i.e. the cycling accidents) in order to identify which 

locations and road infrastructures carry the highest risk to cause cycling 

accidents. Interestingly, such an estimation of the accident risk is based on a 

case-control strategy and requires the generation of controls, i.e. the creation of 

data reflecting the exposure of the population under study (i.e. the cyclists) to 

the outcome of interest (i.e. the accident). In parallel, an exhaustive data set is 

also created in order to carry out a well-founded sampling of the controls as well 

as to provide predictions of the accident risk for the whole road network. 

 

1.6 Outline of the thesis 
 

The objective of this thesis is to identify the main factors that influence cycle 

commuting and the risk of cycling accidents, with the intent to provide 

scientific-based recommendations that encourage cycling and make it safer. From 

a methodological point of view, this thesis raises several challenges since our 

individual research questions differ with regard to many features, notably with 

regard to the type of data (cycle commuting vs. accident data), the level of data 

aggregation (Belgian municipalities vs. individual accidents), the methodologies 

and attendant research gaps (with respect to e.g. the presence of spatial 

autocorrelation, the assumption of planar space for a network, underreporting of 

cycling accidents, etc.), and the study regions (Belgium vs. Brussels-Capital 

Region). To adopt a coherent structure, this thesis is then subdivided into 

several inter-related parts grouping our research questions on the basis of the 

above mentioned features (Figure 1.3). Considering that the first part is the 

introduction, the second one then focuses on the general objective (i) of this 

thesis (see Section 1.3), which aims at examining the spatial factors that 

influence cycle commuting at the scale of the Belgian municipalities. This part 

hence focuses on Belgium and considers the analysis of spatially aggregated 

data, i.e. data associated with areas (municipalities). Afterwards, the general 

objective (ii) is approached in the third part of this thesis. This latter part thus 

focuses on one of the main barriers to cycling, i.e. the accident risk for cyclists. 

More particularly, it aims at examining the spatial factors that influence the risk 

of being involved in a road accident when cycling. In this latter case, it zooms 

into the Brussels-Capital Region (Belgium) and focuses on the analysis of 

individual/point events (i.e. the reported and/or unreported cycling 

accidents) along a network space. Finally, the fourth part concludes this thesis 

and delivers a comprehensive package of recommendations intended for planners 

and policy makers. Figure 1.3 and the following subsections provide more details 

about the next chapters of this thesis as well as about the individual research 

questions. 



 

 

 
 Figure 1.3: General outline of the thesis 
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1.6.1 Outline of part II – Areal data analyses and 

cycle commuting (Belgium) 
 

As illustrated in Figure 1.3, this part of the thesis focuses on the spatial factors 

that influence cycle commuting and use data that are spatially aggregated on 

Belgian municipalities. It is subdivided into two research questions, or chapters. 

On the one hand, Chapter 2 mostly makes use of exploratory spatial data 

analyses and basic statistics to explore the spatial factors associated with cycle 

commuting, as well as the relationship between bicycle use and the risk of 

accidents for commuters that cycle to work. On the other hand, Chapter 3 

adopts a spatial modelling approach to identify the significant factors associated 

with cycle commuting. Here is the detailed outline of these chapters/research 

questions: 
 

Chapter 2 – Exploratory (spatial) data analysis of cycle commuting 

and accident risks. This chapter consists of an exploratory step and provides a 

general overview of cycle commuting and accident risks when cycling in Belgium. 

It serves as a basis for more robust statistical analyses, complementarily to an 

exhaustive review of the literature on the factors influencing cycle commuting 

(carried out in Chapter 3). 
 

The objective of this chapter is twofold. On the one hand, it aims at exploring 

the relationship between bicycle use and the risk of accidents for commuters that 

cycle to work in Belgium, while on the other hand it has the objective to 

examine to what extent urban hierarchy and distance to the workplace influence 

cycle commuting. This chapter mostly relies on data compiled by the 

Directorate-General Statistics and Economic Information (2001 census data and 

accident data for the period 2002-2005). Exploratory analyses of these data are 

conducted at the scale of the Belgian municipalities and suggest that the 

variations in cycle commuting are strongly linked to the urban hierarchy, and 

that high proportions of commuter cyclists are correlated with low risks of 

becoming seriously injured or killed in a cycling accident. Importantly, our 

findings exhibit strong spatial differences in cycle commuting and accident risks 

between the regions, suggesting that spatial factors and/or effects (e.g. spatial 

autocorrelation, heterogeneity) could play a role in influencing their spatial 

patterns. 
 

Chapter 3 – Spatial modelling of cycle commuting. This chapter extends 

the previous exploratory data analyses by explaining the spatial variation of 

bicycle use for commuting to work at the level of the Belgian municipalities. 

Within this framework, this chapter aims at identifying which factors 
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significantly influence cycle commuting in order to provide statistically-based 

recommendations for planners and policy makers. In a first step, we reviewed the 

factors that influence the use of the bicycle for commuting, before collecting 

these from a wide range of sources (DGSEI, Federal Police, FPS Mobility and 

Transports, etc.). In a second step, descriptive statistics and bivariate analyses 

are computed in order to explore the relationships between each of the factors 

and the dependent variable (proportion of commuting by bicycle, per 

municipality). Multivariate analyses are then carried out at the scale of all 589 

municipalities in order to confirm some of the results obtained in Chapter 2 and 

with the aim to provide sounder results. Special attention is paid to spatial 

effects, since previous findings (Chapter 2) tend to suggest that cycle commuting 

is strongly affected by spatial autocorrelation and heterogeneity (a clear-cut 

north-south division of cycle commuting was indeed observed at the scale of the 

Belgian municipalities). Spatial econometric techniques are then reviewed and 

used to correct for the presence of spatial autocorrelation, after which a 

disaggregated modelling strategy is adopted for the northern (Flanders) and 

southern parts of the country (Wallonia and Brussels) to address the presence of 

spatial heterogeneity. From a methodological point of view, the modelling 

techniques applied in this chapter highlight the importance of accounting for 

spatial dependence and heterogeneity. Indeed, spatial autoregressive models, 

combined with a strategy disaggregated by region, appear to be very powerful in 

eliminating such spatial effects in the data. 

 

1.6.2 Outline of part III – Point data analyses along 

a network space and cycling accidents 

(Brussels) 
 

The third part of this thesis is devoted to the identification of spatial factors 

that are associated with one of the main barriers to cycling, i.e. cycling 

accidents. As indicated in Figure 1.3, empirical analyses are conducted on the 

Brussels-Capital Region, at a disaggregated level of analysis (individual cycling 

accidents) and over a one-dimensional space (i.e. the Brussels’ road network). 

This part of the thesis is also subdivided into two chapters. On the one hand, 

Chapter 4 uses test statistics and point pattern methods extended to networks 

with the aim to explore and compare the spatial patterns of cycling accidents 

registered by the police with those unregistered (by the police) but collected 

through an open-based online registration survey (SHAPES survey). Such a 

comparison between reported and unreported cycling accidents would then have 

the interest to evaluate whether or not official accident databases neglect 

important information relative to unreported accidents (e.g. with regard to some 
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specific risk factors). On the other hand, Chapter 5 focuses on a spatial 

modelling approach conducted within a Bayesian framework and based on a 

case-control strategy to identify the factors that significantly influence the risk of 

cycling accident. Here is the detailed outline of these two chapters: 
 

Chapter 4 – Exploratory (spatial) data analysis of cycling accidents. 

This chapter aims at exploring and comparing the spatial patterns of reported 

and unreported cycling accidents. Furthermore, it aims at analysing whether or 

not these latter have similar locational tendencies with respect to specific road 

infrastructures (e.g. intersections, roundabouts, etc.). As mentioned above, 

empirical analyses are conducted on Brussels. In a first step, the literature on 

spatial point pattern analyses is reviewed as regards both planar and network 

spaces. In a second step, accident data are collected and geocoded into a GIS 

using a semi-automatic process, consisting of manually correcting the results 

obtained through address matching techniques. After an exhaustive review of the 

literature in traffic accident research, infrastructure factors that are associated 

with the presence of cycling accidents are digitised into a GIS from a wide range 

of sources (e.g. orthophotos, maps, etc.). In a third step, comparative statistics, 

point pattern exploration techniques and network (cross) K-function methods are 

carried out and – as far as possible – extended to a network space since cycling 

accidents are inherently network-constrained events. Such exploratory analyses 

rightly precede modelling techniques applied in Chapter 5 as they provide 

important clues on how underreporting could affect the model results. Indeed, 

significant differences in the spatial patterns and (accident-related) factors would 

be indicative of the fact that unreported and reported cycling accidents occur at 

different places along the network and hence that relevant variables (i.e. 

variables having a significant influence in the occurrence of cycling accidents) are 

probably neglected when focussing only on cycling accidents that are officially 

reported by the police. 
 

Chapter 5 – Spatial Bayesian modelling of accident risks for cyclists. 

This chapter extends the exploratory analyses conducted in Chapter 4 and 

intends to provide an innovative methodological framework to pinpoint locations 

at risk for cyclists along a road network. The main objective of this chapter is to 

identify which are the most significant spatial factors (expected to be) associated 

with the occurrence of cycling accidents in Brussels, and then which locations 

carry the highest risk to ‘cause’ traffic accidents for cyclists. Spatial risk factors 

and accident data are mostly those employed in Chapter 4, with the exception 

that we only focus on reported cycling accidents. From a methodological point of 

view, an extensive review of the literature is first carried out in epidemiology, 

ecology and statistics in order to get knowledge in case-control studies and 

Bayesian statistics. In a second step, an innovative and rigorous methodological 
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framework is proposed to construct a binary dependent variable (accident, no 

accident), which will in turn allow modelling the accident risk for cyclists along 

the Brussels’ network. Such a binary dependent variable is created from coupling 

the geocoded cycling accidents (cases) with a definite number of control sites, or 

controls (sites where there is supposedly no cycling accident). Control sites are 

sampled along the ‘bikeable’ segments of the road network and as a function of 

an exposure variable representing the bicycle traffic. Gravity-based theory was 

helpful to construct such a variable and allowed estimating the potential bicycle 

traffic transiting/stopping in each Brussels’ statistical ward. In a third step, 

descriptive statistics are carried out to explore the relationships between the 

spatial risk factors and the occurrence of bicycle accidents. Multivariate analyses 

are then conducted within a Bayesian framework to model the risk to be 

involved in a road accident when cycling on the Brussels’ road network (period 

2006-2008). As in Chapter 3, special attention is paid to spatial autocorrelation 

and spatial heterogeneity by using autologistic and intrinsic conditional 

autoregressive specifications. Sound and innovative results are then obtained as a 

result of the application of these spatial modelling approaches. Predictions of the 

risk of having a cycling accident along the network are also computed along the 

road network and provide a useful tool for planners and decision makers. Such 

predictions, once mapped, constitute the main innovation of this thesis and are 

hoped to gain the upper hand to traditional ‘hot spot’ methods. Interestingly, 

they turn out to be powerful in identifying road segments where cycling 

accidents might have been unreported… or might still occur in a near future. 

They also help cyclists planning the safest possible routes between specific 

origins and destinations. 

 

1.6.3 Outline of part IV – Conclusions and policy 

recommendations 
 

This last part aims at summarizing the main findings, contributions and 

limitations of this thesis, as well as it delivers a comprehensive package of 

recommendations intended for planners and policy makers. It finally closes this 

thesis by proposing some leads for future research. 
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Chapter 2  
 

 

Bicycle use and the accident 

risk for commuters  

who cycle to work in Belgium: 

An exploratory spatial data 

analysis1 
 

 

 

 

 

Outline 
 

This chapter explores the spatial patterns of bicycle use for commuting and the 

risk cyclists run being injured in a road accident when commuting to work in 

Belgium. Exploratory data analyses suggest that the observed differences in the 

use of the bicycle to get to work are strongly linked to the urban hierarchy: 

commuters are more inclined to cycle in towns and specifically in regional towns 

(with 25,000 to 120,000 inhabitants). In large towns (more than 200,000 

inhabitants), less commuting by bicycle takes place. The relationship between 

bicycle use and the risk of being seriously injured or killed in a road accident is 

also studied. A cluster analysis confirms that high proportions of commuter 

cyclists are correlated with low risks of becoming seriously injured or killed. It 

also shows that there are strong spatial differences (regional and between 

different types of towns) in bicycle use and the risk of an accident, which hence 

suggests that cycling policies should be spatially differentiated. 

                                                
1 This chapter is adapted from the following paper: Vandenbulcke, G., Thomas, I., de Geus, B., 

Degraeuwe, B., Torfs, R., Meeusen, R., Int Panis, L. (2009). Mapping bicycle use and the risk of 

accidents for commuters who cycle to work in Belgium. Transport Policy 16, 77-87. 

[http://dx.doi.org/10.1016/j.tranpol.2009.03.004] 
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2.1 Introduction 
 

As mentioned throughout the previous chapter, the promotion of non-motorised 

modes of transport is increasingly being recognised as an effective way of 

addressing environmental, health and mobility externalities generated by the 

growing use of cars and massive periurbanisation. However, several barriers 

prevent people from cycling: fear of crime or vandalism, bad weather, hills, 

danger from traffic, social pressure and long commuting distances are some of 

the most frequently cited deterrents (see Pucher et al., 1999; Rietveld, 2001; 

Rietveld and Daniel, 2004; Gatersleben and Appleton, 2007; Parkin et al., 2008). 

Safety concerns and the lack of an adequate infrastructure are – in particular – 

major hindrances to bicycle use (Pucher et al., 1999; Parkin et al., 2007). Thus, 

making bicycle use safer is one of the most essential elements in initiating a 

substantial shift from car to bicycle. It is hence often recommended in the 

literature that policy makers and planners take steps such as reducing the 

amount of motorised traffic in urban centres, developing traffic-calming areas, 

constructing an infrastructure for cycling, and promoting bikepooling (Pucher et 

al., 1999; Rietveld, 2001; Pucher and Dijkstra, 2003). Such measures reduce the 

risk cyclists run of being involved in traffic accidents and improve the 

individuals’ overall perceptions of the dangers of cycling (especially as regards 

the perceived risk of cycling accident). Consequently, they have great potential 

to encourage more people to cycle for commuting trips. As mentioned in Chapter 

1, this could result in a virtuous circle since greater numbers of cyclists on the 

road improve the safety of all cyclists. Jacobsen (2003) indeed showed that 

higher levels of cycling (in terms of distance travelled) are correlated with lower 

rates of fatalities from cycling. In other words, a ‘safety in numbers effect’ results 

from such high levels of cycling. 
 

Surprisingly, little attention is devoted to the investigation of spatial patterns 

associated with such a ‘safety in numbers’ effect. Yet, initial examination of 

spatial data could be of great help in exploring how safe/attractive (or 

unsafe/unattractive) environments distribute over space, as well as in revealing 

spatial trends and/or associations with potential explanatory variables. For 

instance, the identification of spatial clusters/groups of (homogeneous) 

environments could highlight unexpected relationships with specific variables, 

such as e.g. the cycling policies (which could in turn emphasize which policies are 

the most effective in encouraging bicycle use and in making it safer). In 

continuation with the Jacobsen’s findings (2003), it is hence questioned here how 

environments characterised by low rates of cycling accidents and high 

percentages of cyclists (and conversely) distribute over space. To our knowledge, 

there still exists no such exploratory data analysis. This chapter then mainly 
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focuses on the relationship between bicycle use and accident risk at the scale of 

the 589 Belgian municipalities (the smallest administrative units). 

Complementarily and as a first step before the main objective, it also explores 

the variation of bicycle use when commuting as a function of (i) the level of 

urban hierarchy (from the largest towns to rural municipalities), and (ii) the 

distance between the residence and the workplace. This preliminary step allows 

getting more insight about the factors associated with high (or low) levels of 

commuter cycling, and – as a corollary – possibly also with low (or high) 

accident risks for cyclists (since, as above mentioned, ‘safety in numbers’ effects 

may result from great numbers of cyclists). Lastly, it is also helpful to identify in 

an explorative way which (explanatory) variables might be of interest to include 

into the regression models described in Chapter 3. 
 

The present chapter is structured as follows. After describing the data and the 

area studied in Section 2.2, we analyse the link between urban hierarchies, 

distances and bicycle use in Section 2.3, and then propose a clustering of the 

municipalities according to bicycle practice and accident risk (Section 2.4). We 

end up with a map that pinpoints the municipalities that combine low (or high) 

proportions of cyclists with high (or low) risks of accidents. Concluding remarks 

are finally provided in Section 2.5.  

 

2.2 Data sources and studied area 

2.2.1 Studied area 
 

As mentioned in Chapter 1, our analyses are conducted in Belgium. This small 

and highly urbanised European country covers approximately 30 000 square 

kilometres and has more than 10 million inhabitants. It is subdivided into three 

institutional regions: the Brussels-Capital Region, the Flemish (Dutch-speaking) 

Region and the Walloon (French-speaking) Region (Figure 2.1). Belgium has a 

tight network of towns, dominated by Brussels (more than 1 million 

inhabitants); the second largest town is Antwerp, which has approximately 500 

000 inhabitants. Towns tend to sprawl into their peripheries. This urban spread 

favours car use and often leads to more and longer commuting trips, which are 

not convenient for cycling or walking. However, cycle use is still relatively 

common in Belgium, compared to other industrialised countries, although the 

rates are well below those in the Netherlands and Denmark. At the European 

level (EU 15), Belgium is ranked fourth, with a bicycle share of 2.42% (in 

traveller-kilometres/person/year), and stands out as one of the countries with 
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the highest share of cyclists (Germany: 2.47%; Denmark: 5.48%; the Netherlands: 

6.66%) (EU, 2003; Rietveld and Daniel, 2004). 

 

 

 
 

Figure 2.1: Percentage of commuters that use the bicycle as the only mode of 

transport. Source: DGSEI, 2001 

 

 

Interestingly, Figure 2.1 shows that strong divergences exist between the 

northern (Flanders) and the southern part of the country (Wallonia and 

Brussels). On average, bicycle use for utilitarian purposes is rather common in 

the north, while it is relegated to a marginal role in the south (mainly 

recreational activities). As suggested by Chapter 3, such a stark division is 

explained not only by the culture, but also by a number of political, physical and 

historical factors (Rietveld and Daniel, 2004; Rodríguez and Joo, 2004). From 

the 80’s, local and regional policies in Flanders played a key role since they early 

recognised the potential of the bicycle (in terms of sustainability) and paid 

attention to integrate it in the mobility plans and strategies. Measures favouring 

cycling – such as the achievement of cycle infrastructures – were hence 

implemented by the Flemish authorities and contributed to increase (and 

maintain) bicycle use. Besides this, some physical features also encouraged 

cycling. Similarly to the Netherlands, Flanders is a flat and highly urbanized 

region, where most employment is concentrated in town centres. This generates 
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short and, hence, ‘bikeable’ commuting distances. Also, during the 20’s and 30’s 

(and still nowadays), the lack of an extensive public transport system in several 

Flemish towns2 probably explained the fact that bicycle use was prefered and 

historically rooted in the Flemish culture (Albert de la Bruhèze, 1999; Mérenne-

Schoumaker et al., 1999; MF, 2002). 
 

Finally, it should also be stated that, in some Flemish municipalities where the 

university takes up an important place (e.g. Leuven, Gent), the levels of bicycle 

use in commuting trips are high. This is probably explained by the strong social 

support generated by the high number of students using the bicycle for their 

daily journeys (De Bourdeaudhuij et al., 2005; de Geus, 2007). 

 

2.2.2 Data 

2.2.2.1 Population census 

 

The 2001 census carried out by the Directorate-General Statistics and Economic 

Information (DGSEI, 2001) is the most recent database covering the entire 

population. It not only provides exhaustive information about the demographic, 

social and professional characteristics of the population, but also gives a large 

amount of data on mobility (e.g. travel patterns and individuals’ mode of 

transport) and housing characteristics. 
 

The census was used here to compute the proportion of commuter cyclists. 

Interestingly, it reveals that 6.2% of all commuters used the bicycle as their only 

means of transport between home and workplace, while 68.6% of commuters 

used a car (Verhetsel et al., 2007). On average, bicycle use was higher in the 

northern part of the country (Flanders). Indeed, 91% of commuter cyclists live in 

Flanders (Wallonia: 6.4%; Brussels: 2.6%). The average total commuting 

travel time (return trip) was also taken from the 2001 census and used as a 

measure of exposure to risk in Equation 2.1 (see Section 2.2.2.2 below). Finally, 

the average total commuting distance (km) was used to analyse the 

(deterrent) impact of distance on the use of different modes of transport, and 

more particularly on the use of a bicycle. 

 

 

 

                                                
2 Mainly in Western Flanders (e.g. Kortrijk) and in the eastern part of the province of Antwerp 

(e.g. Turnhout). 
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2.2.2.2 Road accident statistics 

 

Road accident statistics are compiled annually by the Directorate-General 

Statistics and Economic Information (DGSEI). They indicate that about 7,200 

cyclists were injured or killed in 2002 and almost 8,000 in 2005. However, the 

number of deaths decreased from 108 in 2002 to 71 in 2005. The data used here 

are limited to a period of 4 years (2002-2005) and allow the risk of an accident to 

be computed for each municipality. It is well-known that these statistics strongly 

underestimate the total number of cycling accidents, particularly when the 

cyclist is the only person involved and/or when no hospitalisation is involved. In 

Belgium, several authors have estimated that about 15% of cycling accidents are 

officially reported (see Doom and Derweduwen, 2005; De Mol and Lammar, 

2006; BRSI, 2006). As no correction exists for the entire country, only accidents 

involving serious casualties (i.e. requiring more than 24h hospital treatments) 

and fatal accidents were included since these are systematically registered. An 

index of risk (Ri) was computed and used as a proxy for cyclists exposure to 

severe/fatal accidents: 
 

iii TNR =          (2.1) 

 

where Ni is the average annual number of injuries to cyclists aged between 18 

and 65 years, between 2002 and 2005 and occurring on weekdays in municipality 

i. Ti is the total time (return trip) spent travelling by commuter cyclists living in 

municipality i per year (assuming 232 working days). It is considered as the 

exposure time to potential injury from commuter cycling. Note that in 

municipalities with less than 10 regular cycle commuters, the total commuting 

time Ti was interpolated from the average times in neighbouring municipalities. 

More importantly, great care should be paid when analysing Ri as accident data 

(and thus Ni) do not allow us gaining information about the trip purpose of the 

cyclist at the time of the accident. In other words, accident data sets do not 

allow distinguishing between commuting trips and other trip purposes. Although 

it was here attempted to select accidents concerning commuter cyclists only 

(through the selection of weekday-related accidents and cyclists aged between 

18-65), Ri is likely to be over-estimated. This is even truer in urban areas where 

the diversity of trip purposes is higher (due to the proximity to several types of 

facilities, e.g. food shops, leisure areas, etc.), as well as in municipalities where 

school-related and recreational trips are common during the whole week.  
 

Figure 2.2 indicates that in Flanders, the risk of a cyclist being seriously injured 

or killed in an accident was spatially homogeneous and lower than the average 

for the whole of Belgium ( =iR 0.069, i.e. nearly 7 severe/fatal accidents occur 

when 10 000 000 bicycle-minutes are achieved). Only a few Flemish 
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municipalities on the coast, near the linguistic border, in Limburg (Flemish 

provincy, in the north-east) or in the periphery of Brussels had risks of 

severe/fatal accidents higher than the mean. In Wallonia, the risk of a cyclist 

being seriously injured or killed in an accident were much more varied: there was 

a very low risk (equal or close to zero) in the majority of municipalities (due to 

the fact that very few if any cyclists were seriously injured or killed). On the 

other hand, nearly 38% of municipalities had quite a high risk of severe/fatal 

accident. 

 

 

 
 

Figure 2.2: Risk of severe/fatal accident, defined as the average number of 

severe and fatal accidents (for commuter cyclists) per 100,000 bicycle-minutes, 

by municipality 
 

 

Interestingly, a low risk of severe/fatal accident was observed in most of the 

large towns, which seems to suggest that an urban environment is safer than a 

rural one for commuter cyclists. This may be partly explained by the large 

number of hurdles (e.g. traffic lights, pedestrian crossings, congestion) that 

reduce the speed of traffic in towns. However this is not true for all towns: 

moderate or high risks are observed in some regional towns (25 000 to 120 000 

inhabitants). 



 

 

 

Table 2.1: The means of variables in municipalities with different ranks in the urban hierarchy (Hj) 
 

Description Source H1 H2 H3 H4 H5 H6 H7 H8 

% of commuter who cycle 2001 Census 4.65 8.89 7.11 5.22 5.59 4.83 4.73 2.16 

Median income (in euro) DGSEI (2001) 17010 18733 19135 19247 18855 19282 19789 19287 

Population density (inhabitants/km2) DGSEI (2001) 2460 912 945 399 556 1545 342 160 

Jobs density (jobs/km2) DGSEI (2001) 1877.25 374.16 367.58 115.43 146.29 484.53 62.38 31.86 

% of economically active people below 25 years of age 2001 Census 10.57 10.90 10.54 10.74 10.22 10.10 9.89 9.39 

% of economically active people above 54 years of age 2001 Census 7.71 6.96 7.34 6.91 7.08 7.13 6.84 6.73 

% of economically active people having only primary 

schooling 

2001 Census 7.38 6.06 6.12 5.95 6.04 6.17 5.92 5.63 

% of economically active people having a school leaving 

certificate as their highest qualification 

2001 Census 52.51 54.22 56.01 58.64 58.56 56.83 57.86 58.11 

% of economically active people having a university degree 2001 Census 40.11 39.72 37.87 35.41 35.40 37.00 36.22 36.26 

% of households without children 2001 Census 77.64 73.94 73.08 70.69 70.27 70.75 68.43 67.28 

% of households that do not own any bicycles DGSEI (2001) 57.65 35.82 32.95 35.00 33.93 35.60 27.76 33.48 

% of households that do not own any cars DGSEI (2001) 37.78 25.99 22.34 21.09 20.26 21.06 15.56 15.14 

% of households estimating  they have low-quality cycle 

facilities in their neighbourhood 

2001 Census 68.89 59.59 59.46 66.87 63.68 63.32 63.73 73.82 

Average daily commuting distance (kilometres) 2001 Census 17.31 19.40 19.26 22.86 22.05 20.56 22.86 27.02 

Annual number of bicycle thefts per 100 cyclists Federal Police 

(2000-2002) 

15.82 13.78 13.91 13.64 12.16 11.08 6.89 5.31 

Average number of severe/fatal accidents (cyclists) per 

100,000 bicycle minutes (i.e. total minutes spent 

commuting by bicycle) 

DGSEI (2002-2005) 

and 2001 Census 

0.02 0.03 0.04 0.07 0.04 0.05 0.06 0.13 

% of surface area dedicated to public services (e.g. council 

offices, schools) 

DGSEI (2004) 4.52 2.09 1.77 0.87 1.12 1.78 0.53 0.21 

continued on next page 
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continued 

Description Source H1 H2 H3 H4 H5 H6 H7 H8 

% of surface area which is built up DGSEI (2004) 78.00 45.45 36.67 26.45 30.66 39.95 24.04 14.38 

Number of vehicles (million) by kilometre of regional road FPS Mobility and 

Transports 

(DGSEI, 2000) 

5.69 4.12 3.87 2.56 3.26 3.79 2.94 1.99 

Number of vehicles (million) by kilometre of municipal road FPS Mobility and 

Transports 

(DGSEI, 2000) 

0.90 0.46 0.30 0.20 0.23 0.27 0.13 0.08 

% of inhabitants declaring they are in a bad state of health 2001 Census 29.44 25.01 24.31 23.60 25.22 24.77 23.29 24.74 
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2.2.2.3 Urban hierarchy 

 

Ranks are attributed to the municipalities on the basis of an index calculated by 

Van Hecke (1998) and based on the degree of equipment of the municipality as 

well as on its attractiveness. The degree of equipment was calculated using both 

the quantitative (e.g. number of hospitals) and qualitative importance of the 

facilities (e.g. presence of universities), while the attractiveness was estimated on 

the basis of the visitor flows attracted by these facilities. They are denoted by Hj 

(j = 1,…, 8; see Appendix A.1) and range from H1 for the largest towns (more 

than 200 000 inhabitants; e.g. Brussels or Antwerp) to the smallest and least-

populated municipalities H8 (rural municipalities). 
 

Table 2.1 lists some of the socio-economic and environmental features of each 

rank. In particular, it indicates that population and job densities as well as 

urban land use are high in municipalities in the first three ranks of the hierarchy 

(H1 to H3). The opposite situation is true for rural municipalities (H8). This to a 

large extent explains the differences in the commuting distances between towns 

(where the proximity of different activities is high) and rural areas: the shortest 

average commuting distances are found in the largest towns. Finally, high traffic 

volumes are observed along the municipal and regional road networks in urban 

municipalities. The large number of activities (e.g. jobs, leisure, public services) 

and inhabitants make such municipalities highly attractive, leading to high 

traffic densities. 

 

2.3 Bicycle use versus urban hierarchy 

2.3.1 Background 
 

Commuting distance is often considered to be one of the main deterrents to 

bicycle use and it is closely related to the level of urbanisation. Only people 

living close to their workplace (less than 10 km) even consider cycling to work 

(Kingham et al., 2001; Bergström and Magnusson, 2003; Dickinson et al., 2003; 

Saelens et al., 2003; Pucher and Buehler, 2006; Parkin et al., 2008; Verhetsel and 

Vanelslander, 2010). The distances commuters (would be likely to) cycle depend 

on land-use and transportation features but also on a large range of socio-

economic and demographic factors, and the physical and weather conditions. For 

instance, commuters faced with steep slopes and/or strong wind speeds will only 

cycle short distances or will simply not consider cycling (Rodriguez and Joo, 

2004; Rietveld, 2001; Rietveld and Daniel, 2004). Many research papers also 

show that age and gender are determinants of trip distances and bicycle use. For 
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example, Dickinson et al. (2003) showed that women in the UK cycle less, and 

make shorter commuting trips than men (due to factors such as personal security 

reasons and family commitments). As shown in Figure 2.3 (as well as in Chapter 

3), this is also true for Belgium but only up to a certain age. Women over 60 

cycle longer commuting distances than men of the same age. This could be 

because they are fitter (Deboosere et al., 2006), or it could be because of the 

relatively low proportion (50-70%) of women in this age group who have a 

driving license (Hubert and Toint, 2002). As well as age and gender, other 

factors affecting the (un)willingness of employees to cycle long distances to work 

are the provision of appropriate facilities at the workplace (e.g. cycle lockers, 

changing facilities) and the dress code imposed by their company (Dickinson et 

al., 2003). 

 
 

 
 

Figure 2.3: Age and gender of cyclists versus commuting distance (one-way) 

 

 

From a planning point of view, compact and mixed-use environments make it 

easier to undertake specific activity schedules (e.g. work, recreational activities) 

by bicycle. Trip distances tend to be shorter and more bikeable in these areas, 

owing to the close proximity of different places and facilities (Cervero and 

Kockelman, 1997; Kitamura et al., 1997; Meurs and Haaijer, 2001; Saelens et al., 

2003; Pucher and Buehler, 2006). The proximity of public transport interchanges 

in urban areas (e.g. railway or metro stations) also makes it possible to use a 

bicycle as a complementary mode of transport, and to combine it with public 

transport (Martens, 2004; Martens, 2007). Nevertheless, the extensive provision 

of public transport in urban areas also makes that mechanism highly attractive 
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and competitive, even for distances which are considered feasible for cycling. 

This probably explains the fact that, in such areas, public transport is used more 

intensively than bicycles (Ortúzar et al., 2000). 

 

2.3.2 Exploratory data analysis 

2.3.2.1 Cycling, urban hierarchy and distances 

 

The previous section raises the following questions: do the largest Belgian towns 

favour bicycle use? Are they the most favourable environments for cycling? Also, 

do the increasing commuting distances have a deterrent impact on bicycle use? 

In order to get right to the bottom of such questions, several exploratory data 

analyses were performed on the census data and aimed at comparing the bicycle 

share with urban hierarchy and commuting distances in the same figures. 
 

 

 
 

Figure 2.4: Proportion of commuters that cycle in function of the urban 

hierarchy (Hj) of the workplace and commuting distances (2001) 

 

 

Figure 2.4 shows the proportion of commuters who cycled (Y-axis) as a function 

of the distance they travelled to work (X-axis) and the type of municipality in 

which their workplace was situated. It confirms that, for most people, 10 

kilometres is the limit for cycling to work, whatever the environment of the 

workplace. Below that limit, bicycle use is more frequent in urban environments.  
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However, the rank of the town also plays an important role: for distances below 

5 km, cycling appears to be most popular in municipalities of rank H2 (regional 

towns), while large towns (H1) are characterised by the lowest proportion of 

cycling commuter (only approximately half the rate in H2). This can be 

explained by the fact that in large towns (H1), walking is frequent due to the 

close proximity of different places/activities. Public transport is also well-

developed (e.g. dense network, high frequency, comfort) and hence is highly 

competitive to cycling (Figure 2.5). It encourages intermodal journeys including 

walking as feeder mode (for both access and egress trips). In large towns such as 

Brussels, the distance between the place of residence (or work) and the closest 

public transport stop/station is generally short: approximately 96% of the 

inhabitants (and jobs) are located less than 500m from the closest public 

transport stop (Vandenbulcke et al., 2007). In H1 towns, traffic is also much 

denser than elsewhere, and an adequate cycle infrastructure is often lacking. The 

high population densities observed in large towns (Table 2.1) may also play a 

role in the sense that households living in large towns generally do not have any 

garage (especially in the densest areas) and have probably little room in the flat 

to store their own bicycles. All these reasons may dissuade people from cycling to 

work in large towns.  
 

In smaller towns (H2), road traffic is less dense and public transport is often 

limited to buses (no tram or metro). This may explain the popularity of the 

bicycle for commuting. Moreover, many of these regional towns (e.g. Bruges, 

Leuven) are located in Flanders where cycling is traditionally more common and 

where the town networks are tighter. In Wallonia, the town networks are looser, 

leading to longer (and hence unbikeable) commuting distances (see Verhetsel et 

al., 2007). 
 

Figures 2.5 and 2.6 confirm that the proportion of commuters who walk to work 

is very high (60%) for trips of less than 1 kilometre, but decreases sharply with 

increasing distances. By contrast, the proportion travelling by car increases 

steadily with distance: it is more than 40% for trips of 2 kilometres and rises to 

over 60% for distances of 5 kilometres or more. Comparing Figures 2.5 (H1) and 

2.6 (H2) confirms the importance of the size/rank of the destination town on 

mode of transport: bicycle use is greater in H2 than in H1, after which it slightly 

decreases for smaller towns1. Fewer commuters use public transport to reach low-

ranked municipalities (e.g. H8), probably because of the poorer quality of public 

transport (which also explains the high figures for car use in such areas). 

 

                                                
1 The figures for smaller towns and rural areas are not shown here. 

 



Chapter 2.  Bicycle use and the accident risk for commuters 

50 

 

 
 

Figure 2.5: Modal share for towns H1 as destination – commuting trips (2001) 
 

 

 
 

Figure 2.6: Modal share for towns H2 as destination – commuting trips (2001) 
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2.3.2.2 Odds ratios 

 

Odds ratios (ORs) were computed to compare the probability of commuting by 

bicycle to one type of destination to the probability of commuting by bicycle to 

another. In other words, we compared the likelihood of commuting by bicycle to 

different hierarchical ranks of urbanisation (used as destinations). The OR 

method has several advantages (symmetrical, convenient mathematical 

properties, easy to interpret) that makes it a good measure for comparing the 

relative likelihood of an event in two groups (for further information, see: Daya, 

2000; Simon, 2001; Prasad, 2007).  
 

Let us compare H2 municipalities with the other ranks of urbanisation (Figure 

2.7). For a pair of ranks such as H2 and H1, we compute the OR as: 
 

db

ca

odds

odds
OR ==

tiesmunicipali H towards cycling of 

tiesmunicipali H towards cycling of 
  

1

2   (2.2) 

 

where a is the number of cyclists commuting to H2, b is the number of cyclists 

commuting to H1, c is the number of ‘non-cyclists’ commuting to H2, and d is the 

number of ‘non-cyclists’ commuting to H1. ORs greater than 1.0 indicate that the 

event (cycling) is more likely in the first group (or rank). Conversely ORs below 

1.0 indicate that the event is more likely in the second group. 
 

From Figure 2.7, we see that the odds of commuting by bicycle to regional towns 

(H2) compared to other types of destination increase for journeys of up to 3 or 4 

km. Above 3 or 4 km, there is a decrease but the odds are still greater than 1.0. 

This suggests that large distances progressively offset the features that make H2 

municipalities more ‘bikeable’ than other types of municipalities. This confirms 

the results shown in Figures 2.5 and 2.6. The only exception to the rule is when 

the regional towns are compared to H1 (large towns): the odds of commuting by 

bicycle are higher and constantly decrease up to 14 km (instead of increasing up 

to 3-4 km). This could be explained by the high proportion of commuters who 

walk and/or take the public transport in the large towns (which is due to the 

high proximity and the presence of an extensive public transport system, here). 

Also, the observed decrease of the odds for journeys of up to 3 or 4 km is 

probably explained by the slighter drop of bicycle use in H1 towns. 
 

Finally, the ORs are generally higher than 1.0 for H2 destinations, whatever the 

distances and the rank of the municipality with which H2 is compared. 

Commuters are more likely to travel by bike to H2 municipalities than to other 

types of municipalities. As an illustration, let us consider a commuting distance 

of 5 km. In this case, there is a 1.71-fold (95% confidence intervals: 1.63 to 1.79) 
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greater chance of commuters cycling to work in a regional town (H2) than in a 

large town (rank H1). 

 

  

Figure 2.7: Odds ratios for cycling (H2 vs Hj) as a function of the travelled 

commuting distance. For legibility reasons, confidence intervals are not reported 

here. 

 

2.3.2.3 Exploring inter-municipality differences 

 

In this section, we aim to identify some of the factors that make some urban 

ranks more bikeable than others. In particular, we focus on the differences 

between H2 (more bikeable) and H1 (less bikeable). The descriptive statistics and 

correlation coefficients shown in Tables 2.1 and 2.2 suggest that the combination 

of several features (high job and population densities, low car availability, small 

commuting distances) explains the fact that H2 municipalities are more bikeable. 

In particular, the greater provision of public services (such as schools and 

hospitals) probably generates a lot of cycling trips since a relatively high 

proportion of commuter cyclists (38%) work in the public sector (DGSEI, 2001). 

From a safety-related point of view, H2 areas are also characterised by low risks 

of being seriously injured or killed and better cycle infrastructures than in rural 

areas. 
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Table 2.2: Spearman and Pearson correlation coefficients between some selected 

variables (expected to be explanatories) and bicycle use as well as urban 

hierarchy (n = 589) 

 

Description of variables Source Correlation 

with urban 

hierarchy‡ 

Correlation 

with 

bicycle use‡ 

Urban hierarchy of municipalities 

(largest towns = 1; smallest 

villages = 8)† 

KUL (1998) – –0.23 

% of commuter cyclists† 2001 Census –0.23 – 

% of active people less than 25 years 

of age 

2001 Census –0.19 0.54 

% of households without children 2001 Census –0.48 0.23 

% of households that do not own a 

car† 

DGSEI (2001) –0.45 –0.25 

% of households that do not own a 

bicycle† 

DGSEI (2001) –0.11 –0.85 

Average commuting distance 2001 Census 0.34 –0.54 

Population density (inhabitants/km2) DGSEI (2001) –0.50 0.28 

Job density (jobs/km2) DGSEI (2001) –0.62 0.38 

% of area used for public facilities 

(e.g. council offices, schools)† 

DGSEI (2004) –0.62 0.17 

% of households estimating they have 

low-quality cycle facilities in their 

neighbourhood 

2001 Census 0.16 –0.82 

Annual number of bicycle thefts for 

100 cyclists† 

Federal Police 

(2000-2002) 

–0.47 n.s. 

Annual number of severe/fatal 

accidents (cyclists) per 100,000 

bicycle minutes† 

DGSEI (2002-

2005) and 

2001 Census 

0.25 –0.20 

 

† Logarithmically transformed variables (ln(x+1)) 
‡All correlation coefficients significant at the level 99.9% 

n.s.: not significant at the 90% level 

Normal font: Pearson product moment correlations; Bold font: Spearman correlations 

 

 

Similar features occur in the largest towns (H1) but the greater volume of 

motorised traffic discourages cycling and makes H1 destinations less attractive to 

cyclists than H2 (which will be confirmed in Chapter 3). Moreover, large towns 

(H1) are characterised by high proportions of households that do not own a 

bicycle: more than 54% of households in Brussels and in the Walloon towns (e.g. 

Charleroi, Liège) do not possess a bicycle (DGSEI, 2001). The risk of bicycle 

thefts is also high in these areas (Banister and Gallent, 1998; Rietveld, 2001; 

Rietveld and Daniel, 2004). Tables 2.1 and 2.2 show that there is a negative 

correlation (–0.47) between the annual number of bicycle thefts per 100 cyclists 
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and the rank in the urban hierarchy, suggesting that the risk of bicycle theft is 

greater in urban areas. Since bicycle use is lower in the largest Belgian towns, we 

suspect that bicycle thefts may have a deterrent impact on cycling in such areas. 

However, this cannot be confirmed because the relationship between the risk of 

bicycle theft and the likelihood of cycling to work is not significant (Table 2.2). 

 

2.4 Bicycle use and risk 
 

After having identified the places where cycling is the most frequent for 

commuting trips (Section 2.3), we now analyse the relationship between bicycle 

use and risk of severe/fatal accidents, and then explore the spatial variation of 

this relationship. Do the municipalities with high (low) bicycle use and low 

(high) risks of severe/fatal accident concentrate in space, and why? Are there 

regional differences in terms of cycling policies or driving behaviour? Road 

accident statistics (DGSEI) and the analyses performed in Section 2.3 suggest 

some likely causal factors leading to the observed spatial patterns (clusters). 

 

2.4.1 Clustering municipalities 
 

Table 2.2 shows that – as expected – the risk of cyclists becoming seriously 

injured or killed in a road accident decreases as the proportion of cyclists 

increases (r = –0.20 with a log transformation of both variables; r is significant 

at the 99.9% level). This confirms previous analyses (e.g. Wardlaw, 2000; 

Jacobsen, 2003; Pucher and Buehler, 2006). To explore this topic further, we 

clustered the 589 Belgian municipalities according to the risk of bicycle accidents 

(Ri) and the proportion of cyclists among commuters, using Ward’s ascending 

hierarchical method (Ward, 1963). At each step, this method minimises the sum 

of squares of any pair of clusters to be merged, so that the two closest clusters 

are joined to form a new cluster. In order to determine the optimum number of 

clusters, the CCC (cubic clustering criterion), the pseudo-F statistic (PSF), the 

pseudo-t2 (PST2), the semi-partial R-squared (SPRSQ) and the R-squared 

(RSQ) were helpful (see Fernandez, 2002; Tufféry, 2005 for further information). 

These statistics suggest the use of eight clusters for the classification. The results 

help us to understand the geography of road accidents for cyclists, and suggest 

clues for local policy. 
 

Figure 2.8 shows interesting spatial patterns, and emphasises the regional 

differences. Municipalities in clusters A, B and C provide the most ‘bikeable’ 

environments (i.e. high and safe bicycle use) while those in clusters F, G and H 

are regarded as the least bikeable (i.e. low and unsafe bicycle use). The map also 
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indicates that the most and least bikeable environments spatially cluster, so 

leading to a clear-cut north-south division (positive spatial autocorrelation2). 

Such a division could be indicative of the fact that different (regional) policies 

are implemented in terms of bicycle promotion and safety. 
  

2.4.2 Analysis of the results 
 

Clusters A, B and C all have a low or moderate risk of severe/fatal accident 

for cyclists, combined with moderate or high proportions of commuter cyclists (a 

few municipalities located on the coast or in Limburg have moderate accident 

risks, but the high use of bicycles offsets these risks). Such municipalities – 

mainly located in Flanders – are characterised by a safe and attractive 

environment for cyclists, encouraging cycling and leading to a virtuous circle 

(since more cyclists on roads may reduce the risk of cyclists having accidents). In 

such municipalities, the availability of an adequate cycle infrastructure (e.g. 

cycle lanes, traffic lights for cyclists at junctions), the flat terrain, the lifestyle, 

and the presence of pro-cycling policies are some of the factors that stimulate 

cycling (Rietveld, 2001; Rietveld and Daniel, 2004; Witlox and Tindemans, 2004) 

and – as a consequence – make it safer through the presence of a ‘safety in 

numbers’ effect. Also, many of the car drivers living in the Flemish Region are 

themselves cyclists (when commuting trips or for other purposes) and are 

perhaps more respectful towards commuter cyclists than drivers elsewhere. 
 

Cluster D covers municipalities that have both a small proportion of cycling 

commuters and a very low risk of cyclists becoming seriously injured or killed 

(equal or close to zero). They are mainly located in Wallonia and consist of 

urbanised and rural municipalities. In most of these municipalities, there were no 

severe/fatal cycling accidents during the period studied (2002-2005) (in other 

words, the risk of severe/fatal accident was zero). However, in three 

municipalities (Uccle, Namur and Liège), the risk of being seriously injured or 

killed was not zero, although it was still low. These municipalities are all highly 

urbanised, suggesting that the numerous impediments, such as crossroads and 

pedestrian crossings, slow down the faster traffic and so decrease the danger for 

cyclists. 
 

                                                
2 This result could be related to the distribution of the two clustered variables (bicycle use and 

casualty risk), which is far from being random. Moran’s I statistics are 0.90 and 0.13 (p < 

0.0001) for ‘bicycle use’ and ‘casualty risk’ variables, respectively. 
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Figure 2.8: Classification of municipalities based on the two variables: bicycle 

use and risk of severe/fatal accident 

 

 

Moderate bicycle use together with moderate or high risks of severe/fatal 

accidents is found in clusters E and F. Most of the municipalities included in 

these clusters are in Wallonia, although a few are in areas of Flanders close to 

Brussels. Every day, a large amount of traffic converges on Brussels, having 

passed through neighbouring municipalities, which may well increase the risk to 

cyclists in these latter. Road accident statistics (DGSEI) seem to confirm this 

assumption, in that they show that the proportion of accidents involving 

motorised vehicles is high in these municipalities. One of the main factors 

triggering accidents is the driving behaviour of motorists: car drivers often make 

bad manoeuvres or lose control of their vehicle (ibid.). Moreover, they frequently 

do not respect the right-of-way (ibid.), which illustrates both the fact that 

cyclists are not an integral part of the ‘street scene’ and that motorists do not 

always respect cyclists (especially in Wallonia). Cyclists constitute only a low 

proportion of the road traffic (i.e. they have low visibility) and most road users 

have never themselves experienced cycling as a way of commuting, which 

suggests that they cannot really put themselves in the cyclist’s place. Of course, 

some accidents are caused by the cyclists themselves, when they do not follow 

the traffic signals (right-of-way) or are not in the correct place. Many accidents 

also happen when cyclists lose control of their bike or simply fall. Surprisingly, 

few of these accidents are caused by bad weather (e.g. rain or snow) and/or bad 
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road conditions (e.g. wet or dirty roads), which suggests that other reasons are 

at the root of the accident: e.g. driving a poorly maintained bicycle or 

performing a wrong manoeuvre. The prevalence of such accidents suggests that 

improving cycle infrastructure and traffic education in some parts of the country 

(especially in Wallonia and Brussels) might help to reduce the risk of 

severe/fatal accident among cyclists, as well as the overall perception of this risk. 
 

Finally, clusters G and H consist of hilly municipalities, characterised by high 

rates of severe/fatal accidents and low proportions of cycling commuters. The 

commuting distances in these municipalities are generally large and the road 

network is often winding and sometimes steep. They constitute unsafe and, 

consequently, unattractive environments for (potential) cycling commuters. All 

the municipalities in these clusters are located in Wallonia. According to the 

road accident statistics (ibid.), most of the serious injuries and fatalities there are 

due to the fact that riders fall off their bike, which may suggest that the lower 

visibility on the roads (due to winding roads) is one of the factors that play a 

role in the accident occurrence. Some accidents also happen when the motorised 

vehicles overtake the cyclist or do not respect his or her right-of-way (ibid.). The 

driving of motorists and the fact that cyclists are unusual on Walloon roads 

probably explain such occurrences. The lack of a high-quality infrastructure may 

also play a role: the 2001 census indicates that more than 80% of households in 

these municipalities are not satisfied with the state of the cycle paths there 

(DGSEI, 2001; Verhetsel et al., 2007), which suggests that the accidents are not 

inevitable. 

 

2.4.3 Regional and inter-municipality differences 
 

Strong regional differences then exist between Flanders and Wallonia in terms of 

bicycle use and risks of severe/fatal accident. As it is the case in countries such 

as Denmark or the Netherlands (Rietveld and Daniel, 2004), cycling in Flanders 

is part of the lifestyle and benefits from a cultural tradition (Toint et al., 2001). 

Cyclists are here perceived as legitimate road users and motorists are generally 

mindful and respectful towards them, especially because many cycle themselves 

(Pucher et al., 1999). Such an environment then results in a better road safety 

and encourages cycling. In contrast, in Wallonia, bicycle use in commuting trips 

is rather marginal. Commuters living here face barriers such as hilly terrains, 

lack of adequate cycle facilities and large commuting distances. Principal 

Component Analyses (not illustrated here) and results in Chapter 3 confirm 

these statements and suggest that such barriers discourage cycling, whereas the 

presence of high-quality cycle facilities, flat terrain and short/moderate 

commuting distances encourage it in Flanders. 
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Differences between the Regions are confirmed in Figure 2.9. It shows that, 

whatever the rank in the urban hierarchy, bicycle share in Flanders is 

substantially higher than in Wallonia. Furthermore, the risk of severe/fatal 

accident is low and differs very little from rank to rank in Flanders, while it 

varies a lot in Wallonia. Strong differences are also observed between the 

different ranks and confirm some previous findings (Section 2.2.2): the highest 

bicycle shares are observed in regional towns (H2) whereas the lowest ones are 

found in rural municipalities (H6-H8). As previously mentioned, factors such as 

moderate or high population and job densities as well as the mixity of land-use 

explain such bicycle shares in regional towns. Note however that the distribution 

of bicycle use is somewhat different when the analysis is performed at a regional 

level. Indeed, the Flemish Region reveals a first peak of bicycle share for H2 and 

a second for H5, while the Walloon Region shows only one peak for H3. 
 

Another interesting result is the fact that high bicycle shares are correlated with 

low rates of severe/fatal cycling accidents. The results indeed show that Flemish 

municipalities are characterized by high bicycle shares and low risks of being 

seriously injured or killed for a cyclist in a road accident, while the Walloon 

municipalities generally show the opposite trend (low bicycle use and moderate-

high risks of severe/fatal accident). It then suggests that risks of severe/fatal 

accident for cyclists are closely related to the level of bicycle use. According to 

Jacobsen (2003), the improved safety of cyclists is mainly explained by a 

behaviour modification of motorists, caused by the great numbers of cyclists in 

traffic: motorists tend to adapt their driving behaviour when they expect cyclists 

or experience cycling themselves. 
 

Finally, Figure 2.9 also shows that the risks for cyclists of being seriously injured 

or killed in an accident increase when the environment is less-urbanized, 

suggesting that the risk of being seriously injured or killed is higher in rural 

municipalities. Whatever the region, the greater number of ‘physical barriers’ 

(e.g. traffic lights, road humps) as well as the congestion, the lower speed limits 

and the higher shares of walking trips in urban areas force motorists to slow 

down and adopt a more careful driving behaviour. Such factors then reduce the 

differential speed between fast and slow modes and, consequently, decrease the 

number of severe/fatal accidents. This last assumption is confirmed in a study 

conducted by Daniels and Geurts (2004) on traffic unsafety in the Flemish 

Region. They noted that less-urbanized environments are characterized by high 

speed limits (and effective driving speeds) and then have a higher number of 

serious injuries and fatalities in traffic accidents. Interestingly, Verhetsel et al. 

(2007) also observed high driving speeds in such less-urbanized areas (especially 

in Wallonia) when they analysed the 2001 census data. 
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Figure 2.9: Modal share of cyclists versus risk of severe/fatal accident: regional 

differences. Brussels is not illustrated here because of the small number of 

municipalities (19) 

 

2.5 Conclusion 
 

This chapter has explored the relationship between commuting by bicycle and 

accidents to cyclists, as well as the extent to which urban hierarchy and distance 

to the workplace influence bicycle use. We have shown that, in Belgium, urban 

environments encourage the use of non-motorised modes of transport and more 

particularly cycling. The presence of a densely built-up environment generates 

short commuting distances and hence encourages cycling. At the opposite 

extreme, commuters who live in low-density areas usually have to cover longer 

distances to work, and consequently depend more on motorised transport 

(especially private cars) since public transport is frequently poor in less-

urbanised areas (due to its high costs). However, regional towns (H2) have higher 

bicycle use than the largest towns (H1), which may be explained by the high 

quality of public transport and the dominance of short commuting trips in H1 

municipalities, which encourages walking. We also suspect that factors such as 
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high volumes of traffic and the risk of bicycle theft deter potential cyclists in 

large towns. 
 

A classification of municipalities confirms that high proportions of cycling 

commuters are correlated with low rates of severe/fatal accidents among cyclists. 

Interestingly, the results revealed a clear-cut north-south division (positive 

spatial autocorrelation), which hence suggests that different (regional) policies 

are implemented in terms of bicycle promotion and safety. In Flanders, most 

municipalities have a high percentage of cyclists and low risks of being seriously 

injured or killed while cycling to work. The availability of cycle infrastructure, 

the flat terrain, the high population and job density, as well as the presence of 

pro-cycling policies may be some of the factors that make this environment quite 

attractive and safe for cyclists. Cycling is also part of the Flemish lifestyle and 

cyclists are generally expected and respected by motorists in Flanders. This 

produces a virtuous circle since better road safety lowers both the actual and 

perceived risk of cycling and then encourages more cycling, which in turn makes 

the environment still safer. Moreover, Flemish policy makers invest more in cycle 

infrastructures, owing to a greater number of cyclists (high demand). This 

situation in Flanders is similar to that in the Netherlands (Dutch Ministry of 

Transport, Public Works and Water Management, 2007). 
 

In contrast, the low proportion of commuters cycling to work in Wallonia is 

often associated with a high risk of accident. Topography, high driving speeds, 

long commuting distances as well as car-oriented policies and lifestyles are 

associated with this scenario. Higher accident risks also deter bicycle use: they 

make the Walloon environment unsafe and consequently unattractive to 

(potential) cyclists. The lack of high-quality infrastructure as well as the fact 

that car drivers generally do not expect to see cyclists on the road probably 

explain the high risks of severe/fatal accident. In addition, motorists may be less 

respectful towards cyclists, partly because they have never themselves 

experienced commuter cycling. Each of these background characteristics confirm 

the fears and the high perceived risk of accident Walloon residents associate with 

cycling. 
 

Last but not least, inter-municipality differences are observed: risks of 

severe/fatal accidents for cyclists are higher in less-urbanised environments, 

while the reverse is true in urban areas. In the latter, the presence of features 

such as physical barriers (e.g. road humps), congestion, lower speed limits and 

higher numbers of pedestrians force motorists to slow down and adapt their 

driving behaviour, which improves the safety of all road users. In particular, it 

reduces the differential between the speed of fast and slow modes of transport, 

and so decreases the risk of cyclists suffering from injuries in urban areas. Such 

urban features hence probably explain why low to moderate values of risk are 
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observed in the Brussels-Capital Region. Interestingly, these latter observations 

are not in line with the perception of overall danger Brussels’ residents have 

about cycling. It is hence hypothesized here that variables such as the traffic 

volumes and the lack of high-quality cycleways play a prominent role in 

deterring potential users from cycling. This latter assumption is further explored 

(and confirmed) in Chapter 3 of this thesis. 
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Chapter 3  
 

 

Spatial determinants of cycle 

commuting  

Modelling meso-scale spatial 

variations in Belgium8 
 

Outline 
 

This chapter attempts to explain the spatial variation of the use of a bicycle for 

commuting to work at the level of the 589 municipalities in Belgium. Regression 

techniques were used and special attention was paid to autocorrelation, 

heterogeneity and multicollinearity. Spatial lag models were used to correct for 

the presence of spatial dependence and a disaggregated modelling strategy was 

adopted for the northern and southern parts of the country. The results show 

that much of the inter-municipality variation in bicycle use is related to 

environmental aspects such as the relief, traffic volumes and cycling accidents. 

Town size, distance travelled and demographic aspects (e.g. share of youngsters 

or percentage of households with young children) also have some effect. In 

addition, there are regional differences in the effects of the structural covariates 

on bicycle use: the impact of variables such as traffic volume and cycling 

accidents differs substantially between the north and the south of the country. 

This chapter also suggests that high rates of bicycle use in one municipality 

stimulate cycling in neighbouring municipalities, and hence that a mass effect 

can be initiated, i.e. more cycle commuting encourages even more commuters in 

the area to cycle. These findings provide some recommendations for decision-

makers wishing to promote a shift from car to bicycle use. 

                                                
8 This chapter is adapted from the following paper: Vandenbulcke, G., Dujardin, C., Thomas, I., 

de Geus, B., Degraeuwe, B., Meeusen, R., Int Panis, L. (2011). Cycle commuting in Belgium: 

Spatial determinants and ‘re-cycling’ strategies. Transportation Research Part A 45, 118-137. 

[http://dx.doi.org/10.1016/j.tra.2010.11.004] 
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3.1 Introduction 
 

In Belgium, while approximately 21% of commuters live within cycling distance 

(i.e. less than 5 km) of their work, and 39% make trips of less than 10 km, only 

6% of all commuting trips are carried out with a bicycle as the main mode of 

transport (Verhetsel et al., 2007). The percentage of people who live within 5 km 

of their work who commute by bicycle is relatively low (19%), and the majority 

(more than 53%) use their car (Figure 3.1). There is hence great potential for a 

shift from car to bicycle for short commutes. As suggested in Chapter 2, there 

are however several societal, economic and environmental factors that dissuade 

people from cycling and make the environment unattractive and unsafe for 

cyclists. These include a lack of (appropriate) cycle infrastructure, the 

topography, weather, road accidents, and company-related constraints (e.g. the 

need to carry bulk goods and/or to be well-groomed, or the accessibility of the 

company to public transport). They need to be clearly identified to help policy 

makers to mitigate them and to promote bicycle use in Belgium. Such findings 

could then support the implementation of adequate policies in favour of a modal 

shift from car to bicycle commuting, at least for short distances. 

 

 
 

Figure 3.1: Commuters’ modal share for distances up to 5 km (Belgium) 

 

 

This chapter then extends the exploratory spatial data analyses conducted 

previously on the spatial patterns of bicycle use for commuting (Chapter 2), in 
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order to obtain thorough results as well as statistically-based recommendations 

for planners and policy makers. Within this framework, we here aimed at 

examining which factors have the greatest influence on bicycle use for 

commuting in Belgium. We therefore carried out multivariate analyses at the 

scale of all 589 municipalities (the smallest administrative unit) in the country. 

A large set of ‘explanatory’ variables was included in the analysis, with specific 

attention to environmental variables as well as demographic components. Spatial 

autocorrelation, heterogeneity and multicollinearity problems were diagnosed and 

treated, with the aim of improving the results. 
 

The structure of the chapter is as follows. An exhaustive review of the literature 

on the factors that have a potential impact on bicycle use is given in Section 3.2. 

Section 3.3 describes the objectives of the chapter and the data (dependent 

variable and explanatory variables) in more detail. The methodological approach 

used to deal with multicollinearity, heterogeneity and spatial autocorrelation is 

presented in Section 3.4. The results of the multivariate analyses are reported in 

Section 3.5. In Section 3.6, our concluding remarks underscore the importance of 

accounting for multicollinearity, spatial dependence and spatial heterogeneity to 

achieve reliable statistical inferences. Results obtained within the framework of 

this chapter will feed the formulation of policy recommendations in the general 

conclusion of this thesis (Chapter 6). Such recommendations overall suggest pro-

cycling strategies aiming at increasing bicycle use and making it safer while 

commuting. 

 

3.2 Identifying the main determinants 

of bicycle use 
 

A large range of factors have an impact on bicycle use in commuting trips: 

demographic, socio-economic, cultural, societal, but also environmental and 

policy-related determinants either act as deterrents or encourage cycling. Based 

on a large – but not exhaustive – review of the literature, this section provides a 

short overview of these determinants. 

 

3.2.1 Demographic and socio-economic determinants 
 

Socio-economic and demographic determinants include age, income, gender, 

education, professional field and status, and family commitments (e.g. having 

young children). Young commuters (< 25 years) generally have low/medium 

income and often cannot afford a car, which has a clear impact on their choice. 
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Moreover, some of them do not have a driving license and have to use public 

transport or non-motorised forms of transport when they travel to work. The 

physical abilities of individuals also depend on their age: young commuters are 

more likely to enjoy good physical health and to cycle more. Gender has an 

influence on the decision on whether or not to cycle: on average, men cycle to 

work more often than women, although women travel shorter distances than men 

(Ortúzar et al., 2000; Dickinson et al., 2003; Heinen et al., 2010). Among other 

factors, women tend to mention their personal security as a reason for not using 

a bicycle, and often make more complex trips than men due to family 

commitments (Pooley and Turnbull, 2000; Dickinson et al., 2003; Rietveld and 

Daniel, 2004; Gatersleben and Appleton, 2007). 
 

Education also has a strong influence on bicycle use, but this depends on the 

area being studied. In North America a high level of education is positively 

associated with cycling (Noël, 2003; Plaut, 2005; Zahran et al., 2008), whereas 

the opposite effect is observed in Santiago (Chile) (Ortúzar et al., 2000) and 

Belgium (Hubert and Toint, 2002). Lastly, the professional field and status play 

a role (Toint et al., 2001; Titheridge and Hall, 2006; Parkin et al., 2008; Heinen 

et al., 2009; Heinen et al., 2010). For instance, Pucher et al. (1999) showed that 

in San Francisco lots of messengers are immersed in a cycling culture and use 

their bicycles in spite of the hilly topography. Bicycle use for commuting is 

generally high in academic towns (Martens, 2004; Rodríguez and Joo, 2004). 
 

Note finally that other determinants are reported in the literature as influencing 

bicycle use, although it is to a lesser extent compared to the previous ones. 

These refer to the marital status (e.g. single, married, widowed), the home 

characteristics (e.g. parking facilities, garden) and the neighbourhood 

characteristics (e.g. easily accessible shopping, parks, sport grounds) (for further 

details, see Meurs and Haaijer, 2001; Pikora et al., 2003; Moudon et al., 2005). 

 

3.2.2 Cultural and societal determinants 
 

The literature often mentions that societal and cultural factors influence bicycle 

use (see e.g. Jensen, 1999; Pucher et al., 1999; Ortúzar et al., 2000; Rietveld, 

2001; Dickinson et al., 2003; Rietveld and Daniel, 2004; Plaut, 2005; Pucher and 

Buehler, 2006; Zahran et al., 2008; Heinen et al., 2010). A low societal status 

often tends to be associated with commuter cycling, especially in countries where 

the car is dominant (e.g. US); utilitarian cycling is often considered as a fringe 

activity and suffers from a renegade image (Pucher et al., 1999; Moudon et al., 

2005). However, the cycling culture is quite developed in some Northern 

countries of Europe (e.g. the Netherlands and Denmark). Such differences 
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between countries, regions or even ethnicities are probably explained by tradition 

and lifestyle. A meaningful example is provided by Rietveld and Daniel (2004), 

who show that immigrants with a different cultural background are unlikely to 

cycle in the Netherlands and prefer to use public transport or a car. The fact 

that cycling does not play a prominent role in the native country probably 

explains such a result as immigrants are probably not yet adapted to the use of 

the bicycle (from a behavioural point of view) and/or have a different overall 

perception of cycling (e.g. they may associate it to a low societal status, or to 

high risks of being injured in a road accident). 

 

3.2.3 Environmental determinants 
 

The main environmental determinants influencing bicycle use are relief, weather 

(and climatic conditions), urban spatial structure, and infrastructure. Hills 

influence negatively the attractiveness of non-motorised modes of transport 

(Noël, 2003; Rodríguez and Joo, 2004; Heinen et al., 2010). Cycling up hills is 

uncomfortable, requires substantial physical effort (Rietveld, 2001; Gatersleben 

and Appleton, 2007) and affects travel time in the generalised cost function since 

it is slower than going down hill or on the flat. 
 

Weather (short-term) and climatic (long-term) conditions are often mentioned in 

the literature. Low or high temperatures (e.g. extreme heat combined with air 

pollution), frequent rain, snow, ice and strong winds may act as deterrents to 

commuter cycling (Nankervis, 1999; Richardson, 2000; Bergström and 

Magnusson, 2003; Parkin et al., 2008; Zahran et al., 2008; Koetse and Rietveld, 

2009; Heinen et al., 2010). Like topography, these factors decrease the level of 

comfort of cycling and increase the physical effort required. 
 

The urban structure influences the likelihood of commuter cycling through 

several factors, such as population and job densities, mixed land-use and town 

size (Kitamura et al., 1997; Rietveld, 2001; Heinen et al., 2010; Verhetsel and 

Vanelslander, 2010). In urban areas, a high degree of connectivity (i.e. the ability 

to travel directly), associated with short distances (due to compactness and the 

presence of mixed-use activities) encourage cycling and walking in commuting 

trips (Saelens et al., 2003). Distance is an important barrier that limits cycling: 

only people living close to their workplaces will be interested in cycling 

(Kingham et al., 2001; Dickinson et al., 2003; Krizek et al., 2010; Verhetsel and 

Vanelslander, 2010). As suggested by Chapter 2, town size also seems to play a 

key role: few large towns (with more than 2 million inhabitants) have a bicycle 

commuting rate exceeding 10%. Medium-sized and compact towns perform 

better since they contain fewer barriers (e.g. motorways) and traffic densities are 
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lower (Pucher et al., 1999). In the largest towns, proximity to the nearest stop 

and the high frequency of services however make public transport attractive and 

highly competitive for distances between 1 and 7.5 km. For instance, the 

distance to the nearest public transport stop in Brussels (bus, tramway, 

underground) does not exceed 250m for more than 63% inhabitants, which partly 

explains the low share of cyclists observed here (Vandenbulcke et al., 2007). Up 

to 1 km, walking competes strongly with cycling (Pucher et al., 1999; Ortúzar et 

al., 2000; Witlox and Tindemans, 2004). As mentioned in Chapter 1, the lack of 

room to store a bicycle in densely occupied buildings may also be another reason 

to observe low shares of cycling in large towns. 
 

Infrastructure (e.g. cycle lanes and racks) is an essential ingredient for improving 

bicycle use and cyclists’ safety (Hopkinson and Wardman, 1996; McClintock and 

Cleary, 1996; Rietveld, 2001; Reynolds et al., 2009; Heinen et al., 2010). Well-

planned and well-kept infrastructure (through design, maintenance and adequate 

connectivity) encourages cycling and reduces road accidents and their costs 

(Aertsens et al., 2010). Depending on the type of planning, several benefits can 

be provided for cyclists: e.g. improved comfort, reduced travel time, more 

enjoyment and increased safety. Dedicated paths (e.g. residential streets) as an 

alternative to main urban roads are an efficient way of reducing the exposure of 

cyclists to exhaust fumes (Hertel et al., 2008; Thai et al., 2008; Int Panis et al., 

2010). Increased safety can also be achieved by developing continuous and 

designated cycle lanes, and ensuring that cyclists are still visible to motorists; 

this is often more highly valued by cyclists than other factors (e.g. reduced travel 

time, easy parking) (Hopkinson and Wardman, 1996; Tilahun et al., 2007). A 

well-developed network of cycle facilities combined with the provision of bicycle 

parking facilities at stations/stops may improve the accessibility of public 

transport to cyclists, and hence, provide a competitive alternative to the car for 

commuting trips (Martens, 2004; 2007). Finally, the presence of facilities such as 

covered/secure cycle parking, lockers, showers and changing facilities at the 

workplace stimulates commuter cycling (Rietveld, 2000; Kingham et al., 2001; 

Dickinson et al., 2003; Pucher and Buehler, 2006; Van Malderen et al., 2009; 

Vanoutrive et al., 2009; 2010). Combined with the provision of continuous cycle 

facilities and a mileage allowance for cycling to work, such facilities are expected 

to have a significant impact on commuting by bicycle (Wardman et al., 2007; 

Van Malderen et al., 2009). 

 

3.2.4 Policy-related determinants 
 

Policy-related variables (i.e. planning and pro-cycling policies) play a key role in 

encouraging more and safer cycling through the implementation of a wide range 
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of measures (Pucher et al., 1999; Rietveld, 2001; Dickinson et al., 2003; Pikora et 

al., 2003; Pucher and Buehler, 2008; Heinen et al., 2010). Land-use planning can 

prevent urban sprawl by favouring compact and mixed-use solutions which 

reduce travelling distances and – consequently – favour the use of non-motorised 

transport for commuting (Cervero and Kockelman, 1997; Kitamura et al., 1997; 

Meurs and Haaijer, 2001; Noël, 2003; Titheridge and Hall, 2006; Chapman, 2007; 

Woodcock et al., 2007; Verhetsel and Vanelslander, 2010). Moreover, transport 

planning can modify the design and lay-out of transport networks to improve the 

connectivity of bikeable roads between different destinations. It can increase the 

directness of travel through the creation of special intersection modifications for 

cyclists (e.g. by providing priority signalling or advanced stop zones), the 

suppression of barriers (e.g. foot and cycle bridges over motorways or 

waterways), the creation of detours for car drivers, and the introduction of 

traffic-calming or car-free zones in urban centres (Meurs and Haaijer, 2001; 

Rietveld, 2001; Saelens et al., 2003; Pucher and Dijkstra, 2003; Pucher and 

Buehler, 2006; 2008). This makes cycling safer by reducing the risk of collision 

with motorised traffic, but also more convenient by allowing cyclists to avoid 

detours and traffic jams (Rietveld, 2001). Improving safety is of prime 

importance as it is well-known that the (perceived) risk of death and injury in 

traffic crashes strongly discourages people from cycling (Hopkinson and 

Wardman, 1996; McClintock and Cleary, 1996; Curtis and Headicar, 1997; 

Jacobsen, 2003; Pikora et al., 2003; Pucher and Dijkstra, 2003; Pucher and 

Buehler, 2006; Parkin et al., 2007).  
 

The provision of secure facilities (e.g. guarded cycle racks) along with police 

surveillance are also efficient means of reducing the risk of bicycle theft or 

vandalism (which are strong deterrents to cycling). A maximum walking distance 

with respect to busy areas (e.g. stations) is also recommended for bicycle parking 

facilities so that these latter are continuously visible for others (Martens, 2007). 

Such enhanced cycling conditions and resulting shifts from car to bicycle 

(favoured by pro-cycling land-use and transport planning strategies) not only 

allow reducing the costs related to the urban sprawl, but also help increasing the 

economic productivity and development of a specific region or country (Litman, 

1994, 1995; Buis, 2000; Burchell et al., 2002; Litman, 2004). Indeed, compact and 

mixed-use patterns as well as improved transport design and lay-out strategies 

hold the potential to increase the accessibility to facilities and resources (which 

in turn reduces the attendant transport costs and externalities due to urban 

sprawl). More interestingly, investments in non-motorised transport modes are 

also shown to increase the nearby property values and attract residents and 

companies that yield some value to the environment and sustainable 

development (Litman, 1994, 2004). New opportunities for employment can then 

result from such cycling investments and can in turn increase the performance of 
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the local/regional labour market, owing to e.g. the establishment of new 

companies attracted by the pleasant environment, the growing demand for 

facilities resulting from the new residents, and the implementation of the new 

cycling facilities themselves. 
 

Financial measures can also promote non-motorised modes of transport and 

regulate the use of the private car. The provision of monetary incentives such as 

a mileage allowance or an employer-paid discount on the purchase of a new 

bicycle may stimulate the practise of commuting by bicycle (Kingham et al., 

2001; van Wee and Nijland, 2007; Wardman et al., 2007). For instance, 

Wardman et al. (2007) showed that a payment of £2 per day could double the 

level of cycling in Great Britain. Higher parking fees, reduced space for car users 

(with increased ‘shared space’), fiscal incentives for less polluting cars, higher 

fuel prices and the implementation of urban tolls (as in London and Stockholm) 

are some examples of push-measures which can decrease the attractiveness of 

private car use and encourage a shift to alternative modes of transport, especially 

when combined with pull-measures (e.g. high-quality cycle facilities, secure 

parking, …) (Verhetsel, 1998; De Borger et al., 2001; van Wee and Nijland, 

2007). 
 

Company-related factors can also encourage or discourage commuting by bicycle, 

especially through their organisational aspects (e.g. a strong dress code, the need 

to carry bulky goods, flexible work schedules), location policies, and the 

availability of facilities (e.g. changing rooms and cycle lockers at the workplace) 

(Curtis and Headicar, 1997; Dickinson et al., 2003; Heinen et al., 2009; 

Vanoutrive et al., 2009, 2010). In particular, a remote location, far from any 

town or public transport, will result in great dependence on the car and will 

discourage employees from using any other mode of transport (Vanoutrive et al., 

2010). Employees are also unlikely to travel to work by public transport or 

bicycle if their company provides free cars and fuel. Only reducing the provision 

of company cars and fuel, combined with other measures (e.g. incentives for 

cycling and public transport), can induce a shift away from the car towards 

alternative modes of transport (Kingham et al., 2001). 
 

Finally, the promotion of cycling is important, since attitudes towards mobility, 

the environment, etc., are closely linked to travel behaviour (Kitamura et al., 

1997). Such promotion can increase cycling and can be achieved through 

educational programmes (e.g. teaching cycling safety at schools), promotional 

events, the active involvement of advocacy groups and town officials (e.g. police 

officers on bicycles), and up-to-date information for cyclists (e.g. cycling maps 

showing ‘bikeable’ roads) (Curtis and Headicar, 1997; Pucher et al., 1999; Pucher 

and Buehler, 2006; Zahran et al., 2008). In particular, promotional events can 

create a mass effect providing cyclists with confidence and enthusiasm (Pucher el 
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al., 1999). Linking cycling to health can also be an efficient way of encouraging 

more commuters to cycle, since regular exercise improves fitness and health (de 

Geus et al., 2008a; 2009). Cycling is indeed a low-cost way to tackle health 

problems linked to physical inactivity (e.g. diabetes, cardio-vascular diseases and 

cancers). It has also been shown to improve mental health and productivity at 

work (Pucher et al., 1999; EC, 2000; van Wee and Nijland, 2007). 

 

3.3 Objectives and data 
 

The main aim of this chapter is to explain the variation of the proportion of 

commuters who travel by bicycle (dependent variable, y), as measured at the 

scale of the 589 municipalities in Belgium9. Explanatory variables used in the 

multivariate analyses fall into three main categories (demographic and socio-

economic, policy-related, and environmental) and refer to most of the 

determinants identified in Section 3.2. Appendix B.1 lists and describes the 

explanatory variables. Most of the demographic and socio-economic variables 

either come from the 2001 census or are obtained from the website of the 

Directorate-General Statistics and Economic Information (DGSEI). The 2001 

census is a self-administered questionnaire, carried out by the DGSEI (DGSEI, 

2001b; DGSEI, 2004). It is preferred to other surveys since it is the most recent 

database and covers the entire population. Environmental and policy-related 

variables come from a wide range of sources. These latter not only result from 

policy decisions (e.g. land-use and transport-related measures), but also 

characterise the ‘environment’ in which commuters live and travel. Some of these 

variables (e.g. population and job densities, average commuting distance, town 

size, the percentages of urban/forest/agricultural land, etc.) are proxies for the 

urban structure, land use and accessibility of activities/facilities in the 

municipality. Others (such as the risk of accidents to cyclists, traffic volumes, 

dissatisfaction with cycle facilities, hilliness, and air pollution) are representative 

of the overall convenience of cycling in the municipality. Note that further 

information on these variables is provided in the following subsections. 

 

3.3.1 Demographic and socio-economic variables 
 

Most of the demographic and socio-economic variables come from the 2001 

census, carried out by the DGSEI. This census was of great help to compute the 

                                                
9 Note that y is continuous, non-negative and constrained to a specific range. Linear models 

could be hence less suited here. Satisfactory results are however obtained and suggest that the 

methodological approach adopted here is suitable. 
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percentage of working people belonging to various life phases (e.g. being less 

than 25 years old or between 45 and 54) or having specific education levels (e.g. 

percentage of working people having a university degree as their highest 

qualification). Interestingly, these data show that a large majority of commuter 

cyclists have a secondary (60%) or primary (7%) education as highest degree in 

Belgium. They also indicate that the proportion of commuting by bicycle (9.1%) 

is the highest within the population of working people having a primary degree 

as their highest qualification (university degree: 6.4%). Such observations differ 

from the results obtained by Plaut (2005), who shows that a higher education 

encourages cycling in the USA. 

 

 
 

Figure 3.2: Percentage of commuter cyclists (women) having children being less 

than 5 years old, 6-11 years old, or 12-17 years old 
 

 

Another variable extracted from the 2001 census is related to the subjective 

health of people, and consequently with the (physical and/or mental) ability to 

cycle. This variable is the percentage of inhabitants in a municipality feeling 

they have a bad state of health. The census also provides the opportunity to get 

a proxy for family commitments: the percentage of working households (i.e. with 

one or more working parents) having one or more young children (i.e. being less 

than 5 years old). Exploratory analyses suggest that the presence of young 

children in the household discourages cycling, especially for (working) women. 
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For example, Figure 3.2 exhibits that the deterrent impact is the highest when 

women have 2 young children, whereas it is the lowest when they have 3 young 

children (or more). For households with children being between 12 and 17 years 

old, such a deterrent effect is however not observed.  
 

Finally, the website of the Directorate-General Statistics and Economic 

Information (DGSEI) is also used to extract the following variables: median 

income, percentage of working people who are men (proxy for gender), and 

percentage of households that do not own any car. 

 

3.3.2 Environmental and policy-related factors 
 

Variables characterizing the ‘overall’ environment of the municipality are here 

considered. Population and jobs densities, town size, as well as proportions of 

urban, forest, agricultural, public and recreational land surfaces by municipality 

are extracted from the DGSEI website as a first subset of environmental and 

policy-related variables. In particular, the presence of public facilities is expected 

to stimulate cycling. Exploratory analyses conducted outside the framework of 

this chapter (not illustrated here) suggest that most cyclists work in the public 

field (e.g. administration, education and health). According to Wendel-Vos et al. 

(2004), it is also assumed that high proportions of forest or recreational areas 

encourage cycling. Regarding the proxy for the town size, ranks are attributed to 

the municipalities on the basis of an index and based on the degree of equipment 

of the municipality as well as on its attractiveness (Van Hecke, 1998). As in 

chapter 2, this variable is coded in such a way that the largest towns have low 

values (Brussels is ranked 1; the ranks 6, 7 and 8 are attributed to the smallest 

and least-populated municipalities). 
 

Accessibility/separation variables are considered as a second subset of data and 

include the minimum network distance to the closest town (km) as well as the 

percentage of commuters that live no further than 10 km from their workplace. 

Commuting distance is also computed from the 2001 census as the observed 

average distance between residence and workplace (by municipality of residence) 

since it highly constrains the transport mode choice (Kingham et al., 2001; 

Dickinson et al., 2003; Saelens et al., 2003). It is here assumed that commuters 

are more likely to cycle when they live in urban environments with moderate and 

high densities. Municipalities with low densities are characterised by large 

commuting distances and are hence not attractive for cycling. However, 

municipalities with high densities are not necessarily associated with high bicycle 

shares because of the short distances between activities (which favours walking 

trips) and the high-quality of public transport (Ortúzar et al., 2000). Housing 
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characteristics may also play a role here in the sense that flats have generally 

smaller floor areas in the densest municipalities. Room is hence often lacking to 

store bicycles and may then preclude from cycling (see Chapter 1). 
 

Variables referring to the overall convenience of cycling in the municipality make 

up the last subset of environmental and policy-related variables. A proxy 

summarizing the quality of cycle facilities in the municipality – i.e. the 

percentage of households estimating they have low-quality cycle facilities located 

in their neighbourhood – is first extracted from the 2001 census. More concretely, 

it appraises how unsatisfied households are about the neighbouring cycle facilities 

observed in the municipality. Secondly, the risk for a cyclist of being involved in 

a road accident was also roughly estimated using the 2001 census and DGSEI 

data. This risk is defined in a same way as in chapter 2: Ri = Ni/Ti, where Ni is 

the average annual number of (all) accidents for cyclists aged between 18 and 65 

years (occurring between 2002 and 2005 and on weekdays in municipality i) and 

Ti is the total time spent travelling by commuter cyclists living in municipality i 

per year. Thirdly, data on bicycle theft (2000-2002) are also obtained from the 

Federal Police. In Belgium, criminality statistics show that approximately 32,000 

bicycle thefts occur each year (although, in reality, only 45% victims lodge a 

complaint). A ratio between the number of thefts and the number of cyclists is 

then computed with the aim to estimate the risk of bicycle theft by municipality. 

Fourthly, traffic data are obtained from counting, surveys and estimations 

carried out by the Federal Public Service (FPS) Mobility and Transports10. Such 

data are used to compute a proxy for the volume of traffic transiting in a 

municipality, which is expected to have a deterrent impact on bicycle use when 

the traffic volume is high. This proxy is here expressed as the number of 

vehicles-km by kilometre of municipal or regional road (motorways are excluded 

since they are not ‘bikeable’). Fifthly, the ambient air quality is also taken into 

account in order to examine the relationship between concentrations of air 

pollutants and bicycle use for commuting trips. Particulate matter 

concentrations (PM10) are obtained from the Belgian Interregional Cell for the 

Environment (IRCEL-CELINE) for the years 2000-2005. Measurements are 

made in telemetric stations and interpolated to a grid data formed by pixels of 4 

x 4 km. Performing areal statistics from grid data then allows to estimate the 

mean concentration of particulate matter (PM10) by municipality. Last but not 

least, the mean slope along the (‘bikeable’) road network is computed for each 

municipality, using a Digital Elevation Model (DEM) collected from the National 

Geographic Institute (NGI). Such a DEM corresponds to a set of height values 

assigned to pixels (90 x 90m) and is incorporated into a Geographic Information 

                                                
10 Estimations are based on the size of the automobile park and on the volume of traffic 

transiting on the neighbouring road sections. 
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System (GIS) in order to compute slopes. In ArcGIS 9.2 (tool ‘Slope’), these 

latter are defined as the maximum rate of change from each cell (or pixel) to the 

closest neighbours. The final step then consists in estimating the mean slope 

along the municipal and regional road networks (from which motorways and 

express roads are excluded since they are not allowed for bicycle traffic). 

 

3.3.3 Limitations 
 

Appendix B.1 is far from being exhaustive. In particular, the societal and 

cultural variables described in Section 3.2 were not included in this analysis, 

except through the integration of spatial regimes in the final model11. It is also 

noteworthy that data on immigrant background (or ethnic origin) are quite 

tricky to use here as proxies for the travel behaviour, since many non-native 

residents obtained the Belgian nationality (without subsequently changing their 

travel habits) (Deboosere et al., 2009). Finally, weather- and/or climatic-related 

variables (e.g. wind, rainfall, temperature) are not included in the model since 

the quality of the data is (spatially) poor (i.e. data are collected over a limited 

number of measurement stations). Also, in small countries such as Belgium, it is 

to be expected that few spatial variation exists between the municipalities. As 

illustration, insignificant estimates were obtained within the framework of a 

study conducted at the scale of the Dutch municipalities (Rietveld and Daniel, 

2004). Collinearity with topography is also expected to occur, which suggests 

that incorporating such weather-/climatic-related variables in the model would 

not yield more explanatory power. 

 

3.4 Methodology 
 

A combination of exploratory (spatial) data analyses and spatial econometric 

techniques is here considered, taking advantage of the use of several specialized 

software packages (SAS, GeoDa and R). Descriptive statistics and bivariate 

analyses (i.e. Pearson and Spearman’s rank correlation) are first computed in 

order to explore the relationships between each of the explanatory variables and 

the dependent variable y. Multivariate models are then applied, with the aim of 

examining the relative importance of the explanatory variables for the spatial 

variation in bicycle use (at the scale of municipalities). These are described in 

the following subsections. To improve the statistical inference process, special 

                                                
11 Exploratory spatial data analyses (ESDA) do indeed suggest that the regimes/clusters defined 

in Section 3.5.5.1 are representative of different cultures (the Flemish-Walloon split). 
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attention is paid to multicollinearity, spatial heterogeneity and spatial 

autocorrelation. 

 

3.4.1 Ordinary least squares model 
 

For N observations and K exogenous independent variables, the structure of the 

first model (OLS) in matrix form is as follows:  
 

εβ += Xy                  (3.1) 
 

where y is a N × 1 vector of observations i on the dependent variable (proportion 

of commuting by bicycle in municipality i), β is a K × 1 vector of coefficients for 

the independent variables, X is a N × K matrix of observations i on the 

independent variables (including a constant term), and ε is a N × 1 vector of 

error terms at location i. In this chapter, N is equal to 589 (the number of 

municipalities in Belgium). 
 

The first step in testing the validity of the ordinary least squares (OLS) model 

was to compute condition indices, tolerance and variance inflation factor (VIF) 

values so as to diagnose the existence of multicollinearity. The major 

assumptions of the regression (linearity, homoscedasticity, normality and spatial 

independence of the residuals) were then tested. The White, Breusch-Pagan and 

Koenker-Bassett tests for the presence of non-constant variance in the errors 

(heteroskedasticity) were performed first, and the asymptotic version HC3 of the 

heteroskedasticity-consistent covariance matrix (HCCM) was then used to 

correct for heteroskedasticity (Long and Ervin, 2000). HC3 was preferred over 

HC0, HC1 and HC2 owing to its better properties for testing estimates that are 

most affected by heteroskedasticity (Long and Ervin, 2000). Note that this 

correction is most commonly known as the White’s correction. 

 

3.4.2 Spatial autoregressive modelling 
 

Spatial autocorrelation is another misspecification affecting the results of the 

OLS regression since it will lead to a wrong statistical interpretation (e.g. biased 

and inconsistent coefficients, biased t- and F-statistics, misleading measures of 

fit) (Anselin, 1992). This implies that a functional relationship exists between a 

municipality i and the neighbourhood, i.e. the value (e.g. residuals or 

observations of the dependent variable) in a municipality i depends on the values 

observed in the ‘neighbouring’ municipalities. Spatial autoregressive modelling 

(SAR) was then used to deal with the presence of spatial autocorrelation. It is 

divided into two alternative specifications: spatial error and spatial lag models. 
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While the first specification suggests the presence of omitted explanatory 

variables, the second indicates the possibility of a diffusion process (i.e. an event 

in one municipality increases the likelihood of the same event occurring in 

neighbouring municipalities). 
 

The spatial error model (SEM) specifies a spatial autoregressive process for the 

error term ε to account for the spatial influence of unmeasured (or omitted) 

explanatory variables on the proportion of commuting by bicycle in neighbouring 

municipalities. In matrix form, it is formally expressed as: 
 

εβ += Xy             (3.2) 
 

 with ξελε += W        (3.3) 
 

where λ is a spatial autoregressive coefficient, W is a N × N spatial weights 

matrix (row-standardised) and ξ is a white noise error. By contrast, the spatial 

lag model (SLM) assumes that the dependent variable in municipality i is 

influenced by the values of the dependent and independent variables in the 

surrounding municipalities j. The magnitude of this spatial influence (or 

‘spillover effect’) is captured by a spatial autoregressive coefficient ρ. In matrix 

notation, the SLM specification is: 
 

εβρ ++= XWyy       (3.4) 

 

where Wy is the spatially lagged endogenous variable. Interestingly, independent 

variables for which coefficient values decrease (in absolute terms) after including 

ρ are expected to have some influence on yi from the neighbouring municipalities 

j of i (in addition to having an in-municipality effect). 
 

Note that for both specifications (SLM and SEM), the standard R2 is invalid 

since a maximum likelihood (ML) estimation is used. Some more appropriate 

measures of fit are the log-likelihood, the Akaike information criterion (AIC) and 

the Schwarz information criterion (SIC) (Anselin, 1988; Anselin, 2005). 

 

3.4.3 Diagnostics for spatial autocorrelation 
 

Spatial dependence in OLS specifications can be detected using either the 

Moran’s I statistic or the Lagrange Multipliers (LM). Moran’s I statistic is the 

most commonly used measure to detect for the presence of spatial error 

dependence in OLS regression (Moran, 1948; Anselin, 1988). It takes the 

following form: 
 

( )( )eeWeeSNI ''0=      (3.5) 
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where S0 is the sum of all weights and e is a N × 1 vector of residuals. This 

statistic is however inappropriate in the presence of heteroskedastic or non-

normally distributed errors12, but also in suggesting which specification (SEM or 

SLM) should be used to correct for spatial autocorrelation (Anselin and Rey, 

1991; Anselin, 2005). Lagrange Multiplier (LM) diagnostics and their robust 

forms (Robust LM) are then performed instead of the Moran’s I, especially 

because they help to identify the form of spatial dependence (spatial error or 

spatial lag). The LM diagnostics for lag (LMlag) and error dependence (LMerror) 

are expressed as: 
 

[ ] ( ) ( ) ( )[ ] 12
11111

2
1 '' ''

−+′+= WWWtreeXbWMXbWNeeyWNeLMlag
 ~ χ2(1) (3.6) 

 

[ ] ( )[ ] 12
222

2
2 ''

−+′= WWWtreeeWNeLM error
 ~ χ2(1)   (3.7) 

 

where M = I – X(X′X)-1X′, b is a vector of OLS estimates of β, tr is the matrix 

trace operator, W1 is the spatial weights matrix for the spatially lagged 

dependent variable and W2 is the spatial weights matrix for the spatially lagged 

error term (Anselin and Rey, 1991; Anselin and Florax, 1995). The robust LM 

diagnostics are also advised to be estimated since they are robust to the presence 

of spatial lag (resp. error) when diagnosing for spatial error (resp. lag) 

dependence (Anselin et al., 1996). An analysis of the two kinds of diagnostics 

(robust and non-robust) finally determines which spatial autoregressive model is 

the most convenient to deal with spatial autocorrelation (Anselin and Florax, 

1995). 
 

Note that both Moran’s I statistic and LM test are based on the assumption that 

the error terms follow a normal distribution. In empirical works, the Jarque-Bera 

statistic is commonly used to test this assumption of normality. If the errors turn 

out to be non-normally distributed, a useful alternative is the Kelejian-Robinson 

diagnostic (Kelejian and Robinson, 1992). 

 

3.4.4 Diagnostics for heteroskedasticity in presence 

of spatial autocorrelation 
 

Spatial dependence invalidates the distributional properties of several parametric 

tests for heteroskedasticity. In particular, the power and the empirical rejection 

frequencies for the White and Breusch-Pagan tests are strongly affected when 

the error terms are spatially correlated (Anselin, 1988). As a consequence, two 

                                                
12 The presence of non-normally distributed errors leads to an under-rejection of the null 

hypothesis of the Moran’s I diagnostic, whereas the presence of heteroskedasticity results in an 

over-rejection of the null. 
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alternative strategies are proposed to test for the presence of heteroskedasticity: 

the joint LM test and the Spatial Breusch-Pagan test. In the presence of 

heteroskedasticity and spatial autocorrelation, the joint LM test is more powerful 

than the individual statistics used to test for both spatial effects. It diagnoses for 

the joint presence of heteroskedasticity and spatial autocorrelation and is 

obtained by summing a Breusch-Pagan statistic and an LM test against residual 

autocorrelation. If the joint null hypothesis of the test is rejected, the individual 

tests could be separately performed in order to identify the origin of the rejection 

(Anselin, 1988; Anselin and Griffith, 1988). Finally, the Spatial Breusch-Pagan 

test is a spatially adjusted version of the Breusch-Pagan test and consists of 

carrying out a test for heteroskedasticity while accounting for the presence of 

spatial dependence. Further details about these tests are provided by Anselin 

(1988) and Le Gallo (2004). 

 

3.4.5 Spatial heterogeneity and regimes 
 

Spatial heterogeneity was taken into account in a number of ways. These include 

focusing on the issue of heteroskedasticity (see Sections 3.4.1 and 3.4.4), and 

testing for the structural stability of coefficients between spatial subsets of the 

data (spatial regimes). In the presence of structural instability, the parameter 

estimates take on different values in distinct geographic areas. Formally, a 

regression with Regimes 1 and 2 (e.g. north and south) is called a spatial regime 

regression. It is expressed as: 
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where y1 and y2 are the vectors of observations of the dependent variables, β1 and 

β2 are the vectors of coefficients of the independent variables, X1 and X2 are the 

matrices of observations of the independent variables (including a constant term 

for each regime), and ε1 and ε2 are the vectors of error terms for Regimes 1 and 2 

respectively. If spatial dependence persists after the spatial heterogeneity has 

been modelled, the spatial regime specification should also account for spatial 

autocorrelation. Equation (3.4) hence takes on the form: 
 

Regime 1: 
111111 εβρ ++= XyWy       (3.9) 

Regime 2: 
222222 εβρ ++= XyWy                 (3.10) 

 

where W1 and W2 are the spatial weights matrices for Regimes 1 and 2, 

respectively (Le Gallo, 2004; Anselin, 2007; Bivand, 2008). 
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3.4.6 Diagnostics for structural instability 
 

The stability of the coefficients across regimes can be diagnosed using the Chow 

test. The null hypothesis of this test is based on the constraint that the 

coefficients do not vary across regimes, i.e. there is a regional homogeneity (H0: 

β1 = β2). The test statistic C is expressed as: 
 

( )[ ] ( )[ ]KMeeKeeeeC UUUURR 2−′′−′=  ~ F(K, M – 2K)                   (3.11) 

 

where K is the number of regressors, M is the number of regimes, and eR and eU 

are the OLS residuals from a restricted model (where β1 = β2) and from an 

unrestricted model respectively. This test is however invalid when the error 

terms are spatially autocorrelated and must consequently be corrected using 

asymptotic procedures. This yields an asymptotic spatially adjusted test for 

structural stability, also called the Spatial Chow test (CG). When the errors 

terms follow a spatial autoregressive process, it takes on the following form: 
 

( ) ( ) ( ) ( )[ ] 2σλλλλ UURRG eWIWIeeWIWIeC −′−′−−′−′=
 
~ χ2(K)    (3.12) 

 

where I is the identity matrix, λ is the ML estimate for the spatial autoregressive 

parameter, and σ2 is the estimate for the error variance for either the restricted 

model, the unrestricted model, or both (Anselin, 1988). 
 

The presence of structural instability can also be detected and visualised using 

an exploratory spatial data analysis (ESDA). This helps to identify the presence 

of global and local patterns of spatial autocorrelation and heterogeneity (e.g. 

spatial outliers or clusters) in the proportion of commuting by bicycle (Anselin, 

1998; Le Gallo and Ertur, 2003; Baller et al., 2001; Ramajo et al., 2008). ESDA 

can be undertaken by performing common measures of spatial autocorrelation, 

such as the Moran’s I statistic, the Moran scatterplot and the local indicators of 

spatial association (LISA) (Anselin, 1995; Le Gallo, 2004). While the Moran’s I 

is a quite global statistic13, the Moran scatterplot and LISA may yield more 

specific insights into the presence of local patterns of spatial autocorrelation and 

instability. 
 

In particular, the Moran scatterplot plots the spatially lagged variable Wy 

against the dependent variable y and allows the local spatial association 

(between a municipality and its neighbours) to be categorised into four groups: 

HH (municipality with a high value surrounded by municipalities with high 

values), LH (low value surrounded by high values), LL (low value surrounded by 

                                                
13 It only gives a formal indication on the degree of linear association between the dependent 

variable y and the spatially lagged variable Wy. 
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low values) and HL (high value surrounded by low values). These groups 

correspond to the four quadrants of the Moran scatterplot14. HH and LL refer to 

spatial clusters (positive spatial autocorrelation), while LH and HL indicate 

spatial outliers (negative spatial autocorrelation). Finally, the information 

derived from the categorisation into four groups, combined with that resulting 

from the computation of the significance values of LISA yields the LISA cluster 

map. This gives an indication of the location of significant spatial clustering and 

diagnoses local instability (e.g. pockets of non-stationarity). It hence facilitates 

the identification of spatial outliers and spatial regimes (Le Gallo and Ertur, 

2003; Baller et al., 2001). Note that a categorisation process into more than four 

groups/regimes could probably be carried out, although it is not performed here 

as: (i) the number of observations becomes smaller for each regime (which in 

turn reduces the statistical significance of parameter estimates); (ii) the 

interpretation of the different groups/regimes is made more complex and trickier, 

as it would involve defining different levels/degrees of spatial clusters and 

outliers; (iii) to our knowledge, there are no theoretical grounds suggesting the 

use of more than four groups/regimes in a spatial regime model. 

 

3.5 Results and discussion 
 

This section presents and discusses the results of the multivariate analyses, with 

the aim to explain the spatial variation in the proportion of commuting by 

bicycle at the scale of the municipalities. As previously mentioned, special 

attention is paid to multicollinearity, spatial heterogeneity and spatial 

autocorrelation. Also note that quite similar results are obtained when control is 

made over the presence of various types of spatial interactions in the model (i.e. 

direct and indirect), or when using the proportion of cyclists among commuters 

who travel less than 10 km as dependent variable15 (see Section 3.5.6). In this 

latter case, the analysis of the results allows examining whether or not changes 

in the estimates occur in the case where short distances (≤ 10 km) are considered 

for commuting. 

 

 

 

 

                                                
14 The quadrants are delimited by the axes y = 0 and Wy = 0, where y is standardized and W 

row-standardized. 
15 Such a 10km threshold is selected on the basis of descriptive/exploratory data analyses 

conducted in Chapter 2. This latter confirmed that, for most people, 10 km is the limit for 

cycling to work. 
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Table 3.1: Basic statistics and bivariate correlations with the proportion of 

commuting by bicycle at the scale of the municipalities (N = 589) 
 

Variables Mean SD Min Max Correlation 

with y 

Dependent variables           

     % cycle commuting (y)† 4.6 4.6 0.0 21.7 - 

Independent variables           

     % working men 57.6 2.0 50.7 64.6 0.00 

     % age 1 (< 25) 10.0 1.9 5.2 17.5 0.54*** 

     % age 2 (45-54) 23.5 2.4 15.7 42.4 -0.39*** 

     % age 3 (> 54)† 6.9 1.5 3.9 15.3 -0.30*** 

     % young children (≤ 5 years) 20.7 2.7 10.5 30.6 -0.39*** 

     % education 1 (primary school) 6.0 1.9 2.0 15.3 0.05 

     % education 2 (secondary school)†  57.5 7.3 25.8 70.3 0.21*** 

     % education 3 (university degree)†  36.6 8.4 15.3 71.8 -0.20*** 

     Income 19.4 2.0 13.4 25.1 0.25*** 

     % bad health 24.1 5.0 15.1 39.4 -0.58*** 

     % car owner† 18.1 6.9 8.1 57.1 -0.25*** 

     Population density† 675.6 1735.7 21.4 19128.6 0.28*** 

     Jobs density† 203.6 725.9 1.3 8342.1 0.38*** 

     Commuting distance 22.6 5.7 10.2 42.7 -0.54*** 

     Town distance† 14.7 12.2 0.0 85.8 -0.26*** 

     % short cycle commuting (≤ 10km)† 35.9 11.3 12.8 67.1 0.46*** 

     Town size (urban rank)a 6.3 1.5 1.0 8.0 -0.23*** 

     % urban areas† 28.4 19.5 4.7 99.5 0.34*** 

     % forested areas† 14.3 16.2 0.0 74.0 -0.33*** 

     % agricultural areas 57.3 21.2 0.5 93.6 0.09** 

     % public services areas† 1.0 1.7 0.0 22.9 0.17*** 

     % recreational areas† 2.0 2.4 0.1 15.9 0.12*** 

     Slope† 2.8 2.0 0.7 10.8 -0.77*** 

     % dissatisfaction with cycle     

       facilities 

65.1 18.4 24.6 95.8 -0.82*** 

     Bicycle theft† 56.4 166.8 0.0 2451.7 0.75*** 

     Theft risk 8.9 5.8 0.0 33.0 0.05 

     Accident risk† 0.3 0.5 0.0 7.0 -0.32*** 

     Air pollution 29.3 4.2 20.6 40.8 0.23*** 

     Traffic volume 1 (regional  

        roads)† 

3.1 1.9 0.0 14.0 0.31*** 

     Traffic volume 2  

       (municipal/local roads)† 

0.2 0.2 0.0 1.4 0.12*** 

 

** Significant at the 95% level; *** Significant at the 99% level 

n.s.: not significant at the 90% level 

SD: Standard Deviation 
†: logarithmically transformed variables 
a Spearman rank correlation 
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3.5.1 Basic statistics and bivariate correlations 
 

Table 3.1 presents some basic statistics as well as Pearson and Spearman’s rank 

correlation coefficients between each of the explanatory variables and the 

dependent variable y (proportion of commuting by bicycle in a municipality i)16. 

Note that y and several explanatory variables are transformed using the 

logarithmic function ln(x+1) in order to satisfy the assumption of normality17. 

Most variables are significantly correlated with the dependent variable and 

exhibit the expected signs. The highest correlations are observed for variables 

related to the dissatisfaction of cycle facilities (–0.82), hilliness (–0.77) and bad 

health of inhabitants (–0.58). At the scale of the municipalities, these results 

hence suggest that such variables strongly discourage bicycle use for commuting 

trips. Interestingly, a positive correlation is also obtained between the dependent 

variable and the number of bicycle thefts (0.75), which does not highlight the 

deterrent effect of thefts on cycling. Instead, it indicates that a high number of 

bicycle thefts is to be found where bicycle use is high (expectable). Other 

variables show strong relationships with cycling. In particular, the commuting 

distance (–0.54), the percentage of working households having one or more young 

children (–0.39), the percentage of working people who are between 45 and 54 

years old (–0.39), the percentage of the municipality which is forested (–0.33) 

and the accident risk (–0.32) are all negatively correlated to the proportion of 

commuting by bicycle in the municipality. At the opposite, the percentage of 

working people who are less than 25 years old (0.54), the density of jobs (0.38), 

the percentage of the municipality which is urbanised (0.34) and the traffic 

volume on regional roads (0.31) all show positive correlations with the dependent 

variable. Overall, these relationships confirm hypotheses about mode choice 

processes in transport geography. 

 

3.5.2 OLS results 
 

A multivariate regression is here applied using OLS estimation (stepwise) and 

paying special attention to the heteroskedasticity and multicollinearity issues. 

The analysis of condition indices, tolerance and VIF values is helpful to lower 

multicollinearity as much as possible. The Breusch-Pagan and White tests for 

heteroskedasticity (Table 3.2) reveal the presence of non-constant error variance 

in the model; this was corrected using White’s correction (HC3). Results for the 

White-corrected OLS estimation are reported in Table 3.3. They indicate quite 

                                                
16 Spearman’s rank correlation is only computed for the ‘town size’ variable (ordinal). 
17 The Pearson’s correlation technique assumes that both the dependent and independent 

variables come from normally distributed populations (Ebdon, 1985). 
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high goodness-of-fit (R2 = 0.879) and show that most of the parameters are at 

least significant at a 10% level of probability. The diagnostics do, however, show 

the presence of spatial dependence (which affects the validity of the OLS 

estimations). Moran’s I statistic and Lagrange Multipliers (LM tests) are indeed 

highly significant and suggest that spatial autocorrelation is a concern. The joint 

LM tests also show strong evidence for spatial dependence and confirm the 

presence of heteroskedasticity. A comparative analysis of the significance of the 

robust and non-robust forms of the LM tests finally suggests that the spatial lag 

model is a better way of addressing the spatial autocorrelation issue. 
 

 

Table 3.2: Regression diagnostics for the OLS and ML estimations 
 

  OLS ML 

Diagnostics for normality     

     Jarque-Bera test  4.62 n.a. 

Diagnostics for multicollinearity     

     Variance inflation value (maximum value) 3.30 n.a. 

     Condition index (intercept adjusted) 5.03 n.a. 

Diagnostics for heteroskedasticity     

     Breusch-Pagan test1 31.33*** 36.87*** 

     Koenker-Bassett test1 28.32** 28.82*** 

     White test 213.64*** n.a. 

     Breusch-Pagan test (north v. south)1 88.68*** 25.08*** 

Diagnostics for spatial dependence     

     Moran's I of residuals2 0.34*** 0.01 

     Lagrange multiplier (lag) 253.37*** n.a. 

     Robust LM (lag) 86.74*** n.a. 

     Lagrange multiplier (error) 181.96*** n.a. 

     Robust LM (error) 15.33*** n.a. 

Diagnostics for spatial dependency and 

heteroskedasticity 

    

     Joint test LM 213.29*** n.a. 

Tests on overall stability     

     Chow structural instability test1 14.20*** 120.49*** 

Diagnostics for residual autocorrelation     

     LM test n.a. 0.00 
 

*Significant at the 90% level; **Significant at the 95% level; ***Significant at the 99% level 

n.a.: no test available 
1 Spatial version of the test 
2 Inference computation based on 9999 permutations (for ML estimation only) 
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Table 3.3: Regression coefficients for the OLS and ML estimations 
 

 OLS, with heterosk. 

correction 

ML, with heterosk. 

correction 

      Intercept 6.4124*** 3.2698*** 

  [0.0000] [0.0000] 

      Lag coefficient (ρ) - 0.6015*** 

  - [0.5483] 

 Demographic variables     

      % working men 0.0472*** 0.01673** 

  [0.1150] [0.0408] 

      % age 2 (45-54) -0.0460*** -0.02505*** 

  [-0.1352] [-0.0737] 

      % age 3 (> 54)† -0.2054* -0.14503* 

  [-0.0456] [-0.0322] 

      % young children (≤ 5 years) -0.0567*** -0.0218*** 

  [-0.1865] [-0.0716] 

 Socio-economic variables     

      % education 3 (university degree)† -0.4988*** -0.23034*** 

  [-0.1261] [-0.0582] 

      Income 0.0030 0.00852 

  [0.0072] [0.0206] 

      % bad health -0.0521*** -0.0189*** 

  [-0.3124] [-0.1133] 

 Environmental & policy-      

related variables 

   

      Commuting distance -0.0114*** -0.00652** 

  [-0.0789] [-0.0450] 

      Town size (urban rank) -0.0954*** -0.0875*** 

  [-0.1750] [-0.1604] 

      Traffic volume 2 (municipal/local)† -0.9216*** -0.4695*** 

  [-0.1341] [-0.0683] 

      Slope† -0.4873*** -0.1763*** 

  [-0.2655] [-0.0961] 

      % dissatisfaction with cycle facilities -0.0127*** -0.0049*** 

  [-0.2818] [-0.1077] 

      Accident risk† -0.1673** -0.14495*** 

  [-0.0500] [-0.0434] 

      Air pollution 0.0141*** 0.00405 

  [0.0717] [0.0206] 

 N 589 589 

 R-squared (R2) 0.879 - 

 Adjusted R-squared 0.876 - 

 F-value 297.80*** - 

 Log likelihood -102.43 33.68 

 Akaike information criterion (AIC) 236.86 -35.36 

 Schwarz information criterion (SIC) 306.91 34.70 
 

*Significant at the 90% level; **Significant at the 95% level; ***Significant at the 99% level 

- : variable not included in the model 

Standardised regression coefficients are given in brackets 
†: logarithmically transformed variables 
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3.5.3 Choice of the spatial weight matrix 
 

The computation of a spatial autoregressive model requires the definition of a 

spatial weight matrix. Here, a ‘queen’ contiguity-based matrix is used because it 

provides the best fit and results in a model satisfying to the finite sample 

condition (Wald test ≥ likelihood ratio ≥ Lagrange multiplier) (Anselin, 1988). In 

such a case, the elements wij of the weights matrix W are equal to 1 when the 

municipalities have common borders and vertices, and 0 otherwise. By 

convention, the diagonal elements of W take on a zero value since a municipality 

is defined as being not contiguous to itself. Also, the matrix is row-standardized 

for ease of interpretation (Anselin, 1988). Note that spatial weight matrices 

based on the rook contiguity (first order or higher) and Euclidean distances 

(from 12 to 300 km) were also considered, although they were ruled out since 

they provided either a lower fit or did not satisfy to the condition for finite 

samples. Although the queen matrix used here is generally less suited to spatial 

units characterized by various polygon sizes, it is here thought that it may well 

reflect the fact that cyclists adopt different travel behaviours depending on the 

location where they live (e.g. cyclists living in central business districts generally 

travel short distances owing to the high proximity to facilities, whereas cyclists 

living in rural areas overall travel larger distances because of the low densities 

(large separation distances between activities)) (also see Section 5.3.1 for further 

information). Such a variation in polygon size may indeed be advantageous here 

as it mainly depends on the type of environment/neighbourhood (urbanized 

municipalities generally have small polygon sizes, while rural municipalities often 

have large polygon sizes). Contiguity-based matrices hence probably better 

mirror the spatially varying cycling behaviour (and, consequently, the spatial 

relationships) between municipalities. At the opposite, distance-based matrices 

do not incorporate such a spatially varying effect and may not necessarily be the 

best choice in our case (which probably partly explains why they were ruled 

out). 

 

3.5.4 Spatial lag results 
 

The results for the spatial lag models are presented in Table 3.3. White’s 

correction is again used to treat the model for the presence of heteroskedasticity 

(given that it is detected by the spatial Breusch-Pagan and Koenker-Bassett 

tests). As the significant Jarque-Bera statistic in Table 3.2 suggests, the ML 

estimation is valid since the error terms are normally distributed. The same is 

true for the LM tests and Moran’s I statistics. The spatial lag model gives a 

better fit than OLS (as shown by the log-likelihood that increases from –102 to 

34). Moreover, the Moran’s I and the LM test statistics both indicate that 



3.5.  Results and discussion 

87 

 

including a spatially lagged variable in the model eliminates spatial dependence. 

Figure 3.3 tends to confirm such a result, showing that the residual spatial 

autocorrelation is strongly reduced in the spatial lag specification. 

 
 

 

 
 

 
 

 

 

 

Figure 3.3: OLS (up) and ML residuals (down) 
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Table 3.3 shows that the spatial autoregressive coefficient ρ (or lag coefficient) is 

highly significant. This suggests that spillover influences exist between one 

municipality i and its neighbourhood: the likelihood of cycling in i is (positively) 

linked to bicycle use in the neighbouring municipalities j. The significance and 

magnitude of all the regression coefficients are lower for the ML estimation than 

for OLS, which can be explained by the introduction of the spatial autoregressive 

coefficient ρ. This suggests that part of the explanatory power of variables in 

municipality i may really be due to the influence of the neighbouring 

municipalities j (which is picked up by ρ). Among the significant coefficients, the 

average change in relative value is high (47%) and illustrates the substantial bias 

of the OLS model coefficients when spatial dependence is ignored. 
 

The signs of the regression coefficients are the same for the OLS and ML 

estimations. As expected, most of the (significant) explanatory variables 

introduced in the models have a deterrent effect on the proportion of commuters 

cycling. Municipalities with high proportions of working people over 45, working 

households with one or more young children, or inhabitants in poor health have 

lower levels of commuter cycling. Municipalities characterised by large numbers 

of highly-educated people also have lower levels of commuter cycling, which 

confirms the results of previous studies in Belgium (Toint et al., 2001; Hubert 

and Toint, 2002). On the other hand, high levels of cycling are observed in 

municipalities with high proportions of working men. Among the environmental 

and policy-related variables, the presence of high accident risks, heavy traffic 

volumes and steep slopes along the road network are associated with a low 

propensity to cycle to work. The size of the town also matters, and this is 

probably associated with the provision of good facilities for cycling.  The 

proportion of commuters cycling is the highest in the towns (well-equipped 

municipalities), and lowest in small municipalities. Interestingly, such results 

overall confirm those obtained in Chapter 2 (except for the largest towns, where 

the proportion of commuting by bicycle is lower than in most of the other towns 

for distances lower than 10 km).  
 

As regards traffic volumes, opposite signs are unexpectedly observed between 

correlation coefficients (Table 3.1; positive correlations) and parameter estimates 

(Table 3.3; negative estimates). These peculiar results are explained by the fact 

that the relationship between independent variables is hiding/removing their 

true relationships with the dependent variable (Cohen et al., 2003). In such a 

case, the inclusion of an independent variable – called the ‘suppressor variable’ – 

in a multivariate regression model may enhance the results, in the sense it may 

remove the unwanted variance and/or reveal the true direct relationship between 

another independent variable and the dependent one (e.g. in leading to the 

expected sign in the regression, which suggests that the presence of (slight) 
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multicollinearity may not be entirely undesirable) (Cohen et al., 2003; Friedman 

and Wall, 2005). In this chapter, the multivariate framework of the regression 

hence allows obtaining the true direct relationship between traffic volumes and 

cycle commuting (and then the right signs). Such an effect is here categorised as 

being a ‘negative net suppression’ one. Note that further information about the 

different types of ‘suppression effects’ is provided by Horst (1941), Darlington 

(1968), McNemar (1969), Conger (1974), Tzelgov and Henik (1981, 1991), Cohen 

et al. (2003), and Friedman and Wall (2005). 

 

3.5.5 Accounting for spatial heterogeneity 

3.5.5.1 Diagnostics: Chow tests and exploratory spatial data 

analyses 

 

Structural instability is detected by the Chow test and its spatial extension 

(Table 3.2). Both tests (non-spatial and spatial) are highly significant and hence 

clearly reject the null hypothesis of parameter stability. This suggests that the 

spatial lag results do not completely account for spatial heterogeneity. 

Exploratory spatial data analyses confirm these findings. The global spatial 

autocorrelation for the dependent variable is first tested using the Moran’s I 

statistic. This latter is positive (I = 0.90) and highly significant (p = 0.0001), 

which indicates the presence of a positive and statistically significant degree of 

spatial autocorrelation in the distribution of y. Hence, this means that 

municipalities with low/high proportions of commuting by bicycle are generally 

located in the vicinity of each other.  
 

Secondly, the Moran scatterplot and the LISA cluster map for the dependent 

variable help us to identify spatial regimes (Figure 3.4). The Moran scatterplot 

exhibits a positive spatial autocorrelation and suggests that the number of 

spatial outliers (or atypical municipalities) is low. Indeed, 95.1% of the 

municipalities fall either into quadrant I (HH; 42.6%) or quadrant III (LL; 

52.5%) and hence show association of similar values. On the contrary, quadrants 

II (LH) and IV (HL) only account for 2.7% and 2.2% of the municipalities, 

respectively. The results of the Moran scatterplot hence suggest the presence of 

spatial heterogeneity in the form of two distinct spatial regimes, in quadrants I 

and III. The LISA cluster map illustrates the spatial pattern of these regimes 

and reveals a clear-cut north/south division of the municipalities: most of the 

northern municipalities (Flanders) fall into quadrant I, while a large proportion 

of the southern municipalities (Wallonia and Brussels) fall into quadrant III. 

Municipalities falling into quadrants II and IV are marginal (less than 0.5% of 

the significant LISA) and are consequently not considered as spatial regimes. 
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Figure 3.4: Moran scatterplot and LISA cluster map for the spatial clustering of 

commuting by bicycle. Note that significant LISA here refers to a 5% pseudo-

significance level 

 

3.5.5.2 Spatial regime regression with a spatially lagged variable 

 

The northern and southern spatial regimes were incorporated into the regression 

to adjust for spatial heterogeneity. The diagnostics in Table 3.4 show the 

existence of spatial autocorrelation and heteroskedasticity in the models. This 

was corrected by applying an ML estimation (lag) and a White’s correction 

(Table 3.5). The spatial regime specification (with spatial lag) gives a 

considerably better fit than the spatial lag model; the log-likelihood indeed 

increases from 33.7 (ML) to 93.9 (ML with regimes). 
 

Several explanatory variables are significant for the north (Flanders) but not for 

the south (Wallonia and Brussels), and vice versa (Table 3.5). The signs of the 

significant coefficients are the same as in the spatial lag specification, but the 

magnitude differs greatly in some cases. For Flanders, the average change in the 

(relative) values ranges from 6.4% for dissatisfaction with cycle facilities to 

426.5% for the accident risk. For Wallonia and Brussels, this change is less 

pronounced, ranging from 2.7% for the risk of an accident, to 58.7% for town 

size. These findings not only illustrate how biased the estimates are when the 

structural instability is ignored, but they also show the substantial difference in 
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the size of these estimates between the Belgian regions (in this respect, the 

parameter estimate related to the risk of an accident is probably the most 

representative example). 

 

 

Table 3.4: Regression diagnostics for the OLS and ML estimations, including 

the spatial regimes 
 

 OLS with 

spatial regimes 

ML with 

spatial regimes 

Diagnostics for heteroskedasticity     

     Breusch-Pagan test 1 112.44*** 94.46*** 

     Koenker-Bassett test 1 93.64*** 79.74*** 

Diagnostics for spatial dependence     

     Moran's I of residuals2 0.29*** -0.20 

     Lagrange multiplier (lag) 200.25*** n.a. 

     Robust LM (lag) 76.96*** n.a. 

     Lagrange multiplier (error) 130.33*** n.a. 

     Robust LM (error) 7.04*** n.a. 

Diagnostic for spatial dependence and 

heteroskedasticity 

    

     Joint LM test 242.77*** n.a. 

Diagnostics for residual autocorrelation     

     LM test n.a. 0.16 
 

*Significant at the 90% level; **Significant at the 95% level; ***Significant at the 99% level 

n.a.: no test available 
1 Spatial version of the test 
2 Inference computation based on 9999 permutations (for ML estimation only) 

 

 

3.5.5.3 Regional variation and the relative importance of the 

variables 

 

Table 3.5 suggests that variables such as median income and the proportion of 

working men are not significantly related to the rate of cycle commuting in 

Wallonia and Brussels; on the other hand, they are positively related to the rate 

in Flanders. The positive relationship between median income and bicycle use 

can probably be explained by the fact that lower median income may act as a 

proxy for crime and vandalism (Parkin et al., 2008). This suggestion is supported 

by a significant correlation of –0.20 between the median income and the number 

of bicycle thefts in a municipality (and a correlation of –0.27 between median 

income and the risk of bicycle theft). The relationship between cycle commuting 



Chapter 3.  Spatial determinants of cycle commuting 

92 

 

and the air pollution (the annual mean concentration of PM10) was also only 

significant in Flanders. Surprisingly, Figure 3.5 shows that, on its own, an 

increase in the PM10 concentration actually increases with the rate of cycle 

commuting in a Flemish municipality: for instance, an increase from 25 to 30 

µg/m3 is associated with a 8.1% increase of the bicycle share. This unintuitive 

result is rather difficult to explain, although it is here assumed that congested 

urban environments (which are generally areas with high concentrations of 

PM10) may play a role in explaining such a relationship. Indeed, increasing road 

congestion in urban areas probably encourages using other transport modes than 

car (e.g. the bicycle, which is faster than car during peak hours). 
 

Three variables (education 3, bad health, traffic volume 2) which are not 

significantly related to bicycle use in Flanders do appear to have an impact in 

Wallonia and Brussels (the southern part of Belgium). The results suggest that a 

one percentage point decrease in the proportion of inhabitants reporting bad 

health will increase bicycle use by 0.07%. Relatively good physical and mental 

health is indeed required to use a bicycle. Moreover, a decrease from 25 to 15% 

in the proportion of highly qualified people in a municipality is linked to a 17.8% 

increase in commuter cycling18. Commuters with better qualifications generally 

get higher wages and fringe benefits such as a company car; this probably 

explains why they are more likely to have a car at their disposal, and so choose 

to live far from their workplace, beyond ‘cycling distance’. Finally, a reduction in 

the volume of motorised traffic is expected to encourage cycling: a decrease from 

200,000 to 100,000 vehicle-km per kilometre of local road per year is predicted to 

increase bicycle use by 5.23% (Figure 3.6). Concretely, such a reduction 

corresponds to a 1,700-km decrease in the mileage of motorised vehicles per 

municipality per year, or a 4.6-km decrease in the daily mileage19. Ideally, a 

substantial reduction in traffic, from 1,000,000 to 10,000 vehicle-km (achieved, 

for example, through the implementation of an urban toll) could increase bicycle 

use by as much as 32%. 

 

 

 

 

 

                                                
18 Note that this result holds for Wallonia, but is not expected to be valid for Brussels since 

most commuter cyclists (66%) are here highly qualified. The increase in commuter cycling 

associated with a decrease in the proportion of highly qualified people is to be explained by the 

greatest weight of the Walloon municipalities in the spatial regime (262 municipalities, 

compared with the 19 Brussels municipalities). 
19 Assuming a 169-km local road network and 10,000 motorised vehicles using this network each 

year. These figures are based on the averages for Belgian municipalities. 
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Table 3.5: Regression coefficients for the spatial regime specification (ML 

estimation) 
 

 ML, spatial regimes & heterosk. correction 

  North South 

      Intercept 2.3084* 4.3095*** 

  [0.0000] [0.0000] 

      Lag coefficient (ρ) 0.5362*** 0.5362*** 

  [0,5097] [0,5097] 

 Demographic variables     

      % working men 0.0296** 0.0008 

  [1.0246] [0.0288] 

      % age 2 (45-54) -0.0417** -0.0205*** 

  [-0.5854] [-0.3007] 

      % age 3 (> 54)† -0.1074 -0.0680 

  [-0.1317] [-0.0867] 

      % young children (≤ 5 years) -0.0365*** -0.0247*** 

  [-0.4372] [-0.3306] 

 Socio-economic variables     

      % education 3 (university degree)† -0.0968 -0.3132*** 

  [-0.2104] [-0.6862] 

      Income 0.0311* -0.0027 

  [0.3824] [-0.0307] 

      % bad health -0.0098 -0.0146** 

  [-0.1274] [-0.2481] 

 Environmental and policy-related   

  variables 

    

      Commuting distance -0.0165*** -0.0047* 

  [-0.2061] [-0.0765] 

      Town size (urban rank) -0.1146*** -0.0361*** 

  [-0.4539] [-0.1483] 

      Slope† -0.1931** -0.1972*** 

  [-0.1145] [-0.1966] 

      % dissatisfaction with cycle facilities -0.0052*** -0.0045*** 

  [-0.1666] [-0.2227] 

      Accident risk† -0.7632*** -0.1489*** 

  [-0.1047] [-0.0493] 

      Air pollution 0.0138*** -0.0054 

  [0.2551] [-0.0956] 

      Traffic volume 2 (municipal/local)† -0.2357 -0.4521** 

  [-0.0306] [-0.0700] 

 N 589 (NNorth = 308; NSouth = 281) 

 Log likelihood 93.923 

 Akaike information criterion (AIC) -123.846 

 Schwarz information criterion (SIC) 16.264 
 

*Significant at the 90% level; **Significant at the 95% level; ***Significant at the 99% level 

Standardised regression coefficients are given in brackets 
†: logarithmically transformed variables 
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Most of the other explanatory variables have significant relationships with 

bicycle use in both regions. At first glance, variables such as the proportion of 

households with young children, or the proportion of commuters aged 45 to 54, 

seem to be strong deterrent factors for cycling. Their impact is also more 

pronounced in Flanders, than in Wallonia and Brussels. For instance, when a 

municipality increases its percentage of working households having one or more 

young children from 15 to 25%, the proportion of commuting by bicycle is 

reduced by 33.5% in Flanders, while it is reduced by 28.4% in Wallonia and 

Brussels. Similarly, an increase from 20 to 30% in the percentage of working 

people being between 45 and 54 years old results in reductions of 37.8% 

(Flanders) and 24.7% (Wallonia and Brussels) in the commuter cycling. 

Combined with the results of a principal component analysis based on an 

orthogonal varimax rotation not reported here), these findings also suggest that: 

(1) being young (i.e. less than 25 years of age) and having poor qualifications 

increases the propensity to cycle to work; (2) having more than one young child 

in the household increases the probability of owning a car, and consequently 

decreases the likelihood of cycling. 

 

 

 
 

Figure 3.5: Variation in bicycle use in Flanders as explanatory variables 

change. Note: this figure is constructed by varying one explanatory variable, while holding all 

the others constant at their means. For ease of illustration, all the explanatory variables are all 

presented on the same x-axis. The sensitivity of the results was also tested for other values than 

the mean, i.e. the median, the lower quartile, and the upper quartile; except for the spatially 

lagged variable, such a sensitivity analysis suggests that our results are quite stable, whatever 

the chosen value. 
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Figure 3.6: Variation in bicycle use in Wallonia and Brussels as explanatory 

variables change. Note: see note in Figure 3.5. 

 

 

Table 3.5 also shows the impact that town size and dissatisfaction with cycle 

facilities have on cycle commuting. In both regions, a 10% increase in the 

proportion of households which express dissatisfaction with the facilities for 

cycling would reduce bicycle use by about 5.5%. Living in a poorly-equipped 

municipality (in terms of facilities) is associated with a lower likelihood of using 

a bicycle, whereas larger towns have a higher proportion of cycle commuting. In 

Flanders, the largest towns (H1 to H3) score well with cycle commuting rates 31.3 

to 58.5% higher than in the most rural municipalities (H6 to H8). In Wallonia 

and Brussels, this difference is less pronounced, and only ranges from 3.4 to 

9.7%. 
 

Last but not least, Figures 3.5 and 3.6 suggest that a high risk of accidents, long 

commuting distances and hilly terrain decrease the propensity to cycle. Although 

it is basically similar in the two regions, the impact of the topography is slightly 

greater in the southern part of the country. An increase of the mean slope of the 

road network from 1 to 2° (which might occur, for example, when commuters are 

forced to take an alternative route, due to roadworks or deviations) could reduce 

the number of commuting cyclists by more than 8.4% in Flanders and 9.9% in 

Wallonia and Brussels. Conversely, reducing the slopes would significantly 

increase bicycle use, especially in municipalities where the mean slope is 1 to 2°. 

Above this ‘limit’, the impact of a change in the mean slope is lower. The risk of 
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accidents also strongly discourages bicycle use. In Flanders, an increase in this 

risk from 0.0 to 0.5 (which corresponds to two more victims per year and per 

100,000 bicycle-minutes) is linked to a 29.3% reduction in the number of 

commuter cyclists. In Wallonia and Brussels, the accident risk is also negatively 

linked to bicycle use, but to a lesser extent: the same increase in risk (from 0.0 to 

0.5) is linked to a fall in bicycle use of only 7.9%. Longer commuting distances 

have a deterrent effect and do not stimulate cycling. In Flanders, an increase in 

the average commuting distance from 5 to 15 km would produce a 16.6% 

decrease in commuter cycling. The same increase in commuting distance in 

Wallonia and Brussels would reduce bicycle use by 6.1%. Given that the 

‘commuting distance’ variable partly synthesises proximity-related information 

(through variables such as population and job densities, and urbanised areas), it 

implies that compact environments and tight town networks are associated with 

low commuting distances and hence stimulate cycling. 

 

3.5.5.4 Spatially lagged variable 

 

Table 3.5 shows that ρ is still highly significant and positive for the spatial 

regime model. This indicates the presence of a strong diffusion process between 

neighbouring municipalities: the (neighbouring) municipalities j exert a positive 

spillover effect on the propensity to cycle in municipality i, which in turn could 

generate a feedback effect on bicycle use in j. In the long-term, such a continuous 

diffusion process could initiate a ‘mass effect’, in the form of a virtuous circle 

which maintains the propensity to use a bicycle for commuting in the region. 

The municipalities in Wallonia and Brussels seem to be prone to a large 

reduction in bicycle use if cycling becomes less popular in neighbouring 

municipalities (and conversely), but Flemish municipalities are more resistant 

(relatively to Wallonia and Brussels) to the possibility of a fall in bicycle use in 

surrounding municipalities. 
 

As suggested by Figures 3.5 and 3.6, the mass effect is more pronounced when 

municipality i and the neighbouring municipalities j all have low bicycle use 

(beyond 5%, it still increases, but to a lesser extent). This is even more true in 

Wallonia and Brussels: holding all other variables constant at their mean for this 

regime, an increase of commuter cycling from 1 to 4% in the neighbouring 

municipalities j will increase bicycle use from 1.5 to 4.2% in municipality i (= 

184.8% increase), and next will initiate a feedback effect maintaining a 

continuous increase in municipalities i and j. In Flanders, the same increase is 

observed, but to a lower magnitude (+164.2%). Interestingly, such 

neighbourhood processes are also encountered in the reality. Figure 3.7 is quite 

evocative in this sense since it shows that variations in commuter cycling (1991-
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2001) are spatially clustered in Belgium. For instance, Brussels and its periphery 

experienced an increase of bicycle use between 1991 and 2001, whereas 

reductions in commuter cycling were observed for clusters of ‘rural’ 

municipalities. The combination of a range of socio-economic factors (e.g. rising 

income, higher car availability, and larger commuting distances) probably 

explains such trends in bicycle use. 
 

 
 

Figure 3.7: Absolute difference in commuter cycling between 1991 and 2001 

(source: Verhetsel et al., 2007) 

 

3.5.5.5 Analysis of the residuals 

 

The residuals of the final specification (Table 3.5) are mapped in Figure 3.8. 

This provides a useful tool for planners and policy makers since it pinpoints both 

the municipalities that ‘over-perform’ in terms of bicycle use and those where 

there is still potential to develop the use of the bicycle for commuting trips 

further. This potential exists in the municipalities characterised by negative 

residuals. Given the current environment, such municipalities could perform 

better in terms of bicycle use but, for something (e.g. an inadequate or 

unambitious cycling policy, high-quality public transport) holds it back. 
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Examples of municipalities exhibiting negative residuals are Antwerp, Brussels or 

Genk. Gent and Kortrijk are also highlighted in Figure 3.8. It could be more 

surprising in view of their voluntary cycling policies and the high proportions of 

commuting by bicycle, although it may suggest that there is still some potential 

to get more cyclists here. 

 

 
 

Figure 3.8: The residuals of the spatial regime specification (see Table 3.5) 

 

 

At the other end, municipalities characterised by positive values of the residuals 

excel in terms of bicycle use (given their environment). The examples of Louvain 

and Bruges are important in this respect, since they have more pro-cycling 

policies (in terms of engineering, traffic education and enforcement) than other 

Flemish municipalities. Several municipalities in Wallonia also perform better 

than expected, despite their low absolute rates of cycle commuting. Given their 

environment (steep slopes, rural setting, etc.), they ‘over-perform’, for example 

by adopting mobility strategies that encourage bicycle use (SPW, 2008). 

Examples of such ‘over-performing’ municipalities are Ottignies-Louvain-la-

Neuve, Perwez, Hotton, Yvoir, Marche-en-Famenne, Tournai and Mouscron. 
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3.5.6 Controlling for short commuting distances and 

spatial interactions 

3.5.6.1 Effect of short commuting trips (≤ 10 km) 

 

When the regression is carried out on the proportion of cyclists among 

commuters who travel less than 10 km (in municipality i), the results are 

basically similar to those shown in Table 3.5 (see Appendix B.2 for further 

information about the parameter estimates). The main difference lies in the 

variable referring to commuting distances: for commuting trips of up to 10 km, 

increasing distance is linked to more cycling, whereas in the general regression 

(Table 3.5) increasing distance is linked to less cycling. As revealed in Chapter 2, 

cycling is a very convenient mode of transport for distances between 2 and 5 km, 

but for shorter distances (0–2 km) walking is the preferred mode of transport. 

This suggests that, up to 10 km, commuting distance does not act as a strong 

deterrent to cycling. Given that approximately 39% of commuters (and even 

more in urban areas) live less than 10 km from their work, there is considerable 

potential for a shift to cycling. 

 

3.5.6.2 Effect of spatial interactions (direct, indirect and total 

impact estimates) 

 

Some additional statistical analyses were carried out in Appendix B.3, with the 

aim to check the magnitude of the impact associated with the presence of 

complex spatial interactions in the model (here referred as ‘direct’ and ‘indirect’ 

effects on cycling levels). Such interactions may indeed affect the validity and 

the interpretation of the results. They are here referred as ‘direct’ and ‘indirect’ 

effects on cycling levels. According to LeSage and Fisher (2008) and Lesage and 

Pace (2009), ‘direct effects’ on cycling levels in municipality i may arise from a 

change in a single explanatory variable in i; these include: (1) the effect of a 

change through i (i.e. without considering the neighbourhood), and (2) feedback 

influences resulting from impacts (caused by the changes in explanatory 

variables in i) passing through the neighbouring municipalities j, and coming 

back to the municipality i itself (feedback loop). ‘Indirect effects’ (or spillover 

effects) on cycling levels in i may also arise from changes in all the neighbouring 

municipalities j of an explanatory variable (LeSage and Fisher, 2008; Fisher et 

al., 2009; Kirby and LeSage, 2009; LeSage and Pace, 2009). 
 

Analyses conducted in Appendix B.3 hence aim at evaluating the validity of our 

results reported in Table 3.5, controlling for the presence of direct and indirect 

effects in the model. They fortunately confirm the validity of our results. Given 
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that the theoretical framework related to direct/indirect effects goes beyond the 

scope of the methodology described here, readers are advised to read Appendix 

B.3 if they wish to obtain further details about these statistical analyses. 

 

3.6 Conclusion 
 

The objective of this chapter was to explain the variation of the proportion of 

commuters who travel by bicycle at the scale of the Belgian municipalities. It 

then aimed at providing statistically-based recommendations in order to support 

planners and policy makers to initiate a shift from car to bicycle among 

commuters (see part IV, Chapter 6). In line with the literature on transport 

mode choice, our results suggest that demographic and socio-economic variables 

significantly influence the proportion of commuting by bicycle. Income, age and 

gender have a significant impact on the rate of cycle commuting in Flanders: low 

median income, low proportions of working women, and a young (under 45) 

workforce are all associated with high rates of cycling to work. Having one or 

more young children (less than 5 years old) in the household decreases the 

likelihood of cycling to work in both regions. The presence of many highly-

qualified people also matters, particularly in the southern periphery of Brussels. 

Highly qualified commuters living in Wallonia and having high incomes, can 

afford a car, and use it to travel large distances. They are hence less likely to use 

a bicycle for their commuting trips (Jensen, 1999). 
 

Furthermore, this chapter confirms the significant impact of several 

environmental and policy-related variables on bicycle use. Overall, municipalities 

that are well-equipped (i.e. large and regional towns) and characterised by short 

commuting distances have high rates of commuter cycling. Large urban areas 

indeed provide high-quality public transport and benefit from the proximity of 

different activities and the good connectivity between them, so that commuting 

distances are shorter and more bikeable. Flat terrain, high-quality cycle facilities 

and a low risk of accidents can also encourage commuter cycling in both regions. 

However, heavy traffic (on municipal roads) does not have any significant impact 

in Flanders, whereas it strongly discourages cycling in Wallonia and Brussels. In 

Flanders, the high visibility of cyclists in the traffic (because there are such a lot 

of them) and the presence of appropriate cycle infrastructures probably give 

commuter cyclists a feeling of personal security and, hence, offset the deterrent 

effect of traffic volume. Policies in Flanders do indeed provide high-quality 

infrastructure (e.g. continuous and separated cycle lanes) and facilities (e.g. 

changing facilities at work) with the intention of improving the safety and 

convenience of cycling. Flanders also stimulates bicycle use through regulations 

restricting motorised traffic in urban centres (e.g. through the introduction of 
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traffic calming areas), so that the risk and annoyance of heavy traffic is greatly 

reduced. Finally, motorists show more respect for cyclists because they often 

cycle themselves and/or are used to sharing the road with large numbers of 

cyclists. The opposite situation is observed in Wallonia and the Brussels region: 

here, the terrain is hillier and discourages cycling. Also, motorists are seldom 

mindful of commuter cyclists and still consider them less important than car 

drivers (especially in Wallonia). Due to a lack of cycle infrastructure in the 

Walloon municipalities, the risk of being seriously injured or killed is high 

(especially in rural areas), and confirms residents’ fears of cycling. This is not, 

however, the case in Brussels, where the risks of severe/fatal accident for cyclists 

are low. Chapter 2 indeed suggested that the urban environment, with its large 

number of obstacles, forces drivers to reduce their speed. 
 

From the methodological point of view, the modelling techniques applied here 

highlight the importance of accounting for multicollinearity, spatial dependence 

and spatial heterogeneity (i.e. structural instability and heteroskedasticity). 

Spatial autoregressive models appear to be very powerful in eliminating spatial 

autocorrelation, while the presence of spatial heterogeneity in the data is 

corrected using White’s correction and a spatial regime regression. More 

interestingly, the presence of spatial dependence in the model suggests that 

bicycle use in a municipality is influenced (positively or negatively) by the 

neighbouring municipalities, i.e. a municipality surrounded by others with high 

levels of cycling is more likely to show high rates of commuter cycling (and vice 

versa). This indicates that social support for cycling could stem from the 

neighbourhood.  This confirms results obtained at a more disaggregated scale (de 

Geus, 2007; de Geus et al., 2008b). Besides spatial dependence, the need to adopt 

a spatial regime specification indicates that different effects exist in the northern 

(Flanders) and southern (Wallonia and Brussels) parts of Belgium. Pro-cycling 

strategies should hence be approached from different strategies, without however 

neglecting inter-regional exchanges since these are crucial to learn from each 

other (in terms of experience) and to develop a constructive approach with 

respect to non-motorized modes of transport. 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part III: Spatial analysis of 

accident risks for cyclists 

(Brussels-Capital Region) 
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Chapter 4  
 

 

Reported versus unreported 

cycling accidents 

A spatial network analysis for 

Brussels1 
 

 

 

 

 

 

Outline 
 

In Belgium as in most countries, a large share of cycling accidents (> 85%) is 

not registered by the police and then does not appear in official statistics of road 

accidents. Cyclists involved in these ‘unreported’ accidents generally incur slight 

injuries and/or material damages, and are often the single road users involved in 

the accident. Hence, they often do not feel the need to call the police. This 

chapter then aims at providing further knowledge in the hidden part of cycling 

accidents and focuses on the Brussels-Capital Region (Belgium), which is here 

subdivided into three ‘subareas’ (i.e. Pentagon, First and Second Crowns). The 

main objective is to explore and compare the spatial patterns of cycling accidents 

registered by the police with those unreported (by the police) but collected 

through an open-based online registration survey (SHAPES survey). It also aims 

at analysing whether or not unreported and reported cycling accidents have 

similar locational tendencies with respect to specific road infrastructures. 

Comparative statistics, point pattern exploration techniques and (cross) K-

function methods are here applied into a Geographic Information System (GIS) 

and – when possible – extended to the road network using a GIS-based extension 

                                                
1 This chapter will be submitted in 2011 for publication. It is adapted from: Vandenbulcke, G., 

de Geus, B., Thomas, I., Aertsens, J., Meeusen, R., Int Panis, L. Reported versus unreported 

cycling accidents: a spatial network analysis for Brussels. 



Chapter 4.  Reported versus unreported cycling accidents 

106 

 

(SANET v.4). Our findings reveal that, for a given subarea, reported and 

unreported cycling accidents have similar spatial patterns and overall exhibit 

similar locational tendencies with respect to specific infrastructures and facilities. 

Methodologically, it is also demonstrated that the results of (cross) K-function 

methods depend on the chosen spatial subarea and, hence, should be interpreted 

with great caution. Last but not least, we show that cycling accidents are more 

prone to be unreported by the police in areas where a lower differential between 

the speed of slow and fast modes is imposed (e.g. traffic-calming areas). Such 

areas indeed lead to accidents with a lower degree of injury severity, which then 

reduces the need to call the police and – in turn – may conduct to higher rates of 

underreporting. 

 

4.1 Introduction 
 

In most countries with car-oriented policies, the fears and safety concerns about 

on-road cycling are high. Making cycling trips safer is hence an essential step for 

encouraging more and more people to cycle and, then, for contributing to health, 

environmental and mobility policies. Besides strategies focussed on enforcement 

(e.g. police controls), traffic education (e.g. through awareness campaigns) and 

encouragement, the detection and analysis of locations where cycling accidents 

spatially concentrate along the network (i.e. ‘black zones’) play a prominent role 

in pinpointing where investments in road infrastructure modifications should 

have priority to enhance bicyclists’ safety. Also, it turns out to be helpful in 

suggesting causal relationships between cycling accidents and specific factors 

(e.g. infrastructure-related factors) (Flahaut et al., 2003; Steenberghen et al., 

2004). Nevertheless, in many countries, it is well-known that cycling accidents 

with slight injuries (and/or with material damages) are strongly underreported 

compared to other degrees of severity. In Belgium, several authors estimate that 

about 15% of the cycling accidents are reported in official statistics (see e.g. 

Hubert and Toint, 2002; Lammar and Hens, 2004; Doom and Derweduwen, 2005; 

De Mol and Lammar, 2006; Lammar and Hens, 2006). As a corollary of such a 

poor data registration, the identification of black zones for cyclists (and the 

underlying factors associated with cycling accidents) might be biased or 

inaccurate, especially if ‘unreported’ accidents (i.e. accidents that are not 

registered by official/governmental agencies) exhibit different spatial and/or 

temporal patterns compared with the reported ones. 
 

To our knowledge, no research has been conducted to get insight in the spatial 

patterns of unreported cycling accidents, and nothing is known in the literature 

about the (possible) spatial differences between these latter and the reported 

accidents (i.e. those compiled by official/governmental agencies). Given that 
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unreported accidents are by far the most numerous (among all accidents) and 

that they mainly consist of single-vehicle accidents with slight injuries and/or 

material damages, it could be worth to question/analyse if they occur at 

different locations and if such locations are characterized by different 

infrastructure factors, compared with the reported ones.  
 

Hence, this chapter aims at: (1) exploring and comparing the spatial patterns of 

cycling accidents registered by police with those unreported by police but 

collected through an online registration survey (SHAPES survey; see Aertsens et 

al., 2010; Int Panis et al., 2011; de Geus et al., accepted); and (2) inspecting if 

reported and unreported cycling accidents both cluster around similar spatial 

factors/variables (or, in other words, if similar neighbourhoods are at the root of 

both reported and unreported accidents). Such analyses are conducted within the 

Brussels-Capital Region (BCR). They not only make use of comparative 

statistics and measures of central tendency and dispersion, but also take 

advantage of the use of point pattern methods extended to networks, such as the 

network K-function and cross K-function methods (see e.g. Okabe and Yamada, 

2001; Okabe et al., 2006a, 2006b).  
 

Interestingly, differences in the spatial patterns and (accident-related) factors 

would be indicative of the fact that unreported and reported cycling accidents 

locate at different places along the network and hence that explanatory variables 

are probably neglected when focussing on reported cycling accidents only. It then 

suggests that a more complete registration of cycling accidents would provide 

additional and/or more accurate information about the significance of spatial 

factors associated with the occurrence of cycling accidents. At the opposite, no or 

little difference between reported and unreported accidents would suggest that 

improving the accident registration (e.g. through surveys) would not necessarily 

provide additional information on unobserved spatial factors, although it is here 

thought that a more accurate (spatial) representation of black zones for cyclists 

would be helpful in pinpointing the locations where local safety treatments are 

needed to improve the bicyclists’ safety. 
 

This chapter is structured as follows. Section 4.2 introduces the studied area 

(Brussels-Capital Region) and provides some figures in terms of bicycle use and 

accident risks for cyclists. Section 4.3 describes the data, after which the 

methodology is presented in Section 4.4. Results are reported and discussed in 

Section 4.5. Finally, Section 4.6 concludes this chapter by summarizing its main 

findings and limitations. 
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4.2 Spatial context: the case of the 

Brussels-Capital Region 

4.2.1 Diagnosis: mobility and cycling levels in 

Brussels 
 

Centrally located in Belgium, the BCR is a highly urbanised area, where more 

than 1,125,000 inhabitants concentrate over 162 km2 (population density is hence 

about 7000 inh./km2). As capital of Belgium and Europe (EU-27), this region 

concentrates lots of facilities (e.g. administrations, head offices, transport, 

education, etc.) and is hence a major area of employment in Belgium, generating 

more than 650,000 jobs and 20% of the national GDP (Thisse and Thomas, 

2010). Such a concentration of population and activities – combined with a high 

level of accessibility of/to most of the transport networks – results in a high 

attraction of the region, and then high traffic volumes. About 700,000 trips (all 

purposes) are registered every day in the region during the morning peak hours 

(6-10 a.m.). Among these, 64% are carried out by car, which is mostly explained 

by the high motorisation rate of the region (i.e. one vehicle for less than 2 

inhabitants) and the continuous urban sprawl in the peripheral municipalities 

that generate every day more and more car trips converging on the capital 

(Dujardin et al., 2007; Brussels Mobility, 2010; De Witte and Macharis, 2010). 
 

In order to mitigate car-related externalities, the Brussels’ mobility plan (IRIS 

II) intends to reach a 20% decrease in car traffic by 2020 (in vehicles/km, using 

the year 1999 as basis). Encouraging a modal shift from car to active modes of 

transport – besides promoting public transport and rational car use – is one of 

the measures proposed by the plan in order to achieve such a target. Although 

the number of cyclists strongly increased in Brussels since 2000 (Figure 4.1), the 

share of cyclists in the traffic is still low compared to other European towns 

(about 4%). There are indeed important barriers that deter people from cycling 

in Brussels, such as the high motorised traffic levels with which the cyclist can 

conflict and the (perceived) risk of being involved in a cycling accident. Despite 

the fact that the risk of being killed or seriously injured is relatively low in 

Brussels, Figure 4.1 shows that the risk of cycling accidents in general remains 

quite stable since 2002 due to the simultaneous increase in the number of 

accidents (BRSI, 2009). This hence somewhat confirms the resident’s fears about 

the risk of being involved in a road accident when cycling. 
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Figure 4.1: Evolution of the average number of cyclists (C), number of victims 

of cycling accidents (V), and ratio V/C. Dotted lines = period with strong 

under-registration of road accidents (1999-2003). Data sources: BRSI, 2009; 

DGSEI; Pro Velo, 2011. 

 

4.2.2 Why Brussels? 
 

The BCR is an interesting case study for several reasons : (1) most of the 

transport policies and planning decisions (e.g. provision of cycle facilities, traffic-

calming measures, parking policies, etc.) are conducted at a regional scale in 

Belgium; (2) it is a highly urbanized area, characterised by a relatively high 

number of (reported and unreported) cycling accidents compared with rural 

areas, which hence increases the significance of the results and the probability to 

identify hot spots of cycling accidents; (3) due to the urban context, most of 

cycling accidents (95%) occurring in Brussels result in slight injuries, which 

hence provides a rather homogeneous accident data set in terms of severity; (4) 

the spatial variability of some spatial factors is quite large (e.g. the number of 

roundabouts increases while moving away from the city centre; most of the cycle 

facilities are located close to the European and Regional institutions; etc.); and 

(5) a wide range of data and information about cycling and the potential factors 

being at the root of cycling accidents are available for the BCR (through e.g. 

aerial photographies, digitized data, cycling maps, etc.). 
 

However, there is also some inconvenience to focus on the BCR only. Among the 

main limitations, the fact that the studied area and the data are limited by 

administrative/regional boundaries (instead of socio-economic boundaries) is 
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expected to cause edge effects of the first type. For instance, it might hamper the 

ability of the network cross-K function methods to detect a significant clustering 

(or dispersion) of cycling accidents around some definite ‘peripheral’ factors, i.e. 

factors that are more likely to be located in the periphery of the extended urban 

agglomeration (i.e. the area defined by socio-economic and demographic 

criterions) rather than in the Central Business District (CBD). 

 

4.2.3 Spatial subareas 
 

Within the framework of this chapter, the BCR is subdivided into three zones in 

order to examine the impact of increasing spatial subareas on the results (see 

Figure 4.2 in Section 4.5.2). Firstly, the ‘Pentagon’ (4.5 km2) is the centremost 

part of the BCR and corresponds to the Brussels’ historic city centre. It is 

pentagon-shaped and is delineated by an inner ring road (called the Brussels 

small ring) that is built on the site of the second set of defensive walls of the city 

(16th century). It includes districts with high densities of jobs (15,000 jobs/km2) 

and population (9,000 inhab./km2), and attracts everyday high cycling flows that 

mainly come from the First Crown (and, to a lesser extent, from the Second 

Crown). Secondly, the First Crown (39.1 km2) designates the districts situated 

between the inner ring road (or Pentagon) and the greater Brussels ring. This 

latter consists of a set of major boulevards (and railways in the western part) 

that are intermediate between the Brussels small ring and the main ring 

(motorways). It also surrounds districts characterised by high densities of 

population (12,000 inhab./km2) and jobs (4,000 jobs/km2), and built before 1914. 

Lastly, the ‘Second Crown’ (118.9 km2) corresponds to the area situated between 

the greater Brussels ring and the administrative boundaries of the BCR. It 

includes districts built during the 20th century and for which the population and 

job densities are generally lower (the densities raise to 4000 inhab./km2 and 1000 

jobs/km2, respectively), compared with the Pentagon and the First Crown. 
 

Our spatial point pattern analyses are carried out assuming that a definite 

spatial subarea includes any other embedded spatial subarea. For instance, it 

means that the First Crown here refers to all subareas it embeds (i.e. First 

Crown + Pentagon). Similarly, the Second Crown corresponds to the whole BCR 

(i.e. Second Crown + First Crown + Pentagon). Note that the use of increasing 

sizes of subareas here aims at monitoring the effect increasing numbers of 

observations have on the results; it is not the aim here to isolate the 

characteristics of the different subareas. 
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4.3 Data collection 
 

Spatial analyses on networks are here performed into Geographic Information 

Systems (GIS), taking advantage of the availability of a free ArcGIS-based 

extension called ‘SANET’ (Spatial Analysis on a NETwork)2. Data collection is 

hence carried out into ArcGIS (through a digitizing process) and here consists of 

a three-step approach: (1) a ‘bikeable’ network is defined and constructed over 

the entire study region (Section 4.3.1), (2) this network is then used as reference 

material (in address matching techniques) for geocoding the reported and 

unreported cycling accidents (Section 4.3.2), and (3) some of the main (spatial) 

factors associated with the presence of cycling accidents are reviewed, digitized 

into a GIS and, then, transformed into point features when necessary (Section 

4.3.3). 

 

4.3.1 Construction of the ‘bikeable’ network 
 

The road network for the BCR is provided by the Brussels Regional Informatics 

Center (BRIC), using the Brussels UrbIS database. Among the 2137 km of roads 

included in the Region, approximately 120 km are excluded because they are 

‘unbikeable’, i.e. they are forbidden to cyclists or not designed to accommodate 

bicycle traffic. Orthophotos for the years 2004, 2007 and 2009 (BRIC, Google 

Earth) and cycling maps for the 2006-2008 period (Brussels Mobility) are used to 

identify and exclude such ‘unbikeable’ links. Overall, these latter are motorways 

and parts of the network without any cycle facility (e.g. slip and access roads, 

express roads, bridges, tunnels). The remaining 2017 km of road links hence 

correspond to the so-called ‘bikeable network’. Modelling such a network into a 

GIS allows computing network distances (instead of Euclidean distances) 

between points located along the ‘bikeable’ network. This provides a good 

estimation of the spatial relationships existing between network-constrained 

points (see e.g. Yamada and Thill, 2004; Okabe et al., 2006a, 2006b; Shiode, 

2008; Steenberghen et al., 2010). 
 

Note that the three spatial subareas considered here include different network 

lengths, different databases (e.g. concerning the number of accidents occurring 

on the network), and – as a corollary – different computation times into SANET. 

Considering a 10m buffer for each of these spatial subareas (in order to mitigate 

the edge effects as much as possible), the total length of the street network 

                                                
2 This plug-in tool has been implemented in ArcGIS 9.3 by a group of Japanese researchers 

(Okabe et al., 2006a, 2006b, 2009), with the aim to operate network methods in GIS. SANET 

v.4 beta is here used. 
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amounts to 110 km, 791 km and 2030 km for the Pentagon, First Crown and 

Second Crown (respectively). 

 

4.3.2 Accident geocoding 

4.3.2.1 Reported cycling accidents (DGSEI data) and the under-

registration issue 

 

In Belgium, road casualties are registered by the police and compiled annually by 

the Directorate-General Statistics and Economic Information (DGSEI). In this 

chapter, a total of 644 bicycle accidents are censused over the period 2006-2008 

and for the whole studied area (BCR)3. The severity of the accident is not 

considered here, but this should not be a major concern since few serious injuries 

(25) and no fatality were reported in Brussels during the period of study. At the 

opposite, 95% of the cyclists involved in a road accident suffered only slight 

injuries. This last figure is even expected to be higher since bicycle accidents 

with slight injuries (and/or with material damages) are strongly underreported 

compared to the other degrees of severity. Such underreporting is explained by 

the fact that bicycle accidents are often single-vehicle accidents, characterized by 

minor injuries and/or material damages. In such cases, the cyclist generally does 

not feel the need to call the police (and hence there is no official record) and 

cures oneself and/or repairs oneself the material damages (BRSI, 2008, 2009). 

 

4.3.2.2 ‘Unreported’ cycling accidents (SHAPES survey) 

 

An open-based online registration survey was implemented within the framework 

of a Belgian research project (SHAPES) in order to get better insight into 

minor/slight cycling accidents (i.e. location, costs, underreporting, etc.) and the 

factors related to their occurrence in Belgium (Aertsens et al., 2010; de Geus et 

al., accepted). Within the scope of this chapter, such a survey was helpful to 

extract ‘unreported’ cycling accidents since it registered a large share of cycling 

accidents that were not reported by the police (and, hence, by DGSEI). In 

Brussels, a comparison between the survey data (SHAPES) and DGSEI data 

indeed highlighted that only 7% of recorded cycling accidents were officially 

reported by police in the period from March 10th 2008 until March 16th 2009. 
 

                                                
3 Note that 3 bicycling accidents were added in the total of bicycling accidents since they were 

initially supposed to have occurred in the Flemish Region (according to the description of the 

accident by the police). 
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Although open-based, recruitment of the participants that registered on the 

survey was based on the following inclusion criteria: (1) age between 18 and 65; 

(2) cycling to work at least twice a week during the preceding year; (3) having a 

paid job outside home; (4) living in Belgium. A cohort of 1187 participants was 

then obtained based on such criteria and after a one-year follow-up period 

(March 10th 2008–March 16th 2009). Every week, each of these participants had 

to fill out a travel diary in order to report information on bicycle usage (i.e. on 

trip purpose, frequency, time and distance) during the preceding week. If a 

cycling accident occurred during the weekly registration, then the participant 

was automatically asked to fill out a ‘prospective questionnaire’ in order to 

register detailed information about the accident (about e.g. the circumstances, 

the cause of the accident and injury, the registration by police, etc.). One week 

after having received the first travel diary, a retrospective questionnaire was also 

sent to the participants to register the eventual cycling accidents they incurred 

during the preceding year (i.e. from March 10th 2007–March 9th 2008). As a 

result, a two-year period was then covered by the survey as regards the 

registration of cycling accidents. In the case where cyclists provided incomplete 

or erroneous information about the accident location, they were contacted once 

again in October 2009 and asked to pinpoint in Google Map the exact location of 

their accident. As a result of this prospective and retrospective registration, a 

total of 55 bicycle accidents is registered over the period from March 10th 2007 

until March 16th 2009 and for the entire BCR. Eliminating the cycling accidents 

registered by the police from this total, the number of (unreported) cycling 

accidents then amounts to 51 (which corresponds to 93% of the accidents 

registered by the SHAPES survey). Interestingly, for either the BCR or Belgium, 

accidents that are not registered by the police involve slighter injuries for the 

cyclist (i.e. mainly material damages, bruises and/or cramps) than these 

registered by the police during the survey (which led to body injuries with short- 

or long-term consequences) (Aertsens et al., 2010). For further information about 

the survey and SHAPES, see Aertsens et al. (2010), de Geus et al. (in prep.) and 

Int Panis et al. (2011). 

 

4.3.2.3 Accident geocoding process 

 

Reported (DGSEI) and unreported (SHAPES) cycling accidents are separately 

geocoded using address matching techniques in GIS. Basically, the geocoding 

process requires two types of information: (1) the accident data, which contain 

detailed information on the location of the accident (i.e. the municipality code, 

the street name(s) and the house number in front of which the bicycle accident 

occurred), and (2) the reference data, i.e. the ‘bikeable’ network and house 

numbers (BRIC), which are both available in spatial formats and contain 
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address elements that are compatible with accident data. After some preliminary 

steps (i.e. specifying the geocoding options, formatting the data, etc.), accident 

data are then automatically matched with reference data and assigned x,y 

coordinates along the network (ESRI, 2010). In order to improve the precision of 

the geocoding process, the bicycle accidents occurring at junctions are matched 

with the bikeable network, whereas the bicycle accidents occurring along the 

streets (i.e. between the junctions) are matched with the house numbers, before 

being snapped to the closest point of the network. Finally, using orthophotos for 

the years 2004, 2007 and 2009 (BRIC, Google Earth) and network data (BRIC), 

we manually checked the validity of the results obtained through the automatic 

geocoding process and tried to geocode the bicycle accidents that were not 

located due to the presence of spelling errors or incomplete information in the 

data. As a result, 93% of the officially reported cycling accidents (= 600 properly 

geocoded / 644 DGSEI accidents) and 96% (= 49) of the 51 unreported accidents 

(survey-based) were successfully geocoded in a GIS. 

 

4.3.3 Infrastructure factors 
 

Infrastructure factors are collected in order to explore their (expected) 

relationships with the occurrence of reported and unreported cycling accidents. 

Although road accidents generally result from the interaction and combination 

between five categories of factors (driver behaviour, vehicles, infrastructures, 

traffic conditions and environment) (Miaou et al., 2003; Li et al., 2007; BRSI, 

2008), we only focus on infrastructure factors since most of these have a spatial 

dimension (e.g. in the form of x,y coordinates) whereas it is not always the case 

forthe other factors. Infrastructure factors are digitized either as linear objects 

(e.g. cycle facilities) or as point objects (e.g. public transport stops). In the case 

where they are linear-shaped, the factors are summarized as centroids in order to 

make possible the use of the above described point pattern methods. Concerning 

the point objects, no conversion is required since they are already digitized in a 

‘usable’ format for point pattern analyses. 
 

Note that a review of the literature is carried out in the next subsections as 

regards the infrastructure factors and their impact on the number of cycling 

accidents and – more particularly – on the risk of cycling accidents and injuries. 

Appendix C.1 also lists and describes all infrastructure factors used in this 

chapter. All of these data are digitized using one of the following sources: 

orthophotos (BRIC, Google Earth), printed maps (Brussels Mobility, City of 

Brussels), accident data (DGSEI), on-line applications (BRIC), or GIS data 

coming from the Brussels UrbIS database (BRIC) and STIB/MIVB (as regards 

tram infrastructures). These data are collected for the period 2006-2008 and at 
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the scale of the Brussels-Capital Region (considering the three spatial subareas 

separately). The list of infrastructure factors is quite exhaustive since we here 

aimed at monitoring if some of these factors might have had an unexpected 

spatial relationship with the occurrence of cycling accidents. However, some 

factors are deliberately ignored due to frequent infrastructure changes, or simply 

because detailed data are difficult to obtain. 

 

4.3.3.1 Bridges and tunnels 

 

Bridges and tunnels are expected to be ‘black spots’ for cyclists because sudden 

change may sometimes occur here in terms of infrastructures and road conditions 

(Khan et al., 2009). They are the main crossing points of specific hurdles (e.g. 

rivers, railways, motorways) and a wide range of transport users often 

concentrate and share the road at these locations. The space devoted to each 

mode is hence reduced, forcing the road users to adapt their driving behaviour to 

the road environment. In particular, bridges are elevated infrastructures that 

may decrease the long-distance visibility of road users, e.g. due to the 

curving/bending. Given that they are seldom surrounded by buildings (due to 

their elevated position), they are more likely to be exposed to ‘extreme’ weather 

conditions. For instance, in the case where they cross rivers or water zones, 

bridges are places more prone to ice development (and hence road accidents) 

when low temperatures, strong winds and water evaporation occur jointly (see 

e.g. Khan et al., 2009). Finally, tunnels and road sections located below elevated 

infrastructures (e.g. road bridge, railways) force the cyclists and the other road 

users to adapt their eyes to the lower luminance level, hence increasing the 

perception time and the risk of having an accident (Wang and Nihan, 2004). In 

this chapter, only bridges with safeguards on both sides are considered; those 

surrounded by buildings and protected from variations in weather conditions are 

not selected. Note that tunnels prohibited to cyclists are not selected here. 

 

4.3.3.2 Traffic-calming areas 

 

Speed-related accidents are expected to be more severe and greater in number on 

roads where speed limits are high (e.g. 70 km/h, or more). Indeed, high speed is 

not only related to accident risk, but also to an increased injury severity when 

light and heavy vehicles collide (Klop and Khattak, 1999; ERSO, 2006; OECD, 

2006; Kim et al., 2007; Eluru et al., 2008). In particular, road users such as 

pedestrians and cyclists (i.e. with no/slight mass, no/low speed and no/few 

protection) are more likely to be fatally injured in a road accident, especially if 

the collision partner rides at high speed and/or is a heavy vehicle. For instance, 
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the probability of fatal injury for a pedestrian colliding with a motorised vehicle 

riding at a speed of 50 km/h is about 50-80%, whereas it reduces to 5-10% at a 

speed of 30 km/h (ERSO, 2006; OECD, 2006). In order to protect vulnerable 

road users, traffic-calming measures are often implemented in residential areas or 

close to specific facilities (e.g. schools). Such measures generally limit the vehicle 

speeds by law (e.g. 30 km/h limitation) and through road design or hurdles (e.g. 

loops and lollipops design, speed humps, etc.) (Pucher and Dijkstra, 2003; 

Pucher and Buehler, 2008; Rifaat et al., 2011), thus widening the field of vision 

and lengthening the perception time of motorists. Traffic-calming measures are 

hence expected to enhance the safety of cyclists in Brussels. Three kinds of such 

measures are here identified: 30 km/h, residential (20 km/h) and pedestrian 

areas (prohibited to motorized traffic outside delivery hours, but also to cyclists 

in some cases) (Appendix C.1). 

 

4.3.3.3 Intersections (crossroads) 

 

Intersections are known as black spots for all road users (Wang and Nihan, 2004; 

ERSO, 2006; Quddus, 2008; BRSI, 2009; Reynolds et al., 2009; Haque et al., 

2010; Pei et al., 2010). They are places where the number of potential conflict 

points and the risk of having an accident are higher compared to the rest of the 

network (i.e. road segments) (Wang and Nihan, 2004; Geurts et al., 2005; 

Dumbaugh and Rae, 2009). In particular, roundabouts are often mentioned in 

the literature as having an unfavourable effect on cyclist safety, leading to an 

increased risk of accident for cyclists when they replace other types of 

intersections (Hels and Orozova-Bekkevold, 2007; Daniels et al., 2008; Møller and 

Hels, 2008; Daniels et al., 2009; Reynolds et al., 2009). This effect is even worse 

when the roundabout replaces a signalised intersection (compared to other types 

of intersections), or when marked bicycle lanes are used instead of other design 

types (e.g. mixed traffic or grade-separated cycle lanes) (Daniels et al., 2009). 

Moreover, roundabouts constructed in built-up areas and characterized by high 

vehicle speeds, high volumes of motorists and cyclists, multiple traffic lanes 

and/or large drive curves are also found to have a higher accident risk for 

cyclists (Hels and Orozova-Bekkevold, 2007; Daniels et al., 2008, 2009; Reynolds 

et al., 2009). Such findings are quite unexpected since roundabouts slow down 

the traffic and reduce the number of potential conflict points (compared to more 

conventional intersections). This also sharply contrasts with the positive safety 

effects observed for other road users, for whom reduced risks are generally 

observed (Hels and Orozova-Bekkevold, 2007; Daniels et al., 2008; Møller and 

Hels, 2008; Daniels et al., 2009). Besides roundabouts, signalised intersections are 

generally associated with reduced risks of being fatally or seriously injured when 

cycling (relatively to other intersections), although they may lead to an increased 
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risk of accident with no or slight injuries (Eluru et al., 2008; Rifaat et al., 2011). 

Such low levels of severity are explained by the fact that vehicle speeds and 

conflicting movements are reduced in these intersections (Eluru et al., 2008). 

As regards the other types of intersections (e.g. right-of-ways, yield/stops, etc.), 

few evidence or consensus is provided in the literature about their impact on 

bicycle accidents. They are however expected to show higher accident risks for 

cyclists than ‘simple’ road links, since these are places where the traffic situation 

is more ‘complex’. At such places, cyclists – as well as all road users – are faced 

with a large amount of information at the same time and must handle many 

visual stimuli (e.g. due to the dense and mixed traffic, the large number of road 

legs and signs, etc.) (Elvik, 2006; Dai et al., 2010). The cognitive capacity of 

road users is hence more likely to reach – or even exceed – its limit at 

intersections, which increases the probability of having an accident due to a 

lengthened cyclist’s (or driver’s) reaction time. Also, intersections with high 

levels of complexity (e.g. more than 4 legs with dense traffic) have high accident 

risks (Wang and Nihan, 2004; Elvik, 2006; Dumbaugh and Rae, 2009). In this 

chapter, intersections (about 10,000 in Brussels) are controlled for their 

evolution/infrastructure change and fall into one of the following categories: 

yield/stop signals, right-of-way intersection, signalized intersection (traffic 

lights), roundabout, intersection with right-turn lane, or pedestrian light4 

(Appendix C.1). 

 

4.3.3.4 Tram tracks and public transport stops 

 

Intuitively, the presence of on-road or crossable tram tracks is expected to 

increase the occurrence of accidents for cyclists: cyclists often declare to get one 

of their cycle wheels stuck in the tracks, resulting in a loss of control of their 

bicycle (Cameron et al., 2001; BRSI, 2006). However, no reliable evidence is 

provided in the literature about such a risk. Most of the research is – at our 

knowledge and up to now – either focussed on accidents between pedestrians and 

trams (see e.g. Hedelin et al., 1996; Unger et al., 2002) or indicates in a 

descriptive framework that the number of tram-related accidents is relatively 

high for cyclists, compared to other road users (Cameron et al., 2001; BRSI, 

2006). Moreover, no control is made of the presence of other factors (e.g. 

motorised traffic, type of intersection). 
 

The presence of public transport stops (bus, tram, metro, etc.) is also expected 

to cause blackspots for cyclists since frequent pedestrian activity generally occurs 

around these stops (Pei et al., 2010). In particular, previous studies found bus 

                                                
4 Note that pedestrian lights are not – strictly speaking – intersections, since they are generally 

installed in the middle of road links. 
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stops and bus transit intensities as being significant factors associated with the 

presence of bicycle accidents (Quddus, 2008; Cho et al., 2009; Pei et al., 2010). 

Besides the intense pedestrian activity, the poor acceleration and the large 

dimensions of buses probably explain to some extent such results (Walker, 2007). 
 

Tram tracks are here digitized as linear objects on the basis of orthophotos (from 

BRIC, Google Earth) and using GIS data provided by the Brussels UrbIS 

database (BRIC) and STIB/MIVB, still over the 2006-2008 period. They are 

subdivided into 3 categories: tram track crossings (e.g. at crossroads), tram 

tracks in crossable reserved lanes (generally built parallel to the road), and on-

road tram tracks (i.e. built on the road, implying that trams share the same road 

than cyclists and motorists). Tram tracks built in off-road separated lanes 

(uncrossable) are not collected, since they are separated by physical barriers or 

located in tunnels (they are not designed to support bicycle traffic) and hence 

not bikeable. As regards the public transport stops, they are digitized as point 

objects and are categorised into 3 classes: bus stops, tram stops, and all stops 

(i.e. bus, tram and metro). 

 

4.3.3.5 Cycle facilities and discontinuities in the bicycle network 

 

The provision of well-kept and well-planned cycle facilities is an essential 

ingredient for encouraging bicycle use since it reduces the actual and perceived 

risk associated with cycling (McClintock and Cleary, 1996; Parkin et al., 2007). 

When inappropriately designed and/or maintained, such facilities however carry 

the danger to increase the risk of cycle accidents (McClintock and Cleary, 1996). 

Most of the studies indeed find that cycle facilities can increase the risk of 

bicycle accidents compared to on-road cycling (i.e. cycling on ordinary roads, in 

mixed traffic) (Kaplan, 1976; McClintock and Cleary, 1996; Aultman-Hall and 

Hall, 1998; Aultman-Hall and Kaltenecker, 1999; Pucher et al., 1999). Although 

there is no consensus about the actual safety effects of each of the cycle facilities, 

the findings in the literature overall show that it is safer to cycle on-road than 

on fully segregated cycle facilities (or off-road facilities) or on cycle facilities built 

at intersections (Forester, 1994; Rodgers, 1997; Räsänen and Summala, 1998; 

Aultman-Hall and Hall, 1998; Aultman-Hall and Kaltenecker, 1999; Pucher et 

al., 1999; ERSO, 2006). Also, it seems that roundabouts equipped with marked 

cycle lanes perform significantly worse than those unequipped or equipped with 

other design types (Daniels et al., 2009). The lack of consensus on the results 

about the safety effects of the different cycle facilities probably comes from: (1) 

the different methodologies (more or less consistent) used to evaluate these 

safety effects, (2) the various definitions of cycle facilities used in the literature, 

(3) the way cycle facilities are designed and/or maintained in the area of 
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interest, and (4) the spatial and temporal context in which the cycle facility is 

designed. 
 

Among the possible causes that increase the risk of accident on cycle facilities, 

the literature often mentions the decrease of attention paid by all types of road 

users after the implementation of the cycle facilities (McClintock and Cleary, 

1996; de Lapparent, 2005; Parkin and Meyers, 2010). In particular, the 

segregated facilities not only carry the risk of reducing the presence/visibility of 

cyclists, but also give an ill-founded feeling of safety for the cyclists. Cyclists are 

hence often ‘unexpected’ by drivers at intersections, especially when they ride in 

the opposite direction of the traffic (e.g. on bidirectional facilities). Such a design 

may indeed result in an inappropriate driver’s visual search pattern (of cyclists) 

and may lead to the accident if the expectation of the cyclist about the driver 

behaviour is wrong (Räsänen and Summala, 1998). Moreover, such segregated 

designs increase the risk of collision with pedestrians in the case where they are 

shared with these latter (McClintock and Cleary, 1996). As regards on-road cycle 

facilities (e.g. marked lanes), Parkin and Meyers (2010) also found that drivers 

may give less recognition to the need to provide a comfortable passing distance 

when a marked cycle lane is implemented (compared to an on-road situation 

where there is no cycle facility).  
 

More importantly, poorly designed facilities increase the risk of having an 

accident. Potential sources of danger created when building new cycle facilities 

may be an insufficient width of the infrastructure, an insufficient distance to the 

adjacent parking areas, or the creation of discontinuities or inconsistencies at 

some points of the cycle facility. In particular, a low width of the facility reduces 

the possibility to make evasive movements (e.g. in the case where there is a 

hurdle in the cyclist’s trajectory) and increases the risk that overtaking vehicles 

– especially these with large dimensions, riding at high speed or passing close to 

the facility – throw the cyclist off his/her balance. Also, the construction of cycle 

facilities in the ‘door zone’ of parked cars may result in a potential conflict with 

the opening of car doors, especially if their width is insufficient and when located 

in built-up areas (Pai, 2011). As regards discontinuities, Krizek and Roland 

(2005) found they introduce high levels of discomfort when they end either on 

the left side of the street, on parking lots, in large intersections, or in a wider 

width of the curb lane. 
 

In this chapter, both cycle facilities and discontinuities in the bicycle network are 

collected. On the one hand, discontinuities here correspond to the end or a cut 

over some distance of the cycle facility and are often observed at intersections. 

On the other hand, cycle facilities are defined on the basis of the terminology 

used by the Ministry of the Brussels-Capital Region (Brussels Mobility). They 

are classified into 5 categories: (1) the unidirectional separated/off-road cycle 
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lanes, which are one-way cycle facilities located next to a road and separated by 

a slight elevation or any other physical barrier; (2) the bidirectional 

separated/off-road cycle lanes, which are two-way cycle facilities located either 

next to the road (with a physical separation) or fully segregated (e.g. by 

adopting a different trajectory compared to the road); (3) the marked cycle lanes 

(or bike lanes), which are one-way cycle facilities that are part of the road and 

marked with painted lines and/or a red-coloured surface (thus increasing the 

attention paid by motorists to cyclists); (4) the suggested cycle lanes (or 

sharrows), which are one-way cycle facilities that give cyclists (supposed safe) 

trajectories on the road using either different road materials or chevrons and 

bicycle logos; and finally, (5) the bus and bicycle lanes, which are one-way 

facilities dedicated to buses and cyclists. Note that suggested cycle lanes are 

implemented when the width is insufficient to accommodate a marked cycle lane 

and have the advantage to inform the motorists of the presence of cyclists in a 

street. They are however not subject to parking restrictions. 

 

4.3.3.6 Parking facilities (motorised vehicles) 

 

Parking facilities for motorised vehicles are expected to be black zones for 

cyclists, compared to roads without parking. Parked vehicles indeed restrict sight 

distances in some specific street patterns (especially when they have large 

dimensions) and increase the risk of conflict with exiting / parking vehicles or 

with car doors in the case of parallel (or longitudinal) parking facilities (Greibe, 

2003; Pai, 2011; Rifaat et al., 2011). In particular, accidents due to the opening 

of car doors are quite frequent in urban areas since cars are here parked in great 

numbers along the roadside or along cycle facilities (sometimes built in the door 

zone) (Pai, 2011). In the densest parts of urban areas and during delivery or 

peak hours, vehicles are also more prone to be parked on cycle facilities, which 

may then force cyclists to carry out dangerous overtaking. Finally, the presence 

of parked vehicles after a discontinuity in the bicycle network seems to increase 

the level of discomfort for cyclists (Krizek and Roland, 2005). Although the 

number of accidents related to the presence of parking facilities is expected to be 

higher in urban areas, there is no evidence in the literature about what could be 

the actual risk of accident for cyclists riding along parked cars. Only the 

perceived risk of cycling is shown to be greater due to the presence of such 

parked vehicles along the roadside (Parkin et al., 2007). 
 

Two types of databases are considered in this chapter: (1) ‘function-based 

parking data’, describing the role/purpose to which each parking facility is 

dedicated, and (2) ‘aspect-based parking data’, describing how parking facilities 

are positioned relatively to the road (e.g. in parallel or perpendicular to the 
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road). In the first case (function-based), the facilities are subdivided into five 

types: (1) park-and-ride, public and private parking, (2) delivery parking, (3) 

diplomatic corps parking, (4) disabled parking, and (5) taxi parking. In the 

second case (aspect-based), the 5 following types of parking facilities are digitized 

at a high level of precision (i.e. accurate to within some meters) into a GIS, on 

the basis of the ‘observed’ parking behaviours (instead of considering simply the 

marked parking bays): (1) longitudinal parking areas, i.e. cars parked parallel to 

the road or the curb (on-road or on the sidewalk) and often are arranged in a 

line; (2) head-in (or acute) angle parking, consisting of cars parked at an acute 

angle with the direction of approach; (3) back-in (or reverse) angle parking, 

consisting of cars parked at an obtuse angle with the direction of approach; (4) 

parking facilities perpendicular to the road, consisting of cars parked side to side, 

perpendicular to the curb or road; (5) other types of parking facilities, for which 

there is no particular/constrained arrangement of the vehicles. Longitudinal 

parking areas are the most common type of parking facility in Brussels, while the 

other categories are often found in public places or – in some cases (as regards 

the parking facilities perpendicular to the road) – in residential areas. From the 

planner point of view, head-in angle parkings are also generally recognised as 

being risky for cyclists, since these latter are in the blind spot of the reversing 

and turning vehicles. On the contrary, back-in angle parking improve the field of 

vision and allow parked drivers to see passing cyclists, hence reducing the risk of 

collision. 

 

4.3.3.7 Contraflow cycling 

 

Contraflow cycling allows cyclists to travel in the opposite direction of the 

motorised traffic in one-way streets (Pucher et al., 2010). Contrary to popular 

belief, contraflow cycling is quite safe since motorists and cyclists face each other 

and keep a continuous eye contact (until they pass each other). It hence allows 

them to adapt their driving behaviour depending on the specific street features 

(e.g. street width, presence of longitudinal parking, etc.) and the reactions of the 

facing road user (Brussels Mobility). The fact that motorists generally consider 

contraflow cycling as unsafe also may increase the attention they pay to 

bicyclists while passing them in the street. This seems to be confirmed in a study 

conducted by Kim et al. (2007), who show that facing traffic reduces the 

probability of incapacitating and non-incapacitating injuries for cyclists. 

Contraflow cycling is hence expected to reduce the risk of accident and injury for 

cyclists. In this chapter, note that great care is here taken when digitising roads 

with contraflow cycling into a GIS. Three different data sources were used to 

monitor their gradual implementation (i.e. cycling maps, orthophotos, and on-

line application mapping the one-way streets). 
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4.3.3.8 Urban facilities and public services 

 

Partly because of the lack of data, there is little literature exploring the risk of 

cycling accidents associated with the proximity of specific activities or public 

services. To our knowledge, current research only focuses on accident frequency 

or severity. Disregarding the type of road user, most authors found that the 

number of accidents increases near employment areas, and more particularly 

nearby retail trade (e.g. shops, restaurants), manufacturing industry (e.g. 

industrial sites) and public services (e.g. schools, hospitals, etc.) (Levine et al., 

1995a, 1995b; Greibe, 2003; Wedagama et al., 2006). Concerning bicycle 

accidents, Kim et al. (2007) also found that the presence of institutional areas 

(e.g. schools) increased the probability of incapacitating injury (whereas it 

decreased the probability of having other injury severities). In this chapter, a 

wide range of activities and public services are considered in order to account for 

the unexpected impact some of these could have on bicyclists’ safety (see 

Appendix C.1, ‘Public transport’ variable). 

 

4.3.4 Data limitations 
 

Some data limitations are worth to mention. First, one can deplore the fact that 

no exposure variable (e.g. bicycle traffic flow estimation) is used. Overall, such a 

variable is seldom available in traffic accident research, especially for non-

motorised transport modes for which less attention is generally paid by planners, 

scientists or policy makers (Iacono et al., 2010). As regards Brussels, the best 

available (exposure) data are either bicycle traffic counts performed at several 

locations every year (Pro Velo, 2011), or 2001 census data (FPS Economy) on 

the number of cyclists commuting to work or school and living in a definite 

statistical ward (= the smallest administrative unit in Belgium). Bicycle traffic 

counts are however not exploitable since they are limited over space (20 count 

locations only). Census data can however be used to estimate a gravity-based 

exposure variable (see Chapter 5), but this latter variable was not exploited here 

due to some technical issues in SANET in using the ‘uniform network 

transformation’ (see Okabe and Satoh, 2006). As a result of these data and 

technical limitations, a uniform network is here used (in the sense that the 

bicycle traffic is assumed to be constant over the entire road network). 
 

Another weakness lies in the fact that no street side and/or building year of the 

infrastructures is taken into account, although such (detailed) data were 

collected for the purposes of Chapter 5. Actually, the limitations are of a 

methodological nature since the exploratory methods used here generalise the 

road links as linear features, without any precision on the street side where the 
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infrastructure is built and/or on its building/implementation (or dismantlement) 

year. Such methodological issues are expected to bias the results regarding the 

infrastructure factors that are observed on only one street side and/or for which 

changes in the design are frequent (i.e. implementation of new infrastructures, 

changes in the street side of the infrastructure, etc.). Great care should hence be 

taken when analysing the results, especially as regards the network kernel 

density values (such densities are indeed generalised for both street sides, which 

might be wrong if cycling accidents occur on only one street side) and also 

concerning specific infrastructure variables, such as this related to streets where 

contraflow cycling is permitted (see Section 4.5 for a further discussion). 
 

Reported accident data (DGSEI) and unreported ones (SHAPES) also differ on 

some specific points/characteristics, thus implying that the comparison between 

both data sets does not simply comes down to compare reported and unreported 

cycling accidents. The first difference is that our databases are collected using 

different accident registration processes (DGSEI: compulsory registration by the 

police; SHAPES: online registration survey). Although the electronic registration 

survey used for our survey allows getting more insight into the unreported minor 

cycling accidents (i.e. with slight injuries and/or material damage), it is however 

biased by the fact that it is restricted to those with access to computer and 

online network5. Second, the accident data are collected over different periods of 

time (DGSEI: January 1st 2006 – December 31st 2008; SHAPES: March 10th 2007 

– March 16th 2009), which carries the risk that the infrastructure factors may 

differ from one dataset to another (for instance, for a particular street, a cycle 

facility might have been implemented in 2007, implying that DGSEI data do not 

account for its safety effect in 2006). Third, SHAPES data focus on regular6 

adult cyclists (18-65 years old) for who 60% of the cycling trips are work-related 

(the remaining 40% are leisure-related), whereas DGSEI data do not restrict the 

sample to a definite group of cyclists. This hence means that our comparative 

analyses will consist in comparing a sample of cycling accidents unreported by 

the police and involving regular and utilitarian-oriented adult cyclists (SHAPES 

data) with a sample of cycling accidents officially reported by the police and 

involving any type of cyclist (regular or not, adult or not) (DGSEI data). Lastly, 

as mentioned in Section 4.3.2.2, SHAPES data here involve cycling accidents 

that are not registered by the police and for which only small injuries (i.e. 

bruises or cramps) and/or material damages are reported, whereas cycling 

accidents reported by the police – and then by the DGSEI – seem to have a 

                                                
5 The access (and use) of a computer and internet is still nowadays strongly associated with the 

age. In Belgium, about 60% of the households had an access to internet in 2007 (which rose to 

73% in 2010) (FPS Economy). 
6 Regular cyclists are here defined as cyclists commuting at least twice a week to their 

workplace. 
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slightly higher degree of injury severity (i.e. body injuries with either short- or 

long-term consequences for the cyclist). 
 

Last but not least, it is noteworthy that SHAPES data (unreported accidents) 

present some limitations. Besides the bias caused by the online data collection 

(see above), one can also deplore the fact that serious injuries and fatalities are 

expected to be strongly underreported in the survey. Accident-related data may 

indeed be not encoded anymore in the case where a serious fatality (physical 

disability) or a fatality occurs. The small number (49) of observations collected 

within the SHAPES online survey is also an important limitation, as it may 

affect the significance of the results. This is even more problematic when 

focussing on the Pentagon and the First Crown, which are characterised by 

smaller extents/areas and smaller sample sizes (9 observations are reported in 

the Pentagon, while 34 are observed in the First Crown). Confidence envelopes 

of the expected values computed for the network (cross) K-functions are however 

larger in such cases (low number of observations), which involves that the null 

hypothesis for CSR is less ‘easily’ rejected. Note that Figure 4.3 illustrates well 

such a statement. 

 

4.4 Methodology 

4.4.1 Comparative statistics and odds ratios 
 

In a first step, comparative statistics are computed in order to identify whether 

or not (un-) reported accidents are more likely to be associated with specific 

factors/variables (see Section 4.3.3 for further description). Such statistics here 

consist of Chi-Square adjusted tests and Fisher’s exact tests for independence (as 

regards discrete data), as well as Wilcoxon Rank-Sum tests (continuous data). 

The Chi-Square adjusted test – which is a continuity-adjusted version of the 

Pearson Chi-Square test (i.e. adjusted for the continuity of the Chi-Square 

distribution) – and the Fisher’s exact test are both used for discrete/nominal 

factors, characterized by small sample sizes. They test whether there is a 

significant difference between unreported and reported accidents in terms of 

spatial factors. The Wilcoxon Rank-Sum test (or Mann-Whitney U test) is a 

non-parametric alternative to the two-sample Student’s t-test7 and is here used 

in the case where factors are measured on a continuous scale. It tests whether 

these latter significantly differ (in their median values) between unreported and 

reported accidents. 
 

                                                
7 In most cases, the data assumptions of normality are not valid. 
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In a second step, odds ratios (ORs) and their lower and upper confidence 

intervals are computed in order to compare the odds of observing a specific 

factor in the unreported accident data set compared to the odds of observing it 

in the reported accident data set. In other words, they give us an insight of how 

likely a specific factor is observed at unreported accident locations, compared to 

reported ones. As a corollary, ORs might hence be helpful in identifying the 

locations where cycling accidents are the most likely to be unreported. 

 

4.4.2 Point pattern analyses in traffic-accident 

research 
 

Although spatial analysis of road accidents generally relies on data aggregated 

over definite spatial units and time periods, there are also some studies regarding 

each individual accident as a single point in space (with coordinates x,y) and 

aiming at exploring and/or understanding the spatial distribution of these points 

over a specific period of time (see e.g. Levine et al., 1995a; Jones et al., 1996; 

Yamada and Thill, 2004; Myint, 2008). On the one hand, segment- or area-based 

analyses are often conducted for administrative convenience, time constraints or 

in the case where accident data are available in aggregate form only (e.g. counts 

per road link or area). Such analyses have the advantage to eliminate some of 

the year-to-year fluctuations in the individual location of accidents, but they 

have the drawback to produce spatial errors (in the sense that accidents are not 

anymore individual locations in space) and lead to results that are dependent 

upon the set of spatial units on which the data are aggregated (Nicholson, 1985; 

Bailey and Gatrell, 1995; Levine et al., 1995b; Lawson, 2009). This latter 

problem – often referred in the literature to as the ‘modifiable areal unit 

problem’ (MAUP) – means that the modification of the size of the units is likely 

to conduct to different results and conclusions. On the other hand, point pattern 

analyses may be adopted whether data are available at the individual accident 

level, i.e. in the case where accurate information is available about the location 

of accidents in space (Yamada and Thill, 2004). Overall, most methods 

implemented for point pattern analyses either measure the global variation in the 

mean value of the spatial process (first-order effects), or examine the tendency 

for local deviations from the mean value caused by the spatial correlation 

structure of this process (second-order effects) (Bailey and Gatrell, 1995; 

O’Sullivan and Unwin, 2002). Methods investigating first-order effects are e.g. 

quadrat count analyses and kernel density estimations, while second-order effects 

are measured using e.g. nearest-neighbour distances and K-functions (Cressie, 

1993; Bailey and Gatrell, 1995; Fotheringham et al., 2000). 
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Point pattern analyses are here conducted for exploring (and comparing) the 

spatial patterns of reported and unreported cycling accidents. First, 

centrographic methods and kernel density estimations (in planar and network 

spaces) are briefly described in Section 4.4.2.1, and afterwards used as methods 

for initial point pattern exploration. Second, the basic concepts of the K-function 

and cross K-function methods are presented for the planar space as well as for 

the network space (Section 4.4.2.2). K-function methods are helpful in depicting 

the spatial distribution of both reported and unreported accident data sets, while 

cross-K function methods are used to examine the spatial distribution of these 

accidents with respect to specific (spatial) factors. 

 

4.4.2.1 Initial point pattern exploration 
 

Centrographic methods 

 

Centrographic methods consist of measures of central tendency and spatial 

dispersion of the spatial point pattern. Four measures are here used: (1) spatial 

mean centre, (2) central feature, (3) standard distance, and (4) standard 

deviational ellipse. First, the spatial mean centre identifies the average location 

of the point pattern, i.e. the mean latitude and mean longitude of all the point 

events; it hence corresponds to the centre of gravity of this point pattern. 

Second, the central feature provides the most centrally located feature in a 

spatial point pattern. Third, the standard distance (or standard distance 

deviation) measures the standard deviation of the point pattern around the mean 

centre, i.e. the degree of spatial dispersion or compactness of the point 

distribution around this centre. Last but not least, the standard deviational 

ellipse computes the directional trend of a point distribution. This latter method 

calculates the standard deviation separately for the x and y coordinates (from 

the mean centre), which then defines the axes of the so-called standard 

deviational ellipse. The major axis of the ellipse is in the direction of maximum 

dispersion and is at right angles to the minor axis (which is in the direction of 

minimum dispersion). In other words, such a measure then exhibits the spatial 

dispersion and the direction/orientation of a point distribution in space. 
 

Although these measures are useful in summarizing a point distribution, they 

have the drawback to be affected by outliers and do not investigate the second-

order effects of the distribution (i.e. the spatial interactions between points). For 

further details on these measures, refer to Ebdon (1985), Fotheringham et al. 

(2000), Myint (2008) and ESRI (2009). 
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Kernel density estimations (KDE) 
 

Kernel density estimation (KDE) is commonly used to estimate the density of 

points in space (Bailey and Gatrell, 1995). Such a technique computes a smooth 

estimate of a probability density over space from an observed point pattern. 

Visually, it may evoke three-dimensional humps (or kernels) placed at locations s 

and then summed over space to obtain a density estimate for the point 

distribution (Cressie, 1993; Bailey and Gatrell, 1995; Fotheringham et al., 2000). 

Formally, the density (or intensity) at location s is noted λ(s) and is defined as: 
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where s is a location in the studied area ℜ (or ‘study region’), s1, …, sn are the 

locations i of the n observations/events (e.g. cycling accidents; i = 1, …, n), k() is 

the kernel function, and h is the bandwidth (also called the smoothing parameter 

or window width). The bandwidth corresponds to the radius of a circle centred 

on s and within which observations si are ‘taken into account’ to compute λ(s). 

Its selection determines the amount of smoothing of the data: large bandwidths 

will exhibit flat densities λ(s) and will highlight regional patterns, whereas small 

bandwidths will lead to spiky densities (centred on si) and will underscore local 

patterns (Bailey and Gatrell, 1995; Fotheringham et al., 2000). The kernel 

function k() is a probability density function used to determine the distance 

decay effect within the bandwidth (Bailey and Gatrell, 1995; Xie and Yan, 

2008). In the literature, the most commonly used kernel functions are of 

Gaussian, Quartic, Minimum variance, Epanechnikov, negative exponential, or 

Conic functional forms (Fotheringham et al., 2000; Schabenberger and Gotway, 

2005; Xie and Yan, 2008). The kernel function and – more particularly – the 

bandwidth are hence two key parameters about which the analyst has to make 

choices (see Silverman (1986) and Brunsdon (1995) for a further discussion on 

the selection of these parameters). 
 

In the case where the spatial phenomenon is analysed on a network (such as road 

accidents), the KDE as defined in Equation 4.1 is likely to provide biased 

estimates since it assumes that the study region is represented by a homogeneous 

two-dimensional planar space, where the distances are Euclidean (Yamada and 

Thill, 2004; Okabe et al., 2006a, 2006b; Xie and Yan, 2008; Okabe et al., 2009). 

A KDE based on network distances between point events would indeed be more 

appropriate (relative to Euclidean distances) when these events occur only on a 

one-dimensional subset of the planar space (i.e. the network). For instance, a 

planar KDE applied to a network-constrained distribution of points could lead to 

high densities detected at locations si, whereas lower densities could be obtained 
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when applying the KDE on a network space (imagine e.g. two close parallel 

streets, without any intersection and with one accident on each of these). As a 

consequence, the planar assumption applied to the distribution of network-

constrained points is no longer valid. Okabe et al. (2009) recently extended the 

ordinary KDE method (or ‘planar KDE’) to a network space, assuming that: (1) 

point events are constrained on a network, and (2) distances between two of 

these points are computed on that network (instead of being Euclidean-based). 

In this chapter, a network KDE called the ‘equal split discontinuous kernel 

function8’ is estimated from SANET in order to get insight about the density of 

(reported) cycling accidents on the Brussels’ network. Interestingly, this kernel 

function satisfies five properties: it is unbiased, unimodal, symmetric with 

respect to two kernel centres, invariant with respect to a vertex angle, and the 

kernel centre coincide with the modal point. Nevertheless, the estimator does not 

satisfy continuity at each node of the network, as well as it may lead to unequal 

densities for equal distances in the kernel (in the case where vertices are present) 

(see Okabe et al. (2009) for further details). 

 

4.4.2.2 Univariate and bivariate K-function analyses 
 

Planar and network K-functions (univariate analysis) 
 

The reduced second moment measure or Ripley’s K-function (Ripley, 1976, 1981) 

is commonly used for analysing the spatial distribution of observed events/points 

over a wide range of scales on an infinite homogeneous plane (Cressie, 1993; 

Bailey and Gatrell, 1995; Jones et al., 1996; Fotheringham et al., 2000). 

Assuming a planar space, the K-function – noted K(h) – is defined as follows: 
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where λ is the intensity of the studied point process P (i.e. the number of points 

in a given set P divided by the area of the study region), E[.] is the expectation 

operator, and distance h ≥ 0. More concretely, the K-function for a given 

Euclidean distance h corresponds to the average number of points counted in a 

circle of radius h around a (randomly chosen) point in P, divided by the 

intensity of the point process P. In particular, a suitable estimate of K(h) for an 

                                                
8 Note that a ‘continuous’ function also exists. This latter makes the kernel function continuous 

around the vertices of the network. It is not recommended in the case where the network 

includes many short links, since it increases the computational complexity of the function 

(Okabe et al., 2009). 
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observed set of n points (p1, …, pn) distributed over a study region with area R is 

given by (Diggle, 1983; Boots and Getis, 1988; Gatrell et al., 1996): 
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where λ = n/R, dij is the Euclidean distance between the points pi and pj, and 

Ih(dij) is an indicator function which is 1 if dij ≤ h, and 0 otherwise. In order to 

test whether the observed point distribution is regular, clustered or random, the 

K-function estimated for the observed distribution – i.e. ( )hK̂  – is compared with 

the theoretical value of K(h) obtained under complete spatial randomness (CSR), 

following the homogeneous Poisson point process (see Cressie (1993) for further 

information on the CSR concept). The null hypothesis for CSR is hence tested in 

order to detect the presence of clustering or dispersion in the observed point 

pattern. If the points are uniformly and independently distributed over space 

(i.e. under CSR), the expected number of points within an Euclidean distance h 

of a randomly chosen point is λπh2, and then the theoretical value K(h) = πh2 

for all values of h. This suggests that the observed points are spatially clustering 

if ( )hK̂  > πh2, while ( )hK̂  < πh2 indicates the presence of regularity in the 

observed point pattern (i.e. the points are repelling or are dispersing over space). 

The null hypothesis for CSR is then rejected if the observed points are spatially 

clustering or repelling, i.e. whether there is a significant deviation of the 

observed estimate ( )hK̂  from a randomly generated point process (estimated by 

K(h) = πh2). 
 

Besides the fact it allows spatial dependence to be analysed over a wide range of 

scales, the K-function has the advantage to handle all point-to-point Euclidean 

distances to analyse the point distribution on a planar space, whereas the nearest 

neighbour analysis just accounts for the nearest neighbor distances between 

points. However, as for KDE (in Section 4.4.2.1), the assumption of a continuous 

infinite plane is problematic in the case where the point process is inherently 

constrained on a (finite) network space (Okabe and Yamada, 2001). For such a 

network-constrained process, the use of the K-function over a planar space – 

which is termed here the ‘planar K-function’ – would indeed result in the over-

detection of clustered patterns (so leading to possible Type I errors) since the 

actual network distances between points are underestimated when computed 

over a planar space (Yamada and Thill, 2004; Dai et al., 2010). This hence 

suggests that the planar K-function should be extended to a network space. For 

a set of points P distributed according to the binomial point process along a 

finite network LT, Okabe and Yamada (2001) then define the network K-function 

as: 
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where ρ = n/|LT| is the number of points of P divided by the total network 

distance |LT| (i.e. the density of points over LT), and E(.) is the expected value 

with respect to all possible locations of p, that are assumed to follow a stochastic 

point process called the ‘binomial point process’. The assumption of the binomial 

point process is based on the hypothesis that all points of P are uniformly and 

independently distributed over the network LT (in other words, all points are 

located at random over LT). This hence suggests that points of P are spatially 

interacting if this hypothesis is rejected (e.g. they may spatially cluster or repel). 

For an observed point pattern (p1, …, pn), a suitable estimate of Knet(h) is given 

by (Okabe and Yamada, 2001; Yamada and Thill, 2004): 
 

( ) ∑∑
= ≠−

=
n

i

n

ji
ijh

Tnet sI
nn

L
hK

1

)(
)1(

ˆ      (4.5) 

 

where sij is the network distance between the points pi and pj, and Ih(sij) is an 

indicator function which is 1 if sij ≤ h, and 0 otherwise. Equation 4.5 is here 

called the ‘observed network K-function’ for a definite set P of points9. As 

limitation, such a formulation disregards the point distribution outside the study 

region and hence does not correct the first type of edge effect10. It however has 

the advantage to eliminate the second type of edge effect since the statistic (in 

Equation 4.5) is properly extended to a finite space (i.e. the network space) 

rather than being based on the strong assumption that the (network-constrained) 

point process occurs on an infinite planar space (Okabe and Yamada, 2001; 

Yamada and Thill, 2004; Myint, 2008). It is hence not necessary to adjust the 

formulation of the network K-function as it is commonly done in the planar case 

(Okabe et al., 2006b). 
 

For both planar and network K-functions, confidence envelopes (or intervals) of 

the expected/theoretical values (i.e. K(h) or Knet(h)) are estimated under the null 

hypothesis of CSR (binomial point process) in order to test the randomness of 

the observed point pattern at all possible scales. In other words, regarding the 

network case in particular, the statistical test consists in comparing the observed 

values of the network K-function ( )hK netˆ  (computed using the observed data) 

                                                
9 See Okabe and Yamada (2001) and Yamada and Thill (2004) for further details about the 

formulation of the network K-function. 
10 Two types of edge / boundary effects exist in spatial statistics. It occurs (1) when points 

outside the study region are disregarded, and (2) when a statistic that is based on the 

assumption that a point process occurs in an infinite space is applied to a finite space (Okabe 

and Yamada, 2001; Yamada and Thill, 2004; Myint, 2008). 
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to the envelope of the expected/theoretical values of the network K-function 

Knet(h) computed under CSR. Monte Carlo simulations are here used to compute 

(under CSR) the expected values of Knet(h) as well as their upper and lower 

significance intervals at the 5% (pseudo-) significance level. Then, if the values of 

( )hK netˆ  lie within the confidence envelope of Knet(h) at a definite distance, we 

may conclude that the randomness of the observed point pattern is not rejected 

at that distance. If ( )hK netˆ  is above the upper interval of Knet(h), then it suggests 

that the observed points are spatially clustering and that the randomness of the 

observed point pattern may be rejected. Conversely, if ( )hK netˆ  is below the 

lower envelope, then the randomness of the observed point pattern may be 

rejected and the distribution of points tends towards significant regularity or 

dispersion, i.e. they are repelling over space (Bailey and Gatrell, 1995; Spooner et 

al., 2004; Yamada and Thill, 2004; Deckers et al., 2005). Within the framework 

of this chapter, the univariate network K-function analyses are performed using 

SANET (Okabe et al., 2006a, 2006b), with the aim to test whether reported and 

unreported cycling accidents tend to cluster (or repel) over a network space. 

 

Planar and network cross K-functions (bivariate analysis) 
 

The ‘cross-K function method’ – also called the ‘bivariate K-function method’ – 

is used to compare the distribution of two sets of points, A and B. Such a 

method allows examining whether the points in A tend to cluster, disperse or 

locate at random with respect to the points in B (Cressie, 1993; Bailey and 

Gatrell, 1995). To examine such (spatial) relationships between A and B, we 

make the null hypothesis that points in A are distributed according to a 

homogeneous Poisson point process (i.e. under CSR). This assumption implies 

that points in A are uniformly and independently distributed over space, 

regardless of the distribution of points in B (note that no assumption is made 

with respect to this latter). Considering the planar case, the above hypothesis is 

examined by defining the cross K-function of A relative to B (Bailey and Gatrell, 

1995): 
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where λa is the density of points of A (λa = na/R, where na is the total number of 

points in the set A), and E(.) is the expected value of the number of points in A 

(which follow a homogeneous Poisson point process) with respect to the points in 

B. Assuming two observed point patterns A (‘non-basic’ points) and B (‘basic’ 

points), the observed cross-K function of A relative to B is estimated as follows 

(ibid.): 
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{ }
anj aaA ,...,  where 1== { }

bni bbB ,...,  and 1== , na is the total number of 

points aj in A, nb is the total number of points bi in B, dij is the distance between 

aj and bi, and Ih(dij) is an indicator function which is 1 if dij ≤ h, and 0 otherwise. 

In order to test the null hypothesis, the observed values )(ˆ hK ba
 are then 

compared to the expected / theoretical values Kba(h) = πh2 obtained under CSR. 

If )(ˆ hK ba
 significantly deviate from Kba(h), then the null hypothesis is rejected 

and it may be inferred that points A (Bailey and Gatrell, 1995): 

(1) either tend to spatially cluster around points B, if )(ˆ hK ba
 > upper 

intervals of Kba(h) 

(2) or tend to spatially repel around points B, if )(ˆ hK ba
 < lower intervals 

of Kba(h) 
 

In other words, the cross-K function method aims at examining the locational 

tendency of non-basic points A with respect to basic points B, i.e. if points A 

spatially cluster, repel or distribute at random around points B (Myint, 2008). 
 

Regarding the network case, biased results and conclusions may be obtained if 

the planar cross-K function is used (instead of its network equivalent) to analyse 

the spatial interactions between two inherently network-constrained sets of 

points (Okabe et al., 2006a). As a result, Okabe and Yamada (2001) then 

extended the formulation of the planar cross-K function to a network space. 

They define the network cross-K function of A relative to B as: 
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where ρa is the density of points of A on the network (ρa = na/|LT|) and E(.) is 

the expected value of the number of points in A (which follow a binomial point 

process) with respect to the points in B. Considering two observed point patterns 

{ }
anj aaA ,..., 1== { }

bni bbB ,...,  and 1==  that are constrained to occur on a 

network, the observed network cross-K function of A relative to B is given by 

(Okabe and Yamada, 2001): 
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where sij is the network distance between the points aj and bi, and Ih(sij) is an 

indicator function which is 1 if sij ≤ h, and 0 otherwise. Once again, the null 

hypothesis is tested by comparing the observed values )(ˆ hK net
ba

 with the 

expected values 2)( hhK net
ba π=  obtained under CSR (according to the binomial 

point process). Monte Carlo simulations are used to estimate the expected values 

and their confidence envelopes at the 5% significance level. In this chapter, the 

observed and expected values of the network cross-K functions are estimated 

using SANET, in order to inspect whether the reported and unreported cycling 

accidents significantly cluster (or repel) with respect to definite spatial factors. 

 

4.5 Results and discussion 
 

Empirical analyses are here conducted to explore/compare the spatial patterns 

and locational tendencies (around specific infrastructure factors) of reported and 

unreported cycling accidents. Section 4.5.1 first presents the results of 

comparative statistics and odds ratios in order to get a first insight into the 

relationships between the reported and unreported cycling accidents (in terms of 

the observed infrastructure factors). Such a preliminary step is then completed 

by an initial point pattern analysis (Section 4.5.2), aiming at exploring the 

spatial distribution of these cycling accidents through the implementation of 

centrographic methods and KDE. Section 4.5.3 then ends with the results of the 

univariate and bivariate network K-functions, which aim at examining if 

reported and unreported cycling accidents both cluster over space and/or if they 

concentrate around specific infrastructure factors. 

 

4.5.1 Comparative statistics and odds ratios 
 

Tables 4.1 and 4.2 exhibit a few statistics aiming at comparing the infrastructure 

factors observed for reported (DGSEI) and unreported (SHAPES) cycling 

accidents. Depending on the type of variable (discrete or continuous), different 

comparative statistics are provided in those tables. Discrete factors (Table 4.1) 

represent factors for which the presence/absence of a specific infrastructure is 

noted 1/0, while continuous factors (Table 4.2) correspond to network-based 

distance measures between the cycling accidents and the infrastructures under 

study. In Table 4.1, both Chi-Square adjusted tests and Fisher’s exact tests for 

independence indicate that – in most cases – the type of accident (unreported / 

reported) is not significantly associated with a particular type of infrastructure. 

This hence suggests that the reported and unreported cycling accidents overall 

occur at places characterized by similar infrastructure factors. Odds ratios (OR) 
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not only confirm these results (overall, OR values are around 1), but also 

quantify the odds of observing an unreported cycling accident for a definite 

infrastructure factor, compared to reported accidents.  
 

Significant associations (accident–infrastructure) are however highlighted in 

Table 4.1. In comparison with reported cycling accidents, our findings show that 

unreported accidents are about 3 times more likely to occur in areas where 

30km/h speed limits are imposed and, more generally, in traffic-calming areas. 

The reduced differential between the speed of slow and fast modes (created by 

the lower speed limits) probably explains such a result. In the case where they 

collide with a motorized vehicle in such areas, the cyclists generally incur slighter 

injuries (and/or material damages) and do not feel the need to call the police. A 

high rate of underreporting then results from such a lower degree of severity of 

the accidents (so explaining why unreported cycling accidents seem to be more 

likely to occur in traffic-calming areas). Regarding the places where no cycle 

facility is built as well as the streets where contraflow cycling is permitted, our 

results also suggest that cycling accidents are more likely to be unreported here 

than elsewhere. Such findings should nevertheless be interpreted with great 

caution since the survey data (SHAPES) do not include any information about 

the traffic direction of the cyclist involved in the (unreported) accident. This 

remark is even more true with respect to the cycling accidents occurring in 

streets where contraflow cycling is permitted11. In such a case, a bias is expected 

to occur and may lead to a wrong interpretation of the results. 
 

In Table 4.2 (continuous factors), the Wilcoxon Rank-Sum tests – also called 

‘Mann-Whitney tests’ – suggest that there are significant differences in the 

proximity to specific locations along the network (i.e. facilities, services, etc.) 

between reported and unreported cycling accidents. Interestingly, the unreported 

accidents seem to occur closer (compared to the reported ones) to European 

administrative buildings, superior schools (i.e. high schools and universities), 

shopping centres, cultural buildings, hospitals, and specific types of parking areas 

(park-and-ride, taxi, public and private parking areas). As for traffic-calming 

areas, the greater occurrence of unreported cycling accidents close to most of 

these facilities and services is expected to be explained by a lower differential of 

speed between cyclists and motorized vehicles. Except for parking areas, several 

types of traffic-calming measures are generally taken in the neighbourhood of 

such attractive facilities / services12 in order to reduce the risk and the severity 

of accidents involving vulnerable road users (such as pedestrians and cyclists). 

                                                
11 In such a case, the unreported cycling accidents are (erroneously) assumed to occur in the 

contraflow direction if the accident occurred in a street where contraflow cycling is allowed. 
12 The term ‘attractive’ here refers to the fact a consistent number of trips is attracted by the 

facility / service. 
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For instance, speed limits (30km/h) and physical measures (e.g. speed humps) 

are frequently implemented near schools and hospitals, while pedestrian areas are 

often observed in the proximity of shopping centres and cultural buildings 

(mainly located in the historic centre of the city, in the case of Brussels). Such 

measures are then expected to reduce the degree of accident severity and – as a 

result – the registration rate among (slight) cycling accidents.  
 

As a result of these comparative statistics, it can be concluded here that reported 

and unreported cycle accidents exhibit similar locational tendencies, i.e. they 

distribute in a similar way around specific types of road infrastructures and 

facilities. Areas where there is a lower differential of speed between fast and slow 

road users however constitute an exception to this general rule, thus suggesting 

that cycling accidents are more likely to be unreported here. Great care should 

then be taken when analysing (reported) cycling accidents in these areas. 

 

4.5.2 Initial point pattern exploration 
 

Figure 4.2 illustrates the point distributions of unreported and reported cycling 

accidents (respectively), as well as the centrographic measures computed for 

these. As expected, these maps show that most of reported and unreported 

cycling accidents occur in the Pentagon and in the First Crown, i.e. in districts 

where the densities and the number of cycling trips (generated and/or attracted 

by these high densities) are high. Strikingly, they also indicate that the spatial 

mean centres computed for each distribution are very close to each other, and 

that the central features locate at the same place in Brussels (i.e. in the Central 

Business District, near the European and regional administrations). Regarding 

the standard distances, the spatial distribution of reported cycling accidents 

exhibits the highest deviation from the spatial mean, whereas unreported 

accidents tend to be less spatially dispersed. The standard deviational ellipses 

finally provide further information in highlighting a northwest-southeast 

orientation for both spatial distributions of accidents. As a conclusion of these 

four graphical measures, we clearly suggest that unreported cycling accidents 

distribute over space in an analogous way to reported cycling accidents (and vice 

versa), all the more so the lower spatial dispersion of unreported cycling 

accidents is probably explained by the low number of accidents collected through 

the on-line survey (especially for suburbs located in the Second Crown). 

 

 

 

 

 



 

 

 

Table 4.1: Infrastructure factors (discrete) – Descriptive and comparative statistics 
 

 ΨΨΨΨ    (description)    NS (%) ND (%) χχχχ2 test (p) F test (p) OR (LCI-UCI) 

Bridge - 0 (0.0) 12 (2.0) 0.65 1.00 n.a. n.a. 

Tunnel† - 0 (0.0) 0 (0.0) n.a. n.a. n.a. n.a. 

Traffic-calming area 1 (30 km/h) 12 (24.5) 55 (9.2) 0.00 0.00 3.21 (1.58-6.52) 

  2† (pedestrian) 0 (0.0) 3 (0.5) 1.00 1.00 n.a. n.a. 

  3† (residential) 0 (0.0) 2 (0.3) 1.00 1.00 n.a. n.a. 

  4 (all types) 12 (24.5) 60 (10.0) 0.00 0.01 2.92 (1.44-5.90) 

Crossroad 0 (no crossroad) 17 (34.7) 266 (44.3) 0.25 0.23 0.67 (0.36-1.23) 

  1 (yield/stop) 6 (12.2) 66 (11.0) 0.98 0.81 1.13 (0.46-2.75) 

  2 (right-of-way) 12 (24.5) 111 (18.5) 0.40 0.34 1.43 (0.72-2.83) 

  3 (traffic light) 11 (22.4) 106 (17.7) 0.52 0.44 1.35 (0.67-2.73) 

  4 (roundabout) 3 (6.1) 40 (6.7) 1.00 1.00 0.91 (0.27-3.07) 

  5† (right-turn) 0 (0.0) 9 (1.5) 0.82 1.00 n.a. n.a. 

  6† (pedestrian light) 0 (0.0) 2 (0.3) 1.00 1.00 n.a. n.a. 

Tram tracksa 0 (no tram track) 40 (81.6) 495 (82.5) 1.00 0.85 0.94 (0.44-2.00) 

  1 (crossing tracks) 1 (2.0) 34 (5.7) 0.45 0.51 0.35 (0.05-2.59) 

  2 (reserved lanes) 3 (6.1) 22 (3.7) 0.64 0.43 1.71 (0.49-5.94) 

  3 (on-road tracks) 5 (10.2) 49 (8.2) 0.82 0.59 1.28 (0.48-3.37) 

Cycle facilitya 0 (no cycle facility) 46 (93.9) 486 (81.0) 0.04 0.02 3.60 (1.10-11.77) 

  1 (unidirectional) 2 (4.1) 30 (5.0) 1.00 1.00 0.81 (0.19-3.49) 

continued on next page 
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continued 

 Ψ Ψ Ψ Ψ (description)    NS (%) ND (%) χχχχ2 test (p) F test (p) OR (LCI-UCI) 

 Cycle facilitya 2 (bidirectional) 0 (0.0) 22 (3.7) 0.34 0.40 n.a. n.a. 

  3 (marked lane) 1 (2.0) 42 (7.0) 0.30 0.24 0.28 (0.04-2.06) 

  4 (suggested lane) 0 (0.0) 15 (2.5) 0.53 0.62 n.a. n.a. 

  5† (bus/bicycle lane) 0 (0.0) 5 (0.8) 1.00 1.00 n.a. n.a. 

Parking area (aspect-

based)a 

0 (no parking area) 25 (51.0) 348 (58.0) 0.42 0.37 0.75 (0.42-1.35) 

1 (longitudinal) 22 (44.9) 245 (40.8) 0.69 0.65 1.18 (0.66-2.12) 

  2† (head-in angle) 0 (0.0) 2 (0.3) 1.00 1.00 n.a. n.a. 

  3† (back-in angle) 0 (0.0) 1 (0.2) 1.00 1.00 n.a. n.a. 

  4† (perpendicular) 1 (2.0) 2 (0.3) 0.55 0.21 6.23 (0.55-69.94) 

  5† (other types) 1 (2.0) 2 (0.3) 0.55 0.21 6.23 (0.55-69.94) 

Contraflow cyclinga - 15 (30.6) 32 (5.3) 0.00 0.00 7.83 (3.87-15.84) 
 

a Variables for which DGSEI and SHAPES accidents are not entirely comparable, given that the street side where the infrastructure is built (or where the 

measure comes into effect) is not taken into account for SHAPES accidents 
† Less than 10 observations for both SHAPES and DGSEI accidents; care must be taken when analyzing the corresponding data 

ΨΨΨΨ: Nominal variable, taking on different values for each infrastructure variable (one value = one kind of infrastructure or facility; see Appendix C.1 for further 

details) 

n.a.: not available (insufficient number of observations / accidents) 

NS (%): number and percentage (%) of SHAPES accidents (bold: % SHAPES accidents > % DGSEI accidents) 

ND (%): number and percentage (%) of DGSEI accidents (bold: % DGSEI accidents > % SHAPES accidents) 

χ2 test (p): p-value of the Chi-Square adjusted test for independence (bold: independence not rejected) 

F test (p): p-value of the Fisher's exact test for independence (bold: independence not rejected) 

OR: Odds Ratio; LCI: Lower Credible Interval of the OR (2.5%); UCI: Upper credible interval of the OR (97.5%) 
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Table 4.2: Infrastructure factors (continuous) – Descriptive and comparative statistics 
 

    ΨΨΨΨ (description)    SHAPES accidents DGSEI accidents Wilcoxon test (p) 

Dmean Dstd Dmean Dstd 

Discontinuity - 325.0 281.5 356.4 337.2 0.74 

Parking area 

(function-based) 

1 (park&ride, public, 

private) 
467.1 292.6 629.5 461.6 0.02 

 
2 (delivery) 311.1 314.3 407.0 473.2 0.18 

 
3 (diplomatic corps) 662.1 555.0 915.0 908.2 0.17 

 
4 (disabled) 172.7 112.2 205.3 252.3 0.82 

 
5 (taxi) 396.4 239.2 639.4 590.4 0.01 

 
6 (all types) 111.4 95.3 142.6 191.0 0.51 

Public transport 1 (bus stop) 390.0 328.0 360.9 327.2 0.38 

 
2 (tram stop) 635.7 445.0 683.3 602.2 0.90 

 
3 (all types of stops) 345.8 314.0 283.1 266.8 0.14 

Public 

administration 
1 (European buildings) 1550.3 1213.7 2170.2 1617.6 0.01 

 
2 (regional buildings) 1657.9 1291.8 1774.8 1311.2 0.49 

 
3 (all types of buildings) 1129.4 972.7 1458.8 1180.5 0.07 

School 1 (primary or secondary) 376.2 222.8 389.6 265.6 0.88 

 
2 (international prim./sec.) 1437.2 1053.3 1884.2 1456.3 0.06 

 
3 (superior) 687.2 574.2 938.7 820.9 0.02 

 
4 (all types) 266.4 167.1 335.3 250.3 0.06 

continued on next page 
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continued 

    ΨΨΨΨ (description)    SHAPES accidents DGSEI accidents Wilcoxon test (p) 

Dmean Dstd Dmean Dstd 

Industrial estate - 1897.5 731.7 1780.6 955.8 0.11 

Shopping center - 1290.9 1113.5 1723.1 1297.8 0.01 

Supermarket - 649.4 424.1 754.4 629.7 0.47 

Service station - 473.4 239.9 539.7 334.3 0.41 

Cultural building - 435.2 313.5 611.3 516.3 0.02 

Sports complex - 1125.9 550.3 1119.5 547.8 0.87 

Playground - 653.3 361.7 618.8 373.3 0.44 

Religious building 1 (synagogue) 2386.9 1612.5 2775.5 1825.9 0.19 

 
2 (protestant) 763.3 521.7 2775.5 1825.9 0.00 

 
3 (orthodox) 1553.1 1199.0 1767.8 1388.5 0.37 

 
4 (mosque) 1110.8 842.6 1416.3 1200.8 0.22 

 
5 (catholic) 486.9 245.2 530.5 319.1 0.59 

 
6 (all types) 406.1 248.0 411.5 310.0 0.78 

Police building - 865.7 535.1 850.3 520.1 0.84 

Hospital - 983.5 745.8 1197.9 850.7 0.03 

Embassy - 722.0 569.6 1031.0 973.4 0.10 
 

ΨΨΨΨ: Nominal variable, taking on different values for each infrastructure variable (one value = one kind of infrastructure or facility; see Appendix C.1 for further 

details) 

Dmean: average network distance to the closest 'point feature' (e.g. public transport stop, discontinuity) (in meters)  
Dstd: standard deviation of network distances (accidents-closest point features) 

Wilcoxon test (p): p-value of Wilcoxon Rank-Sum test (Mann-Whitney). Significant differences are in bold. 
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Figure 4.2: Centrographic measures for the distribution of (a) unreported 

cycling accidents (SHAPES survey) and (b) reported cycling accidents (DGSEI 

data) 

 

 

Network kernel densities are also computed with the aim to: (1) get a first 

insight into the location of black spots of cycling accidents along the network; 

and (2) visually identify the infrastructure factors that could play a role in the 

occurrence of cycling accidents, at the scale of the BCR. The equal-split 

discontinuous kernel method is here applied in SANET v.4 (beta) to compute 

the densities of cycling accidents. As illustration, Appendix C.2 zooms in the 

Brussels’ Pentagon and shows the network densities in the case where cycling 

accidents are officially reported by the police (DGSEI data)1. Such exploratory 

results prove to be useful in identifying (visually) the factors that could play a 

role in the occurrence of the (reported) cycling accidents. Unsurprisingly, 

segments with high densities of accidents are observed at major intersections (i.e. 

intersections made up of a large number of road legs) as well as on roads 

characterized by busy traffic conditions and passing through dense employment 

areas (e.g. near to shopping centres). Examples of such high-density segments 

are the boulevards oriented in a southwest-northeast direction in the Pentagon 

(referred as ‘A’ in Appendix C.2) and the intersections between the inner 

pentagon-shaped ring road and the major avenues (B). These results are in line 

                                                
1 As regards unreported cycling accidents, the densities are not illustrated here because of the 

small sample size collected for the Pentagon (which provides an incomplete representation of the 

black spots of cycling accidents). 
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with previous results in the literature (see e.g. Anderson, 2009). Conversely, low-

density segments (< 0.2) are mainly observed along roads with low volumes of 

motorised traffic and going across residential districts (C). Regarding the 

densities obtained for other parts of the BCR (in the First and Second Crowns), 

it also turns out that cycling accidents cluster at discontinuities along the bicycle 

network and on roads equipped with on-road tram tracks (and – to a lesser 

extent – on roads equipped with crossable reserved lanes). 

 

4.5.3 Network K-functions and cross K-functions 
 

Network K-function and cross K-function methods are carried out at the scale of 

the three spatial subareas (i.e. the Pentagon, the First Crown and the Second 

Crown) in order to examine if the results differ from one subarea to another. 

Both methods are conducted in SANET v.4 beta2 and use 500 Monte Carlo 

simulations to estimate the expected network K-function as well as the 95% 

upper and lower confidence intervals. 

 

 

Table 4.3: Analysis of the spatial distribution of both unreported (SHAPES) 

and reported (DGSEI) cycling accidents, at the scale of 3 different subareas 
 

  Network           

K-function 

Network cross 

K-function† 

Study region Database (n) Pattern dc (m) Pattern dc (m) 

Pentagon 
DGSEI (82) N dc < 750 

N dc < 200 
SHAPES (9)‡ N dc = ∅ 

1st Crown 
DGSEI (356) C dc ≥ 0 

C dc ≥ 0 
SHAPES (34) C dc > 120 

2nd Crown 
DGSEI (600) C dc ≥ 0 

C dc ≥ 0 
SHAPES (49) C dc > 120 

 

† Basic points: DGSEI data; Non-basic points: SHAPES data 
‡ Small number of observations; great care is hence required when analyzing the results 

n: number of points 

C: spatial clustering; N: no spatial pattern (randomness or independence) 

dc: distances values where significant spatial clustering is observed 

 

                                                
2 Note that the SANET team reports as minor error that the constant of the cross-K function is 

not divided by the number of basic points in SANET v4.beta. This however does not affect the 

statistical test of spatial randomness and the interpretation of the results (see 

http://sanet.csis.u-tokyo.ac.jp/sub_en/errata.html). 
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On the one hand, the univariate network K-function method is used to test 

whether or not the reported (DGSEI) and unreported (SHAPES) cycling 

accidents cluster, repel or distribute at random along the network. Table 4.3 

indicates that, for the First and Second Crowns, both reported and unreported 

cycling accidents significantly cluster at almost all values of network distance 

(unreported accidents spatially cluster beyond 120m). As illustration for the 

Second Crown, graphics on the left side of Figure 4.3 indeed show that the 

observed values of the K-function (grey line) are to the left of the 5% upper 

confidence interval (upper dashed black line). In contrast, unreported accidents 

in the Pentagon are randomly distributed at all distances (the grey line appears 

within the 95% envelope in Figure 4.3, down right), while reported accidents 

only cluster up to a 750m distance and then distribute at random for larger 

distances (Figure 4.3, up right). 
 

 

 
 

 
 

Figure 4.3: Univariate spatial pattern analysis of both unreported (SHAPES) 

and reported (DGSEI) cycling accidents – Network K-function, Brussels’ 

Pentagon and Second Crown 
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The conclusions are then twofold: (1) the inferences about an observed spatial 

point pattern (e.g. spatial clustering, randomness, regularity) may differ 

depending on the spatial subarea considered by the analyst; (2) for a given 

spatial subarea, reported and unreported cycling accidents tend to distribute in a 

same/close way along the network (e.g. they both cluster along the network for a 

definite subarea). 
 

On the other hand, the bivariate network cross K-function method is applied in 

order to examine whether unreported and reported cycling accidents are 

observed in the vicinity of each other, and whether they have similar or different 

locational tendencies with respect to specific infrastructure factors. Table 4.3 and 

Figure 4.4 indicate that unreported cycling accidents tend to be located around 

reported accidents at the scale of the First and Second Crowns, whereas this 

only turns out to be the case for the shortest distances (< 200m)3 in the case of 

the Brussels’ Pentagon. Such findings hence support the fact that the results – 

and the interpretation of these latter – strongly depend on the chosen spatial 

subarea on which the point pattern analyses are conducted. They also bring 

some additional pieces of evidence that unreported and reported cycling 

accidents locate in the vicinity of each other, which suggests that they could 

occur at places characterized by similar infrastructure factors. This is confirmed 

in Table 4.4, where unreported and reported cycling accidents rarely show 

dissimilar point patterns when distributing around a definite infrastructure 

factor at the scale of a given spatial subarea. This is even truer as regards the 

Pentagon and the Second Crown, for which there is not the slightest 

dissimilarity in the patterns (probably because the Pentagon and the Second 

Crown are ‘too’ small and ‘too’ large spatial subareas, respectively). The 

selection of a definite spatial subarea may then be of importance, which suggests 

that there could be one subarea more suitable than another. Within the 

framework of this chapter, the First Crown is probably the best compromise, 

although it is here thought that several subareas may provide complementary 

information. For instance, they may be used as a helpful mean to check the 

consistency of the results, to select an appropriate spatial subarea, or to detect 

at which scale and from which distance threshold an observed point pattern (e.g. 

the cycling accidents) spatially clusters around specific locations (e.g. unreported 

cycling accidents gather around industrial estates beyond 5400m and only in the 

case where the Second Crown is the chosen spatial subarea). 
 

When observed, the dissimilarities (in the spatial point patterns) consistently 

occur at the scale of the First Crown and mostly concern bridges, marked cycle 

                                                
3 Note that network distances between 450 and 800m also show significant clustering over the 

network, in the case where reported cycling accidents are used as non-basic points in SANET 

(Table 4.3, Figure 4.4 on the left side). 
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lanes, head-in angle parking areas, and industrial estates. Although not 

significant for the shortest distances, spatial clustering of reported cycling 

accidents is observed around such locations, whereas the spatial pattern tends to 

be random as regards the unreported accidents. Except for industrial estates and 

both religious buildings, such a result is probably explained by the fact that the 

injury severity – and, then, the registration of the accidents – is higher when the 

cycling accident occurs on a marked cycle lane (door-related accidents), a bridge 

(reduced space), or near head-in angle parking (blind spot accidents). This could 

in turn explain why unreported cycling accidents distribute at random around 

these locations. Another explanation could be the low number of accidents 

registered by the SHAPES survey, although it might not be the most plausible 

one since the results are overall comparable to these obtained from the DGSEI 

data (whatever the spatial subarea). 

 

 

 
 

Figure 4.4: Locational tendency of unreported cycling accidents (SHAPES) 

with respect to reported cycling accidents (DGSEI) – Bivariate spatial pattern 

analysis, using the network cross K-function, Brussels’ Pentagon and Second 

Crown 

 

 

In line with the previous results focussing on the Pentagon, Table 4.4 also 

indicates that both unreported and reported cycling accidents invariably 

distribute at random with respect to each infrastructure factor. Conversely, 

cycling accidents tend to gather around most of these factors (at all values of 

distances) in the case where the First or Second Crown is selected as spatial 

subarea. The presence of crossroads, tram tracks, discontinuities in the bicycle 

network, schools, shopping centres, or parking areas – among other factors – 

generally tend to be spatially associated with (unreported and reported) cycling 

accidents. 
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Figure 4.5: Locational tendency of both unreported (SHAPES) and reported 

(DGSEI) cycling accidents with respect to: (1) tram stops (up), and (2) on-road 

tram tracks (down) – Bivariate spatial pattern analysis, using the network cross 

K-function and carried out at the scale of the First Crown 

 

 

Although little dissimilarity in the overall spatial patterns is noted between 

unreported and reported cycling accidents (especially as regards the Pentagon 

and the Second Crown), some subtle differences can however be emphasized at 

some (short) ranges of distances and/or in the level of significance of the spatial 

clustering of accidents around infrastructures. Such differences are not only 

present between unreported and reported accidents (the reported ones showing 

the highest levels of significance), but are also noted between the infrastructure 

factors. For instance, our results show that – at the scale of the First Crown – 

unreported cycling accidents significantly cluster around tram stops beyond 

about 2000m of network distance (Figure 4.5, up right), whereas reported cycling 

accidents show significant spatial clustering for all values of distance (Figure 4.5, 

upper left). As a comparison, both reported and unreported cycling accidents 

more significantly cluster around on-road tram tracks than around tram stops 
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(Figure 4.5, down) given that the observed curve is to the left of the expected 

one for almost all values of network distance (except for a short range of distance 

spreading from 370 to 670m, as regards unreported accidents). 
 

 

Table 4.4: Analysis of the spatial distribution of reported and unreported 

cycling accidents, with respect to infrastructure factors and using 3 spatial 

subareas (Pentagon, 1st and 2nd Crowns) 
 

Infrastructures   

(basic points) 

ΨΨΨΨ    (description)    nP n1C n2C P 1C 2C 

Bridgea - 7 85 159 NN CN FF 

Tunnela - 10 74 156 NN NN FF 

Traffic-calming areaa 1 (30 km/h) 213 837 2589 NN CC FF 

  2 (pedestrian) 142 176 198 NN CC FF 

  3 (residential) 6 17 81 NN CC FF 

  4 (all types) 361 1030 2868 NN CC FF 

Crossroad 1 (no crossroad) 122 711 1660 NN CC FF 

  2 (yield/stop) 417 2587 6061 NN CC FF 

  3 (right-of-way) 147 671 1193 NN CC FF 

  4 (traffic light) 38 418 1263 NN CC FF 

  5 (roundabout) 45 235 568 NN CC FF 

  6 (pedestrian light) 12 51 143 NN CC FF 

Tram tracksa,b 1 (crossing tracks) 74 649 1147 NN CC FF 

  2 (reserved lanes) 26 227 341 NN CC FF 

  3 (on-road tracks) 31 313 604 NN CC FF 

Cycle facilitya,b 1 (unidirectional) 6 137 605 NN NN FF 

  2 (bidirectional) 6 78 480 NN NN FF 

  3 (marked lane) 53 404 899 NN CN FF 

  4 (suggested lane) 23 133 193 NN CC FF 

  5 (bus/bicycle lane) 42 106 118 NN CC FF 

Parking area 

(aspect-based)a,b 
1 (longitudinal) 1430 9802 21196 NN CC FF 

  2 (head-in angle) 34 302 700 NN CN FF 

  3 (back-in angle) 2 32 92 NN NN FF 

  4 (perpendicular) 96 501 1437 NN CC FF 

Contraflow cyclinga,b - 480 2034 3375 NN CC FF 

Discontinuity - 71 385 684 NN CC FF 

Parking area 

(function-based) 

1 (park & ride, public, 

private) 
29 75 156 NN CC CC 

  2 (delivery) 191 575 737 NN CC FF 

  3 (diplomatic corps) 18 242 384 NN CC CC 

  4 (disabled) 136 1296 2268 NN CC FF 

  5 (taxi) 24 93 136 NN CC CC 

  6 (all types) 398 2281 3681 NN CC FF 

continued on next page 
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continued 

Infrastructures   

(basic points) 

ΨΨΨΨ    (description)    nP n1C n2C P 1C 2C 

Public transport 1 (bus stops) 25 525 1050 NN CC FF 

  2 (tram stops) 18 300 505 NN CC CC 

  3 (all types) 43 793 1485 NN CC CC 

Public 

administration 
1 (European buildings) 0 53 66 NN CC FF 

  2 (regional buildings) 10 27 30 NN CC FF 

  
3 (all types of 

buildings) 
10 80 96 NN CC FF 

School 1 (primary, secondary) 42 269 574 NN CC CC 

  2 (international) 0 11 22 NN CC CC 

  3 (superior) 22 55 85 NN CC FF 

  4 (all types) 64 335 681 NN CC CC 

Industrial estate - 1 11 33 NN RN CC 

Shopping center - 13 23 28 NN CC FF 

Supermarket - 6 53 110 NN CC CC 

Service station - 5 77 194 NN CC FF 

Cultural building - 63 143 200 NN CC CC 

Sports complex - 5 17 57 NN NN FF 

Playground - 10 60 187 NN CC FF 

Religious building 1 (synagogue) 2 9 12 NN NN FF 

  2 (protestant) 15 104 130 NN CN FF 

  3 (orthodox) 2 16 18 NN CC FF 

  4 (mosque) 5 68 74 NN CN CC 

  5 (catholic) 13 64 127 NN CC FF 

  6 (all types) 37 261 361 NN CC CC 

Police building - 4 28 53 NN CC FF 

Hospital - 5 17 38 NN CC FF 

Embassy - 8 103 184 NN CC CC 
 

a Linear objects/features 
b The street side (where the infrastructure is built) is not taken into account 

ΨΨΨΨ: Nominal variable, taking on different values for each infrastructure variable (one value = one 

kind of infrastructure or facility; see Appendix C.1 for further details) 

C: spatial clustering; N: no spatial pattern (randomness or independence); R: regularity (or 

dispersion); F: failed to compute or lack of time. The first letter refers to DGSEI accidents, and 

the second one to SHAPES accidents (e.g. CN = spatial clustering for DGSEI accidents, and no 

spatial pattern for SHAPES accidents) 

nP ,n1C, n2C: number of points in the Pentagon, First Crown and Second Crown (respectively) 

-: not applicable 
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4.6 Conclusions 
 

The objective of this exploratory chapter was to provide further knowledge 

about the spatial distribution of ‘unreported’ cycling accidents, i.e. those that are 

not officially registered by the police and the DGSEI. It aimed at analysing 

whether or not unreported and reported cycling accidents showed similar spatial 

patterns on a network space (e.g. if they cluster with respect to each other along 

this network) and if they both had the same locational tendencies with respect to 

specific road infrastructures (e.g. if they both spatially cluster around bridges). 

Focussing on the Brussels-Capital Region, this chapter took advantage of 

combining official DGSEI data (= cycling accidents reported by the police, 

involving mainly slight body injuries with short- or long-term consequences for 

the cyclist) with those collected through an open-based online registration survey 

and for which there is no police record (= unreported cycling accidents, resulting 

in bruises, cramps and/or material damages). 
 

Comparative statistics and spatial point pattern analyses – using a combination 

of centrographic, KDE and network K-function methods – have shown to be 

useful in exploring (and comparing) the spatial distributions of reported and 

unreported cycling accidents. Comparative statistics first reveal that both 

reported and unreported cycling accidents tend to occur at rather similar 

locations, i.e. at locations where similar road infrastructures and activities are 

observed. More interestingly, they also suggest that cycling accidents are more 

prone to be unreported by police in areas where there is a lower differential of 

speed between cyclists and motorized vehicles (e.g. in traffic-calming areas, 

where speed limits and physical measures are frequently implemented by 

planners in order to lower the speed of motorists). Such a lower differential 

indeed reduces the injury severity of cycling accidents and – as a corollary – 

decreases the need to call the police (given that the cyclist can cure oneself 

and/or repair oneself the material damages). It then implies that registration 

efforts should be concentrated on areas where traffic-calming measures are taken 

(e.g. in the vicinity of schools, 30km/h areas, pedestrian areas, residential areas, 

etc.), especially if the purpose is to improve the recording of cycling accidents. 

Great caution is also recommended when analysing official databases of road 

accidents in these areas, given that underreporting rates of (slight) cycling 

accidents are expected to be higher here than anywhere else. Ignoring this may 

clearly lead to a biased interpretation about the safety effects related to traffic-

calming strategies (especially as regards the accident severity).  
 

Centrographic and network (cross) K-function methods support our previous 

results in indicating that unreported and reported cycling accidents show similar 

spatial patterns along the network and both cluster around the same 
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infrastructures. Although the definition of both types of accidents is not perfectly 

equivalent, our findings hence suggest that improving the accident registration 

for cyclists (e.g. through surveys, like ours) would not necessarily provide further 

knowledge about (unobserved) spatial factors associated with the occurrence of 

cycling accidents (except for a few factors, such as head-in parking areas). 

Official accident databases may then serve as a good basis for orienting policy 

decisions and (safety-oriented) investments at a regional scale, although a more 

complete registration of cycling accidents is required (and even recommended) if 

local safety treatments are intended by planners and/or policy-makers. 

Conversely, it also suggests that our survey data (SHAPES) may be considered 

as spatially representative of official accident databases and then hold the 

potential to provide some good insights in the actual spatial patterns of reported 

cycle accidents. Lastly, our findings not only highlight strong similarities in the 

locational tendencies of reported and unreported cycling accidents, but also 

emphasize the importance to select an appropriate spatial subarea for conducting 

point pattern analyses. It is indeed demonstrated here that the results of the 

network (cross) K-function methods strongly depend on the chosen spatial 

subarea and – hence – that they should be interpreted with great caution. At 

best, these methods should be carried out on several spatial subareas. 
 

From a methodological point of view, one can however deplore some major 

limitations here. K-function methods indeed have the drawback to be unable to 

test the significance of clustering along the network (Yamada and Thill, 2004). 

Also, cross-K function methods do not account for potential interrelationships 

between the infrastructure factors. For instance, the locational tendency of 

cycling accidents to cluster around one specific infrastructure factor does not 

necessarily mean that a causal relationship exists between this factor and cycling 

accidents. Such a tendency may be entirely explained by the presence of another 

(correlated) factor that plays a more prominent role in the occurrence of 

accidents than the infrastructure factor with which it is correlated. It is hence 

tricky to draw here reliable conclusions on the separate safety effect related to 

each specific infrastructure factor. As a consequence, policy recommendations are 

to be strongly avoided within the framework of this point pattern exploration. A 

multivariate framework would then be of great help to control for the presence of 

other (correlated) factors and to estimate the importance of such separate 

effects. This is however beyond the scope of this chapter, which is here exploited 

as an initial exploratory data analysis before moving on a modelling step (which 

is approached in the following chapter). 
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Chapter 5  
 

 

Accident risk when cycling in 

Brussels 

An innovative spatial case-

control approach1 
 

 

Outline 
 

Bicycle use provides an effective way of addressing health, environmental and 

mobility concerns in urban areas. However, accident risks strongly deter people 

from cycling. Identifying the factors having an impact on such a risk is helpful in 

coping with the numerous fears and safety concerns inhabitants have about 

bicycling. This chapter then aims at understanding the spatial distribution of 

bicycle accidents in Brussels (Belgium) with the intent to provide safety-oriented 

policy recommendations. A spatial Bayesian modelling approach is here proposed 

to model the spatial variation of accident risks for cyclists (2006-2008 period), 

using a binary dependent variable (accident, no accident at location i) 

constructed from an innovative case-control strategy. Control sites are sampled 

along the ‘bikeable’ road network and as a function of the potential bicycle 

traffic transiting/stopping in each Brussels’ statistical ward. Risk factors are 

either infrastructure-related (e.g. type of intersection), traffic-related (e.g. van 

and truck traffic) or environmental (e.g. topography). Our findings suggest that 

a higher risk of accident is statistically associated with the presence of on-road 

tram tracks, bridges (without any cycle facility), complex intersections, close 

shopping centres, garages, and higher volumes of van and truck traffic. Cycle 

facilities built at intersections (especially suggested cycle lanes at right-of-way 

intersections) and parked vehicles located next to separated cycle facilities (i.e. in 

the ‘door zone’) also increase this risk, whereas streets where contraflow cycling 

is permitted reduce it (outside intersections). More interestingly, mapping the 

                                                
1 This chapter will be submitted in 2011 for publication. 
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predicted accident risk along the network provides for planners and policy 

makers a value-added tool that accurately locates the places at high risk of 

accident and where cycling accidents might have been unreported. 

 

5.1 Introduction 
 

As pointed out before, the spatial point pattern methods used for network 

analysis in Chapter 4 do not fully account for the potential interrelationships 

existing between the factors (expected to be) associated with an increased 

frequency of cycling accidents. This chapter hence extends the exploratory data 

analyses conducted in the previous chapter by carrying out the statistical 

analyses within a multivariate framework and accounting for multicollinearity, 

which allows estimating the individual/separate effects of the (explanatory) 

factors while controlling for the possible correlations between these latter. 

Contrary to the previous chapters (for which a so-called ‘frequentist’ approach is 

chosen), a Bayesian computational approach is here preferred as it provides 

several advantages over the estimation carried out in a frequentist framework. 

The ability to incorporate prior expert knowledge and to deal with 

nuisance/random parameters (i.e. unobserved heterogeneity) in complex models 

is one of the key assets of the Bayesian approach (Koop, 2003; Miaou et al., 

2003; Bolstad, 2007; Kéry, 2010). Unlike frequentist inference that generally 

gives point (or fixed) estimations, the Bayesian approach allows the parameters 

to be characterised as random variables and provides direct probability 

statements about these2 (Bolstad, 2007; Kéry, 2010; Pei et al., 2010). Probability 

is hence expressed as the uncertainty we have about the magnitude of a 

parameter, which makes the Bayesian inference more intuitive compared with 

the conventional approaches (for which the probability is the relative frequency 

of a feature observed in our data set). Frequentist inference may also be biased 

when using finite sample sizes, whereas Bayesian computational methods give 

exact inference for any sample size (Kéry, 2010). The advent of Markov Chain 

Monte Carlo (MCMC) methods as well as the availability of softwares that 

implement such simulation-based approaches (e.g. WinBUGS, MLwiN) are at 

the root of the growth in popularity of Bayesian methods. This, combined with a 

continuous improvement of the computer technologies (e.g. improved storage, 

computer processing speed, etc.), made most of the complex Bayesian models 

computationally tractable. MCMC methods – such as Metropolis Hastings or 

                                                
2 In Bayesian statistics, probability statements are made about a parameter, rather than about 

a data set (as it is the case in frequentist statistics). This hence means that popular statements 

such as ‘I am 99% sure it will rain tomorrow’ can only be derived from a Bayesian framework, 

whereas they are not valid using frequentist statistics (Kéry, 2010). 
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Gibbs sampling algorithms – are techniques that iteratively draw samples from 

the so-called ‘posterior distribution’ of a parameter. Gibbs sampling (which is 

used in WinBUGS) is a special case of the Metropolis Hastings algorithm and 

has the advantage to handle complex problems like simple ones, i.e. the complex 

problem is broken down into smaller units, which are then solved one at a time 

(Clark, 2005; Gelman and Hill, 2007; Lawson, 2009; Kéry, 2010). 
 

Compared to Chapter 4, this part of the thesis also adds some improvements by 

integrating the street side and the building year of the infrastructures/facilities 

(as far as possible). More importantly, the background exposure of cyclists to 

accidents is also taken into account here. Chapter 4 indeed highlighted the need 

to account for the exposure of cyclists to road accidents, given that cycling 

accidents are expected to occur in greater numbers in places where the bicycle 

traffic is high (and conversely). It is hence of utmost importance to account for 

such a traffic variable if the purpose is to properly evaluate the risk of running a 

cycling accident at specific places or provide some recommendations about the 

safety effects associated with specific types of infrastructures or facilities. 
 

Unlike most of the previous research aiming at developing models of road 

accident severity or frequency, the main objective of this chapter is hence to 

explain the risk of having an accident for a cyclist on the entire road network of 

the Brussels-Capital Region (urban area), using spatial risk factors as covariates 

of a statistical model as well as a gravity-based approach in order to account for 

the exposure of cyclists in the traffic. Such an estimation of the accident risk on 

an entire road network – rather than considering only specific locations or parts 

of the network (e.g. road trajectories selected by the analyst, which is likely to 

orient/bias the statistical results; see e.g. Lusk et al. (2011) and attendant 

comments) – merits further consideration since planners and policy makers are 

generally interested to know what are the most significant infrastructure-related 

factors (and then the locations) associated with high accident risks (whatever the 

mode of transport). This chapter attempts to provide an answer to such a major 

concern, starting from accident data only (i.e. without any available controls at 

the beginning of the analysis) and focussing on bicycle accidents. As a result, the 

specific aims of this chapter are the following: (1) identifying which are the most 

significant spatial variables/factors (expected to be) associated with the 

occurrence of a bicycle accident in an urbanised area (i.e. Brussels), (2) 

identifying which areas are expected to carry the highest risk or probability to 

generate bicycle accidents (based on model predictions), and (3) providing 

recommendations intended for policy makers and planners (Chapter 6). The 

methodology is innovative in the sense that the modelling framework uses an 

autologistic model combining accident data (from police) and control points (i.e. 

exposure of cyclists) in order to predict the risk of having an accident (rather 
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than the severity of the accident). Also note that the scale of the analysis is the 

accident itself and that special attention is paid to spatial autocorrelation during 

the Bayesian modelling process (besides multicollinearity). 
 

This chapter is organised as follows. Section 5.2 defines preliminary concepts, 

describes the models within the Bayesian framework and motivates the use of a 

case-control approach. Section 5.3 describes the data used in this chapter. 

Finally, Section 5.4 reports the main results, after which Section 5.5 concludes 

this chapter. Note that the results we obtained here also serve as basis for some 

of the scientific-based recommendations provided in Chapter 6. 

 

5.2 Conceptual and methodological 

framework 
 

The lack of detailed data on accidents and trip characteristics associated with 

the different modes of transport often hamper researchers to improve their 

understanding on the factors affecting the probability of accidents (Lord and 

Mannering, 2010). Depending on the size of the studied area and the level of 

aggregation, collecting data on accident-related mechanisms (e.g. road user 

behaviour at the moment of the accident), risk factors (e.g. type of parking 

areas) or exposure data (e.g. traffic flow estimation) can be cost- and time-

consuming, especially if they are not available or when working at local scales of 

analyses. As a result, most of the statistical models aggregate the accidents and 

their risk factors over spatial units (at various scales, e.g. at the scale of road 

segments, municipalities, counties, regions or even countries) and/or over a 

definite time period (Aguero-Valverde and Jovanis, 2006; Liu and Jarrett, 2008; 

Quddus, 2008; Lord and Mannering, 2010).  
 

Overall, traffic accident research either aims at predicting the frequency of 

accidents, or attempts to explain the association between various severity or 

collision types and several independent variables (Noland and Quddus, 2004; 

Lord and Mannering, 2010). Some of these models however may lead to several 

well-known methodological issues (e.g. over- or under-dispersion of accident-

frequency data, low sample means and size, injury severity and accident-type 

correlation, etc.) and hence require performing appropriate statistical approaches 

in order to avoid incorrect inferences that could result from these data-related 

problems (Lord and Mannering, 2010). 
 

Instead of routinely modelling either the accident severity or the accident 

frequency, we here implement a case-control methodology aiming at modelling 
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the accident risk for a cyclist along an entire road network (i.e. with both road 

intersections and sections). Except when both the accident data and the trip 

patterns (with the exact trajectories of the road users) are available (through e.g. 

a detailed survey; see e.g. Harris et al., 2011), such an estimation of the accident 

risk presupposes the generation of controls, i.e. the creation of data reflecting the 

exposure of the population under study (i.e. the cyclists) to the outcome of 

interest (i.e. the accident). Once generated, such controls can be coupled with 

the accident database in order to produce a binary dependent variable as well as 

to make possible the estimation of accident risks for cyclists through the use of 

logistic regressions (performed within a Bayesian framework). However, a great 

care must be taken when generating such controls since they are likely to bias 

the results if they are not selected within a rigorous statistical framework and if 

no control is made of some important risk factors. In the literature, some studies 

already attempted to estimate the risks of having an accident, but did not select 

the location of their controls – i.e. their exposure data – in a rigorous way (e.g. 

they are often selected in a town centre and on frequent trajectories of the road 

users of interest, without any well-founded statistical basis), or did not 

completely account for the spatial variability of some important risk factors in 

their analysis (e.g. variability in traffic volume, variability in terms of the types 

of intersections and parking areas, etc.) (see e.g. Lusk et al., 2011, and the 

attendant comments). As a consequence, results are likely to be biased and 

might lead to wrong conclusions about some risk factors. 
 

Let us first define some basic concepts used in this chapter (Section 5.2.1), before 

reviewing some of the main concepts and modelling approaches from which one’s 

inspiration was drawn to generate the controls in a rigorous way (Section 5.2.2). 

The description of the so-called ‘accident-risk models’ implemented in this 

chapter is finally approached in Sections 5.2.3 and 5.2.4. 

 

5.2.1 Pre-requisites 
 

As mentioned in Chapter 1, a bicycle accident refers to any road accident 

involving at least one cyclist. In this chapter, it is defined regardless of the trip 

purpose, accident severity, age and gender. Further details on the construction of 

the dependent variable – i.e. having a bicycle accident or not – are provided in 

the section dedicated to the data collection. 
 

The notion of risk is the probability that the outcome of interest (i.e. the bicycle 

accident) will occur, following a particular exposure of the population or study 

group (Burt, 2001; Porta, 2008). Within the framework of this chapter, the risk 

of having an accident for a cyclist is the probability that this accident will occur, 
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following the exposure of the cyclists in the traffic during a specified period of 

time (2006-2008, in this case). This exposure is here constructed/defined on the 

basis of a potential (or gravity-based) measure of the bicycle traffic in Brussels, 

which is expected to be proportional to the levels of cycling observed at different 

parts/locations of the region (see Section 5.2.3.1). 
 

Risk factors – or risk indicators – refer to ‘independent’ variables (also called 

covariates, explanatory variables, etc.) that affect the probability of a specified 

outcome of interest, such as the occurrence of a bicycle accident. Risks factors in 

traffic accident research are not necessarily causal factors (e.g. they can 

contribute to the occurrence of the accident only if they are combined with other 

risk factors), and some of these can be modified by intervention(s) aiming at 

reducing the probability of accident (e.g. infrastructure change, modification of 

the behaviours, etc.). The notion of ‘modifiable risk factors’ is then logically used 

in this last case (ibid.). 

 

5.2.2 From ecology and epidemiology… 
 

The methodological framework implemented in this chapter mainly draws one’s 

inspiration from the research in epidemiology and ecology, taking advantage of 

their respective methodological strengths in modelling and case-control 

strategies. On the basis of an extensive review of the literature, it turns out that 

a lot of work has been done in order to develop techniques addressing the issue 

of the lack/absence of controls in databases (especially in ecological modelling). 

The purpose of such techniques is to provide some information on the absence of 

the outcome of interest (i.e. the disease or the observation of a species), which in 

turn enables to pair presences and absences in a same database in order to use 

common regression techniques based on binary data (e.g. logistic regression). 

Such approaches will be replicated in this chapter with the aim to obtain binary 

data (presence-absence) and compute the risk of a bicycle accident using logistic 

regression modelling. Approaches in ecology are first briefly reviewed, after which 

we focus on case-control studies used in epidemiology.  

 

5.2.2.1 Presence-only data 

 

In ecology, most of the available data on species consist of so-called ‘presence-

only’ data sets, i.e. where data on locational records (i.e. observation or 

collection of a species at a particular location) are available with some degree of 

accuracy – depending on the quality of the ground surveying –, but for which 

there is no information on the absence of species (Ferrier et al., 2002; Zaniewski 
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et al., 2002). Two groups of techniques are generally used for modelling the 

distribution of a species using such presence-only data: (1) the profile techniques, 

i.e. those incorporating the presence-only data into the model (e.g. environmental 

envelopes, genetic algorithms, or ecological niche factor analyses (ENFA)), and 

(2) the group discrimination techniques, i.e. those requiring the generation of 

‘pseudo-absence points’ (‘pseudo’ because the probability of having a ‘true 

absence’ is not absolutely certain) in order to supplement the presence-only data 

and hence facilitate the use of logistic regression modelling (Brotons et al., 2004; 

Engler et al., 2004; Guisan et al., 2007; Zarnetske, 2007; Chefaoui and Lobo, 

2008; Wisz and Guisan, 2009). Overall, the second group of techniques is often 

preferred to profile techniques since it is derived from well-established statistical 

approaches and provides more accurate predictions (Chefaoui and Lobo, 2008; 

Wisz and Guisan, 2009). Group discrimination techniques either (1) generate the 

pseudo-absences at random over space, or (2) weight the random sampling of the 

pseudo-absences in favour of areas expected to contain ‘true absences’, i.e. they 

use a two-step approach where the selection of pseudo-absences is stratified 

according to an Habitat Suitability Index (measure of the potential habitat 

suitability for the species, computed from a profile technique such as ENFA).  
 

Since the method of selection of the pseudo-absences strongly conditions the 

results obtained in the final model, the two-step approach is generally advised. 

Other crucial recommendations brought up to improve the model performance 

are: (1) eliminating buffered zones around presences, so that pseudo-absences are 

not drawn from (expected) suitable places for the species (Akçakaya and 

Atwood, 1997; Alexander et al., 2005; Olivier and Wotherspoon, 2006; Zarnetske 

et al., 2007; Ervin, 2009); (2) selecting an appropriate spatial subarea/extent or 

background size, i.e. neither too small nor too large, in order to avoid producing 

spurious results (VanDerWal et al., 2009); (3) minimizing the error experiment 

and using a ‘sufficient’ sample size (> 30 observations) for presence-only data 

sets (Guisan et al., 2007); and (4) sampling a number of pseudo-absences greater 

than the number of presences (Hengl et al., 2009; Warton and Shepherd, 2010). 

 

5.2.2.2 Case-control studies 

 

In a case-control study, cases events are those for which the outcome of interest 

has been observed (i.e. the disease, or the bicycle accident in our case) and 

controls are those in the same group/population (i.e. the cyclists) without the 

outcome of interest (Grimes and Schulz, 2005). Controls provide an estimation of 

the background frequency of an exposure in the study group, or population (i.e. 

the cyclists, or – ideally – the distance or travel time of trips carried out by these 

cyclists) (ibid.). As suggested in ecological modelling (Section 5.2.2.1), the use of 
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an appropriate control group matters since a poor choice (of controls) can lead to 

wrong inference and, hence, to bad recommendations for policy makers and 

planners. According to Grimes and Schulz (2005), controls should be: (1) free of 

the outcome of the interest; (2) representative of the population at risk of the 

outcome, i.e. they should have the same risk of exposure as the cases; (3) 

selected independent of the exposure of interest. For a small number of cases, it 

is also suggested to draw up to four times controls in order to improve the power 

of the study. Beyond this ratio of 4/1, the improvements in the results (from the 

increase in the number of controls) are poor (ibid.). 
 

Studies with case events only (i.e. without controls) often sample the controls 

from unknown or known population groups (e.g. the passengers of a cruise ship 

for who a disease of interest was not detected) (ibid.). In particular, in point 

process spatial models, researchers also commonly use the spatial distribution of 

another common outcome/disease as control group, which is assumed to reflect 

well the spatial distribution of the outcome/disease of interest (Diggle, 1990). 

For instance, Diggle (1990), Hossain and Lawson (2009) and Lawson (2009) used 

the cases of respiratory cancer of the lung as controls for modelling the spatial 

distribution of the cases of larynx cancer. 

 

5.2.3 … to traffic accident research 
 

Literature in ecology and epidemiology provide well-founded methodological 

concepts that could be easily replicated to traffic accident research, for which 

only case events (i.e. road accidents) are registered. A case-control strategy is 

then opted here, accounting for some of the rigorous methods of selection of 

controls (or pseudo-absences) as implemented in group discrimination techniques. 

In particular, case events are here defined as being locations where a bicycle 

accident occurred on the network during a definite period of study (2006-2008), 

while controls are locations where no accident has been officially registered 

during the same period (2006-2008). Since the absence of accident is not 

absolutely certain for each control point (because of underreporting issues related 

to the registration of bicycle accidents), the concept of ‘pseudo-absences’ – as 

used in ecological modelling – could also be appropriate to refer to locations on 

the road network where no bicycle accident occurred. However, by convention, 

we decided to use the term ‘controls’ in this chapter. 
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5.2.3.1 Exposure variable 

 

The only barrier to the replication of such a case-control strategy comes from the 

availability of an exposure variable, from which controls can be 

selected/extracted as point events. Since the focus of this chapter is on bicycle 

accidents, the controls could be drawn from the places of residence of cyclists. 

Nevertheless, this is a somewhat naïve approach since the bicycle accidents are 

events that result from the trips carried out by the cyclists, and are hence 

expected to occur in greater numbers in places where the bicycle traffic is high 

(rather than in places where most of the cyclists live). As a result, an ideal 

exposure variable could be an estimation of the bicycle traffic (e.g. the total 

distance or time spent cycling, for each street of the road network). 

Unfortunately, except in some cohort studies or surveys, such a traffic variable is 

seldom available (Quddus, 2008), especially for non-motorised transport modes 

for which less attention is generally paid by planners, scientists or policy makers. 

Often, the best available data is the population of cyclists, aggregated by spatial 

units. 
 

A solution proposed in this chapter in order to obtain an exposure variable is 

derived from the ‘gravity-based’ concepts as conceptualised in accessibility 

research (see e.g. Geertman and Ritsema van Eck, 1995; Geurs and Ritsema van 

Eck, 2001; Geurs and van Wee, 2004). In the literature, the ‘gravity-based index’ 

at location s, also called ‘potential index’ and noted Ps, is described by the 

following general form (Hansen, 1959; Geurs and Ritsema van Eck, 2001): 
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=

=
T
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)(                   (5.1) 

 

where T is the number of spatial units (or locations), at are the ‘opportunities’ 

(e.g. number of activities, cyclists, etc.) in location t, cst is the measure of spatial 

separation between s and t (e.g. the distance or travel time), and f(cst) is the 

impedance function, denoting the deterrent effect of spatial separation between s 

and t (s,t = 1, …, T). In other words, Ps is a measure of accessibility in s to all 

opportunities a in t, weighted by the spatial separation between s and t. Note 

that the impedance function can be of different forms (using e.g. power, 

exponential, Gaussian, logistic functions), and that its choice has a significant 

influence on the results (Geurs and Ritsema van Eck, 2001; Haynes et al., 2003). 

In particular, the negative exponential function f(cst) = exp(-δ.cst) (where δ is a 

non-negative parameter) is often preferred since it is the most closely tied 

function to the travel behaviour theory. 
 

In this chapter, the potential index specification is adapted to estimate the 

potential bicycle traffic per spatial unit s, i.e. the (potential) background 
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frequency of the exposure of cyclists to accidents. Such an adapted specification 

is here called the ‘Potential Bicycle Traffic Index’ (noted PBTI; see 

Equation 5.15 for further details). Evidence in the literature lends strong support 

to the choice of such a potential index as proxy for the bicycle traffic, since it is 

often correlated to trip generation and closely reflects the actual behaviours in 

terms of the induced demand for travel (Haynes et al., 2003; Thill and Kim, 

2005). 

 

5.2.3.2 Selection of controls 

 

Just as for ecological modelling, the random selection of controls is 

weighted/stratified as a function of the PBTI. Hence, the number of controls to 

be drawn varies from one spatial unit to another, proportionally to this index 

(i.e. in proportion to the bicycle traffic transiting in each statistical ward). In 

other words, the number of controls will be higher in areas where the (potential) 

bicycle traffic – i.e. the exposure – is higher (and inversely). Formally, the 

number of controls ms to be drawn in spatial unit s is: 
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where *
sP  is the adapted version of the potential index (i.e. the PBTI; see 

Equation 5.15), M0 is the total number of controls, which is here four times 

greater than the number of (geocoded) accidents nacc (as suggested by Grimes 

and Schulz (2005)). Since ms is rounded to the closest integer value, it can be 

inferred that MmM
T

s
s =≠ ∑

=1
0

(where M is the total number of controls sampled 

in the studied area). Note finally that rs is defined as the ‘relative potential 

index’ at location s and denotes the attractiveness at location s (or the relative 

potential intensity of the bicycle traffic at s) compared with all other locations. 
 

Given that bicycle accidents generally happen on a road network, control points 

are constrained to be drawn on that network, at the exclusion of non-bikeable 

roads (e.g. tunnels) and linear buffered zones around the accidents in order to 

preclude the sampling from these zones. Such linear buffers correspond to black 

spots of accidents obtained from the network kernel density estimation method 

provided in SANET v.4 (Okabe et al., 2009). Further details on the definition of 

the ‘bikeable network’ as well as on the measure of the PBTI are provided in the 

section dedicated to the data collection (see Section 5.3.1.2). 
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5.2.4 Modelling strategy 
 

The binary dependent variable used for modelling is derived from the 

combination of case events (occurrence of a bicycle accident at location i along 

the network) and controls (no bicycle accident at i). Case events are noted ‘1’ 

and controls are noted ‘0’; this makes the use of logistic regression modelling 

possible if risk factors (dependent variables) are identified for both cases (1) and 

controls (0). Comparative statistics (i.e. chi-square tests, Wilcoxon tests, odds 

ratios, etc.) are first performed in order to examine if bicycle accidents are more 

likely (or not) to be associated with some specific risk factors. In a second step, 

logistic and intrinsic conditional autoregressive models are performed taking 

multicollinearity, heteroskedasticity and spatial autocorrelation into account. 

Modelling steps are conducted within a Bayesian framework and are described in 

the next subsections. 

 

5.2.4.1 Bayes rule 

 

Bayes rule (or Bayes’ theorem) is the basis for Bayesian inference and can be 

simplified as follows when ignoring the normalising constant (Gelman et al., 

1995; Kéry, 2010): 
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where θ is a vector of k parameters, x is a vector of n observations (i.e. the 

data), p(θ|x) is the posterior distribution of the parameters θ given the data x, 

p(x|θ) is the likelihood function of the data x given the parameters θ, and p(θ) is 

the prior distribution of the parameters θ (i.e. the prior beliefs). The posterior 

distribution is hence summarised as the product between the likelihood function 

and the prior distribution of the parameters. In other words, the analyst’s 

understanding about the parameters θ is derived from combining the analyst’s 

prior knowledge about the values of these parameters and the observed data 

(Wintle, 2003), with less emphasis placed on the prior knowledge if the observed 

data set is large (and inversely) (Gelman et al., 1995; Bolstad, 2007; LeSage and 

Pace, 2009). 

 

5.2.4.2 Bayesian hierarchical modelling and accident risk model 

 

Hierarchical Bayes allows to accommodate the inherent stochasticity of some 

models – such as this found in the spatial models – owing to its structure in 
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several hierarchical stages (Congdon, 2003; Clark, 2005; Zhu et al., 2006; Bivand, 

2008; Ntzoufras, 2009). The prior parameters are supposed to be random 

variables and may depend on distributions (the prior distributions) that may in 

turn depend on other parameters at a second level of the hierarchy. These latter 

parameters are called the ‘hyperparameters’, and may also have their own 

(hyperprior) distribution (Borgoni and Billari, 2003; Gelman et al., 1995; 

Ntzoufras, 2009). 
 

Since the dependent variable is here binary, a two-stage conditional Bernoulli 

model with a logistic link is appropriate for predicting the probability of having 

a bicycle accident at location i (i = 1, …, n; where n = nacc+M): 
 

yi ~ Bernoulli(pi)       (5.4) 
 

logit(pi) = ( )[ ]ii pp −1log  = α + xiββββ    (5.5) 

 

where yi is the dependent variable (yi = 1 if a bicycle accident occurred at 

location i; yi = 0 otherwise), pi is the probability of having a bicycle accident at 

location i, α is the intercept of the model, ββββ is the vector of parameters, and xi is 

the vector of risk factors (explanatory variables). This is the first stage of the so-

called ‘accident risk model’ (noted ‘Model 1’ in the results). At this stage of 

the model, note that the risk factors xi may be centered at zero in order to 

reduce correlations between the parameters. Interestingly, centering also allows 

increasing the speed of convergence and improves the inference of the model 

(Gelman and Hill, 2007; Best and Richardson, 2009). 
 

At the second stage of the model, highly uninformative3 prior distributions are 

generally assigned to α and ββββ when there is no prior information about the 

parameters. Such uninformative distributions reflect the prior ignorance we have 

about the parameters of the variable, and hence avoid strong prior beliefs about 

these latter so that the posterior distribution is unaffected by information 

external to the data (Gelman et al., 1995; Bolstad, 2007; Lawson, 2009). In 

general, (uninformative) normal distributions with mean 0 and precision 1.10-6 

(precision = 1/variance) are specified for the parameters α and ββββ. Formally, this 

is often noted in the literature as: α,ββββ ~ N(0,1.10-6), where N denotes the 

Normal/Gaussian prior distributions for the parameters α and ββββ, with mean µ = 

0 and precision τ = 1.10-6. 

 

 

                                                
3 Also called flat, vague or diffuse prior distributions. Such uninformative prior distributions are 

used in order to ‘let the data speak for themselves’ (Gelman et al., 1995; Ntzoufras, 2009). 
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5.2.4.3 Autoregressive and autologistic risk models 
 

Intrinsic Conditional Autoregressive (ICAR) model 
 

Unobserved spatial effects – also termed random effects – can be incorporated 

in a statistical model to account for an extra quantity of variation (or 

unexplained variance) and then to avoid erroneous inferences regarding the 

parameter estimates4 (Dormann et al., 2007; Miller et al., 2007). Two basic forms 

of random effects are generally distinguished: (1) the uncorrelated (or 

unstructured) heterogeneity, and (2) the correlated (or structured) heterogeneity. 

The uncorrelated heterogeneity refers to an independent and spatially 

uncorrelated form of extra variation (e.g. overdispersion), while the correlated 

heterogeneity implies that spatial autocorrelation exists between the spatial units 

(Lawson et al., 2003; Lawson, 2009). In particular, spatial autocorrelation could 

arise from the existence of unobserved effects (e.g. a key risk factor which is not 

included into the model) and/or from the fact that values at nearby locations 

depend from each other and hence are more (or less) similar/related than those 

further apart (e.g. spatial clustering of bicycle accidents) (Tobler, 1970; 

Dormann et al., 2007).  
 

Incorporating random effects in the model provides a robust basis for inference 

when spatial autocorrelation and overdispersion are both present (see e.g. 

Borgoni and Billari, 2003; Miaou et al., 2003; Law and Haining, 2004; Zhu et al., 

2006; Aguero-Valverde and Jovanis, 2006; Eksler, 2008; Eksler and Lassarre, 

2008; Quddus, 2008; Haining et al., 2009; Lawson, 2009; Haque et al., 2010; 

Ishihama et al., 2010; Lord and Mannering, 2010). In Bayesian hierarchical 

modelling, an extension of the previous formulation (Equation 5.6) to the 

inclusion of such random effects is relatively straightforward given that all 

parameters are considered as being stochastic/random (Lawson et al., 2003; 

Bolstad, 2007; Lawson, 2009). Given that the bicycle accidents spatially 

concentrate on the Brussels’ road network (see Chapter 4 and Section 5.3.1.2), a 

spatial Bayesian specification of the accident risk model (i.e. including the 

random effects) is here proposed. The first stage of such a model (Model 2) is 

formally defined as follows: 
 

logit(pi) = α’ + xiββββ + ui + vi     (5.6) 
 

                                                
4 For instance, if a statistical model using such (spatial) data still exhibits some spatial 

autocorrelation in its residuals, the assumption of independently and identically distributed 

(i.i.d.) residuals is violated, which may bias parameter estimates and result in increased type I 

errors rates (i.e. falsely rejecting the null hypothesis of no relationship between the dependent 

variable and the risk factors) (Dormann et al., 2007; Miller et al., 2007). 
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where ui is the correlated heterogeneity and vi is the uncorrelated heterogeneity 

associated with accident i. Overall, it is suggested to use both random effects 

since there is no prior knowledge about the form of the unobserved effects 

(Lawson, 2009). At the second stage of this spatial model, an improper5 (flat) 

uniform prior distribution is assigned to α (Besag and Kooperberg, 1995; 

Thomas et al., 2004), while the parameters ββββ are assumed to follow a normal 

distribution with mean 0 and precision 1.10-6 (i.e. ββββ ~ N(0,τβ), where τβ = 1.10-6). 

Focussing on the random effects, the prior distribution for the uncorrelated 

heterogeneity (vi) is assumed to follow an uninformative normal vi ~ N(0,τv), 

where τv is the precision of vi. At a third stage of the model, the precision τv is 

assumed to follow a highly uninformative prior gamma distribution 

Ga(0.5,0.0005) (Kelsall and Wakefield, 1999). Concerning the correlated 

heterogeneity, the spatial interactions between the neighbouring bicycle 

accidents are defined conditionally, with an Intrinsic Gaussian conditional 

autoregressive (ICAR) prior distribution being assigned for ui (Besag et al., 

1991): 
 

[ui | uj, i ≠ j] ~ N(
iu ,

iu ,τ )     (5.7) 

 

where j is a neighbour of i (as defined in a binary spatial weight matrix), uj is 

the correlated heterogeneity associated with accident j, and iu  as well as iu ,τ  

are defined as: 
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where wij are the weights of the binary spatial weight matrix (wij = 1 if i and j 

are neighbours, wij = 0 otherwise), ∑=
j

iji wq  (which corresponds to the 

number of neighbours of accident i), and 2
uω  is a parameter controlling the 

amount of variability in ui. A prior gamma distribution Ga(0.5,0.0005) is 

assigned to the inverse of 2
uω  (= 1/ 2

uω ) at the third stage of this so-called 

ICAR model (Kelsall and Wakefield, 1999). Note finally that the spatial 

weight matrix is here symmetric and that two accidents i and j are ‘neighbours’ 

                                                
5 An improper distribution – in opposition to a proper distribution – refers to a distribution that 

does not integrate to 1. Note that a posterior distribution can be proper even when using an 

improper prior distribution (Lawson, 2009; Ntzoufras, 2009). 
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(i.e. wij = 1) if the network distance dij between these latter is lower than 100 

meters. Otherwise, if dij > 100m, then wij = 0 (i.e. i and j are not neighbours)6.  

 

Autologistic model 
 

Another spatial specification used in this chapter to predict the risk of bicycle 

accident is the autologistic model (Model 3). This model intends to capture 

the effect of spatial autocorrelation by including – at the first stage of the 

Bayesian hierarchy – an additional variable called the ‘autocovariate’ (Flahaut, 

2004; Wintle and Bardos, 2006; Dormann, 2007; Dormann et al., 2007; Miller et 

al., 2007). Equation 5.5 is hence re-specified as follows (Besag, 1974): 
 

logit(pi) = α’ + xiββββ + λSi              (5.10) 
 

where Si is the autocovariate for the bicycle accident i and λ is the parameter for 

the autocovariate. Such an autocovariate is generally defined as a weighted sum 

(or average) of the observations in the neighbourhood (Wintle and Bardos, 2006; 

Dormann et al., 2007): 
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where *
ijw  are the weights assumed to represent the relationship existing between 

i and its neighbours j, and *
jy  are the response values observed for these 

neighbours (j). Note that the spatial weight matrix has here a more complex and 

flexible definition compared to this used in the ICAR model. In order to optimise 

the model inference, several specifications were indeed tested – through trial and 

error – using different functional forms for the network distance between i and j. 

It then turned out that a spatial weight matrix accounting for a distance-based 

relationship between the bicycle accident i and the nearest bicycle accidents j (1st 

order neighbourhood) was the best to capture the unexplained variance 

associated with the presence of spatial autocorrelation: ijd

ij ew
−=*  if j is a 1st 

order neighbour/accident, 0* =ijw  otherwise (j is a 2nd order neighbour/accident 

or more). 
 

Similarly to the logistic specification, highly uninformative (normal) prior 

distributions are here selected at the second level of the hierarchy (α,ββββ,λ ~ 

                                                
6 Note that another spatial weight matrix (1st order contiguity) – based on a Network Voronoi 

diagram computed in SANET v.4 (Okabe et al., 2009) – was also tested, but did not improve 

the results. 
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N(0,1.10-6)). Although autologistic models use a likelihood approximation to the 

maximum likelihood method (i.e. a pseudolikelihood approximation), they 

generally provide a better estimation than the basic logistic regression (Augustin 

et al., 1996; Hoeting et al., 2000) as well as a reasonable approximation when 

spatial autocorrelation is relatively low (Lawson, 2009). Moreover, the Bayesian 

inference may still be improved by extending the autologistic model to include 

random effects (e.g. in the form of uncorrelated heterogeneity) (ibid.). 

 

5.2.4.4 Initial values and model selection 

 

As illustrated in Figure 5.1, model selection is carried out using a three-step 

approach, aiming at (1) evaluating the statistical fit of a wide range of 

multivariate (auto-)logistic models (and diagnosing these for the presence of 

statistical biases) within a frequentist framework, (2) selecting the risk factors 

and initial values of the Bayesian models on the basis of the frequentist 

inference, and (3) evaluating the statistical fit of the Bayesian models (and 

diagnosing these for convergence). 

 

In the first step, logistic and autologistic regressions are performed and evaluated 

within a frequentist framework in order to get the initial values. An overall 

model evaluation of these frequentist models is carried out using: (1) inferential 

statistical tests (Likelihood ratio and Wald test) in order to analyse the 

significance of the model, compared with the intercept-only/null model; (2) 

statistical tests of the individual parameters of the risk factors (Wald chi-square 

statistic); (3) goodness-of-fit statistics (i.e. Log Likelihood (LL), Akaike’s 

Information Criterion (AIC)) and tests (i.e. Hosmer-Lemeshow test (HL), and Le 

Cessie-Houwelingen test (LCH)); and (4) validations of predicted probabilities, 

using the c statistic and misclassification rates (cut-off value: 0.5) (see e.g. 

Joanne-Peng et al. (2002) for further details on some of these statistics). Also 

note that diagnostics for multicollinearity (i.e. Variance Inflation Factors (VIF), 

Condition indices (CI)), spatial dependence of the dependent variable (join-count 

test statistics under non-free sampling, with or without adjustment for no-

neighbour observations) and spatial autocorrelation of the residuals (Moran’s I) 7 

are also performed and influenced our choice of the risk factors in the models. 

Finally, heteroskedasticity – when present – is corrected by implementing the 

Huber-White method. 

 

                                                
7 Note however that Moran’s I index is generally not recommended for logistic regression 

modelling, since its statistical basis for inference is still not well-founded. In this case, the 

analysis of Moran’s I – and the attendant conclusions of the test about an eventual detection of 

spatial autocorrelation – is then prone to particular caution. 



 

 

 

 
 

Figure 5.1: Modelling strategy (UH: uncorrelated heterogeneity; CH: correlated heterogeneity) 
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In the second step, the initial values of the Bayesian models are determined on 

the basis of the parameter estimates we obtained for the ‘best’ frequentist 

models. The Bayesian models were used instead of the frequentist ones because 

they outperformed these latter in terms of inference; the frequentist models were 

then only used to get some prior insight/knowledge on what could be 

appropriate initial values for the parameters of the risk factors (estimated within 

a Bayesian framework). Moreover, starting from initial values that are close to 

the actual (or ‘true’) values of the parameters has also the advantage to speed 

up the convergence of the (Bayesian) models (or, at least, avoid an ‘accident’ in 

the model because of e.g. numerical difficulties in sampling). 
 

In the last step, the statistical fit of the Bayesian models is computed in order to 

compare their performance and select a better-fitting model. Two goodness-of-fit 

measures are applied to compare different models: (1) the Deviance Information 

Criterion (DIC), and (2) the Mean Absolute Predictive Error (MAPE) (Lawson, 

2009). DIC is often suggested as an adapted measure to compare the fit and 

complexity of the hierarchical Bayesian models, for which the exact (or effective) 

number of parameters is not always clearly defined (Spiegelhalter et al., 2002; 

Law and Haining, 2004; Lawson, 2009; Ntzoufras, 2009). The DIC is a 

generalisation of the AIC and is defined as follows: 
 

( ) DD pDpDDIC +=+= 2θ     (5.12) 

 

where ( )θD  is the deviance evaluated at the posterior means of the parameters (

θ ), Dp  is the effective number of parameters in the model, and D  is the 

posterior mean of the deviance (for Bernoulli likelihood, the deviance is: 

[ ]∑ −−+−
i

iiii pypy )1log()1()log(2  (Law and Haining, 2004)). DIC hence 

expresses a trade-off between the model fit (measured by ( )θD ) and the model 

complexity (measured by Dp , which acts as a penalty for the model fit as the 

number of parameters increases) (Law et al., 2006; Lawson, 2009; Kéry, 2010). 

As with AIC or BIC, models with lower DIC values indicate better fitting 

models and are hence preferred. 
 

MAPE is a posterior predictive loss (PPL) measure, aiming at comparing the 

predictive ability of the models (while the DIC estimates how well the model fits 

the observations). It is particularly useful for binary data as it computes the 

proportionate misclassification under the fitted models (Gelfand and Gosh, 1998; 

Lawson, 2009). It is defined as follows: 
 

( )∑∑ ×−=
q l

qlq nGyyMAPE ˆ    (5.13) 
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where yq is the qth observed value, ŷql is the qth predicted value given the 

parameters at the lth iteration, G is the sampler sample size and n is the number 

of observations. Models with smaller values of MAPE are preferred. 

 

5.2.4.5 Convergence diagnostics (Bayesian framework) 

 

The Markov chain starts from an initial value attributed by the analyst to each 

parameter, which is either arbitrary or computed from a frequentist method (in 

order to avoid a long computation time). After a suitable number of iterations 

(ensuring that the chain is independent of the initial values), the chain is 

expected to reach an equilibrium distribution, or convergence. The first draws 

obtained before convergence are called the ‘burn-in period’ and are discarded 

since they are not representative of the equilibrium distribution (Gelman and 

Hill, 2007; Bivand, 2008; Lawson, 2009; Ntzoufras, 2009; Kéry, 2010). Summary 

statistics of the posterior distribution are then computed directly from the 

remaining simulations. 
 

In order to provide evidence for the robustness of convergence, most model 

estimations should run at least two or three chains in parallel (having different 

initial values) as well as a ‘sufficient’ number of iterations for monitoring 

convergence. Nevertheless, it has the disadvantage to require more computation 

time (Law et al., 2006; Gelman and Hill, 2007; Lawson, 2009). Given that the 

burn-in period can vary considerably from one MCMC estimation to another, the 

convergence of the chain is not guaranteed and must be monitored performing a 

qualitative judgement using several convergence diagnostics (Lawson, 2009). In a 

first step, such diagnostics may consist of a simple visual examination of the 

MCMC chains (also called ‘trace plots of the samples’), serial autocorrelation 

plots, and the Gelman-Rubin statistic plots. MCMC chains should look like 

oscillograms stabilising around a mean value without any tendency or 

periodicity, hence indicating that a good mixing is obtained (Law et al., 2006; 

Ntzoufras, 2009; Kéry, 2010). The overall autocorrelation between successive 

values (sampled from the posterior distributions of the parameters) may also be 

examined using the autocorrelation plots. In particular, a high autocorrelation 

value (i.e. near to 1) indicates that the samples are dependent, or – in other 

words – is suggestive of a slow mixing of the chain. Such a problem is overcome 

by ‘thinning’ the chain (i.e. considering a sampling lag) and keeping only the 

first every k iterations (where k is the thinning parameter). This strategy has 

also the advantage to reduce the computing time and save storage space (Wintle, 

2003; Sturtz et al., 2005; Ntzoufras, 2009). Finally, convergence can be assessed 

analysing the Gelman-Rubin statistic plots. Implemented when multiple chains 

are run in parallel (starting from different initial values), this test statistic 
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compares the between- and within-chain variance (like an ANOVA-type 

diagnostic test). Convergence is likely to be achieved when values close to 1 and 

lower than 1.1 are obtained (Spiegelhalter et al., 2003; Lawson, 2009; Ntzoufras, 

2009; Kéry, 2010). 
 

In a second step, more formal checks are required to monitor convergence 

(Geweke, 1992; Gelman and Rubin, 1992; Raftery and Lewis, 1992; Heidelberg 

and Welch, 1992). First, the Monte Carlo (MC) error of the posterior mean must 

be assessed for each parameter. MC error measures the variability of each 

parameter due to the simulation, i.e. the sampling error in this simulation 

(Ntzoufras, 2009; Kéry, 2010). As a rule of thumb, this statistic should be <5% 

of the posterior standard deviation of a parameter, which is generally the case for 

large and independent samples (Law and Haining, 2004; Law et al., 2006; Kéry, 

2010). Second, the Geweke statistic is computed as a score test based on the 

comparison of the means of the beginning and the end of a single chain. A test 

statistic (Z) with values |Z| < 1.96 suggests that both means are equal, and 

hence that the chain has converged (Geweke, 1992; Smith, 2005; Bivand, 2008; 

Lawson, 2009; Ntzoufras, 2009). A third test is the Raftery-Lewis diagnostic, 

which is also applied on a single chain of a parameter to evaluate the required 

thinning interval as well as the minimum number of iterations to achieve a pre-

specified level of accuracy. The required thinning interval is roughly estimated 

by the dependence factor (I), for which values greater than 5 indicate 

convergence failure and suggest the need to reparameterise the model (Geweke, 

1992; Raftery and Lewis, 1992; Smith, 2005; Ntzoufras, 2009). Last but not least, 

the Heidelberg-Welch diagnostic (Heidelberg and Welch, 1992), which is also 

used for the analysis of single chains, consists of a two-part test (stationarity and 

halfwidth tests). In the first part of the test, the stationarity of the chain is 

monitored using the values from an MCMC output. Without evidence of 

stationarity, the test is repeated on a reduced sample (the first 10% of the 

iterations are dropped) until the resulting chain passes the test or more than 

50% of the iterations are discarded (Smith, 2005; Ntzoufras, 2009). If the test is 

rejected, a longer run is required to achieve convergence. Otherwise, the 

halfwidth test (second part of the diagnostic) is run on the portion of the chain 

that passed the stationarity test. If the halfwidth test is passed, the required 

precision of the posterior mean (of the parameter of interest) is achieved. In the 

opposite case (failure of the test and low accuracy of the mean), a longer run of 

the chain must be considered to reach the required precision (Smith, 2005; 

Ntzoufras, 2009). 
 

Finally, the last step consists of: (1) analysing the Bayesian residuals and 

diagnosing if spatial autocorrelation is still present (using the Moran’s I index); 

(2) summarizing the posterior distributions of the parameters, using point 
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estimates of these latter (e.g. posterior mean and 95% credible intervals of the 

parameters); and (3) computing predictions for ‘unobserved’ locations and data 

(i.e. where accidents were not reported) in order to examine what could have 

been the risk of having a bicycle accident at such places during the period of 

study (2006-2008). 

 

5.3 Data collection 
 

Figure 5.2 illustrates the data collection step. First, an exhaustive review of the 

literature was conducted as regards risk factors that are likely to be (in-)directly 

associated with the occurrence of the bicycle accidents. Second, data were 

collected based on this review and on the knowledge provided by the ‘grey’ 

literature (e.g. reports based on the experience of cyclists or on findings of road 

safety institutes). Such data were either pre-processed from tabular data (or 

from other formats, e.g. pdf) with the aim to obtain spatial/geographic data, or 

digitized through a time-consuming manual process in a Geographic Information 

System (GIS) from orthophotos and maps. While digitizing the data, special 

attention was paid to the direction, year and type of spatial data (e.g. cycle 

facilities), thus allowing a categorization of these latter. As regards the 

dependent variable yi, the bicycle accidents (cases) were geocoded along the road 

network and these data were completed using a set of controls, i.e. locations 

where a bicycle accident is not expected to have been occurred. Controls were 

generated using a stratified random sampling from an exposure variable (i.e. the 

PBTI). Third, the risk factors result from crossing the digitized spatial data with 

the binary dependent variable yi into a GIS, and from manually checking the 

results of these crossings (only for yi = 1). Fourth, the final database with 

accidents, controls and their respective risk factors is used for modelling the risk 

of having a bicycle accident along the Brussels’ road network. By trials and 

errors (using diagnostic and goodness-of-fit statistics), the best accident risk 

models were selected and then used in order to compute predictions for a specific 

‘bikeable’ trajectory of the network. 

 

Most of the spatial data related to the road network and to the risk factors are 

provided by the Brussels Regional Informatics Center (BRIC), using the Brussels 

UrbIS1 database. As mentioned in Chapter 4, ‘unbikeable’ links are excluded 

from the network data set in order to construct a ‘bikeable’ road network. This 

latter is modelled as a connected ‘non-planar’ graph, i.e. in such a way that the 

                                                
1 UrbIS is the acronym for ‘Urban Information System’. 



 

 

 

 
 

Figure 5.2: Data collection – conceptual framework 
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relative heights of road links (elevations) are considered when bridges and 

tunnels are present. It is also ‘directed’ in the sense that directions of travel 

along the road links are taken into account when computing the network 

distances. In particular, one-way streets and contraflows cycling are manually 

and visually identified owing to orthophotos (BRIC, Google Earth), cycling maps 

for the period 2006-2008 (Brussels Mobility) and data provided by BRIC. 
 

In order to account for cyclists living in the Brussels’ periphery (and hence avoid 

edge effects in the estimation of the PBTI), the road network is 35 km buffered 

around the BCR boundaries. This buffered network is defined in the same way 

as that of the BCR, but it does not include any information on contraflows 

cycling (not available). It is however not expected to affect the distance 

estimations significantly1. 

 

5.3.1 Accident data 

5.3.1.1 Accident geocoding (yi = 1) 

 

Road accidents collected from the Directorate-General Statistics and Economic 

Information (DGSEI) are used within the framework of this chapter. A total of 

644 bicycle accidents was censused in the BCR over the period 2006-2008. About 

93% of these (600) are successfully geocoded using a semi-automatic process (see 

Chapter 4). Note that the severity of the accident is not considered here, which 

is however not a major limitation since most cycling accidents (95%) resulted in 

slight injuries. Regardless of the official statistics, the proportion of cycling 

accidents with slight injuries in the total number of cycling accidents is even 

expected to be higher. As mentioned in Chapter 4, accidents resulting in slight 

injuries (and/or with material damages) are indeed strongly underreported 

compared to the other degrees of severity (it is estimated that about 15% of the 

cycling accidents are reported by official statistics). 

 

5.3.1.2 PBTI and generation of controls (yi = 0) 

 

As mentioned in Section 5.2.3.1, controls are randomly selected along the 

‘bikeable’ network, but their sampling is stratified per spatial unit s (statistical 

wards) as a function of the potential bicycle traffic (here: the PBTI). Data from 

the 2001 Socio-Economic Census (DGSEI) are used to estimate the PBTI for 

                                                
1 As an illustration, the relative difference between network distances computed without any 

information on contraflows cycling and network distances with such information is on average 

low (1%) for the BCR. 
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Brussels. This latter is here noted *
sP  and uses a modified negative exponential 

function as impedance2: 
 

( ) ( )[ ]∑
=

−+−+=
T

t
sttsttsttttss dddaaP

1

* .exp...exp.. εηδζ  (5.14) 

 

where t are the statistical wards in the neighbourhood of s (s,t = 1,…, T and t ≠ 

s), as (or at) is the number of cyclists commuting to work or school and living in 

s (or t), dst is the distance measured along the ‘bikeable’ network (expressed in 

kilometres) between the centroids of s and t, and ζt, δt, ηt, εt are parameters of 

the impedance function attributed to the statistical ward t. Note that we here 

limit to commuter cyclists given that: (1) data on cycling trips carried out for 

other purposes (e.g. leisure, shopping) are not available; (2) considering 

commuting trips only is more robust in the sense it excludes the high variation 

that could be associated with occasional cycling trips (e.g. recreational trips). 

Only regular cyclists are hence taken into account to compute the PBTI. Also 

note that Equation 5.15 assumes that all statistical wards t have a same level of 

attraction, and thus that there is no preferential direction of travel for cyclists. 

This could be not the case in reality, with the town centre being the most 

attractive place in general. Nevertheless, many activities are located outside the 

town centre (leisure areas, corner shops, cultural centres, workplaces in industrial 

or business parks, etc.) and attract cycling trips, thus diverting these from the 

town centre. 
 

For each (former) municipality o (each containing several statistical wards t), 

the parameters of the impedance function (ζt, δt, ηt, εt) are empirically calibrated 

on the basis of an observed impedance function of cycling trips (i.e. the observed 

proportion of cycling trips as a function of the distance). In other words, an 

impedance function is constructed for each municipality o, and then the values of 

the parameters calibrated at this scale are assigned to all statistical wards t that 

are contained in o. Such a method hence assumes that travel behaviours are 

different according to the place of residence of the cyclists. As suggested by 

exploratory analyses (not shown here), cyclists living in the town centre (CBD) 

indeed travel shorter distances than those living in more peripheral locations of 

the urban area (the availability and the proximity of facilities is higher in the 

town centre, which reduces the cycling distances of the commuter cyclists living 

there). Note that the parameters of the observed impedance functions are 

computed at the scale of the municipalities because the number of observations 

                                                
2 Such modified negative exponential functions turned out to provide a better fit to observed 

values, compared with a wide range of polynomial functions. The negative exponential function 

is here selected as it is the most tied function to the individuals’ travel behaviour (Geurs and 

Ritsema van Eck, 2001). 
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(and hence the statistical significance) is higher at this scale than when working 

with statistical wards. In case that there are less than 30 observations for one 

municipality, interpolation of the number of cyclists is performed on the 

neighbouring municipalities (1st order queen contiguity). Finally, a 30 km ‘guard 

area’ (i.e. a buffer area that is external to the area of interest) was also used in 

order to avoid eventual ‘edge effects’ by accounting for the commuters that live 

in peripheral municipalities (in Flanders and Wallonia) and that could be likely 

to cycle into Brussels from these. The implementation of such a ‘guard area’ also 

prevents from considering Brussels as a ‘closed system’, since interactions exist 

within its urban region (which extends outside the administrative boundaries). 

As a result, about 550 functional forms of impedance functions (i.e. one for each 

municipality of the BCR and its guard area) were calibrated on the basis of 

observed travel behaviours of cyclists, thus leading to a better fit than when 

using only one functional form (Iacono et al., 2010). 
 

 

 
 

Figure 5.3: Spatial distribution of: (a) the exposure variable, i.e. the Potential 

Bicycle Traffic Index (PBTI), (b) control points, generated from the PBTI and 

drawn along the ‘bikeable’ network (without black zones). Data source: DGSEI. 

 

 

Once the impedance functions calibrated, the PBTI is computed and provides an 

estimation of the potential number of cyclists stopping or transiting in s. 

Concretely, this hence refers to the number of cyclists living in s plus a number 

of cyclists living in the neighbourhood and being likely to travel the distance 

between their place of residence t and s. A visual check of Figure 5.3a suggests 
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that the PBTI is close to the actual spatial patterns of the bicycle traffic, despite 

the fact that no preferential direction is assumed for cycling trips in Equation 

5.15. Interestingly, the locations where large numbers of cyclists are reported by 

the yearly bicycle traffic counts (e.g. European district) all correspond to 

maximum values of the PBTI. Figure 5.3a also exhibits high PBTI values for the 

eastern parts of the so-called ‘Pentagon’ and ‘First Crown’ areas (areas 

delineated by major roads), which corresponds to the places where cycling trips 

and accidents are the most common in Brussels (see Chapter 4). At the opposite, 

low values are obtained for the southern and western parts of the BCR, which is 

an expected result since few cyclists are observed in these areas. As a last check, 

measures of central tendency (e.g. mean center, central feature) and spatial 

dispersion (e.g. standard distance, standard deviational ellipse) seem to confirm 

the validity of the results (Figure 5.3b) (see Levine et al. (1995) & Myint (2008) 

for further details about these measures).  

 

 

 
 

Figure 5.4: Black spots of bicycle accidents (2006-2008) in the Brussels’ 

European district. A: major roads, with high capacity and dense motorised traffic 

volume; A*: idem, but with a separated cycle facility; B: large roundabouts, with 

dense motorised traffic volume; C: road with tram tracks (here: on-road and 

crossable); D: residential wards, with traffic-calming measures (speed humps, 30 

km/h areas, etc.). 
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The number of controls to be drawn in each statistical ward s is now weighted as 

a function of the PBTI (see Equation 5.2). The higher the PBTI, the higher the 

number of controls to be drawn in s. Given that M0 = 4.nacc = 2400 (where nacc 

is the number of bicycle accidents in Brussels), the total number of controls ms is 

2416. These latter are then drawn at locations i along the bikeable road network 

(stratified per s; i is contained in s), from which we removed the black spots of 

bicycle accidents (which is somewhat equivalent to the buffered areas in 

ecological modelling) in order to preclude the sampling from the close vicinity of 

bicycle accidents. Such black spots are obtained by performing a Network Kernel 

Density Estimation provided by SANET v.4 (Okabe et al., 2009), or simply by 

computing linear/network buffers (100m) around the bicycle accidents (e.g. using 

the Network Analyst extension of ArcGIS 9.x). In the former case, just note that 

a 100m bandwidth is used and that the presence of bridges and tunnels is taken 

into account (through a manual correction). Figure 5.4 provides an illustration of 

black spots for cyclists in the European district. Unsurprisingly, cycling accidents 

are more likely to be observed at intersections (especially at roundabouts) and 

on major roads with dense motorised traffic and/or tram tracks. At the opposite, 

it seems that residential roads are less prone to generate cycling accidents (which 

could be explained either by the traffic-calming measures, or by a greater degree 

of underreporting of cycling accidents in these streets (as suggested in Chapter 

4)). 
 

As a final step, a year (2006, 2007 or 2008) and a traffic direction are randomly 

assigned to the controls. This allows to associate the controls with the spatial 

risk factors, since these latter may be built at a definite moment over the period 

of interest (e.g. in 2008) or may be reported at one street side only (depending 

on the location where the control is located). Controls (noted yi = 0) are finally 

appended to the geocoded bicycle accidents (yi = 1) in the same database, which 

then makes possible the use of logistic regression modelling. 

 

5.3.2 Risk factors 
 

Classically, road accidents in general result from the interaction and combination 

between five categories of risk factors: human factors (e.g. driver behaviour, 

driver error), vehicle-related factors (e.g. size or state of the vehicle), 

infrastructure factors (e.g. crossroad design, pavement type), traffic conditions 

(e.g. density, speed), and environmental factors (e.g. lighting, weather) (Miaou 

et al., 2003; Li et al., 2007; BRSI, 2008). In this chapter, we mainly focus on 

infrastructure factors, traffic conditions and – to a lesser extent – environmental 

conditions. The other factors are however not available for the controls (as well 

as for the bicycle accidents (e.g. driver errors)). Appendix D.1 lists all risk 
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factors used in this chapter as well as their definition, units and data sources. All 

of these data are collected for the period 2006-2008 and at the scale of the 

Brussels-Capital Region. Note that the list is quite exhaustive (> 45 risk factors) 

because we aimed at monitoring if some (potential) risk factors might have had 

an unexpected relationship with the locations where bicycle accidents occur. 

 

5.3.2.1 Infrastructure factors 

 

A first data set of infrastructure factors is collected within the framework of 

Chapter 4 and is here also exploited for statistical modelling. Contrary to this 

previous work, the presence, evolution and street side where the infrastructures 

are built are controlled over the 2006-2008 period, using orthophotos (BRIC, 

Google Earth) and accident data (DGSEI). This first data set collects data on: 

bridges/tunnels, traffic-calming areas, intersections, tram tracks and public 

transport stops, cycle facilities and discontinuities along the bicycle network, 

parking facilities (for motorised vehicles), proximity to activities and public 

services, and streets where contraflow cycling is permitted (see Chapter 4 for 

further information). Some modifications (i.e. changes in the definition of the 

factors, collection of additional variables, etc.) are however implemented here 

and described below, before outlining some additional risk factors created for the 

purpose of this chapter. 

 

Updates 
 

(1) Intersections are modelled as ‘zones’ instead of points, as the probability a 

control falls exactly on a point (here: the intersection) is almost null. This 

also allows reflecting the zone/extent of the intersection in a more realistic 

way. For instance, in cases where the control is drawn 1m from the exact 

intersection point, it is indeed more realistic to consider that such a control 

belongs to this intersection (or ‘intersection zone’). As regards roundabouts 

and traffic lights, the intersections are manually delineated on the basis of 

specific road features identified in the crossroad (e.g. stop lines, yield lines 

for roundabouts, etc.). Concerning the other types of intersections, the 

zones are defined as being 10m-length3 linear buffers starting outwards in 

all (possible) network directions from the exact intersection point. 
 

(2) Two other proxies are used with regard to intersections: the proximity to 

the closest intersection and the complexity index. First, network distances 

                                                
3 By convention, a 20m length is generally chosen (Liu and Jarrett, 2008), but this is expected 

to be not appropriate here since we manually digitized the roundabouts and signalized 

intersections (which have larger lengths) separately. 
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are computed between each accident / control and the closest 

intersection on the road network (whatever the type of intersection). Such 

a measure is particularly useful in the case where intersections would have a 

gradual (decreasing) influence with increasing distances, rather than a 

constant influence over a specified distance (e.g. 10m). Second, a 

complexity index is computed for each accident / control. Such an index 

consists of the sum of all road links starting / radiating outwards (in all 

possible network directions) from the accident / control location, over a 

certain distance or ‘bandwidth’. Here the bandwidth values are 10, 20, 30, 

40, 50, 75 and 100m. For instance, if the bandwidth is 10m, the complexity 

index computed for an accident located in a four-legs intersection is 40 m, 

whereas it will be 20m when occurring in the middle of a road link (if this 

latter is at least 20m length). Note that complexity is here defined in line 

with the Elvik’s law on complexity (i.e. in the sense that it is a proxy for 

road legibility) (Elvik, 2006). 
 

(3) One additional factor is collected with regard to the (public) transport 

infrastructures. It simply measures the network distance between the 

accident / control and the closest public transport stop. Concerning tram 

tracks, it is also not mentioned here if the cyclists actually crossed the 

tracks (e.g. at right angles, etc.) or if they cycled parallel to these. Indeed, 

the accident reports often give insufficient and/or imprecise information to 

infer what might have been the cyclist’s direction relatively to tram tracks. 
 

(4) Regarding the cycle facilities and the discontinuities along the network, two 

additional variables are created. The first one is created on the basis of a 

manual selection of the cycle facilities located nearby parking areas, 

i.e. at a distance < 0.9 m from the boundaries of the closest longitudinal 

parking area (which corresponds to the door zone) or public parking exit 

(i.e. other than a garage). The second consists in the network distance 

computed between each accident/control and the closest discontinuity 

(i.e. end or cut of a cycle facility along the bicycle network). 
 

(5) As regards parking facilities (function-based), a specific type observed 

in some parts of the street should not be generalized to the whole street, 

especially if curb extensions reduce the space dedicated to parking (e.g. at 

intersections or at pedestrian crossings level). It would indeed be 

erroneously inferred that parking facilities would have had a role in the 

occurrence of the accidents reported in front of such curb extensions. A 

time-consuming digitization process is hence performed to account for all 

possible discontinuities (e.g. curb extensions) in the parking facilities 

observed along the road network. Network distances are then computed 

between each accident/control and the closest parking facility of each type, 
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hence providing a measure of proximity to these latter in order to explore 

their respective safety effect. 
 

(6) Information on traffic direction in streets where contraflow cycling is 

allowed (or prohibited) is encoded in order to precise if the cyclist was 

facing motorised traffic or not. 
 

(7) As regards activities and public services, network distances are 

computed from each accident/control to each of these activities/services in 

order to explore whether the proximity to these latter has an impact on the 

risk of having a bicycle accident. Several ‘proximity variables’ are hence 

obtained (i.e. one for each kind of service or activity). 

 

Garage entrances/exits 
 

Garage entrances and exits differ from public parking facilities (aspect- and 

function-based; see Chapter 4) in the sense that they mainly consist in private 

driveways and entrances to parking shops, shopping centres, firms or companies. 

They are expected to increase risk, especially when the driver leaves the 

garage/parking driveways to join a road or crosses a cycle facility while 

leaving/going into these. The presence of parked cars or other hurdles (e.g. plant 

tubs) may indeed hinder the field of vision of motorists and cyclists, which hence 

increases the risk of accident for both road users. In the literature, there is little 

evidence about a potential effect of garage entrances/exits on the occurrence of 

bicycle accidents. Rifaat et al. (2011) concluded that cyclists experienced higher 

non-injury and fatal risks on private driveways and parking lots. On the one 

hand, non-injuries result from collisions with hurdles and from the low speed of 

vehicles leaving/going into private driveways, while – on the other hand – fatal 

injuries are the effect of collisions of motorised vehicles with small children 

cycling/playing in the street (and being more vulnerable to road accidents). 

Greibe (2003) also found an inverted ‘U-shape’ relation between the number of 

accesses (private driveways, parking facilities, etc.) and accident risk, whatever 

the road user. Lower accident risks were found for roads with no access or with a 

large number of accesses, while the highest risks were reported for roads with a 

moderate number of accesses. 
 

As regards to data collection, centroids of garage entrance/exits (modelled as 

lines into GIS) and are subsequently used to compute 3 indices measuring how 

‘frequent’ the garage entrances/exits are in the close neighbourhood of bicycle 

accidents/controls. These indices are: (1) the number of garage entrances/exits 

within 100m (network distance) from the place of the accident/control (for the 

sake of brevity, note that ranges are here defined: 0, 1-10, 11-20…, and more than 

70 entrances-exits); (2) the presence of at least one garage within 10, 50 or 100m 

(network distance) from the accident/control; (3) the network distance (in 
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meters) between each accident/control and the closest garage entrance/exit. 

Finally, a fourth index is directly computed from the Brussels UrbIS database 

(BRIC) and represents the total garage length (i.e. the sum of all individual 

garage lengths) summed over a 100m network-based distance from the place of 

the accident/control. Let us note here that the incoming/outgoing flows of 

motorised vehicles are not available, which constitutes a limitation as the 

accident risk is likely to be higher for entrances to parking of shops and 

supermarkets (compared to private driveways of dwellings). 

 

Proximity to the town centre 
 

The number and risk of bicycle accidents are expected to increase while coming 

closer to the town centre. This latter is indeed very dense in population, jobs and 

activities (e.g. shops, work, schools, etc.) and hence is more prone to generate a 

high number of conflicting situations and accidents since it attracts high volumes 

of motorized and non-motorized traffic compared to other parts of the urban 

area. Irrespective of the type of road user, Levine et al. (1995) indeed found that 

most accidents occurred in the employment areas, while Greibe (2003) observed 

that accident risks were the highest in shopping streets and town centre roads. 

More recently, Cho et al. (2009) also showed that compact and mixed land-use 

areas were positively related with (actual) accident risks for cyclists and 

pedestrians, and that higher perceived risks were found in compact 

neighbourhoods only (reduced perceived risks were reported for highly mixed 

land uses). Last but not least, Thomas et al. (2011) found that the accident 

numbers and risks for cyclists were the highest in the central parts of the 

Antwerp’s urban region, compared to the periphery. As shown in Chapter 2, the 

results tend however to be quite different when accounting for the severity of the 

accident. They may show reduced risks of being killed or seriously injured in 

urbanized areas, owing to a lower differential between slow and fast modes of 

transport. 
 

In this chapter, the proximity of the accident/control to the town centre is 

measured by the network distance between the Brussels’ town hall and each 

accident/control. It is here used as a proxy of the pedestrian activity, as well as 

for the accessibility to jobs/facilities (e.g. services, shops, restaurants, etc.) and 

population. 

 

Major roads 
 

The risk of having an accident is expected to be higher for cyclists riding on (or 

close to) major roads, i.e. on high-capacity and high-speed roads interconnecting 

large towns and attractive places or activities within/outside an urban area (see 

e.g. Klop and Khattak, 1999; Kim et al., 2007; Eluru et al., 2008). Such roads 
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are indeed characterised by a design, traffic conditions and rules that are 

generally car-oriented but not in favour of a comfortable and safe cycling trip. 

For instance, the high speed limits (only achieved/exceeded by the motorists 

during off-peak hours) as well as the dense and conflicting traffic conditions 

(during peak hours) are factors that increase the probability of fatal and non-

fatal accidents for cyclists, respectively (see Section 5.3.2.2 for further 

information on the safety effect of traffic conditions). 
 

Data about major roads are provided by the Brussels UrbIS database (BRIC) 

and include several categories of roads (i.e. motorways, metropolitan roads, 

secondary/main roads and inter-district connecting roads). Two variables are 

here defined: one identifies the presence (or the absence) of a major road at the 

place of the accident/control, while the other computes the network distance to 

the closest intersection with a major road. In the latter case, it hence aims at 

measuring the influence of the proximity of major roads on the risk of bicycle 

accidents. It is assumed here that roads located in the neighbourhood of a major 

road have higher volumes of motorized traffic, and thus are more likely to 

exhibit a high risk of bicycle accident. 

 

5.3.2.2 Traffic conditions 

 

The number and risk of bicycle accidents are generally influenced by the traffic 

conditions (i.e. traffic composition, flows/volumes, etc.) observed at the time of 

the accident (see e.g. McClintock and Cleary, 1996; Klop and Khattak, 1999; 

Wang and Nihan, 2004; Hels and Orozova-Bekkevold, 2007; Kim et al., 2007; 

Eluru et al., 2008; Anderson, 2009). Such conditions spatially and temporally 

vary, depending on the type/design of road (major vs minor) and the time of the 

day (peak vs off-peak hours). In particular, during peak hours, a dense motorized 

traffic (or congestion) increases not only the number and the risk of non-fatal 

accidents for cyclists but also the perception of danger (Parkin et al., 2007; Hels 

and Orozova-Bekkevold, 2007; Møller and Hels, 2008), mainly because of the 

increased complexity of the traffic situation (e.g. high number of road users), the 

more aggressive driving behaviour (whatever the road user) and the restricted 

space left to the (passing) cyclists between the queuing vehicles (McClintock and 

Cleary, 1996; Li et al., 2007; Wang et al., 2009). It however decreases the risk of 

being seriously or fatally injured in a road accident, owing to a reduced 

differential between the speed of slow and fast transport modes (Klop and 

Khattak, 1999). More time is also given to drivers to react to conflicting 

situations and – as a corollary – to avoid accidents (Wang and Nihan, 2004; 

Wang et al., 2009). During off-peak hours, the opposite situation is observed. 

High vehicle speeds may be achieved (or exceeded) at these moments, which 
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hence increases the risk of being seriously or fatally injured for cyclists (while 

reducing the probability of the other injury severities) (Klop and Khattak, 1999; 

Hels and Orozova-Bekkevold, 2007; Kim et al., 2007; Eluru et al., 2008). For 

instance, Kim et al. (2007) found a more than 11-fold increase in the probability 

of fatal injury as the estimated vehicle speeds pass 65 km/h. 
 

The type of collision partner (e.g. pedestrian, car user, etc.) also plays a key role 

in the severity of the accident. Depending on their speed, dimension and weight, 

they may lead to different injury severities (the highest these three factors, the 

highest the injury severity). Disregarding the underreporting issue, motorised 

vehicles – and more particularly cars – generally account for the largest share of 

vehicles colliding with cyclists and often cause most of injuries for these latter 

(ERSO, 2006; Chong et al., 2010; Loo and Tsui, 2010). Lorries, buses, vans and 

sports utility vehicles are more frequently involved in serious and fatal cycling 

accidents, especially in urban areas where vulnerable road users and motorized 

vehicles interact (McCarthy and Gilbert, 1996; ERSO, 2006; Kim et al., 2007; 

Eluru et al., 2008; BRSI, 2009a; Pei et al., 2010; Yan et al., 2011). The wide 

vehicle dimensions (e.g. higher hood, reduced visibility for other road users being 

in the close vicinity, and larger blind spots than cars) combined with the 

relatively high speeds and heavier vehicle masses are some of the main factors 

explaining such severe injuries (ERSO, 2006; Kim et al., 2007; Eluru et al., 2008; 

Pei et al., 2010; Pai, 2011). In particular, these often occur when the cyclist is in 

the blind spot of a lorry turning right at a junction or when he/she is blown off 

his/her bicycle by a close lorry. Moreover, recent findings (Walker, 2007; Parkin 

and Meyers, 2010) show that drivers of buses and heavy good vehicles often 

leave narrow safety margins when overtaking cyclists due to their large 

dimensions (length) and poor acceleration (which may hence create close 

proximities and conflicts). They are also more prone to fatigue and stress since 

most of them ride within a commercial context, i.e. they have a planning and 

specific objectives to achieve (Boufous and Williamson, 2006; Brodie et al., 2009; 

Pei et al., 2010). Finally, the accidents of cyclists with other non-motorized road 

users – although less frequent – are not inconsequential in terms of injury, 

especially for pedestrians (McClintock and Cleary, 1996; Graw and König, 2002; 

Hels and Orozova-Bekkevold, 2007; Chong et al., 2010). 
 

Data on motorized traffic volume were modelled by STRATEC for the year 2006 

and are provided by the Brussels’ Institute for Environmental Management 

(IBGE-BIM). They are expressed in terms of private car equivalent units and are 

measured for specific vehicle types, road links and time intervals. However, 

traffic modelling is computed for major roads only. In order to account for the 

traffic volume on minor roads as well as for the eventual bias generated by 

traffic modelling, a categorisation of the data into 5 classes is carried out based 
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on the methodology of Natural Breaks (class 1: very low traffic level; …; class 5: 

very high traffic level). Within the framework of this chapter, only three vehicle 

types (i.e. car, van and lorry traffic) and three time intervals (i.e. 8:00 a.m.–8:59 

a.m., 5:00 p.m.–5:59 p.m., and 6:00 a.m.–10:59 p.m.) are considered. Also, 

control is made of the street side of the accident / control when assigning traffic 

levels to these latter, except at intersections (where only the maximum traffic 

level is considered). If separated cycle facilities (i.e. uni- or bi-directional) are 

built along road links, cyclists are assumed to ride off-road and are hence 

supposed to be unaffected by the motorised traffic volume, except at 

intersections where the cycle facilities generally cross the road without any 

physical segregation. It hence leads us to assign a null traffic volume for 

accidents / controls occurring outside intersections and reported on the street 

side of such separated cycle facilities. 

 

5.3.2.3 Environmental risk factors 
 

Slopes / gradients 
 

Road sections with steep slopes are expected to increase the risk of cycling 

accident. Straight gradients (downgrade) indeed reduce the control of the bicycle 

and lead to greater braking distances. They are also often associated with a 

greater number of curves on the road, which may limit the visibility of both 

motorists and cyclists (Klop and Khattak, 1999; Kim et al., 2007). 
 

A Digital Elevation Model (DEM) – which is here represented as a raster of 

height values assigned to 90 × 90m pixels – is obtained from EROS Center 

(Earth Resources Observation and Science Center) and is used to compute the 

gradients at the place of the accident/control. These gradients correspond to the 

maximum slope (in degrees) computed between the pixel of the accident / 

control and the closest neighbouring pixels (Queen Contiguity, 1st order). Such a 

measure has however the disadvantage of not being computed along the road 

network and it hence does not account for infrastructures that are not 

constrained by the topography (e.g. bridges or tunnels).  

 

Proximity to green areas 
 

At our knowledge, there is no literature considering the effect of the proximity of 

green areas on the risk (and the number) of cycling accidents, and no trivial 

hypothesis could be made about such an effect. Although the close vicinity of 

green areas may increase the risk of accidents for cyclists in autumn (due to a 

skidding road surface caused by humid leave heaps), the effect of such a 

proximity is more difficult to assess as regards the intensity of recreational 
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activities occurring in (or close to) green areas. On the one hand, these 

recreational activities can increase the risk of having a cycling accident 

(involving e.g. inattentive children that played in the neighbourhood of the green 

areas), whereas on the other hand this could make passing motorists more 

careful about potential conflicts with cyclists and pedestrians (that are in great 

numbers in the close vicinity of green areas, hence creating a ‘safety in numbers’ 

effect). 
 

Data on green areas (i.e. parks, playgrounds, forests and woods) are provided by 

the Brussels UrbIS database (BRIC). Euclidean distances are first computed 

between each accident/control and the border of the closest green area. Second, 

a binary variable is created on the basis of the Euclidean distances in order to 

indicate the presence (or the absence) of a green area within some specified 

buffer distance from the place of the accident/control (10, 20, 30, 40, or 50m). 

 

5.3.2.4 Interaction variables and intersect analyses 

 

Most of the previous risk factors are combined/intersected and introduced in the 

models through trial and error processes. Crossing two risk factors may be 

advantageous since it may improve the inference (e.g. by obtaining a significant 

interaction variable, whereas the two risk factors taken separately may appear as 

being insignificant) and the validity of the models (owing to e.g. a reduced 

multicollinearity, heteroscedasticity, etc.). In the tables reporting the results of 

the final models, interaction variables are noted using the following notation: 

‘[Risk factor 1] & [Risk factor 2]’. For instance, the interaction variable ‘Bridge 

& no cycle facility’ represents the bridges for which there is no cycle facility. Of 

note is also the fact that the influence of (nearby) traffic volume, parking areas, 

and tram tracks is disregarded when accidents/controls occur on separated cycle 

facilities and outside junctions, because the cyclists ride on cycle facilities that 

are physically separated from the road (and its attendant motorised traffic, etc.). 

 

5.3.2.5 Ignored risk factors 

 

Some infrastructure factors are deliberately ignored due to frequent 

modifications/treatments (for instance, a large number of advanced stop zones 

for cyclists were implemented at intersections during our period of study). Also, 

human and vehicle-related factors (as well as some of the environmental factors) 

are disregarded since: (1) they are not available for controls; (2) they are 

expected to be erroneously described for some accidents; (3) we deliberately 

focussed on the effect of modifiable risk factors only. 
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5.4 Results4 
 

Descriptive statistics are reported in Section 5.4.1; they explore the relationships 

between the risk factors and the occurrence of bicycle accidents. Overall model 

evaluation and diagnostics are succinctly presented in Section 5.4.2, with the aim 

to motivate the selection of the final (autologistic) model. Results are discussed 

in Section 5.4.3, before illustrating the interest of such a modelling approach 

using predictions for a specific road trajectory in the Brussels’ town centre 

(Section 5.4.4). 

 

5.4.1 Bivariate associations 
 

Chi-Square adjusted tests and Fisher’s exact tests for independence confirm our 

expectations (Appendix D.2, discrete data) and show that there is a significant 

relationship between the presence of a number of risk factors and the occurrence 

of a bicycle accident. It also indicates that the probability of having a cycling 

accident is higher in intersections (i.e. right-of-way, yield/stop, traffic light and 

roundabout), on bridges, tram tracks (all types), cycle facilities (especially on 

unidirectional separated, marked, suggested, and bus-bicycle lanes), cycle 

facilities built next to parking areas (especially the unidirectional separated 

lanes), major roads or roads with low to very high volumes of motorized traffic 

(cars, vans and trucks), and when 1-10 garages are present within a 100m 

network distance. At the opposite, the probability of having an accident is 

reduced when cycling in contraflow streets or streets characterized by a very low 

motorized traffic volume (car, van or truck), by longitudinal or perpendicular-

angled parking, by a number of garages ranging between 21 and 40 within a 100 

network distance (or by at least 1 garage within 10 or 50m), and when cycling 

outside intersections, tram tracks or cycle facilities. 
 

As regards the continuous data, Appendix D.3 shows that the probability of 

having an accident for the cyclist is lower for large garage lengths (within a 

100m network distance), whereas it increases with the complexity of the location 

(whatever the bandwidth) and nearby the town centre, crossroads, 

                                                
4 All descriptive statistics and models performed within a frequentist framework were run in 

SAS Enterprise Guide 4.2 and R 2.12.1., while Bayesian statistics were computed in WinBUGS 

from R, by using the R2WinBUGS package (Sturtz et al., 2005). WinBUGS is the windows-

based version of the BUGS software (BUGS: ‘Bayesian inference Using Gibbs Sampling’) and 

makes possible the use of several MCMC methods for analysis of hierarchical Bayesian models 

(Lunn et al., 2000; Spiegelhalter et al., 2003). Convergence diagnostics and output analyses were 

performed using the CODA package in R (Best et al., 1995; Plummer et al., 2006). 
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discontinuities in the bicycle network, major roads, parking areas, public 

transport stops, administrations, schools (all types, except primary and 

secondary schools), shopping centres, cultural buildings, religious buildings 

(almost all types), police buildings, hospitals and embassies. Non-parametric 

Wilcoxon Rank-Sum tests support such findings by suggesting that these risk 

factors significantly differ (in their median values) between the accidents and the 

controls. 

 

5.4.2 Model diagnostics and selection 

5.4.2.1 Accident risk modelling 

 

Logistic modelling is first performed within a frequentist framework (see 

Appendix D.4) in order to identify which are the most significant risk factors 

and to get initial values for the parameters of the hierarchical Bayesian models. 

In this first step, special attention is paid to the level of multicollinearity 

(VIFmax=1.22) and to the presence of heteroskedasticity (Huber-White correction 

was here applied), as well as to the goodness-of-fit and effectiveness of the model 

(compared to an intercept-only model). Goodness-of-fit statistics and inferential 

statistical tests are reported in Appendix D.5 and show that the logistic model 

fits the data well (LL = –1063.1; HL test statistic = 14.1) and is more effective 

than the null model (LR test statistic = 883.4). The measures of association and 

misclassification also indicate that the model correctly predicts higher 

probabilities for accidents compared to controls (c = 0.83; Dxy = 0.66) and 

misclassifies only 14% of the observations (when setting the cut-off point of 

classification at 0.5). Wald Chi-Square statistics finally show that most of the 

parameters included in the logistic model are significant at the 95% level. 
 

In a second step, the same logistic model is performed within a Bayesian 

framework. Table 5.1 (left columns) shows that the (posterior) values of the 

parameter estimates are very close to these computed within the frequentist 

framework (in Appendix D.4). Note that for all models, distance-based variables 

(i.e. distance to shopping centres or regional administrations) are exponentially 

transformed in order to improve the model fit5. 
 

                                                
5 It hence suggests that the influence of the proximity of shopping centres and regional 

administrations on the occurrence of accidents adopts a negative exponential form (e–0.001.x, 

where x is the distance – expressed in km – between the accident/control and the shopping 

centre/regional administration). 
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5.4.2.2 Autologistic and autoregressive accident risk modelling 

 

Residual spatial autocorrelation is detected using Moran’s I index (I = 0.27). 

This suggests that spatial dependence initially observed for the accidents 

(through join-count test statistics) is not fully taken into account by the selected 

risk factors. Autologistic and random effect specifications (i.e. with correlated 

and/or uncorrelated heterogeneity) are then implemented within a hierarchical 

Bayesian framework in order to deal with the presence of spatial autocorrelation 

in the model. Table 5.2 lists the best models (among approximately 100 models, 

with various specifications and complexities) and makes the comparison with the 

corresponding null model specifications. The autologistic formulation turned out 

to be the best (model IX). It not only provided evidence for robust convergence 

(through convergence diagnostics; see Appendix D.6), but also resulted in the 

smallest DIC value (2118.1) and in an improvement over the null models. On the 

contrary, the specifications with random effects did not succeed in converging 

and provided insignificant parameter estimates for both the uncorrelated and 

correlated random effects: the parameter estimates – or, more exactly, the 

Bayesian posterior mean estimates – were in the order of 1.10-5 and 1.10-20, 

respectively. Several model specifications incorporating different sets of risk 

factors and random effects and using different burn-in periods, thinning 

intervals, or prior and hyper-prior distributions were tested here, but still 

without success. This hence suggests that both the uncorrelated and correlated 

random effects are weak (e.g. due to the inclusion of appropriate risk factors). 

However, the fact that an autologistic model previously converged may also 

suggest that the binary spatial weight matrix used for the ICAR model is a too 

simplistic form and is not convenient to capture the spatial – or rather the 

‘network’ – autocorrelation. A spatial weight matrix such as this defined for the 

autologistic model (i.e. based on a decay function) seems to be a more 

appropriate form to account for the presence of spatial autocorrelation and 

probably explains why the autocovariate is significant in the autologistic 

specification (whereas random effects are insignificant in the ICAR model).  

 

5.4.3 Discussion of the results of the autologistic 

model 
 

Table 5.1 (right columns) presents the results of the autologistic model. It shows 

that almost all risk factors are significant at 95% and that the MAPE is quite 

small, indicating a low misclassification under the fitted model. Only 

infrastructure- and traffic-related risk factors are retained in the model.  



 

 

 

Table 5.1: Logistic (non-spatial) and auto-logistic models (spatial) – Results from the Bayesian framework 
 

Variables 

Logistic model Autologistic model 

Mean SD 
MC 

error 

CI 

2.50% 

CI 

97.50% 
OR Mean SD 

MC 

error 

CI 

2.50% 

CI 

97.50% 

OR 

(OR100m) 

  Intercepta -2.29*** 0.09 0.001 -2.47 -2.12 0.10 -2.29*** 0.09 0.001 -2.46 -2.12 0.10 

  Autocovariate variable - - - - -  2.15*** 0.14 0.001 1.89 2.42 8.61 

Infrastructure             

  Complexity index             

  Bandwidth = 10m 0.15*** 0.01 0.000 0.13 0.17 1.16 - - - - - - 

  Bandwidth = 40m - - - - - - 0.02*** 0.00 0.000 0.01 0.02 1.02 (4.79) 

  Bridge & no cycle facility 0.86 0.58 0.006 -0.29 2.00 2.37 0.88 0.59 0.005 -0.26 2.03 2.42 

  Contraflow cycling & no crossroad -0.69* 0.35 0.003 -1.42 -0.05 0.50 -0.89** 0.36 0.003 -1.64 -0.23 0.41 

  Cycle facility & crossroad             

  Fac.1 (unidir.) & Crossr.1 (yield/stop) 2.25** 0.92 0.009 0.63 4.27 9.53 2.02** 0.90 0.008 0.44 3.99 7.56 

  Fac.2 (bidir.) & Crossr.1 (yield/stop) 2.88** 1.38 0.013 0.66 6.02 17.78 3.36*** 1.38 0.012 1.15 6.56 28.85 

  Fac.3 (mark.) & Crossr.3 (traff. light) 1.96** 0.94 0.009 0.32 4.01 7.10 1.85* 0.91 0.007 0.25 3.79 6.35 

  Fac.3 (mark.) & Crossr.4 (round.) 2.76* 1.52 0.013 0.18 6.13 15.83 2.83* 1.56 0.013 0.13 6.22 16.91 

  Fac.4 (sugg.) & Crossr.2 (right-of-w.) 3.13** 1.42 0.012 0.87 6.46 22.90 3.74*** 1.37 0.011 1.60 7.05 42.22 

  Fac.0 (no facility) & Crossr.4 (round.) 1.02*** 0.30 0.003 0.43 1.61 2.78 0.67* 0.32 0.002 0.03 1.30 1.96 

  Fac.3 (mark.) & Crossr.0 (no crossr.) 0.73* 0.33 0.003 0.06 1.35 2.07 - - - - - - 

  Tram tracks             

  Class 1 (crossing tram tracks) 0.86* 0.44 0.004 0.01 1.75 2.37 1.16** 0.46 0.004 0.29 2.09 3.20 

  Class 2 (crossable reserved lanes) 0.83** 0.33 0.003 0.17 1.47 2.30 - - - - - - 

  Class 3 (on-road tracks) 1.06*** 0.23 0.002 0.60 1.51 2.87 0.82*** 0.23 0.002 0.36 1.28 2.27 

continued on next page 
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continued 

Variables 

Logistic model Autologistic model 

Mean SD 
MC 

error 

CI 

2.50% 

CI 

97.50% 
OR Mean SD 

MC 

error 

CI 

2.50% 

CI 

97.50% 

OR 

(OR100m) 

  Number of garages (d ≤100m)             

  Range 0 (no garage) -0.61* 0.28 0.003 -1.18 -0.07 0.54 -0.60* 0.28 0.002 -1.17 -0.07 0.55 

  Distance public administrationb             

  Public administration 2 (regional) 1.08*** 0.22 0.002 0.65 1.52 2.95 - - - - - - 

  Distance shopping centerb - - - - - - 0.86*** 0.24 0.002 0.38 1.33 2.36 (2.17) 

  Proximity parking-cycle facility             

  Parking & Facility 1 (unidir.) 1.28** 0.45 0.004 0.37 2.14 3.59 1.15* 0.48 0.004 0.18 2.08 3.16 

  Parking & Facility 2 (bidir.) 2.07* 1.16 0.011 -0.22 4.40 7.95 1.76 1.30 0.011 -0.88 4.27 5.78 

Traffic             

  Van & truck traffic (6am-10:59pm)             

  Class 2 (low) 1.01*** 0.15 0.001 0.71 1.30 2.73 0.92*** 0.15 0.001 0.64 1.21 2.52 

  Class 3 (moderate) 1.32*** 0.16 0.001 1.01 1.63 3.75 1.20*** 0.16 0.001 0.89 1.51 3.32 

  Class 4 (high) 1.24*** 0.22 0.002 0.80 1.68 3.46 1.26*** 0.22 0.002 0.82 1.70 3.53 

  Class 5 (very high) 2.60*** 0.35 0.003 1.93 3.29 13.46 2.13*** 0.36 0.003 1.43 2.84 8.38 

  Deviance 2149*** 6.92 0.060 2137 2164 - 2097*** 6.70 0.052 2086 2112 - 

  MAPE 0.21*** 0.00 0.000 0.20 0.22 - 0.21*** 0.00 0.000 0.20 0.21 - 

  MSPE 0.11*** 0.00 0.000 0.11 0.11 - 0.10*** 0.00 0.000 0.10 0.11 - 
 

*** Significant at 99.9%; ** Significant at 99%; * Significant at 95% 
a Intercept value resulting from centering 
b Exponentially transformed variables (e-0.001.x) 

OR: Odds Ratio; OR100m: Odds Ratio for a 100m increase (rather than 1m) 

CI: credible interval 

 

Interaction variables: 

Bridge & no cycle facility: Bridge = 1 and Cycle facility = 0 

Contraflow cycling & no crossroad: Contraflow cycling = 1 and Crossroad = 0 

Van & truck traffic (6am-10:59pm): maximum class value of van & truck traffic 

Cycle facility & crossroad: cycle facility = X, crossroad =Y (X=1, …5; Y=1, …6) 
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Table 5.2: Model-building specifications and model comparison 
 

Model ID Model Iterations Burn-in Thin pD DIC Converged? 

I Null model 15000 10000 1 1.00 3011.53 Yes 

II Null model + UH 250000 50000 100 25.10 3016.88 No 

III Null model + Autocov 50000 10000 10 2.00 2572.26 Yes 

IV Null model + UH + Autocov 36000 9000 60 3.27 2572.3 No 

V Null model + CH - - - - - No 

VI Null model + UH + CH - - - - - No 

VII Fixed effects only 50000 10000 10 22.21 2171.15 Yes 

VIII Fixed effects + UH 35000 10000 5 27.02 2171.23 No 

IX Fixed effects + Autocov 20000 10000 2 21.08 2118.08 Yes 

X Fixed effects + UH + Autocov 20000 12500 10 22.60 2118.64 No 

XI Fixed effects + CH - - - - - No 

XII Fixed effects + UH + CH - - - - - No 
 

Number of Markov Chains = 3 

Null model: Model with intercept only (no risk factor included) 

UH: Uncorrelated Heterogeneity (unstructured errors); CH: Correlated Heterogeneity (spatially structured errors, ICAR) 

Autocov: Autocovariate; pD: effective number of parameters; DIC: Deviance Information Criterion 

Converged?: ‘Yes’: the model converged to a perfect equilibrium; ‘No’: the model did not converge to a perfect equilibrium, but the trace plots suggest it almost 

reached it. 

In bold: selected models (VII = Logistic model; IX = Auto-logistic model) 
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Interestingly, variables referring to the gradients, the discontinuities in the 

bicycle network and the traffic-calming measures (i.e. pedestrian, residential and 

30 km/h areas) are not included here. Although the topography is far from being 

flat in Brussels (especially in the southern part of the region), the gradients are 

not as steep as they are in some Walloon municipalities and do not seem to 

significantly increase the risk of having a cycling accident. The fact that few 

severe injuries are reported in Brussels probably confirms such a statement 

(given that steep slopes are generally more likely to increase the risk of injury 

severity, rather than the global risk). Concerning the discontinuities, these were 

removed from the model due to collinearity issues with some other risk factors 

(e.g. with the intersections, since most of the discontinuities are here located). 

Finally, traffic-calming areas led to insignificant parameters for most of the 

model specifications (except for pedestrian areas, in some cases). This reflects the 

lack of efficiency of such areas in reducing the accident risk, which is probably 

due to the current generalization of 30 km/h areas in Brussels and the little 

respect motorists have about speed limits. In 2007, about 77% and 45% of 

motorists driving in the BCR indeed committed an offence of more than 1 km/h 

and more than 10 km/h (respectively) in 30 km/h areas (BRSI, 2009b). Note 

that, in the next subsections, hypothetical explanations are provided for each 

risk factor on the basis of results and observations derived from the grey 

literature (especially BRSI, 2006, 2009a, 2009b) and from the review of the 

literature conducted in Section 5.3.2. 

 

5.4.3.1 Infrastructure-related risk factors 

 

Among the infrastructure-related variables, the complexity index has the largest 

effect on the risk of having a cycling accident. It accounts for about 30% of the 

explanation of the accident risk, whatever the location on the network (with a 

maximum of 92% for streets with at least one garage and where contraflow 

cycling is not permitted). As mentioned before, cyclists as well as other road 

users are faced with a large number of information at the same time at locations 

with an increased complexity (e.g. due to a high number of road legs, signs, road 

users, etc.). Driver errors are hence more likely to occur at such locations. This 

suggests that the complexity index computed here somewhat accounts for the 

driver behaviour (and hence not only the infrastructure-related aspect) in 

capturing the driver errors that could result from the reduced legibility of the 

urban streetscape. 
 

Although significant at 93%, the parameter estimate corresponding to the 

bridges without cycle facilities suggests that the risk of bicycle accident increases 

at such locations. The sudden change in terms of road width (i.e. narrow space) 
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and visibility (which is low due to the curving of the bridge) is expected to be at 

the root of such an increased risk, especially if no dedicated facility is built for 

cyclists on the bridge. If well-kept and designed, such a cycle facility could 

probably outweigh (or at least reduce) the risks generated by the low long-

distance visibility and the narrowing of the road space.  
 

Contrary to popular belief, we here show that contraflow cycling reduces the risk 

of having an accident for cyclists. Such a lower risk might result from a ‘risk 

compensation effect’, i.e. from the fact that drivers may tend to behave in a 

more cautious way due to an increased perceived risk in streets where contraflow 

cycling is permitted. At the opposite, drivers may tend to behave less carefully in 

places where they feel safer. Interestingly, the fact that intersections are here 

excluded from the definition of streets with contraflow cycling indicates that 

motorists entering into such streets may be surprised to be in front of (exiting) 

cyclists (probably because they do not already behave in a cautious way since 

they just enter into a contraflow street). 
 

Regarding cycle facilities, the results are in line with the literature (see Chapter 

4 for a literature review) and indicate that some of these facilities lead to an 

increased risk of having a bicycle accident when associated with a specific type of 

intersection. In particular, right-of-way intersections equipped with suggested 

cycle lanes lead to the highest accident risk for cyclists, probably because of the 

non-respect of the right-of-way by motorists (BRSI, 2009a) and the very 

discontinuous character of the facility (i.e. chevrons and bicycle logos only, 

instead of a ‘continuous’ lane or path). According to accident data registered in 

Brussels for the period 2006-2008 (DGSEI), collision partners indeed did not give 

way to the cyclist in about 59% of the accidents (whereas cyclists were held 

responsible for not giving way in about 10% of the accidents). Moreover, the 

discontinuous character of suggested cycle lanes possibly makes the cyclists less 

‘visible/expectable’ for motorists approaching a right-of-way intersection, 

especially when compared to segregated or marked cycle facilities (that have a 

more continuous character). Yield/stop intersections with separated cycle lanes 

also seem to carry a danger, especially when the cyclist rides on a bidirectional 

facility in the opposite direction of the (parallel) traffic. The reasons are 

probably twofold: on the one hand, cyclists often have an ill-founded feeling of 

safety caused by the physical segregation of the facility, while on the other hand 

motorists often have an inappropriate visual search pattern (i.e. they often look 

at one direction only) and do not expect to cross a cyclist coming from an 

opposite direction (BRSI, 2006). It seems that the same accident mechanisms 

also apply to the cycling accidents at yield/stop intersections equipped with 

unidirectional separated lanes, where the cyclists sometimes ride in the wrong 

way (i.e. not permitted by law) (ibid.). Given that such facilities are frequently 
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built on either side of multi-lane and divided roads, we assumed that – in this 

case – the cyclist was often deterred to cross the (wide and busy) road in order 

to be in the right way. As expected, high accident risks were also observed for 

cyclists riding on marked cycle lanes built in roundabouts (outer lane). In such a 

context, collisions often occur when the motorist leaves or enters into a 

roundabout and cuts in on the cyclist riding on the marked facility. Such a 

design even leads to a higher accident risk for cyclists compared to roundabouts 

without any cycle facility (where the cyclist is merged into the stream of 

motorized traffic). Intersections equipped with traffic lights and marked cycle 

lanes are also found to increase the risk of accident for cyclists. Such an 

increased risk is probably due to motorists turning to an adjacent road and 

cutting in on the (straight) cyclist’s trajectory on the marked facility. This may 

also be explained by the fact that cycle lanes are generally designed in such a 

way that they position cyclists in the blind spots of the (large) motorised 

vehicles at signalised intersections. However, it is worth noting that accident risk 

is here lower compared with the above mentioned designs (it is about 7 times 

less risky than right-of-way intersections equipped with suggested cycle lanes). 

This is probably the result of a reduced number of conflicting movements and 

lower vehicle speeds at signalized intersections. Also, the presence of advanced 

stop zones for cyclists is expected to mitigate the accident risk at signalized 

intersections. Such zones are quite frequent here and are often used in 

conjunction with marked lanes. They not only put the cyclists into the view of 

motorists (and outside blind spots of cars and large vehicles), but also allow 

cyclists preparing to turn to take up a proper position on the road. More 

generally and disregarding the type of facility or intersection, it is not uncommon 

in Brussels that cycle facilities abruptly stop at intersections, providing no 

dedicated/safe room for the cyclist within the motorized traffic and hence 

increasing the probability of having an accident here. At some intersections, 

inappropriately designed and/or poorly maintained cycle facilities may also lead 

to confusing situations where it is not easy to determine which road user (cyclist 

or motorist) has to give way.  
 

The close vicinity (≤ 0.8m) between separated cycle lanes (both types) and 

parking facilities is also identified here as being a significant risk factor. Cyclists 

riding on such separated lanes and alongside close parked vehicles may indeed 

run into (suddenly) opened car doors. Also, the presence of parked vehicles 

generates a (close) pedestrian activity that may sometimes occur on the adjacent 

cycle lane (due e.g. to the absence of sidewalk, non-respect of the cycle facility, 

etc.) and may potentially lead to an accident. This is all the more true as, in 

Brussels, the joint presence of parked vehicles and separated cycle lanes is 

frequently observed alongside major roads, characterised by close attractive 

activities (e.g. business and industrial zones, residences, parks, etc.). 
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Similarly, Table 5.1 suggests that the presence of garage/parking driveway 

(within a 100m network distance) increases the risk of having an accident while 

cycling. This result may be explained by the fact that motorists leaving or 

entering into a garage/parking driveway may collide with cyclists riding straight 

ahead on the road (ibid.). Interestingly, Appendix D.2 also suggests that the risk 

is strongly increased in locations where few (1-10) and many garages (> 50) are 

observed within a 100m network distance. It is here assumed that a risk 

compensation effect applies, in the sense that cyclists are probably more cautious 

when riding in streets characterized by many garages/driveways than in streets 

where garages/driveways are less (or very) frequent. In the case where few 

garages are present (1-10), it is assumed that cycling accidents are caused by a 

‘surprise effect’. At the opposite, in a street where garages are quite frequent (> 

50), accidents might be caused by the fact that cyclists are accustomed (after 

some period of time) to riding along garages and may take less care in spotting 

motorists leaving garages. Another assumption could be that cyclists are faced 

with a large number of information (i.e. the numerous garages) and, then, may 

have a reduced ability to make decisions in a very short time while cycling. 
 

Concerning tram tracks, our findings indicate that the presence of on-road tracks 

and tram (tracks) crossings significantly increase the risk of having a bicycle 

accident. As suggested in Chapter 4, cyclists may get stuck in tram tracks, 

resulting in a loss of control of the bicycle (conducting to a fall, in some cases). 

It is also assumed here that the presence of on-road tracks forces the cyclist to 

ride on places that are not especially optimal for his/her own safety. For 

instance, he/she has to make the difficult choice between riding next to parked 

vehicles (exposing him/her to the opening of door cars) and riding between the 

tracks, i.e. in the middle of the road lane (exposing him/her to eventual 

aggressive drivers that are blocked behind and constrained to lower their driving 

speed). 
 

Last but not least, the presence of a shopping centre or arcade in the close 

vicinity of the cyclist’s trajectory is also associated with an increased risk of 

accident. An intense pedestrian and/or motorized activity is indeed commonly 

observed in the neighbourhood of shopping centres. This hence increases the 

number of potential conflicting situations, and then leads to a higher risk of 

accident for cyclists. 

 

5.4.3.2 Traffic conditions 

 

Among all traffic-related risk factors, those referring to the different levels of van 

and truck traffic (classes 2–5) provided the best improvement of the model fit. 

They are all highly significant and indicate that increasing levels of van and 
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truck traffic are associated with higher accident risks. Whatever the type of road 

user, the complexity of the traffic context is indeed as much increased as the 

traffic is denser. The road legibility as well as the cognitive capacity of the road 

user are indeed reduced due to the presence of a large number of information to 

process in the streetscape (which reduces the ability to detect and carry out 

appropriate actions to control traffic hazards) (Elvik, 2006). Vans and trucks are 

also more prone to blind spot problems when turning and leave narrow safety 

margins to cyclists when overtaking (e.g. due to a wrong estimation of the 

overtaking time), which clearly increases the risk of accident (and injury 

severity) for cyclists. Furthermore, the large vehicle dimensions of vans and 

trucks may obstruct the field of vision of all neighbouring road users (i.e. 

cyclists, motorists, etc.) and – as a result – may lead to conflicting situations 

between these latter. 

 

5.4.4 Predictions of the risk for a specific road 

trajectory: a tool for planners? 
 

Given that the accident risk spatially varies along the network (as a function of 

the reported features/factors), it is rather tricky to assign here an order of 

importance to each risk factor. Rather, mapping the above predicted risk of 

having a bicycle accident may be quite interesting since it not only validates the 

results of the autologistic model, but it also provides a useful tool for planners, 

decision makers and cyclists’ advocacy groups. As an illustration, predictions are 

here computed for sampled points located every 10m along a specific road 

trajectory and are afterwards interpolated along this trajectory using the 

approximate spline curve method from SANET v.4 (bandwidth = 100m; cell 

width = 2m) (Figure 5.5). The road trajectory passes through the Brussels’ 

European district (Schuman roundabout (numbered 1* in Figure 5.5), Rue de la 

Loi / Wetstraat (2*)) and nearby the Pentagon (CBD, Royal Palace and Park 

(3–4)) and Brussels’ University (ULB–VUB (12–13)). This road trajectory is 

selected mainly because of its high variability in terms of the risk factors 

identified along the cyclist’s route, but also because of the high bicyclist volumes, 

the international reputation (for foreign scientists) and the in-depth authors’ 

knowledge of the route (as cyclist, pedestrian and motorist). Note finally that the 

bicyclist’s direction (i.e. street side) and the building year of the infrastructures 

(i.e. tram tracks, cycling and parking facilities, etc.) are taken into account as 

much as possible when assigning the risk factors to the sampled points. In the 

present case, the most recent year – i.e. 2008 – is selected for computing the 

predictions. Moreover, it is assumed that the cyclists travelling on the selected 

trajectory respect the law by riding on the cycle facilities (when present). 
 



 

 

 

 
 

 
 

Figure 5.5: Map of the predicted risk of having a cycling accident, computed from parameter 

estimates of the autologistic model (road trajectory in Brussels) 
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Figure 5.6: Predicted risk of having a cycling accident, separately computed for 4 risk factors: (a) 

tram tracks (on-road and crossings); (b) contraflow cycling (intersections are excluded); (c) van 

and truck traffic from 6 a.m. to 10:59 p.m. (all classes from 2 to 5); (d) autocovariate component. 
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Figure 5.5 identifies the most ‘risky’ parts of the trajectory, and hence the places 

where cyclists should be more careful when riding and/or where changes in the 

infrastructures might be performed in order to improve bicyclist’s safety. In 

particular, red-coloured links correspond to locations where the accident risk for 

cyclists is the highest, whereas green ones represent locations where risk is the 

lowest. Figure 5.6 also exhibits the individual contribution of 4 of the risk factors 

to the total risk of accident for cyclists. These referring to the streets with 

contraflow cycling and tram tracks contribute (positively or negatively) to the 

total risk of accident at a very local scale (since they are infrastructure-

dependent), whereas van and truck traffic volumes and the autocovariate 

component have a more spatially loose effect along the trajectory. It is here 

assumed that such an autocovariate component captures the 

unobserved/unidentified risk factors (random effects) that are entirely specific to 

each accident location. Interestingly, both maps suggest that the risk of bicycle 

accident is higher for ‘complex’ intersections (i.e. those numbered 1*, 8*, 10–11, 

15–16, 18, 20*), roundabouts with marked cycle lanes (1*), roads with on-road 

tram tracks and tram crossings (8*– 9, 12*, 14), as well as roads with dense van 

and truck traffic volumes (1*, 2*, 4, 6*, 8*, 11, 13–14, 18, 20*). At the opposite, 

the lowest accident risks are mainly observed for streets located in residential 

wards (characterized by low van and truck traffic volumes (5*, 9, 16)), where 

contraflow cycling is allowed (5*, 7, 17), or where no garage is observed in the 

close vicinity (1*, 5*, 12*, 19*). 
 

Predicting the risk of cycling accident on the entire network may also provide 

several important advantages over black spot methods (see Figure 5.4). Given 

that cycling accidents are strongly under-reported in Brussels, it is expected that 

modelling methods based on reported accident data (and using all the related 

‘information’ on risk factors) would be here helpful in identifying the locations 

where unreported cycling accidents might have occurred. Such methods indeed 

exploit all the available information from the accident data set (and from all 

accidents) in order to compute a predicted risk of accident for every point of 

the network. On the contrary, black spot methods do not take advantage of 

using such information to infer locations where accidents might have been 

unreported (since they only describe/identify the spatial concentrations of 

registered accidents). As an illustration, comparing Figure 5.4 with Figure 5.5 for 

the same road trajectory shows that the risk of cycling accident is far from being 

negligible in points where there is actually no reported cycling accident but 

where they are yet expected to occur (due to e.g. a dense traffic, or the presence 

of tram tracks). For instance, locations 3 and 10 correspond to major 

intersections (i.e. with a dense motorised and pedestrian traffic) where there is 

no reported cycling accident but where it is quite doubtful that it is actually the 

case in view of the local traffic conditions. In line with our feelings, Figure 5.5 
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shows that the probability of having an accident is predicted to range between 

51 and 71%, which suggests that cycling accidents might have been unreported 

here (which is to be expected). 
 

Finally, black spot methods do not take into account the building year of the 

infrastructure, which could be an issue when working on several years (e.g. on a 

three-year period) since a location may be informed as being ‘dangerous’ whereas 

it could not be anymore the case after having carried out some important 

infrastructure changes during the period of study. More importantly, most of the 

black spot methods do not consider the traffic direction and may indicate both 

sides of a street as being dangerous for cyclists whereas most cycling accidents 

cluster on one side only. This is for example the case for the road link running 

from the bridge in Rue de la Loi / Wetstraat (between 1* and 2*) to location 2*: 

Figure 5.4 designates it as a black spot for cyclists whereas the probability of 

having a cycling accident is quite low (< 34%) in the direction indicated by the 

arrow in Figure 5.5. Black spot methods hence fail to accurately identify the 

‘dangerous’ street side and may lead to erroneous recommendations and decisions 

about infrastructures. At the opposite, the measurements over the predicted risk 

of having an accident (Figure 5.5) here take into account the building year of the 

infrastructure as well as the bicyclist’s direction, and – as a corollary – seem to 

be closer to the reality than the results obtained from black spot methods. 

 

5.5 Conclusion 
 

The main objective of this chapter was to identify which spatial variables (or 

risk factors) are significantly associated with the occurrence of cycling accidents 

in the Brussels-Capital Region. This chapter is original in many ways. Taking 

advantage of the recent research implemented in epidemiology, ecology and 

transport geography, this chapter opens up a new direction of research in traffic 

accident analysis by suggesting to use a case-control strategy to estimate a so-

called ‘accident risk model’ at a micro-scale. In order to make possible the use of 

(auto-)logistic and conditional autoregressive modelling, a binary variable was 

constructed by adding controls (i.e. locations where there is no reported cycling 

accident) to the geocoded accident data set. Controls were then sampled along 

the Brussels’ bikeable road network as a function of the bicycle traffic (estimated 

using a gravity-based index) and excluding the locations where cycling accidents 

were reported by the police.  
 

Although time-consuming, a rigorous digitization process was carried out at a 

micro-scale in order to collect GIS data on potential risk factors (i.e. expected to 

be associated with the occurrence of cycling accidents) for the whole Brussels’ 
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network. A modelling process was finally performed within a Bayesian framework 

to highlight the most significant factors influencing the risk of cycling accident, 

as well as to identify the ‘dangerous’ locations for cyclists by mapping the 

predicted risk of accident along a specific road trajectory of the Brussels’ 

network (Figure 5.5). Such predicted values of the risk then offer for planners 

and decision makers a new tool that accurately locates the places/streets at high 

risk of accident for cyclists (especially by accounting for the bicyclist’s direction 

and the building year of infrastructures). It hence yields useful information to 

help cyclists choosing the safest route for their journeys (see Chapter 6 for 

further details). Interestingly, our modelling approach also has the advantage to 

exploit all the available information of the accident data set (and about risk 

factors) to pinpoint the locations where cycling accidents might have been 

underreported. 
 

Methodologically, our results showed that the autologistic model turned out to 

be the best specification and conducted to the best results, whereas specifications 

incorporating random effects (e.g. ICAR model) did not succeed in converging 

and provided insignificant parameter estimates for both random effects (which 

either indicates that appropriate risk factors are included in the model, or 

suggests that the binary spatial weight matrix used for the ICAR model is a too 

simplistic form and is not convenient to capture the spatial autocorrelation).  
 

From a planner’s point of view, a plethora of results is obtained throughout this 

chapter. Contrary to motorists’ beliefs, our results first show that streets where 

contraflow cycling is permitted reduce the accident risk, which hence supports a 

wider implementation of such streets in Brussels (although great care should be 

taken when designing these at intersections). At the opposite, our findings also 

indicate that most of the other risk factors increase the accident risks for cyclists. 

In line with the literature in traffic accident research (see e.g. Räsänen and 

Summala, 1998; Autlman-Hall and Hall, 1998; Aultman-Hall and Kaltenecker, 

1999), results first suggest that cycle facilities significantly increase the risk of 

accident when they are combined with a specific type of intersection. Suggested 

cycle lanes crossing right-of-way intersections exhibit the highest accident risk 

for cyclists, probably because of the non-respect of the right-of-way and/or 

because of the discontinuous character of the facility (which makes it less 

visible). Uni- and bi-directional separated cycle lanes built at yield/stop 

intersections also carry a danger for cyclists, since motorists may adopt here an 

inappropriate visual search pattern (i.e. they look at one direction only) while 

cyclists may have an ill-founded feeling of safety caused by the physical 

separation from the road. Roundabouts and signalized intersections equipped 

with marked cycle lanes increase the risk of accident of cyclists as well. Previous 

research (focussed on accident mechanisms) suggests that accidents are 
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frequently caused by motorists leaving/entering into the intersection and cutting 

in on the trajectory of the cyclist riding on the cycle lane. As regards the 

signalised intersections, such an increased risk may be explained by the fact that 

marked cycle lanes are designed in such a way that cyclists are positioned in the 

blind spot of trucks and vans. Regardless of the effect of the cycle facilities, it is 

also well-known that intersections are ‘hot spots’ of accidents for cyclists (as well 

as for all road users) given that the number of potential conflict points is far 

higher compared to the rest of the network (see e.g. Wang and Nihan, 2004; 

Reynolds et al., 2009; Haque et al., 2010). Moreover, as suggested throughout 

this chapter, intersections may be considered as ‘complex’ locations since road 

users must handle here a large number of information at the same time. Driver 

errors are hence more likely to occur at these places than anywhere else (Elvik, 

2006). 
 

Second, our results provide robust evidence for an increased risk of accident for 

cyclists who ride on bridges or in the close proximity of garages, parked vehicles 

(combined with separated cycle facilities) and shopping centres. As regards 

bridges, sudden changes in infrastructures (e.g. narrower space) and road 

conditions (e.g. bridges are more prone to ice development) may explain such a 

higher risk. As expected, the presence of garage/parking driveways and parked 

vehicles close to separated cycle facilities also significantly increase the risk of 

running an accident when cycling. Vehicles leaving/entering into garages and 

cutting in on the cyclists’ trajectory (in the former case) as well as opened car 

doors and/or pedestrian activity occurring on the cycle facilities (latter case) 

may explain to some extent such an increased risk for cyclists. 
 

Last but not least, this chapter reveals that an increased risk of cycling accident 

is significantly associated with the presence of on-road tram tracks in a street 

and with high levels of van and truck traffic. Cyclists indeed carry the danger of 

getting one of their wheels stuck in tracks, resulting in a loss of control of the 

bicycle and then possibly in a fall. Besides, our results show that streets with 

high levels of van/truck traffic are significantly associated with higher accident 

risks, which is probably explained by the fact that such streets generally 

correspond to major roads (i.e. interconnecting important places and designed to 

allow high traffic volumes as well as vehicles with large dimensions). Previous 

studies also frequently suggest that cyclists overtaking/riding along vans and 

trucks are more prone to be undetected by other road users, due to e.g. the 

higher likelihood to ride in blind spots of van/truck drivers. Similarly, the large 

dimensions of vans and trucks may hide cyclists and put these out of sight of 

other road users (e.g. car drivers). To our knowledge, this last hypothesis has 

however not been confirmed yet in the literature and would be worth testing in 

further research. 
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As mentioned before, these results serve as a basis for some of the safety-oriented 

recommendations approached in Chapter 6. Such recommendations are intended 

for policy makers and planners, with the aim to provide a sound scientific 

support for making bicycle use safer and, then, more common in Brussels.  
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Chapter 6  
 

 

Conclusion 
 

 

 

 

This thesis aimed at identifying the spatial factors that influence the use of the 

bicycle for commuting to work, as well as those that are associated with a 

reduced/increased risk of cycling accident. Complementarily to this general 

objective, it also had the intent to come up to policy makers and planners’ 

expectations by providing further science-based knowledge on cycling. The use of 

the bicycle as a mode of transport indeed arouses the interest of policies oriented 

towards a sustainable development of the society, as it holds the potential to 

tackle a plethora of concerns related to the mobility, environment and public 

health. To achieve these goals, this thesis adopted a multidisciplinary approach 

and drew its inspiration from several scientific fields sharing more or less interest 

for the analysis of spatial data (e.g. quantitative geography, spatial econometrics, 

epidemiology, etc.). 
 

From an empirical point of view, the objective of this thesis was two-fold. On the 

one hand, it focused on Belgium and aimed at investigating the relationship 

between cycle commuting and accident risks for cyclists, after which it identified 

the potential impact of a wide range of spatial factors on cycle commuting. In 

this latter case, special attention was paid to bicycle-specific factors (e.g. cycle 

facilities, hilliness), which turn out to be used in only a few works in mode choice 

research. As they are directly related to the use of the bicycle, they are expected 

to play a prominent role in explaining the spatial variation of cycle commuting 

in Belgium (even when controlling other confounding factors). On the other 

hand, the aim was to examine the spatial factors that are associated with the 

risk of being involved in a road accident when cycling along the Brussels’ 

network (capital of Belgium). An initial point pattern analysis was also 

conducted beforehand in order to examine whether or not official accident 

databases neglect important information relative to unreported cycling accidents 

(e.g. as regards some specific risk factors). High-resolution factors related 

specifically to cycling accidents are here manually digitized into a GIS and then 

compiled in an exhaustive database. Several of these factors are – to our 

knowledge – considered for the first time in the literature on traffic accidents.  
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From a methodological point of view, this dissertation mostly aimed at 

accounting for a number of spatial effects associated with the data sets. 

Markedly, empirical studies in mode choice research rarely if ever attempted to 

correct biases resulting from the presence of spatial autocorrelation and 

heterogeneity in the models. Such ‘aspatial’ approaches then carry the danger to 

provide wrong policy recommendations if spatial data are included in the model. 

Within the framework of this thesis, and contrary to the vast body of literature, 

it was hence aimed to consider such spatial effects by performing appropriate 

statistical models. Of concern is also the fact that many studies in traffic 

accident research still assume a planar space as real world when attempting to 

pinpoint ‘hot spots’ of (cycle) accidents. Several studies indeed emphasized that 

it might lead to biased estimates. Taking advantage of recent advances in GIS, 

this thesis then devoted particular attention to the methods extended for 

network spaces and applied these to explore and compare the spatial patterns of 

cycling accidents officially registered by the police with those that are 

unregistered. As mentioned further, this latter approach provided further 

insights on the ‘locational tendencies’ of underreporting (i.e. where 

underreporting occurs) and on the bias it could bring throughout a modelling 

approach. Lastly, issues frequently stressed in the literature are also the lack of 

reliable data on the factors that influence the occurrence of cycling accidents, as 

well as on the trip characteristics of cyclists (exposure data) and accidents 

themselves (underreporting). Such issues often hamper to get in-depth insight on 

the actual risk of being involved in a road accident when cycling, except when 

surveys are conducted among the entire population of cyclists. Although time-

consuming, these surveys indeed open the possibility of collecting both exposure 

and accident data and in turn allow estimating the accident risks. Such surveys 

however raise several questions about the way controls are selected, and then 

about their overall relevance in providing reliable parameter estimates. An 

innovative methodological framework, based on a rigorous sampling design of 

controls, was then proposed in this thesis to model the risk of cycling accident. 

Interestingly, it provided new directions of research for pinpointing ‘risky’ 

locations where (cycle) accidents occur along the road network. 
 

This conclusive chapter is structured as follows. Section 6.1 summarizes the main 

findings of this thesis, after which Section 6.2 highlights the main implications 

this thesis has for planners and policy makers and Section 6.3 describes the 

limitations encountered throughout this thesis. It finally ends by providing 

perspectives for future research (Section 6.4) and some concluding words (Section 

6.5). 
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6.1 Main findings 
 

Throughout this thesis, the intent was to obtain sound results in order to enable 

planners and policy makers to have strong science-based support to encourage 

cycling and make it safer. To achieve this, special attention was paid to the 

methodological and data limitations reported in Chapter 1. These limitations 

referred to: (i) the lack of data; (ii) underreporting of cycling accidents; (iii) 

spatial data and attendant issues; (iv) network phenomena and planar 

assumption; (v) estimation of accident risks. They were all consistently taken 

into account – or at least monitored as regards their impacts – through the use 

of appropriate methods and exhaustive data collection. This section then first 

provides major conclusions as regards the way methodological and data 

limitations were tackled in this thesis (Section 6.1.1), after which it presents 

some of the main empirical results obtained by this way (Section 6.1.2). 

 

6.1.1 Methodological conclusions 
 

Spatial data and effects – The importance of using spatial techniques. 

In this thesis, exploratory analyses of spatial data turned out to be useful in 

investigating the spatial patterns in the proportion of commuting by bicycle per 

Belgian municipality (Chapters 2–3) as well as in the location of cycling 

accidents along the Brussels’ network (Chapter 4). This notably allowed 

providing first insight into the factors that might play a role in explaining the 

observed spatial patterns (e.g. topography, availability/quality of cycle facilities, 

etc.). More importantly, they also helped in identifying the presence of global 

and local patterns of spatial autocorrelation and spatial heterogeneity (e.g. 

spatial outliers or clusters). For instance, in Chapters 2 and 3, a clear-cut 

north/south division of the Belgian municipalities was highlighted with respect 

to the proportion of commuting by bicycle. Also, analyses performed in Chapter 

4 (i.e. network kernel density estimations and network K-functions) indicated 

that both reported and unreported cycling accidents spatially cluster along the 

Brussels’ road network. Such results clearly suggested the presence of spatial 

autocorrelation and/or heterogeneity in the data. This is also confirmed by 

statistical tests performed in Chapters 3 and 5 (e.g. Moran’s I, Lagrange 

Multiplier diagnostics, spatial Breusch-Pagan tests, etc.). It is well-known in the 

literature that, in the presence of such spatial effects, wrong statistical inferences 

can be obtained (e.g. biased estimates, misleading measures of fit, invalid tests, 

etc.). Special attention was then paid to account for spatial autocorrelation and 

heterogeneity throughout each of our modelling steps. Spatial modelling 
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techniques were hence used in this thesis to correct for the presence of such 

effects, and our findings highlighted the importance of doing so.  
 

In Chapter 3, spatial lag models turned out to be quite powerful in eliminating 

spatial autocorrelation and provided better fit than ordinary least squares (OLS) 

regressions. They also proved to be a better way of modelling than spatial error 

models, which was indicative of the fact that unmeasured/omitted explanatory 

variables were not at the root of spatial autocorrelation and, then, that our data 

collection was ample for our needs. The presence of spatial heterogeneity in the 

data – detected using the spatial version of the Chow test – was also corrected 

using White’s correction and a disaggregated modelling strategy for the northern 

(Flanders) and southern parts of Belgium (Wallonia and Brussels), jointly with 

the spatial lag specification. As a result, the final model – referred here to as a 

spatial lag specification with regimes – provided a considerably better fit than 

the spatial lag and OLS models; the log-likelihood indeed increased from –102 

(OLS) to 94 (spatial lag with regimes). The significance and magnitude of all the 

parameter estimates also greatly differed compared with OLS and illustrated 

how biased the estimates are when both spatial autocorrelation and 

heterogeneity are ignored. Interestingly, our results also showed substantial 

differences in the size of these estimates between the northern and southern parts 

of the country, which indicates that the variables may exhibit varying effects 

from one region to another. Last but not least, the addition of a spatial 

autoregressive component in the final model was suggestive of the existence of 

spillover influences between one municipality and its close neighbourhood. In 

other words, a municipality surrounded by others with high levels of commuting 

by bicycle is more likely to show high rates of commuter cycling (and vice 

versa). This not only indicates that social support for cycling could stem from 

the neighbourhood, but also that a virtuous circle could result from such 

spillover influences (in the long-term). 
 

In Chapter 5, various spatial specifications were also used with the purpose to 

capture the effect of spatial autocorrelation. These specifications were conducted 

within a Bayesian framework as it provides several advantages over the 

frequentist/traditional estimation. Of interest for this thesis is notably the fact 

that it allows dealing with nuisance/random parameters (i.e. unobserved 

correlated and/or uncorrelated heterogeneity) in complex models. Our findings 

obtained using such a Bayesian computational approach however showed that 

specifications incorporating random effects (e.g. ICAR model) did not succeed in 

converging and provided insignificant parameter estimates for both random 

effects. At the opposite, models including an ‘autocovariate’ component at the 

first stage of the Bayesian hierarchy (i.e. autologistic models) conducted to the 

best results. This might indicate either that appropriate risk factors were 
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included in the autologistic model, or that the spatial weight matrices used in 

the autologistic specification were the best to capture the unexplained variance 

associated with the presence of spatial autocorrelation. Interestingly, in the latter 

case, distance-based relationships were assumed in the autologistic model to 

reflect the neighbourhood influences between cycling accidents, whereas models 

incorporating random effects were based on more simplistic relationships (binary 

spatial weight matrices). This hence suggests that the definition of 

neighbourhood relationships throughout the construction of spatial weight 

matrices matters (note that it was also observed in chapter 3, but to a lower 

extent). 
 

Network point pattern analyses – Reported versus unreported cycling 

accidents. In Chapter 4, spatial point pattern techniques – jointly with 

statistical tests for independence – have shown to be useful in exploring and 

comparing the spatial patterns of cycling accidents officially registered by the 

police (and compiled by DGSEI) with those unreported by police but collected 

through an open-based online registration survey (SHAPES survey; see Aertsens 

et al., 2010; de Geus et al., submitted). Given that cycling accidents are 

constrained to occur on a road network, this thesis took advantage of using 

recent point pattern methods extended to a network space (which is actually a 

one-dimensional space embedded in a plane). This extension to networks notably 

avoided drawing wrong inferences from the results (due e.g. to the over-detection 

of clustered patterns). In particular, special attention was paid to network K-

function and network cross-K function methods in Chapter 4. The former 

method enabled us to depict the spatial distribution of both reported and 

unreported accident data sets, while the second one was used to examine 

whether or not unreported and reported cycling accidents occur in the vicinity of 

each other, and whether or not they have (dis-)similar locational tendencies with 

respect to specific infrastructure factors or facilities (e.g. intersections, schools, 

cycle lanes, tram tracks, etc.). Besides confirming findings from statistical tests 

for independence (e.g. Chi-Square adjusted tests) and centrographic methods 

(e.g. standard deviational ellipses), our results for Brussels indicated that 

unreported and reported cycling accidents overall exhibit similar spatial patterns 

along the road network and both cluster around similar infrastructures/facilities 

(except in some particular locations, such as traffic-calming areas; see Section 

6.1.2). This hence suggests that enhancing the registration of cycling accidents 

would not necessarily provide further insight in unmeasured spatial factors 

associated with the occurrence of cycling accidents (at least, in Brussels). This 

has strong implications with respect to the interpretation of the model results 

obtained in Chapter 5, as it suggests that the statistical bias caused by 

underreporting might be overall slight. Moreover, official accident databases – 

such as these collected by police – may also probably serve as a good basis for 
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orienting in a global way policy decisions and infrastructure investments in 

Brussels (although a more complete registration of cycling accidents is required if 

local safety treatments are intended by planners and decision makers). Last but 

not least, our findings also highlight the importance of selecting an appropriate 

spatial subarea for conducting network-based point pattern analyses. It is indeed 

demonstrated in Chapter 4 that our results strongly vary depending on the 

chosen spatial subarea (spatial clustering of cycling accidents tends to be more 

likely for increasing spatial subareas). This hence suggests that that great 

caution is required when conducting such network-based analyses on only one 

spatial subarea. At best, several spatial subareas should be used to check the 

consistency of the results. 
 

Accident risk modelling and case-control strategies – Towards new 

research directions? In Chapter 5, particular attention has been paid to the 

estimation of the accident risk for cyclists and to the (spatial) factors that 

significantly affect this risk on the Brussels’ road network. The direction this 

chapter has taken is however different compared with this opted within the 

framework of longitudinal surveys and traditional accident models (i.e. accident-

frequency models or accident-severity models). Drawing inspiration case-control 

studies used in the research into epidemiology and ecology, a new methodological 

approach was here proposed to make possible accident risk modelling. This 

required the construction of a binary dependent variable, by coupling geocoded 

cycling accidents (DGSEI data, registered by the police) to control sites (i.e. 

locations where there is no reported cycling accident). Such controls were 

actually sampled along the ‘bikeable’ segments of the road network and as a 

function of a background exposure variable representing the bicycle traffic 

(which is estimated from a gravity-based approach). Of note is also the fact that 

black spots of cycling accidents were excluded from the ‘bikeable’ network in 

order to preclude the sampling of controls from the close vicinity of bicycle 

accidents. Once created, the binary dependent variable was then spatially 

intersected (or crossed) with potential risk factors manually digitised into a GIS. 

The resulting database – combining a binary dependent variable with attached 

risk factors – finally allowed modelling the accident risks for cyclists through the 

use of logistic and conditional autoregressive specifications (conducted here 

within a Bayesian framework). As mentioned above, the autologistic model 

turned out to be the best.  
 

Such a modelling approach, based on a case-control strategy, provides several 

methodological advantages over traditional accident models (for which a large 

number of statistical biases are commonly reported) and longitudinal surveys 

(for which the selection of controls raises a number of questions that cast doubts 

about the validity of the resulting parameter estimates). These advantages are as 
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follows: (i) the estimation/modelling of accident risks is made possible and is 

carried out in a more rigorous way compared to longitudinal surveys (especially 

as regards the choice and the representativeness of the control sites); (ii) the use 

of individual/point data avoids the need for arbitrary aggregation of accidents 

over some definite space (Diggle, 1990) and hence makes the analysis immune to 

the ‘ecological fallacy’; (iii) the addition of controls avoids – or at least reduces – 

the small sample size problem; (iv) given that spatial variables are the only risk 

factors used here and as there is no classification of the level of severity, the 

underreporting issue related to cycling accidents is expected to affect to a lower 

degree the quality of the results (especially if this underreporting is spatially 

homogeneous); (v) there is no cross-model correlation between the different levels 

of injury severity (or collision types) as we did not take these into account; and 

(vi) the sampling of control points only depends on the location of black spots 

and on the spatial distribution of cyclists in the area of interest; if this latter 

remains unchanged throughout the years (and/or follows the same increasing 

trend over space), the use of out-of-date data does not bias the sampling of 

controls (and hence the results) since the intensity of this sampling is 

proportional to the exposure variable.  
 

More interestingly, mapping the predicted values of the accident risk for a 

specific road trajectory on the Brussels’ road network turned out to be useful in 

highlighting the locations at high risk of accident for cyclists. Compared to 

traditional black spot methods, this modelling approach provided three 

important advantages. First, it exploited all the available information (i.e. from 

the entire accident data set) to compute a predicted risk of accident for every 

point along the network, whereas black spot methods only use a small part of 

this information (for a definite accident, it only used the information relative to 

this accident and to the close neighbourhood). As a corollary, such a modelling 

approach hence holds the potential to pinpoint locations where cycling accidents 

might have been unreported. In Chapter 4, some locations on the network were 

indeed (rightly) highlighted as ‘risky’ by our modelling approach, whereas they 

were considered as ‘safe’ in black spot methods because no cycling accident was 

officially registered here (which is quite doubtful and suggests that 

underreporting might have been occurred here). Second, contrary to our 

modelling approach, black spot methods do not take into account the 

building/dismantlement year of road infrastructures. This could be a serious 

limitation when focusing on a definite period of time, since the black spot 

method could depict a particular location as ‘dangerous’ whereas it could not be 

anymore the case after some infrastructure treatments. Third, black spot 

methods do not consider the traffic direction and may highlight both sides of a 

street as dangerous whereas most cycling accidents cluster on one side only. 

Compared to our modeling approach (which took into account the traffic 
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direction of cyclists as well as the street side where the infrastructures were 

built), black spot methods hence fail to give accurate precisions about the 

dangerous sides of the street and may then lead to erroneous inferences and 

decisions about infrastructures. 
 

Concluding remarks. To sum up, this thesis provides four major 

methodological innovations through: (i) the use of spatial models to account for 

the presence of spatial autocorrelation and spatial heterogeneity in the data 

(mode choice research); (ii) the use of spatial point pattern methods extended to 

network spaces to explore and compare the spatial patterns of reported and 

unreported cycling accidents; (iii) the use of several spatial subareas to evaluate 

the impact of varying sizes of study regions (or varying network lengths) on the 

results obtained through network (cross) K-function methods; (iv) the use of 

controls, sampled along a network space and from an exposure variable, to 

construct a binary dependent variable (accident, no accident) that is in turn 

used in a spatial Bayesian model to estimate the risk of being involved in a 

traffic accident when cycling along the Brussels’ road network. The first 

methodological innovation highlighted how biased the regression results are when 

spatial effects are ignored, and then provided strong support to the use of 

methods accounting for such effects when spatial data are used (especially in 

studies carried out in mode choice research, where the attention devoted to these 

effects is still limited, if ever, existent). The second methodological innovation 

allowed getting further insight in the spatial patterns related to the 

underreporting of cycling accidents, compared to official accident databases (e.g. 

how/where do unreported cycling accidents tend to locate along the network 

compared to reported cycling accidents?). Interestingly, this provided in-depth 

knowledge about the locations (and infrastructures) that are the most commonly 

associated with the occurrence of unreported cycling accidents. The third 

methodological innovation, in turn, emphasized the importance of selecting an 

appropriate spatial subarea for conducting network-based point pattern analyses, 

and then suggested for the first time in the literature that great caution is 

required when focusing on only one spatial subarea. Last but not least, the 

fourth methodological innovation provided a rigorous framework to estimate the 

accident risk for cyclists and to identify the most significant factors 

(infrastructures) influencing this risk. It notably offered a better tool than black 

spot methods to identify locations where the accident risk is the highest for 

cyclists and where cycling accidents might have been unreported or might still 

occur. Assuming that the risk factors (such as road infrastructures) have not 

been modified, such a methodology may hence greatly contribute to reduce the 

toll accidents take on public health as it holds the potential to prevent future 

(bicycling) accidents and allows cyclists choosing the safest route for their 

cycling trips. From a methodological and societal point of view, this last point 
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probably constitutes the best achievement of this thesis and is hoped to provide 

a new research direction for traffic accident studies… 

 

6.1.2 Empirical conclusions 
 

Our exploratory and multivariate spatial analyses led to a plethora of results 

with regard to cycle commuting (Belgian municipalities), underreporting of 

cycling accidents and accident risks for cyclists (Brussels-Capital Region). 

Special attention is here paid on the major empirical results obtained throughout 

this thesis. These focus on: (i) the ‘safety in numbers’ effect, (ii) the spatial 

determinants of cycle commuting, (iii) underreporting of cycling accidents and 

locational tendencies, and (iv) the spatial factors of accident risks for cyclists in 

Brussels. 
 

‘Safety in numbers’ effect in Belgium (municipalities). Our findings in 

Chapters 2 and 3 of this thesis are in line with the current research suggesting 

that higher levels of cycling are associated with lower rates of severe and fatal 

cycling accidents (see e.g. Jacobsen, 2003; Pucher and Dijkstra, 2003 ; Elvik, 

2009). This latter hypothesis was first visually confirmed in Chapter 2 by 

clustering Belgian municipalities according to the proportion of commuting to 

work which was by bicycle and the risk of being seriously injured or killed when 

cycling to these municipalities. The results of this classification exhibited a clear-

cut north-south division, suggesting that there are strong spatial differences in 

cycle commuting and accident risks between the Belgian regions. In the northern 

part of the country (Flanders), our findings showed that the municipalities 

overall have high proportions of cycle commuting and low rates of severe/fatal 

cycling accidents. Cycling is indeed part of the Flemish lifestyle, which may be 

explained by a number of factors interacting within a ‘virtuous circle’ that 

subsequently make the environment more attractive and safer for cyclists (see 

below for further details on these factors). Cyclists are then generally expected 

and respected by motorists in Flanders, since these latter often cycle themselves. 

In contrast, opposite results were obtained in Wallonia, where the environment is 

generally quite unsafe and unattractive to (potential) cyclists. Low proportions 

of cycle commuting and high risks of accident are indeed exhibited by the 

classification, which hence confirms the overall perception of danger Walloon 

inhabitants have about cycling. Of interest was also the fact that Brussels stood 

apart from the two other Belgian regions. It indeed showed low proportions of 

commuting by bicycle and low risks of severe/fatal accident for cyclists. 

Interestingly, these results do not support the fears/perceptions of danger people 

have about cycling in Brussels, as the risk of being seriously or fatally injured in 

a cycling accident is quite low here (which is explained by the fact that cyclists 
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commute in an urban environment, where the speed differential between slow 

and fast modes is lower, compared to rural environments). Whatever the region, 

a number of factors – or spatial determinants – explained we observed a clear-

cut north-south division in the country. They were clearly identified within the 

framework of Chapter 3 and are summarised here below. 
 

Spatial determinants of cycle commuting in Belgium (municipalities). 

Chapter 3 aimed at identifying the spatial determinants of cycle commuting at 

the level of the Belgian municipalities, with the intent to subsequently provide 

sound recommendations for planners and policy makers. The results of our 

empirical analyses suggested that demographic, socio-economic, environmental 

and policy-related variables all influence the proportion of commuting by bicycle. 

For some of these variables, substantial differences were however exhibited in the 

magnitude and significance of the parameter estimates between the Belgian 

regions (Flanders versus Wallonia/Brussels). Income, gender and air pollution 

are variables for which the impact was only significant in Flanders, whereas 

variables related to the state of health, qualification and traffic volume 

(municipal/local roads) turned out to be significant only at the level of the 

Walloon municipalities. Among the socio-economic and demographic 

determinants, our results indicated that low median income and/or high 

proportions of working men are both associated with high rates of cycling to 

work in Flemish municipalities. At the opposite, the presence of high proportions 

of highly-qualified commuters is generally associated with low rates of commuter 

cycling in the southern part of the country (more especially in Wallonia, where 

Principal Component Analyses (not reported here) showed that positive 

associations exist between highly-qualified people, high median income, high car 

availability, and large commuting distances at the level of municipalities). 

Finally, the model results showed that being more than 45 years old and/or 

having one or more young children (≤ 5 years old) in the household decrease the 

likelihood of commuter cycling, whatever the region. As regards the 

environmental and policy-related determinants, our empirical analyses first 

revealed that, whatever the region, municipalities that are well-equipped and 

characterised by short commuting distances have high proportions of commuting 

of commuter cycling. Such results confirm several exploratory analyses conducted 

in Chapter 2 and validate the assumption that mixed-use and densely built 

environments (which are generally well-equipped municipalities) generate short 

trip distances and then encourage cycling. Second, our findings in Chapter 3 also 

reveal that a large part of the inter-municipality variation in cycle commuting is 

related to environmental aspects such as the relief, quality of cycle facilities and 

cycling accidents. Traffic volume on municipal roads however did not show any 

significant impact in Flanders, whereas it strongly discourages cycling in 

Wallonia and Brussels. As regards the topography, our results indicate that 
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hillier terrains – when present – significantly discourage commuting by bicycle in 

all Belgian regions. Moreover, the lack of high-quality cycle facilities is shown to 

deter commuter cycling, as there is often no alternative but to cycle on-road in 

this case. Our results also reveal that the accident risk is negatively linked to 

commuter cycling, but to a lesser extent in Flanders. The assumption is that the 

high-quality of cycle facilities in Flanders strongly reduces the fears and 

annoyance of cycling into a heavy motorized traffic, which then puts the 

accident risk at the forefront of the resident’s fears (so probably explaining the 

high value of the estimate for accident risks and the non-significance of traffic 

volume). In Wallonia and Brussels, due to the lack of appropriate cycle 

infrastructures, it is assumed that the first barrier with which potential cyclists 

are faced is the heavy traffic volume, not the accidents themselves (which in turn 

probably explains why the impact of traffic volume is significant, and even 

higher than this obtained for accident risks).  
 

Apart from the spillover/mass effect exerted from the neighbouring 

municipalities on the propensity to cycle (see Section 6.1.1), our findings in 

Chapter 3 were mostly in line with the mode choice research. Interestingly, they 

corroborate some of the hypotheses put forward in Chapter 2 about the impact 

of several spatial factors on cycle commuting (e.g. distances, cycle facilities, 

built-up environments, etc.). They also show within a multivariate framework 

that high proportions of commuter cycling are associated with low risks of 

cycling accidents, which validates to some extent the results obtained in Chapter 

2 as well as the previous statements referring to the ‘safety in numbers’ effect. 

Last but not least, our results (residuals of the final model) provide a useful tool 

to pinpoint both the municipalities that ‘over-perform’ in terms of bicycle use 

and those where there is still potential to encourage commuter cycling. 
 

Underreporting of cycling accidents and locational tendencies in 

Brussels. Among other results, Chapter 4 of this thesis provided further 

knowledge about the spatial patterns of cycling accidents unregistered by the 

police, but collected through an open-based online registration survey (SHAPES 

survey). This was achieved by investigating where underreporting of cycling 

accidents mostly occurred compared to cycling accidents reported by the police. 

Zooming in the Brussels-Capital Region, our empirical results revealed that both 

unreported and reported cycling accidents show similar spatial patterns on a 

road network (i.e. they cluster with respect to each other along this network) 

and similar locational tendencies with respect to specific road infrastructures 

(such as intersections, bus and tram stops, etc.). This hence suggests that 

unreported accidents occur at rather similar locations to those that are reported. 

Therefore, it seems that registering accidents unreported by the police does not 

necessarily provide further insight in the spatial factors associated with the 
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occurrence of cycling accidents. Exceptions are however reported in Chapter 4. 

Compared with reported cycling accidents, our findings indicate that cycling 

accidents are more likely to be unregistered in areas where the differential 

between the speed of slow and fast modes is reduced. Traffic-calming zones and 

streets located in the vicinity of schools, hospitals, cultural centres and shopping 

centres are examples of such areas where the speed of motorised vehicles is 

reduced through the implementation of speed limits, pedestrian zones and/or 

various physical obstacles (e.g. speed humps). In these areas, cyclists are more 

likely to be the only user involved in the accident and/or to incur slight injuries 

(with/without material damages). They hence generally do not feel the need to 

call the police, which results in a higher rate of underreporting by police. To sum 

up, our results hence suggest that traffic-calming measures have the effect of 

reducing the degree of accident severity and – as a corollary – the registration 

rate among (slight) cycling accidents.  
 

Spatial determinants of accident risks for cyclists in Brussels (risk 

factors). In Chapter 4, the presence of potential collinearity problems between 

the risk factors did not allow drawing reliable conclusions on the separate safety 

effects related to infrastructures. Such collinearity problems were however 

avoided in Chapter 5 of this thesis. Our results are in line with the current 

traffic accident research (e.g. with respect to the increased risk of cycle facilities 

at intersection) and even provide further knowledge about the factors that were 

previously unexplored in a rigorous way in the literature (e.g. contraflow cycling, 

tram tracks, etc.). Figure 6.1 summarizes these by highlighting the factors that 

significantly affect the risk of cycling accident in Brussels and – then – that 

require great care when designing (new) infrastructures. Let us describe each of 

these findings as follows: 

(i) Bridges without any cycle facility: increased risk of cycling accident when 

present. Hypothetical explanation: when no dedicated cycle facility is built 

on a bridge, cyclists are more exposed to sudden changes in road width 

(e.g. narrow space), road conditions (e.g. bridges are more prone to ice 

development) and visibility (curving of the bridge); 

(ii) High complexity: the risk of cycling accident increases with ‘complexity’ 

(in the sense of the Elvik’s law of complexity). Hypothetical explanation: 

cyclists and other road users face with a large number of information at 

the same time and must handle many visual stimuli at locations with an 

increased complexity (e.g. intersections). Cyclist’s (and driver’s) reaction 

time is then lengthened and driving errors are likely to be more frequent 

at such ‘complex’ locations, which may explain the greater risks of cycling 

accident observed here; 

(iii) Tram tracks: increased risk of cycling accident when present. Hypothetical 

explanations:  
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a. On-road tram tracks: cyclists may get stuck in on-road tram tracks, 

resulting in a loss of control of the bicycle, and then in a fall. On-

road tram tracks also impose cyclists to ride on specific places on the 

road and then probably increase the exposure of cyclists to other risk 

factors (such as the opening of car doors, aggressive drivers that are 

blocked behind, etc.); 

b. Tram tracks at intersections: like on-road tram tracks, cyclists may 

get stuck in the tracks when riding in parallel to these in the 

intersection. Jointly with tracks, the presence of trams (and 

attendant public transport stops and users, in some cases) may also 

add some degree of complexity to the intersection; 

(iv) Cycle facilities at intersections: increased risk of cycling accident when 

present (with different magnitudes of risk depending on the type of 

intersection and cycle facility). Hypothetical explanations (by descending 

order of importance/risk):  

a. Suggested cycle lanes built at right-of-way intersections: the increased 

risk is likely to be caused by the non-respect of the right-of-way 

(mainly by other road users: 59%; cyclists: 10%) and/or the 

discontinuous aspect of the suggested cycle lanes. In the latter case, 

the use of chevrons and/or bicycle logos may indeed make these 

facilities less visible/expectable by motorists, especially when they 

are highly spaced within the intersection;  

b. Bidirectional separated cycle lanes built at yield/stop intersections: 

motorists may have an inappropriate visual search pattern (i.e. they 

look at one direction only) when they cross bidirectional lanes at 

yield/stop intersections, which increases the risk of accident for 

cyclists riding in the opposite direction of the (parallel) traffic. This 

risk is even higher if the physical segregation of the cycle lane from 

the road brings an ill-founded feeling of safety to cyclists (which may 

persist at intersections); 

c. Marked cycle lanes built in roundabouts (outer lane): accidents 

frequently occur here when motorists leave or enter into the 

roundabout while cutting in on the trajectory of the cyclist riding on 

the marked lane; 

d. Unidirectional separated cycle lanes built at yield/stop intersections: 

accident mechanisms are expected to be quite similar to those 

prevailing for yield/stop intersections equipped with bi-directional 

separated lanes. The only difference is that two-way cycling is not 

permitted on unidirectional lanes, although cyclists sometimes do it 

(such facilities are frequently built on either side of multi-lane and 

divided roads, which often deters cyclists from crossing the road to 

be in the right way); 
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e. Marked cycle lanes built in signalised intersections: motorists turning 

to an adjacent road may cut in on the (straight) cyclist’s trajectory 

on the marked facility, so leading to the accident. Also, accidents 

might be explained by the fact that marked lanes built in signalised 

intersections generally position cyclists in the blind spot of 

heavy/large motorised vehicles. Of note is that the risk of accident is 

here lower compared to the above mentioned designs (which might 

be partly due to e.g. the presence of advanced stop zones for 

cyclists); 

(v) Roundabouts: increased risk of cycling accident when present. 

Hypothetical explanation: accidents occur when motorists leave/enter into 

the roundabout while cutting in on the trajectory of the cyclist (who is 

merged into the stream of motorized traffic); 

(vi) Shopping centres: the risk of cycling accident increases when riding closer 

to shopping centres. Hypothetical explanation: the intense pedestrian 

and/or motorised activity observed in the close vicinity of shopping 

centres increases the number of potential conflicting partners and 

situations, and then leads to a higher risk of accident for cyclists. 

(vii) Garages/parking driveways: increased risk of cycling accident when 

present within a 100m network distance. Hypothetical explanation: 

motorists leaving or entering into a garage/parking driveway may cut in 

on the trajectory of the cyclist, who may eventually be hidden by close 

visual impediments (e.g. trees, hedges, etc.); 

(viii) Parked vehicles next to separated cycle facilities: increased risk of cycling 

accident when separated cycle lanes (both types) are built close to parked 

vehicles (≤ 0.8m). Hypothetical explanation: cycling accidents may be 

caused by the opening of car doors and by the attendant pedestrian 

activity on the separated cycle facilities (generated by the parked 

vehicles); 

(ix) Contraflow cycling (outside intersections): reduced risk of cycling accident 

when present. Hypothetical explanation: motorists may tend to adopt here 

a ‘risk compensation behaviour’, i.e. they may behave in a more cautious 

way due to an increased perceived risk when driving in such streets. Of 

concern is however the fact that intersections with such streets may result 

in a conflicting traffic situation, as motorists may be surprised to lie in 

front of (exiting) cyclists when entering into these streets; 

(x) Volumes of van and truck traffic: increased risk of cycling accident with 

increasing volumes of van and traffic. Hypothetical explanation: on the 

one hand, the road legibility is as much reduced as the traffic is denser (as 

there is a great amount of information to handle). This hence reduces the 

cognitive capacity of cyclists and other road users, and then the ability to 

avoid accidents. Furthermore, vans and trucks are more prone to blind 
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spot problems and may also hide cyclists and put these out of sight of 

other road users (which then increases the risk of accident for cyclists); 
 

At places where such factors are present, special attention to cyclists is crucial in 

order to reduce the risk (and the number) of accidents associated with cycling 

trips. This is even truer if several of these risk factors are present. For instance, 

a bridge equipped with on-road tram tracks and characterized by high van and 

truck traffic volumes is expected to be quite ‘risky’ for cyclists (more than in the 

case where only one of these risk factors – e.g. the on-road tram tracks – is 

observed).  
 

Concluding remarks. To sum up, our empirical analyses conducted at the 

scale of the Belgian municipalities (part II) and on Brussels (part III) mostly 

provided further insight in: (i) the relationship between the proportion of 

commuter cycling and the risk of being seriously injured or killed when 

commuting to work in Belgium; (ii) the spatial determinants associated with the 

proportion of commuter cycling to work at the level of the Belgian 

municipalities; (iii) the underreporting of cycling accidents in Brussels; (iv) the 

spatial determinants (or risk factors) associated with the risk of being involved in 

a road accident when cycling in Brussels. The first set of results (Chapter 2) 

showed that there were strong spatial differences in bicycle use and the risk of 

accident between the Belgian regions. This in turn highlighted the importance 

several spatial variables might have in explaining such patterns. Second, 

variables for which the influence on commuter cycling was significant were then 

identified in Chapter 3. Our empirical analyses conducted in this latter chapter 

showed that socio-economic, demographic, environmental and policy-related 

aspects played an important role in influencing commuter cycling. Third, 

Chapter 4 of this thesis investigated where underreporting of cycling accidents 

mostly occurred compared to reported cycling accidents. Our findings led to two 

main recommendations. On the one hand, official databases of accidents should 

be analysed with great caution, especially as regards study regions where the 

number/length of streets equipped with traffic-calming measures is high (e.g. in 

the vicinity of schools, 30km/h areas, pedestrian and residential areas, etc.). On 

the other hand, registration efforts should be concentrated on areas where such 

(traffic-calming) measures are taken if the intent is to complete the current 

accident databases. Last but not least, Chapter 5 identified the spatial factors 

associated with an increased/reduced risk of cycling accident in Brussels. Only 

infrastructure- and traffic-related factors were retained by our empirical analyses. 

Infrastructure and policy measures relative to these factors (and their 

combinations) are of utmost importance since they are expected to provide the 

best safety benefits for cyclists. 
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Figure 6.1: Significant factors (and their interactions) influencing the risk of 

cycling accident in Brussels. *Complexity is based on the Elvik’s law of 

complexity (Elvik, 2006). 

 

6.2 Policy implications and 

recommendations 
 

Until relatively recently, transportation planners and policy makers are 

increasingly interested of obtaining science-based knowledge to encourage cycling 

and make it safer. As mentioned in Chapter 1, the use of the bicycle indeed 

holds the potential to take up the mobility, environmental and health challenges 

with which our society is faced nowadays. In line with such interests, the 

empirical analyses conducted in this thesis then provide several statistically-

based recommendations that are helpful to support policies aiming at promoting 

more and safer cycling. Such recommendations are here categorized into five 
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groups, corresponding to the well-known 5Es1. These are successively approached 

in the following subsections. 

 

6.2.1 Engineering 
 

Engineering can be very effective in increasing bicycle use and making it safer 

through better development, design and maintenance of cycle infrastructures, 

especially in areas where it is currently lacking. Our empirical analyses 

conducted at the scale of the Belgian municipalities (part II) and on Brussels 

(part III) clearly suggest that providing safe and well-designed road 

infrastructures (e.g. continuous cycle facilities) could prevent cyclists from falling 

or colliding with other means of transport. Our recommendations here 

distinguish general from specific engineering recommendations. 
 

General engineering recommendations (part II). Our findings in Chapter 

3 first suggest that, in Wallonia and Brussels, the provision of an extensive and 

high-quality cycling network would certainly reduce the numerous fears and 

safety concerns inhabitants have about cycling (Krizek et al., 2010). In 

particular, providing continuous, separate and well-maintained cycle paths could 

probably reduce the risk of accidents and mitigate the effects of traffic, as well as 

improving the general attitude commuters have towards cyclists (e.g. in terms of 

danger and societal status) (McClintock and Cleary, 1996). It could also reduce 

the exposure of cyclists to air pollution since even small ‘separation distances’ 

from the emission source significantly decrease the concentration of ultra fine 

particles (UFP) (Thai et al., 2008; Int Panis et al., 2010). Cycle networks should 

hence be planned so that the impact of deterrent variables (e.g. accident risks, 

slopes, traffic volume, air pollution) is reduced. Our results in Chapter 3 suggest 

that even small reductions in the daily mileage, the mean slope of the road 

network, or the risk of accidents could significantly increase bicycle use. This 

could be achieved by providing ‘optimal paths’ for cyclists (i.e. alternatives to 

congested, sloping and/or hazardous roads). These paths could either be existing 

streets (e.g. quiet residential streets, without parking facilities) or new cycle 

lanes built along the road if high speed limits are permitted for motorists. 

Ideally, planners and engineers should design these latter so that they are 

separate from road traffic, but still allow cyclists and motorists to see each other, 

so that inexperienced and ‘elderly’ cyclists (who may behaviour inappropriately 

because of their age) are protected from motorised traffic but do not have an ill-

                                                
1 The 5 Es are engineering, education, encouragement, enforcement and evaluation. The concept 

began in the 1970s in Odense (Denmark) and aimed at improving the safety of school children 

walking and bicycling to school (see Nielsen (1990) and PBIC (2007) for further information). 
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founded feeling of security. Our findings emphasizing the deterrent effect of high 

gradients also suggest that new cycle lanes should be made as flat as possible, or 

at least that any slopes should be long and gentle (so that the physical effort is 

reduced). For instance, new bridges specifically designed to enable cyclists to 

bypass dangerous or unpleasant situations should have gentle slopes. Including 

information about the topography on cycling maps and promoting the use of 

electric bicycles are other ways of ‘bypassing’ the negative impact of hilly 

terrain. Compared to car driving, electric bicycles – also called ‘electrically-

assisted-pedal-cycles’ – not only yield a low-cost way to commute, but they also 

allow untrained individuals cycling in hilly municipalities. 
 

The deterrent effect of high traffic volumes on cycling (reported in Chapter 3) 

could also be reduced by implementing strict parking policies and by regulating 

motorised traffic. Examples of such measures are parking and road capacity 

limitations (Pucher and Dijkstra, 2003; Pucher and Buehler, 2008). Land-use and 

urban design policies also hold the potential to reduce the dependence on car use 

and to create more economically efficient land use patterns. For instance, 

promoting dense and mixed-use development could reduce commuting distances 

and encourage cycling as well as other alternatives to car use. Redevelopment of 

urban areas (i.e. urban regeneration), promotion of bicycle storage facilities in 

blocks of flats (especially in dense residential areas), traffic-calming measures, 

and financial measures encouraging people to live in towns are some examples of 

such measures. Planning the urban centres and new housing centres in such a 

way that obstacles and cycling dangers are removed could also help increasing 

the safety and convenience of cycling (and then the use of the bicycle). Of 

importance is also the development of appropriate and secure bicycle facilities at 

the origins and destinations of the trip (e.g. cycle racks and secure lockers at 

transport stops), as it could increase users’ satisfaction and encourage cycling 

and its integration with public transport (Martens, 2004, 2007; Pucher and 

Buehler, 2008). This could be particularly effective in large towns (such as 

Brussels or Antwerp) where vandalism and theft may deter cycling.  
 

Finally, the promotion of folding bicycles and the implementation of a public 

bicycle sharing system would probably provide an efficient way to encourage 

cycling in urban areas, especially in Brussels and Antwerp where the potential 

for increasing bicycle use is still large (see Section 3.5.5.5) as inhabitants have 

generally little room to store their own bicycle (in the densest parts of towns, 

flats are smaller and few garages are available). Folding bicycles indeed allow 

carrying and storing the bicycle in small flats, while public bicycles can be hired 

in close stations. In the latter case, there is hence no need to store a bicycle in 

the flat, since it is parked in bicycle stations. Public bicycles also have the 

advantage not worrying about the maintenance of the bicycle. More importantly, 
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both types of bicycles are also easily combined with other modes of transport, 

especially if public bicycle sharing stations are built near/in transports stops. In 

the long-run, the growing use of folding/public bicycles in urban areas could not 

only increase the use of non-motorised and public transport for commuting, but 

could also mitigate the deterrent effect of motorised traffic on cycling as well as 

the attendant negative impacts (air pollution, congestion, noise, etc.).  
 

Specific engineering measures (part III). The focus is here put on safety-

oriented recommendations aiming at making the use of the bicycle safer. Our 

results in Chapter 5 first suggest that, in Brussels, special attention should be 

paid to the bicyclist’s safety when designing on-road tram tracks, bridges and/or 

‘major’ intersections since these factors all increase the risk of cycling accident. It 

is all the more true if some of these risk factors are observed at a same location. 

In particular, major intersections are generally characterized by higher levels of 

complexity due to the presence of a dense crossing traffic as well as many road 

legs and signs. Whenever possible, they should be made more easily (and 

quickly) legible for all road users, e.g. by using the simplest possible signing or 

by decreasing the number of traffic lanes (and hence the intersection area). As 

regards tram tracks, crossable reserved tram lanes – or even physically 

segregated lanes – should be preferred to on-road tracks so far as possible. It 

could be profitable not only to cyclists (i.e. increased safety compared to on-road 

tracks) but also to public transport companies since such reserved infrastructures 

greatly improve the commercial speed of the vehicles (trams and buses). Bridges 

should also consistently be designed with a great care for cyclists in order to 

offset the increased accident risk caused by the reduced number and/or width of 

the road lanes. Building adjacent cycle facilities – separated with physical 

hurdles (e.g. barriers) – could probably reduce such a risk for the cyclists. 

  

Cycle facilities should also be designed and built with great care, especially at 

intersections where the risk of having an accident is quite high for cyclists. In the 

case where investments devoted to the cycle facilities are limited, planners and 

decision makers should primarily give priority to the provision of high-quality 

infrastructure (i.e. continuous, visible and well-kept) rather than investing in an 

extensive network built in haste and carelessly. Separated cycle facilities should, 

for example, be designed in such a way that motorists get some time to see the 

cyclists before arriving at the intersection: while approaching it, the distance 

between the separated cycle facility and the adjacent road should be first 

reduced in order to favour a visual contact between the cyclist and the motorist, 

and then increased just some meters before the intersection (e.g. through a 2-5m 

deflection of the cycle facility from the main road) in order to give more time for 

both road users to see each other and to avoid the accident. As a complement, a 

sharp turning radius (90°) combined with a raised bicycle crossing and an 
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advanced green light could also be implemented so that right-turning motorists 

are forced to slow down and cyclists get some advance over these latter to cross 

the intersection (Pucher and Buehler, 2008; Schepers et al., 2011). Concerning 

(on-road) marked and suggested cycle lanes, our results also suggest a quite high 

accident risk for cyclists at intersections equipped with such facilities. Making 

these more visible to motorists (e.g. using coloured pavements) is expected to 

reduce such a risk, especially for suggested lanes that are generally characterized 

by a discontinuous design. Also, small improvements at intersections may 

sometimes make all the difference in terms of accident risks. For instance, the 

installation of mirrors at signalized intersections may help lorry drivers to spot 

cyclists riding on cycle lanes and positioned in the blind spot of the vehicle, as 

well as they may remind them to check their own mirrors. Also, implementing 

advanced stop zones for cyclists here is expected to reduce the risk of accident 

associated with blind spot since they put cyclists into the view of motorists. 

Outside intersections, building (separated) cycle facilities in the ‘door zone’ of 

parked vehicles (< 0.8m) should be avoided as much as possible since the cyclists 

are exposed to a higher risk of accident due to the opening of car doors. A 

greater safety margin/distance (> 0.8m, or even > 1.2m) is here strongly 

supported in order to improve the bicyclist’s safety. As regards the streets where 

contraflow cycling is permitted, the reduced accident risk reported here supports 

for a wider implementation of such a treatment in Brussels (and more generally, 

in most of the urban areas). Besides improving the safety, it has the advantage 

to require little investments and to be easily and quickly implemented in narrow 

streets (where there is no room to build cycle facilities). Great care should 

however be taken when designing these since the safety effect resulting from the 

treatment seems to be reduced at intersections. The use of (visible) marked cycle 

lanes or bicycle logos painted at the entrance of streets where contraflow cycling 

is permitted would probably be very useful in informing motorists that they 

could come face to face with cyclists, and hence in reducing the accident risk for 

cyclists here. 
 

Last but not least, as illustrated in Figure 5.5 (Brussels), mapping the predicted 

values of accident risks along the entire road network would also allow cyclists 

choosing the safest route between an origin (e.g. residence place) and a 

destination (e.g. workplace, shop, school, etc.). Combined with other variables 

(such as the topography or the exposure to air pollution), optimal paths could 

then be determined for orienting cyclists to the safest and more comfortable 

routes. Providing such information to cyclists would also be of great interest for 

policy makers as it clearly holds the potential to reduce the health costs/risks 

associated with cycling. It is here thought that printed maps and applications 

dedicated to route planning (e.g. Google Map) could be efficient ways to disfuse 

such information to a large extent.  
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6.2.2 Education 
 

Traffic education helps making road safety an integral part of the culture and 

lifestyle, as it is currently the case in the Netherlands, Germany and Denmark. 

Results in Chapters 2 and 5 showed that few motorists were respectful of cyclists 

in Wallonia and Brussels, which suggests that special attention should be paid to 

traffic education. In particular, our empirical analyses conducted in Chapter 5 

clearly exhibit a higher risk of accident in several types of intersections equipped 

with cycle facilities. In particular, the non-compliance of traffic rules by 

motorists (e.g. non-respect of the cycle facilities) and – to a lesser extent – by 

cyclists (e.g. riding in the wrong way on a cycle facility) is found to be associated 

with the occurrence of cycling accidents at intersections (BRSI, 2006). This 

should be overcome by e.g. improving the driver training for motorists, teaching 

safe cycling practices, or by disseminating information aiming at improving the 

overall road safety (e.g. through safety campaigns) (Pucher and Dijkstra, 2003). 

Furthermore, bikepooling for the elderly or less-confident people as well as 

mobility education for local authorities and public services (e.g. administration, 

police) are some other measures that could improve both the road safety for 

cyclists and – as a corollary – bicycle use as a whole. 

 

6.2.3 Enforcement 
 

Enforcement strategies encourage all road users to adopt a more responsible 

driving style and to respect the rules of the road. In Chapter 5, our analyses 

conducted on Brussels suggested that accidents often resulted from the non-

compliance of traffic rules, especially as regards the right-of-way and the speed 

limits in traffic-calming areas (which were here not found to reduce significantly 

the risk of accident for cyclists). Combined with traffic education, enforcement 

could make motorists more aware of and respectful towards cyclists. Collisions 

caused by drivers not respecting the right-of-way of cyclists (or triggered by the 

cyclists themselves) could be reduced by greater enforcement. As part of this 

strategy, more resources should be allocated in enforcement campaigns, and the 

punishment for violations of the traffic regulations should be far more severe, so 

that the perceived risk of being punished (following an illegal/dangerous 

manoeuvres) is increased. Furthermore, the implementation of bicycle patrols 

should be supported by decision makers in order to make police more mindful of 

the risks/deterrents with which cyclists are faced every day. Such patrols could 

then be very effective in improving bicyclist’s safety, as well as in preventing 

bicycle thefts. Such patrols are especially required in Brussels and Wallonia, 

where aggressive driving and bicycle thefts are considered as important concerns 

by more than 70% and 40% of the inhabitants, respectively (Federal Police, 



Chapter 6.  Conclusion 

228 

 

2006). Also, it is quite striking that, in Wallonia, more than half of all motorists 

were found to be going over the speed limit on 50 km/h roads, and nearly a 

quarter were over 60 km/h (2003–2006 period) (BRSI, 2008). Tackling such 

hazardous driving behaviour would obviously reduce the risk motorists constitute 

for cyclists. 

 

6.2.4 Encouragement 
 

Encouragement could also be useful to promote and increase cycling, especially 

in Wallonia and Brussels where the proportion of commuting by bicycle is quite 

low. Campaigns and mass events organised by public authorities and advocacy 

groups could be helpful in underscoring the health benefits as well as the 

improvements in the quality of life associated with bicycle use (reduction of noise 

and air pollution in the towns) (Pucher and Dijkstra, 2003). Decision-makers and 

health care professionals should also encourage individuals adopting a healthier 

lifestyle by integrating the use of the bicycle into the daily travel routines. 

Throughout our empirical analyses conducted in Chapter 3, we indeed observed 

that Walloon municipalities with low proportions of commuting by bicycle 

exhibited a high percentage of inhabitants estimating they had a bad state of 

health in 2001. Furthermore, public and private companies could also promote 

existing alternatives to the car, and try to make them competitive by providing 

financial incentives such as a mileage allowance or a company bicycle. Finally, 

taxes on fuel and automobile ownership/use also constitute some kind of 

encouragement to shift from car to alternative modes. 

 

6.2.5 Evaluation 
 

Evaluation allows for adjustments while a program of actions/measures is still in 

process and monitors if this provides the expected results and successfully 

responds to cyclists’ needs. Evaluation can be conducted before, during and after 

the program by professional and neutral evaluators. It also means comparing the 

implemented cycling policies between different places (e.g. countries, 

municipalities or regions). This is actually what we did within the framework of 

this thesis. Although recommendations on eventual evaluation strategies do not 

follow from our empirical analyses, this thesis itself constitutes some kind of 

evaluation of the cycling policies and measures taken in Belgium and in the 

Brussels-Capital Region. It is here hoped that it will help planners and policy 

makers to evaluate the current bicyclist’s situation and will then support 

adequate policies encouraging more and safer cycling in Belgium. 
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6.2.6 Concluding remarks 
 

For transportation planners and policy makers, this section provides several 

strategies which may be useful in making bicycle use safer and in encouraging 

commuters to shift from car to bicycle. Such strategies may not only enhance the 

environmental quality, but they also hold the potential to improve the 

performance of the labour market and the local/regional economic development 

(e.g. through the establishment of new companies and residents attracted by the 

resulting quality of life). These strategies are, however, generally not efficient 

when implemented on their own. For instance, policies aiming at reducing the 

traffic volume in urbanized areas (e.g. urban toll) would have unexpected safety 

consequences for cyclists if they are done on their own (i.e. without traffic 

calming measures, traffic education, etc.), since the ability of vehicles to travel 

faster is increased. At worst, they may lead to adverse effects for the cyclists’ 

safety and decrease bicycle use (Shefer and Rietveld, 1997; Noland and Quddus, 

2004). Consequently, planners and policy makers should be aware that only a 

combination of several measures (enforcement campaigns, traffic education, 

improvement of cycle facilities, etc.) will really lead to an increase in cycle 

commuting (Pucher et al., 2010). 
 

Also note that the recommendations provided in this section do not result in the 

same degree of achievement as some measures are more complex than others to 

implement, depending on the costs, administrative tasks, public acceptability, or 

policy objectives. For instance, the wider implementation of streets where 

contraflow cycling is permitted is far easier to achieve than land-use measures 

aiming at promoting a dense and mixed-use development of activites (which may 

involve high research costs, time-consuming administrative tasks, and voluntary 

policies). For each measure, Table 6.1 gives an evaluation of the degree of 

achievement, as well as it yields further information about the level at which it 

could be implemented (e.g. municipal, regional, network, etc.) and on potential 

target places where measures should be taken first and foremost. 

 



 

 

 

Table 6.1: Policy recommendations 
 

Category Measures Objective(s) Thesis-related 

factor(s) 

Achievability* Level(s) of 

implementation 

Target places? 

Engineering             

  Provision of an extensive and 

high-quality cycling network 

(e.g. continuous, well-

maintained, visible, etc.) 

Mitigating the negative 

impacts associated with high 

objective / perceived accident 

risks, high motorised traffic 

volumes, and air pollution, 

and then encouraging bicycle 

use 

Dissatisfaction of 

cycling facilities, 

accident risk, traffic 

volume (chapter 3) 

Intermediate Regional Connections 

between specific 

locations (towns, 

facilities, etc.) 

  Provision of 'optimal paths' 

for cyclists 

Providing alternative roads to 

congested, sloping and/or 

hazardous roads between 

specific origins and 

destinations 

Accident risk, traffic 

volume, topography, 

contraflow cycling, etc. 

(chapters 3 & 5) 

High Regional, municipal Workplaces, schools, 

transport stops 

  Provision of secure bicycle 

facilities (racks, changing 

facilities, etc.) at the origins 

and destinations of the trip 

Increasing user's satisfaction, 

encouraging commuter cycling 

and its integration with public 

transport 

Bicycle theft, urban 

hierarchy (chapter 2) 

High Regional, 

agglomeration, 

municipal 

Workplaces, schools, 

transport stops 

(especially in large 

towns) 

  Implementing traffic-calming 

measures and / or traffic 

restrictions (in target places 

only) 

Regulating motorised traffic 

and reducing the differential 

speed between slow and fast 

modes of transport 

Traffic volume, accident 

risk (chapters 3 & 5) 

Intermediate Regional, 

agglomeration, 

municipal 

Residential wards, 

schools, hospitals 

  Favouring the implementation 

of public bicycle sharing 

systems 

Creating a supportive 

environment for cycling (e.g. 

through a mass effect) 

Spatially lagged variable 

(chapter 3) 

Intermediate Agglomeration Large and medium-

sized towns 

continued on next page 
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continued 

Category Measures Objective(s) Thesis-related 

factor(s) 

Achievability* Level(s) of 

implementation 

Target places? 

  Designing legible 

intersections for all road 

users (e.g. simplest possible 

signing, reduced number of 

traffic lanes, etc.) 

Improving the legibility of 

(complex) intersections and 

reducing the accident risk 

Complexity, 

intersection-related 

factors (chapter 5) 

Intermediate Local (street 

network) 

Major intersections, 

with a dense 

crossing traffic and 

a large number of 

road legs 

  Preferring crossable 

reserved tram lanes to on-

road tracks 

Reducing the (high) accident 

risk associated with the 

presence of on-road tram 

tracks. Note that this measure 

also has the advantage to 

increase the commercial speed 

of the public transport vehicles 

On-road tram tracks, 

crossable reserved tram 

lanes (Chapter 5) 

High Local (street 

network) 

On-road tram 

tracks 

  Designing bridges in such a 

way that special attention is 

devoted to cyclists (e.g. by 

building adjacent cycle 

facilities) 

Reducing the (high) accident 

risk associated with the 

presence of bridges 

(unequipped with cycle 

facilities) 

Bridge & no cycle 

facility (chapter 5) 

High Local (street 

network) 

Bridges without any 

cycle facility, with a 

reduced number 

and/or width of the 

road lanes 

  Designing cycle facilities 

with great care, especially at 

intersections (e.g. through 

the implementation of raised 

bicycle crossings, coloured 

pavements, mirrors at 

signalized intersections, 

advanced stop zones, etc.) 

Reducing the (high) accident 

risk associated with (specific 

types of) intersections when 

cycling on (specific types of) 

cycle facilities 

Intersection-related 

factors & Cycle facility-

related factors (chapter 

5) 

Intermediate Local (street 

network) 

Cycle facilities at 

intersections 

continued on next page 
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continued 

Category Measures Objective(s) Thesis-related 

factor(s) 

Achievability* Level(s) of 

implementation 

Target places? 

  Building separated cycle 

facilities outside the 'door 

zone' of parked vehicles (< 

0.8m) 

Reducing the (high) accident 

risk associated with the 

opening of car doors when 

cycling on separated cycle 

facilities 

Proximity parking-cycle 

facility (chapter 5) 

High Local (street 

network) 

Cycle facilities built 

in the 'door zone' 

  Supporting for a wider 

implementation of streets 

where contraflow cycling is 

permitted (with however great 

care at intersections) 

Making the use of the bicycle 

more convenient (by reducing 

the travel time) and safer. 

Great care should however be 

taken at intersections with 

streets where contraflow 

cycling is permitted 

Contraflow cycling 

(chapter 5) 

Very high Local (street 

network) 

One-way streets in 

agglomerations 

  Promoting dense and 

mixed-use development, 

and favouring the 

redevelopment of urban 

areas (i.e. urban regeneration) 

Reducing commuting distances 

and encouraging active modes 

of transport (e.g. cycling and 

walking) 

Commuting distance, 

urban hierarchy 

(chapters 2 & 3) 

Very low Regional, 

agglomeration 

Large and medium-

sized towns 

  Promotion/provision of 

bicycle storage facilities in 

blocks of flats 

Encouraging the use of active 

modes of transport 

Town size (chapter 2) Very high Regional, 

agglomeration 

Dense residential 

districts in large / 

medium-sized towns 

Education Improving the driver 

training for motorists 

Making road safety an integral 

part of the culture and 

lifestyle 

Accident risk (chapter 

2), intersection-related 

factors & Cycle facility-

related factors (chapter 

5) 

High 

Regional, 

agglomeration, 

municipal 

Workplaces, local 

authorities, public 

services, schools, 

driver trainings, 

mass events 

  Teaching safe cycling 

practices 

High 

  Disseminating information 

through safety campaigns 

High 

  Bikepooling for the elderly 

and / or less confident people 

Very high 

continued on next page 
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continued 

Category Measures Objective(s) Thesis-related 

factor(s) 

Achievability* Level(s) of 

implementation 

Target places? 

Enforcement Allocating more resources in 

enforcement campaigns 

Increasing the perceived risk of 

being punished (following an 

illegal/dangerous manœuvre) 

Accident risk (chapter 

2), intersection-related 

factors & Cycle facility-

related factors (chapter 

5) 

Intermediate Regional, police zone Residential districts, 

schools, 

intersections with 

cycle facilities 

  Making the punishment for 

violations of the traffic 

regulations far more severe 

(especially for some of these) 

Increasing the perceived risk of 

being punished (following an 

illegal/dangerous manœuvre or 

behaviour) 

Accident risk (chapter 

2), intersection-related 

factors & Cycle facility-

related factors (chapter 

5) 

High Regional, police zone Residential districts, 

schools, 

intersections with 

cycle facilities 

  Implementing bicycle patrols Making the police more 

mindful of the risks/deterrents 

with which cyclists are faced 

everyday 

Accident risk (chapter 

2), intersection-related 

factors & Cycle facility-

related factors (chapter 

5) 

Very high Regional, police zone Residential districts, 

schools, 

intersections with 

cycle facilities 

Encouragement Organizing campaigns and 

mass events aiming at 

promoting bicycle use 

Emphasizing the health 

benefits and the improvements 

in the quality of life associated 

with cycling, in order to 

encourage it 

Bad health (chapter 3) High Regional, 

agglomeration, 

municipal 

Large and medium-

sized towns, 

workplaces, health 

care professionals 

  Promoting existing 

alternatives to the car and 

making them competitive by 

providing financial 

incentives (e.g. mileage 

allowance, company bicycle, 

taxes on fuel and automobile 

ownership, etc.) 

Encouraging and rewarding a 

modal shift from car to 

alternative modes 

Traffic volume (chapters 

3 & 5) 

High Regional Workplaces, schools 

continued on next page 23
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continued 

Category Measures Objective(s) Thesis-related 

factor(s) 

Achievability* Level(s) of 

implementation 

Target places? 

Evaluation Monitoring if a program of 

actions/measures provides the 

expected results 

Evaluating how a program of 

actions/measures successfully 

responds to cyclists' needs, 

and undertaking adjustments 

(in these actions/measures) if 

necessary 

- Intermediate 

Transnational, 

national, regional, 

municipal 

Workplaces, schools, 

municipalities, 

agglomerations, 

regions, countries 

(mobility plans, 

transport and land-

use policies) 

  Comparing the implemented 

cycling policies between 

different places 

Others Provision of information about 

the topography (e.g. through 

cycling maps) 

Reduce the physical effort 

associated with cycling 

Slopes (chapter 3) High Regional, municipal Schools, workplaces, 

hilly municipalities 

  Promoting the use of electric 

bicycles through financial 

incentives 

Reduce the physical effort 

associated with cycling 

Slopes (chapter 3) High Regional, municipal Hilly municipalities 

  Implementing strict parking 

policies (parking and road 

capacity limitations) 

Regulating motorised traffic in 

agglomerations 

Traffic volume (chapters 

3 & 5) 

Intermediate Regional, 

agglomeration 

Large and medium-

sized towns 

 

- : measure not derived from our results 

* To be interpreted with great caution since the degree of achievability of a measure depends on a large range of factors. This degree is here evaluated on the 

basis of the author's knowledge as regards 4 factors: cost of the measure (expected building costs, maintenance costs, workforce costs, etc.), study/research 

requirements (expected time budget required to undertake research, studies, etc.), administrative tasks (expected administrative and political difficulties, e.g. as 

regards the period of implementation or the administrative tasks required to achieve the measure), and degree of acceptability (expected popularity among all 

road users, e.g. car drivers, cyclists, or public transport users).  
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6.3 Limitations of this thesis 
 

This thesis is not without weakness. Additionally to some previously raised 

limitations in part III of this thesis, it is worth to mention that other major 

technical and methodological issues were experienced throughout this thesis and 

merit further research. The focus is here put on data (Section 6.3.1) as well as on 

methodological and technical limitations (Section 6.3.2) encountered throughout 

this thesis. 

 

6.3.1 Data limitations 
 

Although a wide range of data were collected throughout this thesis, the data 

collection is still far from being exhaustive. Some of the data specifically related 

to cycling and accident risks for cyclists were indeed not collected, mostly 

because of confidentiality reasons, unreliable information, and/or time 

constraints. For instance, weather- and/or climatic-related variables were not 

used in part II of this thesis since the data were collected over a limited number 

of measurement stations. This resulted in a spatially poor representativeness of 

the data and precluded us from using these within the framework of our 

empirical analyses (which are conducted at the scale of the Belgian 

municipalities). In the third part of this thesis, some factors were also 

deliberately ignored because they were affected by frequent infrastructure 

changes during the period under study (e.g. advanced stop zones for cyclists), 

and/or because it required time-consuming field observations to obtain reliable 

data (e.g. traffic lights for cyclists). Some of the data manually digitised into our 

GIS also raise some questions about their validity. Although the digitization 

process was carried out over several years and drew information from several 

data sources (e.g. cycling maps, BRIC, etc.), it does not claim to be as precise as 

field observations. Examples of data being particularly concerned by these issues 

are parking areas since their delineation clearly depends on the temporal 

variation in the parking behaviours and, then, on the moment at which the 

orthophoto has been taken. Parking occupancy indeed strongly varies according 

to the day (e.g. weekdays versus week-end) and hour of the day (e.g. off-peak 

versus peak hours). This hence forced us to make sometimes strong assumptions 

about the actual parking occupancy. For several infrastructure-related data, 

there was also seldom, if ever, information on the implementation/dismantlement 

year (which was only assessable within several months). Despite the fact we kept 

watch over eventual infrastructure changes, there is hence some likelihood that 
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encoding errors might have occurred and might have affected the results 

obtained in Chapters 4 and 5.  
 

Of particular attention is also the fact that most of the demographic, socio-

economic and mobility-related data used in part II of this thesis come from the 

Belgian Census of Population, conducted by the DGSEI in 2001 (i.e. about 10 

years ago). Some of the data extracted from this latter can then be considered as 

quite obsolete for our purposes. As it was compiled for the last time by the 

DGSEI (surveys now replace the census), it however still constitutes the most 

recent database covering the entire Belgian population and, then, providing the 

finest spatial representativeness. Given that the focus is here put on the spatial 

analysis of data, it was then decided to rely on this census despite its relative 

obsolescence.  
 

Several issues may finally be raised as regards the traffic accident database we 

used throughout this thesis. First, in Chapter 2, the absence of information 

about the trip purpose is likely to bias our results (over-estimation of the 

severe/fatal accident risks). It is here advised that, in a near future, further 

information about this variable (trip purpose) should be collected when 

registering cycling accidents. Second, the underreporting of cycling accidents is 

expected to affect our results obtained in Chapter 5, although to a lesser extent 

compared to other statistical methods. Chapter 4 indeed suggested that 

unreported and reported cycling accidents exhibit similar locational tendencies 

with respect to specific infrastructures and facilities. Third, insufficient and/or 

imprecise information may be associated with both reported and unreported 

accident databases, which may subsequently affect our empirical analyses as they 

are conducted at the network level (and then need detailed information on the 

accident location and mechanisms). Doubtful information was however 

eliminated as far as possible from the accident databases, thus mitigating the 

risk to make wrong inferences. 

 

6.3.2 Methodological and technical issues 
 

Some methodological gaps were noted within the framework of this thesis. First 

of all, in part II, the choice of Belgian municipalities as basic spatial units raise 

some questions about their relevance in reflecting homogeneous environments 

(with regard to e.g. the human activities, the natural environment, the socio-

economic characteristics, etc.). However, such a choice was constrained by the 

level at which data on explanatory variables are available. The lack of high-

resolution information for some of our variables (as regards e.g. traffic volume, 

cycle facilities, air quality, etc.) indeed required aggregating the data at the level 
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of municipalities. Given that the results of empirical analyses may vary as a 

function of the size of spatial units (see Chapter 1, MAUP), it would then be of 

particular interest to undertake spatial analyses at different levels of aggregation 

(especially at finer levels, in the case where high-resolution data are available). 

Such a multilevel analysis would in turn evaluate the effects of different levels of 

aggregation on our results (thus confirming or invalidating these latter). 
 

Secondly, in part III of this thesis, there is also some inconvenience to delineate 

our study area on the basis of the administrative boundaries of the Brussels-

Capital Region. Focussing on regional boundaries indeed implies that our 

analyses are performed in a ‘closed system’. They hence assume that there is no 

neighbourhood (and, then, no external influence). Such an assumption is not 

realistic as it ignores the potential effect of factors having an influence extending 

beyond administrative boundaries (e.g. shopping centres in part III). These ‘edge 

effects’ indirectly results from the regional structure of Belgium. The availability 

and the definition of data may indeed differ from one region to another, which 

either precludes performing analyses outside regional boundaries or imposes 

concentrating a greater amount of time on the data collection (especially if the 

intent is to work at the level of the Brussels’ urban agglomeration, which 

includes municipalities embedded in the three Belgian regions). From a 

methodological point of view, it is expected here that such edge effects may lead 

to an underestimation of the impact of some ‘peripheral’ factors (i.e. those 

located in the periphery of the study area). Moreover, they are likely to hamper 

the ability of cross-K function methods to detect a significant clustering (or 

dispersion) of cycling accidents around definite factors (especially those observed 

in the periphery of the study area). 
 

Thirdly, in Chapter 4, the inability to account for the street side and 

building/dismantlement year of infrastructures, as well as the computational 

intensiveness related to the K-function and cross-K function analyses (especially 

with large datasets and/or high network lengths) are limitations that cannot be 

solved in a straightforward way in SANET. Although many improvements have 

been recently achieved with regard to spatial network analyses of point patterns, 

there is indeed still no research in the literature proposing to account for high 

levels of details on the street side where the accident actually occurred or on the 

temporal evolution of road infrastructures (e.g. implementation or dismantlement 

of infrastructures). This may clearly bias our network kernel density estimations 

(as they aggregate the estimation for both street sides), as well as our results 

obtained using the network cross-K function method (because they use 

infrastructure-related data for which modifications may occur). Focussing on 

more technical aspects, it was noted in SANET that the computational 

intensiveness strongly depends on the length of the network, the number of basic 
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(e.g. road infrastructures) and non-basic points (i.e. cycling accidents), and – to 

a lesser extent – the computer specifications. Overall, short to moderate 

computation times were required at the scale of the Pentagon’s street network 

(i.e. about 1-100 minutes depending on the number of points), whereas the First 

and the Second Crowns led to moderate to (very) high computation times (i.e. 

some minutes to about 6 days). For dense networks and large point datasets, the 

high computational intensiveness of SANET then clearly limits the number of 

spatial network analyses that can be conducted during the research period. 
 

Fourthly, the use of individual data in Chapter 5 also has some major 

drawbacks. Depending on the requirements about the quality of the data (i.e. 

road network, local risk factors, etc.) and the size of the studied area, the data 

collection may be time-consuming since it requires collecting additional data for 

the controls (or for the whole studied area). Moreover, the quality of the results 

is strongly constrained by the method of selection of the controls as well as by 

the formulation of the potential index (e.g. choice of the impedance function). 

Although the potential index for bicycle traffic (i.e. the exposure variable) is 

shown to be quite representative of the observed cycling trips in Brussels, it may 

still be improved by assigning a preferential direction of travel into its 

specification (e.g. towards the town centre) and/or by considering cycling trips 

carried out for purposes other than commuting (e.g. leisure, shopping). Also, the 

validity of the results has not been tested for different types of sampling methods 

(e.g. regular sampling versus stratified sampling) and for various ratios of 

controls to cases (i.e. for a varying number of controls M0 against the number of 

cases n, e.g. M0/n, 2.M0/n, 10.M0/n, 100.M0/n, etc.). Despite the fact that the 

sampling of controls is based on well-founded theoretical bases and performed on 

a thoroughly constructed exposure variable, it would merit further investigation 

to implement such an analysis of sensibility for different control data sets. 
 

Finally, it is worth of note that the bulk of this thesis is limited to the spatial 

aspects of the data. Several factors related to the individual attributes (e.g. 

preferences, attitudes, etc.) were not analysed here. For instance, in Chapter 5, 

the use of control sites indeed imposed us to put human- and vehicle-related 

factors aside given that the random assignment of these factors to control sites 

was considered as rather tricky (in the sense it is expected to bias the model 

results). Also, in Chapter 3, our data are spatially aggregated and then ignore 

some important individual components that could play a role in explaining the 

use of the bicycle for commuting to work (e.g. work schedule, dress code, etc.). 

Such ‘aspatial’ aspects would therefore merit further research in the future. 
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6.4 Perspectives for future research 
 

While this thesis addresses several empirical and methodological issues, it raises 

new research questions and delivers new directions for traffic accident research. 

First, we suggest that further knowledge should be accumulated as regards the 

spatial effects of commuter cycling (i.e. spatial autocorrelation and 

heterogeneity). While such effects are observed at the scale of the Belgian 

municipalities, nothing is known about their potential existence at other levels of 

aggregation and/or across other study areas (e.g. countries, regions, etc.). This 

would not only give more clues about the range of scales at which diffusion 

processes occur, but it also holds the potential to provide further insight in the 

factors that determine such processes. Focussing on finer scales, for instance, 

would help to determine whether or not there is some kind of neighbourhood 

effect between the residents of adjacent districts (e.g. social support, influence of 

neighbouring pro-cycling policies, etc.).  
 

Second, Chapter 2 highlighted the fact that high levels of commuter cycling are 

associated with low risks of becoming seriously injured or killed when cycling. 

However, nothing or little is known about the relation of cause and effect 

underlying such an association. Complex inter-relationships indeed exist between 

the different underlying factors (e.g. culture, visibility of cyclists, investments in 

cycling facilities, actual and perceived risk of accident, etc.) and it would merit 

further research to investigate the feedback effects that lie at the root of such a 

‘safety in numbers’ effect. This would notably allow confirming (or not) the fact 

that high levels of cycling result in lower accident risks for cyclists. If such a 

relationship is confirmed, factors having either direct or indirect effects would 

also be identified, and then further knowledge would be available for planners 

and policy makers to initiate and/or maintain a virtuous circle. 
 

Third, our empirical analyses conducted in Chapter 3 focus on Belgian 

municipalities and do not examine spatial factors influencing commuter cycling 

at different levels of aggregation. In particular, at finer scales of analysis, it is 

expected that different spatial factors would play a role and that ‘well-targeted’ 

policy recommendations would be established to encourage the use of the bicycle. 

Special attention should also be paid to the relative importance between 

individual characteristics and ‘trip-related’ data (e.g. infrastructures between the 

origin and the destination of the trip). Conducting statistical analyses at the 

individual level (using e.g. logistic models) would indeed be helpful in providing 

further knowledge on how specific types of factors (e.g. cycling infrastructures) 

would influence the choice of the bicycle as mode of transport, relatively to 

individual characteristics. It would however require a time-consuming data 

collection since ‘trip-related’ data are seldom available. Although it still provokes 
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some debate in the literature, multilevel modelling could also be of interest as it 

allows incorporating several hierarchical levels of analysis in the model, with the 

aim to separate compositional effects from contextual ones (see e.g. Vanoutrive 

et al., 2010). When modelling the modal choice of the bicycle in a given spatial 

unit (e.g. municipality), such a multilevel modelling could then separate the 

effect of individual characteristics (e.g. culture, income or age of the individuals) 

from the neighbourhood/environmental effects (such as the risk of having a 

cycling accident in a given municipality). 
 

Fourth, our data used within the framework of Chapter 3 do not account for: (i) 

the combination of the bicycle with other transport modes in the dependent 

variable (multimodality), (ii) the presence of public bicycle sharing systems (as 

independent variable). On the one hand, the selection of cyclists-only (i.e. 

cyclists who used the bicycle as only mode of transport) is motivated by the fact 

that, in the 2001 census, commuting distances are reported for the entire journey 

without any distinction of the transport mode (i.e. only the total distance is 

reported). On the basis of exploratory spatial data analyses (not reported here), 

it turns out that accounting for such a combination (bicycle-other mode) would 

have increased the shares of cycle commuting in some municipalities, especially 

those where high-quality public transport is present. Several towns equipped 

with major railway stations (e.g. Gent, Kortrijk, Etterbeek, Ixelles, Ottignies-

Louvain-la-Neuve) indeed exhibit higher shares of cycle commuting when 

attention is paid to multimodality. Hence, accounting for proxy variables related 

to the urban environment and/or to the accessibility to railway stations would 

probably have been useful in explaining the variance associated with multimodal 

trips (bicycle-other mode). Within the framework of this thesis, it is however 

expected that accounting for such multimodality in commuting trips would not 

have strongly affected our results49. On the other hand, the fact that public 

bicycle sharing systems are not taken into account in Chapter 3 does not bias 

our results as such systems were not implemented before 2006 in Belgium, while 

our data belong to the period 2000-2005. Our results are hence valid for this 

latter period. However, Brussels (2006) and Antwerp (2011) were recently 

equipped with these systems, and Namur will be the next Belgian town to 

benefit from these (during spring 2012). It is hence questioned here whether or 

not our results would be still valid after the implementation of such systems. 

Although we do not know of any statistics about the impact of these systems on 

the modal share of cycling in Belgium, studies conducted in foreign countries 

suggest that cities equipped with such systems experienced – immediately after 

                                                
49 However, the use of more recent data would probably have changed the results as public 

bicycles and folding bicycles both have a growing success in urban areas and allow combining 

the bicycle with other modes of transport. 
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the launch and later – a considerable increase in bicycle use (e.g. +80% cycling 

trips in Lyon, from the launch in June 2005 to May 2009; +70% cycling trips in 

Paris from the launch in July 2007 to June 2008) (City of Paris, 2008; Greater 

Lyon, 2009). Hence, it would be of interest to analyse the impact public bicycle 

sharing systems have on bicycle use (e.g. what is their relative 

importance/impact compared to other factors?). It is here expected that the 

initial shares of cycling and contextual factors (e.g. dense residential ward, in 

which bicycle storage facilities are lacking) would strongly influence the potential 

use of such public bicycle sharing systems. In municipalities where initial shares 

of cycling are low and where bicycle storage locations are lacking, it is expected 

that predicted values of the model in Chapter 3 would be affected if public 

bicycle sharing systems are introduced in a municipality50. In such a case, 

collecting variables summarizing the presence/absence/accessibility of these 

systems (e.g. ratio between the number of public bicycles and the number of 

inhabitants, per municipality) would probably be useful to enhance the model fit. 
 

Fifth, in the case where accurate data are available at the local level (with 

regard to road infrastructures and bicycle traffic flows or cyclist’s living places), 

the case-control approach implemented in Chapter 5 for Brussels is expected to 

be easily transposable to other areas. In particular, it would be interesting to 

analyse how the accident risks (along the network) vary from one study region to 

another, especially if the design and the availability of infrastructures differ (e.g. 

in terms of cycle facilities, presence/absence of tram tracks, etc.). Our empirical 

analyses conducted in Chapter 5 indeed do not have the pretention to provide a 

generalizable answer to the safety effects related to each risk factor. In Brussels, 

high-quality cycle facilities are lacking and the popularity of cycling is still low 

(about 4%) compared to other European towns sharing the same socio-economic, 

demographic, environmental and mobility characteristics. It is clearly not 

representative of environments where the use of the bicycle and the investments 

in cycle infrastructures are far higher (as it is the case in e.g. Flemish and Dutch 

towns). Similarly, rural environments are expected to lead to different results as 

they are not characterised by the same road infrastructures (e.g. absence of tram 

tracks and low traffic volumes). Whatever the final choice on the study region, 

we think that longitudinal surveys paying special attention to the spatial 

dimension of the sampling design could be helpful in estimating such risks in a 

reliable way. Such a spatial dimension clearly matters and should not be ignored 

if the intent is to provide sound recommendations to planners and policy-makers. 
 

 

 

 

                                                
50 Also note that similar results would probably be observed as regards folding bicycles. 
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Figure 6.1: Total health impacts of bicycle use – Under-estimation of the health 

costs of cycling accidents 
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Last but not least, the high underreporting rate of minor/slight injuries observed 

in Brussels (Chapter 4) suggests that current estimates of health costs/benefits 

associated with cycling are probably biased due to the underestimation of the 

total cost of bicycle accidents. Such an underestimation is even expected to be 

higher as most heath impact assessment studies do not account at all for such 

minor/slight injuries; they mainly estimate the health costs/benefits from 

bicyclists’ fatalities (see e.g. Woodcock et al., 2009; de Hartog et al., 2010; Rojas-

Rueda et al., 2011). Yet, these latter – although highly (negatively) valuated in 

monetary terms – form the ‘tip of the iceberg’. On the contrary, minor/slight 

injuries officially account for more than 95% of the bicycling accidents in 

Belgium (which could amount to more than 99% since minor/slight injuries are 

strongly underreported) (see Chapter 4). Despite the fact it was recently 

demonstrated that the health benefits of cycling exceed the health risks when 

considering both fatal and minor/slight injuries (Rabl and de Nazelle, 2012), 

health impact assessment studies still disregard some of the consequences injuries 

may have on the level of physical activity of the (injured) cyclist after the 

accident. They indeed make the strong assumption that the cyclist (i.e. the 

individual itself) does not modify/adapt his/her level of physical activity after 

the accident. However, cycling accidents may have important repercussions on 

the ‘future’ level of physical activity of the (injured) cyclists, depending on e.g. 

the injury severity, the circumstances of the accident, or the psychological 

consequences. For instance, a physical invalidity may result from injuries and 

may preclude the cyclist/individual from cycling during a given period of time 

(following the accident), or even during the entire life in the case where physical 

invalidity is permanent. Also, having an accident during the night-time or during 

a windy or foggy day may encourage the cyclist adapting its travelling behaviour 

by choosing cycling during daylight or ‘normal’ weather conditions. A high 

variability in the level of physical activity may hence result from a cycling 

accident, which then questions the validity of the estimates obtained through 

current health impact assessment studies as the total cost of bicycle accidents is 

expected to be underestimated in such a case. 
 

Figure 6.1 illustrates well this issue. Let us consider that an individual switched 

to bicycling and had an accident at time t, after having devoted travelling a 

total time T by bicycle. In the case where the individual stops cycling or strongly 

reduces his/her level of physical activity because of a cycling accident (due to 

e.g. invalidity, psychological consequences, influence of the family, etc.), the total 

health impacts of cycling might be negative since the health benefits of physical 

activity accumulated during T and T’ ( PA
TB and PA

TB ' , respectively) might not 

exceed the total costs of the bicycle accident ( AccC ) and exposure to air 

pollution ( Poll
TC and Poll

TC ' ). This is more likely to be true if the individual stops 
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cycling because of the accident, as the total health impacts for the cyclist are 

positive only if AccPoll
T

PA
T CCB −>

 
(which is likely to be negative if high costs 

resulted from the bicycle accident). If the individual reduces his/her level of 

physical activity after the accident, the total health impacts are positive in the 

case where AccPoll
T

Poll
T

PA
T

PA
T CCCBB −−>+ ''

. Finally, if the individual does not 

incur any cycling accident, the total health impacts (= Poll
T

PA
T CB − ) are expected 

to be positive after a ‘relatively short’ period of physical activity T since 

0=AccC  (which would be in line with the current research into health impact 

assessment). 
 

As a conclusion, we here suggest that the costs of bicycle accidents are likely to 

be underestimated in current health impact assessment studies. Future research 

is here encouraged to pay special attention on the impact(s) bicycle accidents 

may have on the level of physical activity of cyclists (and then on the health 

benefits of cycling). Moreover, greater attention should be paid on minor/slight 

injuries as they represent the largest share of bicycle accidents and lead to non-

negligible costs for cyclists (see e.g. Rabl and de Nazelle, 2012). 

 

6.5 Concluding words 
 

Despite some weaknesses, we believe that this thesis was able to identify some of 

the main spatial determinants that influence commuter cycling and the risks of 

being involved in a road accident when cycling. Taking advantage of the recent 

advances made into the scientific research, we here aimed at delivering findings 

corrected for a number of statistical biases and resulting in sound 

recommendations for planners and policy makers. We are also convinced that the 

present thesis provides a new tool helping planners to prevent road accidents in 

general. It is now hoped that some of our findings will be taken into 

consideration by planners and policy makers to support policies aiming at 

encouraging bicycle use and making it safer… 
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Appendix A 
 

Notes to Chapter 2 
 

 

 

 

Appendix A.1: The urban hierarchy of Belgian 

municipalities 

(Source: Van Hecke, 1998) 
 

 

 
 

 

 

 

 

 





 

 

 

Appendix B 
 

Notes to Chapter 3 
 

 

 

Appendix B.1: Variables used: description, units of measurement and data sources 

 

Group Variable Description Units Source 

 Dependent variable 

  % cycle commuting (y) Proportion of commuting by bicycle Percent 2001 Census 

 Independent variables 
Demographic 

data 

% working men Percentage of working people who are men Percent DGSEI (2001b) 

  % age 1 (< 25) Percentage of working people who are less than 25 years old Percent 2001 Census 

  % age 2 (45-54) Percentage of working people who are between 45 and 54 

years old 

Percent 2001 Census 

  % age 3 (> 54) Percentage of working people who are more than 54 years 

old 

Percent 2001 Census 

  % young children (≤ 5 

years) 

Percentage of working households (i.e. those with one or 

more working parents) having one or more young children 

(being less than 5 years old)  

Percent Own computation from 

2001 Census 

continued on next page 



 

 

 

continued 

Group Variable Description Units Source 

 Socio-

economic data 

% education 1 (primary 

school) 

Percentage of working people having a primary school as 

their highest qualification 

Percent 2001 Census 

  % education 2 

(secondary school) 

Percentage of working people having a secondary school 

leaving certificate as their highest qualification 

Percent 2001 Census 

  % education 3 

(university degree) 

Percentage of working people having a university (or 

equivalent) degree as their highest qualification 

Percent 2001 Census 

  Income Median income (per capita) Euro (.103) DGSEI (2001b) 

  % bad health Percentage of inhabitants feeling they have a bad state of 

health 

Percent 2001 Census 

  % car owner Percentage of households that do not own any car Percent DGSEI (2001b) 

Environmental 

and policy-

related data 

  

Population density Population density Inhabitants/km2 DGSEI (2001b) 

Jobs density Jobs density Jobs/km2 DGSEI (2001b) 

Commuting distance Average daily commuting distance of working people, by 

day 

Kilometres 2001 Census 

  Town distance Minimum road distance to the closest town (see Chapter 2 

for more details of how this variable is defined) 

Kilometres Vandenbulcke et al. 

(2007) 

  % short cycle 

commuting 

Percentage of commuters who live no more than 10 km 

from their workplace 

Percent 2001 Census 

  Town size (urban rank) Urban hierarchy of Belgian municipalities (from large towns 

(1) to small villages (8)) 

1-8 Van Hecke (1998) 

  % urban areas Percentage of the municipality which is urbanised Percent DGSEI (2004) 

  % forested areas Percentage of the municipality which is forested Percent DGSEI (2004) 

  % agricultural areas Percentage of the municipality which is agricultural Percent DGSEI (2004) 

continued on next page 

A
p
p
en

d
ix B

.  N
o
tes to

 C
h
a
p
ter 3

 

25
0
 



 

 

 

continued 

Group Variable Description Units Source 

Environmental 

and policy-

related data 

% public services areas Percentage of the surface area of the municipality which is 

used for public services (e.g. municipal offices, schools) 

Percent DGSEI (2004) 

  % recreational areas Percentage of the surface area of the municipality which is 

used for recreation (e.g. parks, sport terrains) 

Percent DGSEI (2004) 

  Slope Mean gradient of the municipal road network (excluding 

motorways and main roads) 

Degree Own computation from 

EROS data (2002) 

  % dissatisfaction of 

cycling facilities 

Percentage of households estimating that they have low-

quality cycling facilities located in their neighbourhood 

Percent 2001 Census 

  Bicycle theft Average annual number of bicycle thefts Bicycle thefts Federal Police (2000-

2002) 

  Theft risk Average annual number of bicycle thefts, divided by the 

total number of cyclists in the municipality 

Number of bicycle 

thefts per cyclist 

Own computation from 

Federal Police data 

(2000-2002) and 2001 

Census 

  Accident risk Average number of cyclists who are victims of accidents per 

100,000 minutes spent on a bicycle 

Victims (cyclists) 

per 100,000 

minutes 

Own computation from 

DGSEI data (2002-2005) 

and 2001 Census 

  Air quality Mean concentration of particulate matter (PM10) Microgram/m3 Own computation from 

IRCEL-CELINE data 

(2000-2005) 

  Traffic volume 1 

(regional roads) 

Annual number of vehicle-kilometres (.106) per kilometre of 

regional road 

106 vehicle-km per 

kilometre of 

network 

FPS Mobility and 

Transports (DGSEI, 

2000) 

  Traffic volume 2 

(municipal/local roads) 

Annual number of vehicle-kilometres (.106) per kilometre of 

municipal/local road 

106 vehicle-km per 

kilometre of 

network 

FPS Mobility and 

Transports (DGSEI, 

2000) 
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Appendix B.2: Regression coefficients for the spatial regime 

specification  

(ML estimation, with heteroskedasticity correction) – Dependent variable: 

proportion of cyclists among commuters who travel less than 10 km (in 

municipality i) 
 

 

  ML, spatial regimes & heterosk. correction 

  North South 

      Intercept 3.8716** 3.3259*** 

  [0,0000] [0,0000] 

      Lag coefficient (ρ) 0.4740*** 0.4740*** 

  [0,4475] [0,4475] 

 Demographic variables     

      % working men 0.0239 0.0211 

  [0,7353] [0,6582] 

      % age 2 (45-54) -0.0562** -0.0307*** 

  [-0,7019] [-0,4011] 

      % age 3 (> 54)† -0.1074 -0.0680 

  [-0,1317] [-0,0867] 

      % young children       

         (≤ 5 years) 

-0.0304** 

[-0,3243] 

-0.0292*** 

[-0,3486] 

 Socio-economic 

variables 

    

      % education 3  

         (university degree)† 

-0.1098 

[-0,2123] 

-0.1839 

[-0,3586] 

      Income - - 

  - - 

      % bad health -0.0241** -0.0194** 

  [-0,2792] [-0,2939] 

 Environmental and 

policy-related variables 

    

      Commuting distance 0.0103 0.0076* 

  [0,1148] [0,1100] 

      Town size 

       (urban rank) 

-0.0908*** 

[-0,3201] 

-0.0161 

[-0,0587] 

      Slope† -0.3655*** -0.3383*** 

  [-0,1929] [-0,3002] 

      % dissatisfaction with         

cycling facilities 

-0.0045** 

[-0,1277] 

-0.0072*** 

[-0,3185] 
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continued on next page 

continued 

  ML, spatial regimes & heterosk. correction 

  North South 

      Accident risk† -0.6580*** -0.2901*** 

  [-0,0803] [-0,0855] 

      Air pollution 0.0069* -0.0054 

  [0,1136] [-0,0852] 

      Traffic volume 2    

(municipal/local)† 

-0.3684 

[-0,0426] 

-0.6670*** 

[-0,0919] 

 N 589 (NNorth = 308; NSouth = 281) 

 Log Likelihood -56.65 

 Akaike information  

    criterion (AIC) 

173.30 

 Schwarz information  

    criterion (SIC) 

304.66 

 

*Significant at the 90% level; **Significant at the 95% level; ***Significant at the 99% level 

Standardised regression coefficients are given in brackets 
†: logarithmically transformed variables 

 

 

 

Appendix B.3: Impact of spatial interactions 
 

In Section 3.5.5.3., effects of changes in the values of the explanatory variables of 

the spatial regime regression could be incorrectly interpreted due to the presence 

of complex spatial interactions in the model. ‘Direct effects’ on cycling levels in 

municipality i may arise from a change in a single explanatory variable in this 

municipality i; these include: (1) the effect of a change through i, and (2) 

feedback influences resulting from impacts (caused by changes in i) passing 

through the neighbouring municipalities j, and coming back to i (feedback loop). 

‘Indirect effects’ (or spillover effects) on cycling levels in i may also arise from 

changes in explanatory variables in j (LeSage and Fisher, 2008; Fisher et al., 

2009; Kirby and LeSage, 2009; LeSage and Pace, 2009). 
 

Given that such direct and indirect effects may affect the validity of the results 

reported in Table 3.5, we hence checked the magnitude of their impact (on the 

results) by comparing the parameter estimates of the spatial lag regime 

specification with scalar summary impact measures (provided by LeSage and 
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Fisher (2008) and LeSage and Pace (2009))1. Discrepancies between parameter 

estimates and direct impact estimates were observed (Appendix B.3 (see Table 

below)), indicating that changes in the explanatory variables in municipality i 

produce feedback effects on cycling levels in i; such changes in the explanatory 

variables indeed influence the neighbouring municipalities’ cycling levels, which 

afterwards influence these in municipality i (feedback loop). Given that direct 

impact estimates exceed the parameter estimates in Table 3.5, the feedback 

effects are positive and hence (very slightly) increase the importance of changes 

in explanatory variables on cycling levels. However, the difference (between the 

direct impact estimates and the parameter estimates) is small and suggests that 

such feedback effects are weak. As a result, the parameter estimates reported in 

Table 3.5 give a reasonable measure of the direct impact of changes (in 

explanatory variables) on cycling levels in i. 
 

As suggested by Appendix B.3 (Table), changes in the neighbouring 

municipalities j of an explanatory variable also cause indirect effects (or spillover 

influences) on cycling levels in i. It hence confirms previous results exhibited in 

Table 3.5, suggesting that spillover effects (captured through the spatial 

autoregressive coefficient) exist between a municipality and its neighbourhood.  

Such effects are (slightly) larger compared with the direct effects, suggesting that 

spillover effects should not be ignored in the model. We however do not attempt 

to interpret the separate contribution of a change in the explanatory variables in 

j to the overall spillover effect. The use of a spatial Durbin model (SDM) is 

probably more convenient (in terms of inference) for the computation of the 

impact estimates. Although this specification is likely to suffer from 

multicollinearity between Wy and WX (Angeriz et al., 2008), it incorporates an 

additional matrix Wθ (θ: vector of parameters of the SDM associated with the 

spatially lagged explanatory variables WX) and exhibits a great deal of 

heterogeneity arising from the presence of this latter matrix Wθ in the total 

impact estimates (as opposed to the SAR case). 

 

 

 

 

 

 

 

                                                
1 Several pre-released functionalities of the ‘spdep’ R Package were here used within the 

framework of this chapter (‘impacts.sarlm’; implemented by Roger Bivand), but the results were 

not reported. Note that sparse matrices were used to estimate the traces of the power series of 

the spatial weights matrix (10,000 simulated draws); they indeed seem to perform better than 

powering Monte Carlo simulations (Roger Bivand, personal communication). 



 

 

 

   NORTH SOUTH 

    Direct Indirect Total Direct Indirect Total 

   Intercept 2.4803** 2.5421** 5.0224** 4.6142*** 4.7060*** 9.3202*** 

Demographic variables 

   % working men 0.0316*** 0.0320*** 0.0636*** 0.0009 0.0010 0.00194 

   % age 2 (45-54) -0.0448*** -0.0457*** -0.0904*** -0.0218*** -0.0222*** -0.0440*** 

   % age 3 (> 54)† -0.1150 -0.1174 -0.2325 -0.0742 -0.0767 -0.15092 

   % young children (≤ 5 years) -0.0391*** -0.0399*** -0.0789*** -0.0265*** -0.0271*** -0.0536*** 

Socio-economic variables 

  % education 3 (university degree)† -0.1045 -0.1079 -0.2123 -0.3350*** -0.3415*** -0.6765*** 

   Income 0.0333*** 0.0341** 0.0674*** -0.0030 -0.0030 -0.00602 

   % bad health -0.0105* -0.0106 -0.0210 -0.0157*** -0.0160** -0.0317*** 

Environmental and policy- 

related variables 

   Commuting distance -0.0177*** -0.0181*** -0.0358*** -0.0050 -0.0051 -0.01013 

   Town size (urban rank) -0.1225*** -0.1256*** -0.2482*** -0.0387*** -0.0397*** -0.0784*** 

   Slope† -0.2063*** -0.2078*** -0.4141*** -0.2110*** -0.2150*** -0.4261*** 

   % dissatisfaction with cycle facilities -0.0055*** -0.0056*** -0.0112*** -0.0048*** -0.0049*** -0.0098*** 

   Accident risk† -0.8162*** -0.8350*** -1.6512*** -0.1590*** -0.1632*** -0.3222*** 

   Air pollution 0.0148*** 0.0151*** 0.0298*** -0.0058 -0.0059 -0.01170 

   Traffic volume 2 (municipal roads)† -0.2500 -0.2556 -0.5056 -0.4857*** -0.4974*** -0.9831*** 
 

*Significant at the 90% level; **Significant at the 95% level; ***Significant at the 99% level 

Total impact estimates are the sum of the direct and indirect impact estimates 
†: logarithmically transformed variables 

 

Appendix B.3 (Table): Direct, indirect and total impact estimates (means), based on the spatial lag regime specification
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Appendix C 
 

Notes to Chapter 4 
 

 

 

Appendix C.1: Infrastructure factors – Description and data sources 
 

 Description Data source 

Bridge Bridges and elevated roads with safeguards on both side Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

GeoLoc) & Google Earth (2004, 2007, 2009) 

Tunnel Tunnels or parts of the road network situated below an elevated 

infrastructure 

Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

GeoLoc) & Google Earth (2004, 2007, 2009) 

Traffic-calming 

area 2 

Traffic-calming areas. Ψ = 1 (30 km/h area), 2 (pedestrian 

area), 3 (residential area), 4 (all types of traffic-calming areas, 

i.e. 1-3) 

Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

cycling map (BCR 2006 & 2008), Ministry of the Brussels-

Capital Region (IRIS 2), Town of Brussels (Map of the 

‘comfort area’) 

Crossroad 2 Crossroads/intersections. Ψ = 0 (no crossroad), 1 (yield/stop 

signal), 2 (right-of-way), 3 (traffic light), 4 (roundabout), 5 

(crossroad with right-turn), 6 (pedestrian light) 

Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

GeoLoc), Google Earth (2004, 2007, 2009) 

Tram tracks 2 Tram tracks. Ψ = 0 (no tram track), 1 (crossing tram tracks), 2 

(tram tracks in crossable reserved lanes), 3 (on-road tram 

tracks) 

Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

GeoLoc), Google Earth (2004, 2007, 2009), STIB-MIVB / 

BRSI 



 

 

 

continued on next page 

continued 

 Description Data source 

Cycle facility 2 Cycle facilities. Ψ = 0 (no cycle facility), 1 (unidirectional 

separated cycle lane), 2 (bidirectional separated cycle lane), 3 

(marked cycle lane), 4 (suggested cycle lane) or 5 (bus and 

bicycle lane) 

Own digitization, from DGSEI (2006-2008), BRIC 

(Brussels UrbIS 2007-2008, GeoLoc, cycling map (BCR 

2006 & 2008), Google Earth (2004, 2007, 2009) 

Parking area 

(aspect-based) 2 

Parking areas (aspect-based). Ψ = 0 (no parking area), 1 

(longitudinal parking), 2 (head-in angle parking), 3 (back-in 

angle parking), 4 (parking perpendicular to the road) or 5 (other 

type of parking area) 

Own digitization, from DGSEI (2006-2008), BRIC 

(Brussels UrbIS 2007-2008, GeoLoc), Google Earth (2004, 

2007, 2009) 

Contraflow 

cycling 

Streets where contraflow cycling is permitted Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

GeoLoc, cycling map (BCR 2006 & 2008), OneWayMap 

application), Google Earth (2004, 2007, 2009) 

Discontinuity Discontinuities in the cycle facilities (i.e. locations where a cycle 

facility is disrupted) 

Own digitization, from BRIC (Brussels UrbIS 2007-2008, 

GeoLoc, cycling map (BCR 2006 & 2008), Google Earth 

(2004, 2007, 2009) 

Parking area 

(function-based) 

2 

Parking areas (function-based). Ψ = 1 (park-and-ride, public or 

private parking area), 2 (delivery parking), 3 (diplomatic corps 

parking), 4 (disabled parking), 5 (taxi parking), 6 (all types of 

parkings, i.e. 1-5) 

BRIC (Brussels UrbIS 2007-2008) 

Public transport 

2 

Public transport stops. Ψ = 1 (bus stop), 2 (tram stop), 3 (all 

types of public transport stops, i.e. 1-2) 

BRIC (Brussels UrbIS 2007-2008) 

Public 

administration 2 

Administrative buildings. Ψ = 1 (european administrative 

building), 2 (regional administrative building), 3 (all types of 

administrative buildings, i.e. 1-2) 

BRIC (Brussels UrbIS 2007-2008) 

Continued on next page 
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continued 

 Description Data source 

School 2 Schools. Ψ = 1 (primary or secondary school), 2 (international 

primary or secondary school), 3 (superior school), 4 (all types of 

schools, i.e. 1-3) 

BRIC (Brussels UrbIS 2007-2008) 

Industrial estate Industrial estates, sites of economic activities BRIC (Brussels UrbIS 2007-2008) 

Shopping center Shopping centers / malls, and shopping arcades BRIC (Brussels UrbIS 2007-2008) 

Supermarket Food and home improvement superstores BRIC (Brussels UrbIS 2007-2008) 

Service station Service stations / petrol pumps BRIC (Brussels UrbIS 2007-2008) 

Cultural 

building 

Cultural centres, museums, theatres, cinemas, auditoriums, etc. BRIC (Brussels UrbIS 2007-2008) 

Sports complex Sports complexes BRIC (Brussels UrbIS 2007-2008) 

Playground Playgrounds BRIC (Brussels UrbIS 2007-2008) 

Religious 

building 2 

Religious buildings. Ψ = 1 (synagogue), 2 (protestant church), 3 

(orthodox church), 4 (mosque), 5 (catholic buildings), 6 (all 

types of religious buildings, i.e. 1-5) 

BRIC (Brussels UrbIS 2007-2008) 

Police building Police stations and departments BRIC (Brussels UrbIS 2007-2008) 

Hospital Hospitals, clinics and health centres BRIC (Brussels UrbIS 2007-2008) 

Embassy Embassies BRIC (Brussels UrbIS 2007-2008) 
 

Ψ: Nominal variable, taking on different values for each infrastructure variable (one value = one kind of infrastructure or facility)  
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Appendix C.2: Blackspots of cycling accidents in the 

Pentagon (2006-2008) 

Network kernel densities (equal split discontinuous function). Bandwidth: 

100m; cell width: 10m. 
 

 
 

Although several bandwidths were experienced to examine the variation in the 

density values along the network, a 100m value is here selected since it seems to 

provide a more adequate representation of the black spots for cyclists (as well as 

for other ‘slow road users’, such as pedestrians). Such a choice is also justified by 

the fact that 100-300m bandwidths are commonly used in urban studies 

modelling pedestrian catchment areas and accidents, at the scale of 

neighbourhoods (300m), blocks (200m) and streets (100m) (Cervero, 1998; Frey, 

1999; Calthorpe and Fulton, 2001; Cervero, 2004; Okabe et al., 2009; Porta et 

al., 2009; Dai et al., 2010). In order to avoid edge effects, cycling accidents 

located outside the study region (i.e. in the Flemish municipalities) are also 

considered when applying the equal split method in SANET. The densities 

obtained using such a method are finally manually corrected with the aim to 

account for the presence of road elevations along the network (e.g. bridges, 

tunnels, etc.), given that SANET ignores these latter when computing the 

densities. 



 

 

Appendix D 
 

Notes to Chapter 5 
 

 

 

Appendix D.1: List of risk factors 

Description, categorical values (Ψ), units and data sources 
 

Variable Definition ΨΨΨΨ values Units Data source 

Infrastructure         

  
Bridgea 

1 if the accident/control occurred on a 

bridge (with safeguards on both sides), 0 

otherwise 

- - 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, GeoLoc) & Google 

Earth (2004, 2007, 2009) 

  
Tunnela 

1 if the accident/control occurred in a 

tunnel or below an elevated 

infrastructure, 0 otherwise 

- - 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, GeoLoc) & Google 

Earth (2004, 2007, 2009) 

  

Traffic-calming area 

Ψa 

1 if the accident/control occurred in a 

type Ψ traffic-calming area, 0 otherwise 

Ψ = 1 (30 km/h area), 2 (pedestrian area), 

3 (residential area), 4 (all types of traffic-

calming areas, i.e. 1-3) 

- 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, cycling map (BCR 

2006 & 2008), Ministry of the Brussels-Capital 

Region (IRIS 2), City of Brussels (Map of the 

"comfort area") 

  

Crossroad Ψa 
1 if the accident/control occurred in a 

type Ψ crossroad, 0 otherwise 

Ψ = 0 (no crossroad), 1 (yield/stop signal), 

2 (right-of-way), 3 (traffic light), 4 

(roundabout), 5 (crossroad with right-

turn), 6 (pedestrian light) 

- 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, GeoLoc), Google 

Earth (2004, 2007, 2009) 

continued on next page 



 

 

continued 

Variable Definition ΨΨΨΨ values Units Data source 

  
Complexity index Ψ 

Complexity index at the place of the 

accident/control, with Ψ bandwidth (m) 
Ψ = 10, 20, 30, 40, 50, 75 or 100 m Meters Own computation, from BRIC (Brussels UrbIS) 

  

Tram tracks Ψa,b 

1 if the accident/control occurred on or 

close to a type Ψ tram track 

infrastructure, 0 otherwise 

Ψ = 0 (no tram track), 1 (crossing tram 

tracks), 2 (tram tracks in crossable reserved 

lanes), 3 (on-road tram tracks) 

- 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, GeoLoc), Google 

Earth (2004, 2007, 2009), STIB-MIVB / BRSI 

  

Cycle facility Ψa,b 
1 if the accident/control occurred on a 

type Ψ cycle facility, 0 otherwise 

Ψ = 0 (no cycle facility), 1 (unidirectional 

separated cycle lane), 2 (bidirectional 

separated cycle lane), 3 (marked cycle 

lane), 4 (suggested cycle lane) or 5 (bus 

and bicycle lane) 

- 

Own digitalization and computation, from FPS 

Economy (2006-2008), BRIC (Brussels UrbIS 

2007-2008, GeoLoc, cycling map (BCR 2006 & 

2008), Google Earth (2004, 2007, 2009) 

  

Parking area Ψa,b 
1 if the accident/control occurred close to 

a type Ψ parking area, 0 otherwise 

Ψ = 0 (no parking area), 1 (longitudinal 

parking), 2 (head-in angle parking), 3 

(back-in angle parking), 4 (parking 

perpendicular to the road) or 5 (other type 

of parking area) 

- 

Own digitalization and computation, from FPS 

Economy (2006-2008), BRIC (Brussels UrbIS 

2007-2008, GeoLoc), Google Earth (2004, 2007, 

2009) 

  

Proximity parking-

cycle facility Ψa,b 

1 if the accident/control occurred on a 

type Ψ cycle facility, very close to a 

parking area (d ≤ 0.8 m, and outside a 

crossroad), 0 otherwise 

Ψ = 1 (unidirectional separated cycle lane), 

2 (bidirectional separated cycle lane), 3 

(marked cycle lane), 4 (suggested cycle 

lane) or 5 (bus and bicycle lane), 6 (all 

types of cycle facilities, i.e. 1-5) 

- 

Own digitalization and computation, from NIS-

FPS Economy (2006-2008), BRIC (Brussels 

UrbIS 2007-2008, GeoLoc, cycling map (BCR 

2006 & 2008), Google Earth (2004, 2007, 2009) 

  

Contraflow cyclinga,b 

1 if the accident/control occurred in a 

contraflow cycling and in the opposite 

direction of motorised vehicles (i.e. in the 

direction of the contraflow), 0 otherwise 

- - 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, GeoLoc, cycling map 

(BCR 2006 & 2008), OneWayMap application), 

Google Earth (2004, 2007, 2009) 

  
Major road 

1 if the accident/control occurred on a 

major road, 0 otherwise 
- - 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 
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continued 

Variable Definition ΨΨΨΨ values Units Data source 

  Number of garages Ψ 

(≤ 100m) 

Number of garages (in a range Ψ) over a 

network distance ≤ 100m from the place 

of the accident/control 

Ψ = 0, 0-10, 11-20, 21-30, 31-40, 41-50, 51-

60, 61-70, > 70 garage(s) 
- 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Garage length 

Sum of all the garage lengths over a 

network distance ≤ 100m from the place 

of the accident/control 

- Meters 
Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Garage ≤ Ψ (m) 

1 if the accident/control occurred over a 

network distance d ≤ Ψ (m) from a 

garage, 0 otherwise 

Ψ = 10, 50 or 100 m - 
Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Distance garage Network distance to the closest garage - Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Distance crossroad 

Network distance to the closest crossroad, 

whatever the type of crossroad 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

 
Distance 

discontinuitya,b 

Network distance to the closest 

discontinuity (on cycle facilities) 
- Meters 

Own digitalization and computation, from BRIC 

(Brussels UrbIS 2007-2008, GeoLoc, cycling map 

(BCR 2006 & 2008), Google Earth (2004, 2007, 

2009) 

  
Distance city centre 

Network distance to the Brussels' town 

hall (city centre) 
- Meters 

Own digitalization and computation, from 

Google Map/Earth 2009 

  
Distance major road 

Network distance to the closest crossroad 

of a major road 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  

Distance parking area 

Ψ 

Network distance to the closest type Ψ 

parking area 

Ψ = 1 (park-and-ride, public or private 

parking area), 2 (delivery parking), 3 

(diplomatic corps parking), 4 (disabled 

parking), 5 (taxi parking), 6 (all types of 

parkings, i.e. 1-5) 

Meters 
Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance public 

transport Ψ 

Network distance to the closest type Ψ 

public transport stop 

Ψ = 1 (bus stop), 2 (tram stop), 3 (all 

types of public transport stops, i.e. 1-2) 
Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 
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continued 

Variable Definition ΨΨΨΨ values Units Data source 

  Distance public 

administration Ψ 

Network distance to the closest type Ψ 

administrative building 

Ψ = 1 (european administrative building), 

2 (regional administrative building), 3 (all 

types of administrative buildings, i.e. 1-2) 

Meters 
Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  

Distance school Ψ 
Network distance to the closest type Ψ 

school 

Ψ = 1 (primary or secondary school), 2 

(international primary or secondary 

school), 3 (superior school), 4 (all types of 

schools, i.e. 1-3) 

Meters 
Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance industrial 

estate 

Network distance to the closest industrial 

estate 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance shopping 

center 

Network distance to the closest shopping 

center / mall 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Distance supermarket 

Network distance to the closest 

supermarket 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance service 

station 

Network distance to the closest service 

station / petrol pump 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance cultural 

building 

Network distance to the closest cultural 

building / center 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance sports 

complex 

Network distance to the closest sports 

complex 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Distance playground 

Network distance to the closest 

playground 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Distance religious 

building Ψ 

Network distance to the closest type Ψ 

religious building 

Ψ = 1 (synagogue), 2 (protestant church), 

3 (orthodox church), 4 (mosque), 5 

(catholic buildings), 6 (all types of religious 

buildings, i.e. 1-5) 

Meters 
Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  Distance police 

building 

Network distance to the closest police 

building 
- Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 
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continued 

Variable Definition ΨΨΨΨ values Units Data source 

  
Distance hospital Network distance to the closest hospital - Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

  
Distance embassy Network distance to the closest embassy - Meters 

Own computation, from BRIC (Brussels UrbIS 

2007-2008) 

Traffic         

  
Car traffic Ψa,b (06:00 

a.m. - 10:59 p.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ car traffic between 

06:00 a.m. and 10:59 p.m., 0 otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low car 

traffic ; class 5 = very high car traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

  
Car traffic Ψa,b (08:00 

a.m. - 08:59 a.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ car traffic between 

08:00 a.m. and 08:59 a.m., 0 otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low car 

traffic ; class 5 = very high car traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

  
Car traffic Ψa,b (5:00 

p.m. - 5:59 p.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ car traffic between 

5:00 p.m. and 5:59 p.m., 0 otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low car 

traffic ; class 5 = very high car traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

  
Van traffic Ψa,b (06:00 

a.m. - 10:59 p.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ van traffic between 

06:00 a.m. and 10:59 p.m., 0 otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low van 

traffic ; class 5 = very high van traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

 
Van traffic Ψa,b (08:00 

a.m. - 08:59 a.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ van traffic between 

08:00 a.m. and 08:59 a.m., 0 otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low van 

traffic ; class 5 = very high van traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

  
Van traffic Ψa,b (5:00 

p.m.- 5:59 p.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ van traffic between 

5:00 p.m. and 5:59 p.m., 0 otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low van 

traffic ; class 5 = very high van traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

continued on next page 
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continued 

Variable Definition ΨΨΨΨ values Units Data source 

  Lorry/truck traffic 

Ψa,b (06:00 a.m.- 

10:59 p.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ truck traffic 

between 06:00 a.m. and 10:59 p.m., 0 

otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low truck 

traffic ; class 5 = very high truck traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

  Lorry/truck traffic 

Ψa,b (08:00 a.m.- 

08:59 a.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ truck traffic 

between 08:00 a.m. and 08:59 a.m., 0 

otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low truck 

traffic ; class 5 = very high truck traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

  Lorry/truck traffic 

Ψa,b (5:00 p.m.- 5:59 

p.m.) 

1 if the accident/control occurred on a 

road with intensity Ψ truck traffic 

between 5:00 p.m. and 5:59 p.m., 0 

otherwise 

Ψ = 1, 2, 3, 4, 5 (class 1 = very low truck 

traffic ; class 5 = very high truck traffic) 
- 

Own computation, from STRATEC/IBGE-BIM 

(2006), BRIC (Brussels UrbIS 2007-2008) 

Environment         

  Slope 

Maximum slope (to neighbouring pixels) 

computed at the pixel where the 

accident/control took place 

- Degree Own computation, from EROS (2002) 

  Green areas ≤ Ψ (m) 

1 if the accident/control occurred over an 

euclidean distance d ≤ Ψ (m) from a 

green area, 0 otherwise 

Ψ = 10, 20, 30, 40 or 50 m - 
Own computation, from BRIC (Brussels UrbIS, 

2007-2008) 

 

a Year is controlled 
b Direction of travel is controlled 

A
p
p
en

d
ix D

.  N
o
tes to

 C
h
a
p
ter 5

 

26
6
 



 

 

Appendix D.2: Descriptive statistics of the selected (discrete) risk factors 
 

Variable ΨΨΨΨ % No Acc % Acc χχχχ2 test (p) F test (p) OR (LCI-UCI) PAcc > Abs Risk 

Infrastructure                  

  Bridge - 0.6 2.0 0.00 0.00 3.53 (1.53-6.93) 1.00 ◄◄◄►►► 

  Tunnel† - 0.2 0.0 0.48 0.61 0.68 (0.01-2.80) 0.21 ◄◄◄►►► 

  
Traffic-calming area 

1 11.4 9.2 0.14 0.13 0.80 (0.58-1.06) 0.06 ◄◄◄►►► 

  2 0.8 0.5 0.64 0.60 0.85 (0.21-2.02) 0.30 ◄◄◄►►► 

   3 0.4 0.3 1.00 1.00 1.21 (0.21-3.36) 0.50 ◄◄◄►►► 

   4 12.6 10.0 0.10 0.09 0.78 (0.58-1.03) 0.04 ◄◄◄►►► 

  Crossroad 0 82.2 44.3 0.00 0.00 0.17 (0.14-0.21) 0.00 ◄◄◄►►► 

   1 2.2 11.0 0.00 0.00 5.71 (3.86-8.19) 1.00 ◄◄◄►►► 

   2 10.2 18.5 0.00 0.00 2.01 (1.56-2.55) 1.00 ◄◄◄►►► 

   3 3.3 17.7 0.00 0.00 6.41 (4.67-8.60) 1.00 ◄◄◄►►► 

   4 1.3 6.7 0.00 0.00 5.63 (3.41-8.83) 1.00 ◄◄◄►►► 

   5 0.8 1.5 0.20 0.16 2.03 (0.85-3.99) 0.94 ◄◄◄►►► 

    6† 0.1 0.3 0.38 0.18 6.10 (0.69-23.73) 0.94 ◄◄◄►►► 

  Tram tracks 0 95.4 82.5 0.00 0.00 0.23 (0.17-0.30) 0.00 ◄◄◄►►► 

   1 0.5 5.7 0.00 0.00 13.52 (6.66-25.43) 1.00 ◄◄◄►►► 

   2 1.3 3.7 0.00 0.00 3.07 (1.69-5.11) 1.00 ◄◄◄►►► 

   3 2.8 8.2 0.00 0.00 3.18 (2.13-4.55) 1.00 ◄◄◄►►► 

  Cycle facility 0 93.0 81.0 0.00 0.00 0.32 (0.25-0.42) 0.00 ◄◄◄►►► 

   1 1.4 5.0 0.00 0.00 3.70 (2.18-5.86) 1.00 ◄◄◄►►► 

   2 2.2 3.7 0.06 0.06 1.74 (1.01-2.76) 0.98 ◄◄◄►►► 

continued on next page 
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continued 

Variable ΨΨΨΨ % No Acc % Acc χχχχ2 test (p) F test (p) OR (LCI-UCI) PAcc > Abs Risk 

  Cycle facility 3 2.2 7.0 0.00 0.00 3.44 (2.22-5.08) 1.00 ◄◄◄►►► 

   4 0.9 2.5 0.00 0.00 2.98 (1.45-5.40) 1.00 ◄◄◄►►► 

    5† 0.2 0.8 0.05 0.03 4.86 (1.25-13.21) 0.99 ◄◄◄►►► 

  Parking area 0 34.1 58.0 0.00 0.00 2.67 (2.22-3.20) 1.00 ◄◄◄►►► 

   1 63.0 40.8 0.00 0.00 0.41 (0.34-0.49) 0.00 ◄◄◄►►► 

   2 0.7 0.3 0.52 0.55 0.75 (0.14-1.99) 0.24 ◄◄◄►►► 

   3† 0.1 0.2 1.00 0.49 4.06 (0.29-17.00) 0.82 ◄◄◄►►► 

   4 1.5 0.3 0.03 0.01 0.32 (0.06-0.81) 0.01 ◄◄◄►►► 

   5† 0.5 0.3 0.85 1.00 1.00 (0.18-2.73) 0.40 ◄◄◄►►► 

  Proximity parking-

cycle facility 

1 0.6 1.7 0.02 0.02 3.20 (1.32-6.47) 1.00 ◄◄◄►►► 

  2† 0.1 0.3 0.38 0.18 6.10 (0.69-23.77) 0.94 ◄◄◄►►► 

   3 1.4 1.7 0.72 0.57 1.35 (0.61-2.47) 0.75 ◄◄◄►►► 

   4 0.6 0.8 0.77 0.57 1.61 (0.51-3.60) 0.77 ◄◄◄►►► 

   5† 0.0 0.0 n.s. n.s. n.s. n.s. n.s. n.s. 

    6 2.6 4.5 0.03 0.02 1.80 (1.10-2.74) 0.99 ◄◄◄►►► 

  Contraflow cycling - 10.3 5.3 0.00 0.00 0.51 (0.34-0.72) 0.00 ◄◄◄►►► 

  Major road - 12.9 46.7 0.00 0.00 5.95 (4.86-7.22) 1.00 ◄◄◄►►► 

  Number of garages (≤ 

100m) 

0 6.3 4.5 0.13 0.12 0.73 (0.47-1.08) 0.05 ◄◄◄►►► 

  0-10 41.9 47.7 0.01 0.01 1.27 (1.06-1.51) 0.99 ◄◄◄►►► 

   11-20. 32.0 35.0 0.17 0.16 1.15 (0.95-1.39) 0.92 ◄◄◄►►► 

   21-30 15.8 8.8 0.00 0.00 0.53 (0.38-0.70) 0.00 ◄◄◄►►► 

continued on next page 
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continued 

Variable ΨΨΨΨ % No Acc % Acc χχχχ2 test (p) F test (p) OR (LCI-UCI) PAcc > Abs Risk 

  
Number of garages (≤ 

100m) 
31-40 6.2 4.0 0.02 0.02 0.66 (0.41-0.98) 0.02 ◄◄◄►►► 

   41-50 2.8 2.7 0.85 0.88 1.02 (0.56-1.67) 0.48 ◄◄◄►►► 

   51-60 0.9 1.5 0.29 0.25 1.84 (0.78-3.59) 0.91 ◄◄◄►►► 

   61-70† 0.3 0.2 0.94 1.00 1.15 (0.12-3.78) 0.43 ◄◄◄►►► 

   > 70† 0.1 0.2 1.00 0.59 2.68 (0.23-10.30) 0.74 ◄◄◄►►► 

  Garage ≤ Ψ ≤ 10 m 48.2 30.2 0.00 0.00 0.47 (0.38-0.56) 0.00 ◄◄◄►►► 

   ≤ 50 m 84.6 80.3 0.01 0.01 0.75 (0.59-0.94) 0.01 ◄◄◄►►► 

    ≤ 100 m 93.8 95.5 0.13 0.12 1.43 (0.93-2.14) 0.95 ◄◄◄►►► 

Traffic                 

  Car traffic (06:00 a.m. 

to 10:59 p.m.) 

1 76.4 41.0 0.00 0.00 0.22 (0.18-0.26) 0.00 ◄◄◄►►► 

  2 15.2 31.7 0.00 0.00 2.59 (2.10-3.17) 1.00 ◄◄◄►►► 

   3 6.3 18.2 0.00 0.00 3.32 (2.52-4.28) 1.00 ◄◄◄►►► 

   4 2.0 7.2 0.00 0.00 3.90 (2.50-5.79) 1.00 ◄◄◄►►► 

   5 0.1 2.0 0.00 0.00 26.82 (6.02-90.67) 1.00 ◄◄◄►►► 

  Van traffic (06:00 a.m. 

to 10:59 p.m.) 

1 76.1 38.3 0.00 0.00 0.20 (0.16-0.24) 0.00 ◄◄◄►►► 

  2 14.7 32.2 0.00 0.00 2.76 (2.23-3.37) 1.00 ◄◄◄►►► 

   3 6.8 19.3 0.00 0.00 3.30 (2.53-4.23) 1.00 ◄◄◄►►► 

   4 1.9 6.7 0.00 0.00 3.69 (2.35-5.53) 1.00 ◄◄◄►►► 

    5 0.4 3.5 0.00 0.00 9.14 (4.11-18.19) 1.00 ◄◄◄►►► 

  Truck traffic (06:00 

a.m. to 10:59 p.m.) 

1 75.7 40.2 0.00 0.00 0.22 (0.18-0.26) 0.00 ◄◄◄►►► 

  2 12.5 22.0 0.00 0.00 2.00 (1.58-2.49) 1.00 ◄◄◄►►► 

continued on next page 
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continued 

Variable ΨΨΨΨ % No Acc % Acc χχχχ2 test (p) F test (p) OR (LCI-UCI) PAcc > Abs Risk 

  
Truck traffic (06:00 

a.m. to 10:59 p.m.) 
3 8.2 22.0 0.00 0.00 3.19 (2.48-4.02) 1.00 ◄◄◄►►► 

   4 3.1 11.0 0.00 0.00 3.92 (2.73-5.44) 1.00 ◄◄◄►►► 

    5 0.5 4.8 0.00 0.00 9.71 (4.88-17.84) 1.00 ◄◄◄►►► 

Environment                 

  Green areas ≤ Ψ ≤ 10 m 9.9 8.7 0.39 0.40 0.88 (0.63-1.18) 0.18 ◄◄◄►►► 

   ≤ 20 m 13.4 14.3 0.60 0.55 1.09 (0.84-1.40) 0.73 ◄◄◄►►► 

   ≤ 30 m 15.6 18.5 0.10 0.09 1.24 (0.97-1.55) 0.96 ◄◄◄►►► 

   ≤ 40 m 17.3 20.7 0.07 0.07 1.25 (0.99-1.55) 0.97 ◄◄◄►►► 

    ≤ 50 m 19.4 22.2 0.14 0.14 1.20 (0.95-1.48) 0.94 ◄◄◄►►► 
 

† Less than 10 observations for both accidents and controls; care must be taken when analysing the corresponding data 

n.s.: not significant at the 90% level; % Acc: proportion of accidents (bold: % Acc > % No Acc); % No Acc: proportion of controls (bold: % No Acc > % Acc)  
 

Frequentist framework: 

χ2 test (p): p-value of the Chi-Square adjusted test for independence (bold: independence not rejected) 

F test (p): p-value of the Fisher's exact test for independence (bold: independence not rejected) 
 

Bayesian framework: 

OR: Odds Ratio; LCI: Lower Credible Interval of the OR (2.5%); UCI: Upper credible interval of the OR (97.5%) 

PAcc>Abs: Probability that the proportion of accidents is higher (compared with the proportion of controls) when a specific risk factor is present, i.e. when xi = 1 

Risk = PAcc>Abs: risk of having an accident (for a cyclist) when a specific risk factor xi is present 

Burn-in = 6000 iterations; Post-Burn-in = 20,000 iterations; Number of Markov chains = 3; R̂  = 1 (Gelman-Rubin diagnostic) for all variables; MC error < 5% 

Standard Deviation for all variables; No autocorrelation issue detected. 
 

Symbols for risk:◄►►► Very high (≥ 0.99); ►► Quite high (≥ 0.95);◄► High ≥ 0.90; ◄► Moderate (> 0.10 and < 0.90); ◄ Low (≤ 0.10); ◄◄ Quite low (≤ 

0.05); ◄◄◄►Very low (≤ 0.01) 

A
p
p
en

d
ix D

.  N
o
tes to

 C
h
a
p
ter 5

 

27
0
 



 

 

 

Appendix D.3: Descriptive statistics for the continuous risk factors 
 

Variable ΨΨΨΨ 
NO ACCIDENT ACCIDENT 

Wilcoxon test (p)a PAcc > Abs
b Risk 

Meana  Std. Dev.a Meana Std. Dev.a 

Infrastructure               

  Complexity index 10 m 21.3 3.6 28.6 9.7 0.00 1.00 ◄◄◄►►► 

   20 m 45.3 10.1 60.0 21.0 0.00 1.00 ◄◄◄►►► 

   30 m 72.4 19.4 96.0 36.0 0.00 1.00 ◄◄◄►►► 

   40 m 102.7 30.8 136.5 53.1 0.00 1.00 ◄◄◄►►► 

   50 m 136.4 43.7 180.7 71.7 0.00 1.00 ◄◄◄►►► 

   75 m 235.4 81.2 310.3 123.1 0.00 1.00 ◄◄◄►►► 

   100 m 356.4 128.4 469.0 183.1 0.00 1.00 ◄◄◄►►► 

  Garage length - 55.4 44.3 52.4 44.9 0.03 0.07 ◄◄◄►►► 

  Distance garage - 34.3 93.4 36.5 103.7 0.00 0.69 ◄◄◄►►► 

  Distance crossroad - 51.2 57.0 25.0 39.5 0.00 0.00 ◄◄◄►►► 

  Distance discontinuity - 419.6 302.9 356.4 337.2 0.00 0.00 ◄◄◄►►► 

  Distance city centre - 4216.8 1906.9 3906.1 2069.4 0.00 0.00 ◄◄◄►►► 

  Distance major road - 242.8 230.8 143.0 211.5 0.00 0.00 ◄◄◄►►► 

  Distance parking area 1 702.9 440.3 629.5 461.6 0.00 0.00 ◄◄◄►►► 

   2 486.2 462.3 407.0 473.2 0.00 0.00 ◄◄◄►►► 

   3 1174.3 1026.8 915.0 908.2 0.00 0.00 ◄◄◄►►► 

   4 225.8 223.8 205.3 252.3 0.00 0.03 ◄◄◄►►► 

continued on next page 
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continued 

Variable ΨΨΨΨ 
NO ACCIDENT ACCIDENT 

Wilcoxon test (p)a PAcc > Abs
b Risk 

Meana  Std. Dev.a Meana Std. Dev.a 

   5 731.6 581.1 639.4 590.4 0.00 0.00 ◄◄◄►►► 

    6 171.7 186.5 142.6 191.0 0.00 0.00 ◄◄◄►►► 

  Distance public transport 1 453.3 338.3 360.9 327.2 0.00 0.00 ◄◄◄►►► 

   2 760.4 575.6 683.3 602.2 0.00 0.00 ◄◄◄►►► 

   3 378.4 282.9 283.1 266.8 0.00 0.00 ◄◄◄►►► 

  Distance public administration 1 2564.1 1776.7 2170.2 1617.6 0.00 0.00 ◄◄◄►►► 

   2 2243.5 1421.0 1774.8 1311.2 0.00 0.00 ◄◄◄►►► 

    3 1791.5 1308.3 1458.8 1180.5 0.00 0.00 ◄◄◄►►► 

  Distance school 1 390.1 248.8 389.6 265.6 0.82 0.48 ◄◄◄►►► 

   2 2230.9 1604.7 1884.2 1456.3 0.00 0.00 ◄◄◄►►► 

   3 1124.6 803.8 938.7 820.9 0.00 0.00 ◄◄◄►►► 

   4 359.0 236.3 335.3 250.3 0.01 0.01 ◄◄◄►►► 

  Distance industrial estate - 1800.5 942.8 1780.6 955.8 0.85 0.30 ◄◄◄►►► 

 Distance shopping center - 2074.7 1282.7 1723.1 1297.8 0.00 0.00 ◄◄◄►►► 

  Distance supermarket - 771.1 538.6 754.4 629.7 0.02 0.27 ◄◄◄►►► 

  Distance service station - 554.3 338.3 539.7 334.3 0.47 0.17 ◄◄◄►►► 

  Distance cultural building - 696.2 501.6 611.3 516.3 0.00 0.00 ◄◄◄►►► 

  Distance sports complex - 1128.8 559.6 1119.5 547.8 0.74 0.34 ◄◄◄►►► 

  Distance playground - 626.1 359.3 618.8 373.3 0.69 0.33 ◄◄◄►►► 

continued on next page 
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continued 

Variable ΨΨΨΨ 
NO ACCIDENT ACCIDENT 

Wilcoxon test (p)a PAcc > Abs
b Risk 

Meana  Std. Dev.a Meana Std. Dev.a 

  Distance religious building 1 2905.3 1898.3 2775.5 1825.9 0.17 0.05 ◄◄◄►►► 

   2 896.1 672.5 2775.5 1825.9 0.00 1.00 ◄◄◄►►► 

   3 2116.5 1440.9 1767.8 1388.5 0.00 0.00 ◄◄◄►►► 

   4 1598.1 1254.3 1416.3 1200.8 0.00 0.00 ◄◄◄►►► 

   5 555.0 301.9 530.5 319.1 0.02 0.04 ◄◄◄►►► 

   6 458.7 301.2 411.5 310.0 0.00 0.00 ◄◄◄►►► 

  Distance police building - 886.1 509.7 850.3 520.1 0.03 0.06 ◄◄◄►►► 

  Distance hospital - 1385.0 965.0 1197.9 850.7 0.00 0.00 ◄◄◄►►► 

  Distance embassy - 1266.4 1037.9 1031.0 973.4 0.00 0.00 ◄◄◄►►► 

Environment               

  Slope - 2.8 1.7 2.6 1.6 0.14 0.05 ◄◄◄►►► 
 

Italic: inequal variances; Std. Dev.: Standard Deviation 
 

a Frequentist framework: 

Wilcoxon test (p): p-value of Wilcoxon Rank-Sum test (Mann-Whitney). Significant difference in bold 
 

b Bayesian framework: 

PAcc>Abs: Probability that the posterior mean of variable xi is higher for accidents (compared with controls/absences of accidents) 

Risk ≈ PAcc>Abs: risk of having an accident (for a cyclist) when a specific risk factor xi is high (e.g. for complexity) or close (for distance-based variables) 

Burn-in = 6000 iterations; Post-Burn-in = 20,000 iterations; Number of Markov chains = 3; R̂  = 1 (Gelman-Rubin diagnostic) for all variables; MC error < 5% 

Std.Dev. for all variables; No autocorrelation issue detected. 
 

Symbols for risk:◄►►► Very high (≥ 0.99); ►► Quite high (≥ 0.95); ► High ≥ 0.90; ◄► Moderate (> 0.10 and < 0.90); ◄►Low (≤ 0.10); ◄◄►Quite low 

(≤0.05); ◄◄◄►Very low (≤ 0.01) 
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Appendix D.4: Logistic model – Results from the frequentist 

framework  
 

Variables Estimate SD Wald Z OR (eββββ) 

  Intercept -5.91*** 0.25 -23.54 0.00 

Infrastructure       

  Complexity index       

  Bandwidth = 10 m 0.15*** 0.01 15.92 1.16 

  Bridge & no cycle facility 0.88 0.61 1.43 2.40 

  Contraflow cycling & no crossroad -0.65* 0.33 -1.97 0.52 

  Cycle facility & crossroad       

  Facility 1 (unidir.) & Crossroad 1 (yield/stop) 2.05* 0.92 2.24 7.75 

  Facility 2 (bidir.l) & Crossroad 1 (yield/stop) 2.43* 0.99 2.46 11.36 

  Facility 3 (mark.) & Crossroad 3 (traffic light) 1.75 1.04 1.68 5.73 

  Facility 3 (mark.) & Crossroad 4 (roundabout) 2.39** 0.82 2.91 10.96 

  Facility 4 (sugg.) & Crossroad 2 (right-of-w.) 2.68 1.59 1.69 14.55 

  Facility 0 (no facility) & Crossroad 4 (round.) 1.02*** 0.29 3.51 2.79 

  Facility 3 (mark.) & Crossroad 0 (no crossr.) 0.74* 0.34 2.19 2.10 

  Tram tracks       

  Class 1 (crossing) 0.84* 0.41 2.06 2.32 

  Class 2 (crossable reserved lanes) 0.84* 0.36 2.34 2.31 

  Class 3 (on-road tracks) 1.05*** 0.25 4.28 2.87 

  Number of garages (d ≤100m)       

  Range 0 (no garage) -0.58* 0.28 -2.11 0.56 

  Distance public administrationa       

  Public administration 2 (regional) 1.07*** 0.22 4.86 2.92 

  Proximity parking-cycle facility       

  Parking & Facility 1 (unidirectional) 1.28** 0.45 2.86 3.61 

  Parking & Facility 2 (bidirectional) 2.06* 0.96 2.14 7.86 

Traffic       

  Van & truck traffic (6 a.m.-10:59 p.m.)       

  Class 2 (low) 1.00*** 0.15 6.84 2.72 

  Class 3 (moderate) 1.31*** 0.16 8.21 3.72 

  Class 4 (high) 1.24*** 0.21 6.03 3.45 

  Class 5 (very high) 2.57*** 0.33 7.81 13.01 
 

*** Significant at 99.9%; ** Significant at 99%; * Significant at 95% 
a Exponentially transformed variables (e-0.001.x) 

OR: Odds Ratio; SD: Standard Error 
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Appendix D.5: Logistic model – Model fit and evaluation, 

diagnostics and inferential tests 

 

 Statistics 

Goodness-of-fit   

Log Likelihood -1063.09 

Akaike Information criterion (AIC) 2170.18 

Validations of predicted probabilities   

c statistic 0.83 

Missclassification rate 0.14 

Multicollinearity   

Variance Inflation Factor (max. value) 1.22 

Condition Index (max. value) 3.20 

 

 Test statistic p-value 

Overall model evaluations     

Likelihood ratio test (χ2) 883.35 < 2.2e-16 

Wald test (χ2) 1033.30 0.00 

Goodness-of-fit tests     

Hosmer & Lemeshow (χ2) 14.10 0.08 

Le Cessie & Houwelingen (Z) -1.86 0.06 

Spatial autocorrelation tests     

Moran's I for residuals (I)a 0.27 < 2.2e-16 
 

a Great care is required when analyzing Moran's I since its statistical basis for inference is not 

well-founded for logistic regression modelling



 

 

 

Appendix D.6: Convergence diagnostics for the autologistic model 
 

Geweke diagnostic 

(Z score)a 

Gelman-Rubin 

diagnosticb 

Raftery-Lewis 

diagnostic (I)c 

Heidelberg-Welch 

diagnosticd 

Variables 
Chain 

1 

Chain 

2 

Chain 

3 

Point 

estimate 

97.5% 

quantile 

Chain 

1 

Chain 

2 

Chain 

3 Stationarity Halfwidth 

  Intercept -0.48 -1.27 -0.39 1.00 1.00 1.22 1.18 1.30 passed passed 

  Autocovariate variable -1.76 0.71 -1.16 1.00 1.00 1.03 0.97 0.98 passed passed 

Infrastructure     

 

    

 

  

 

    

  Complexity index     

 

    

 

  

 

    

  Bandwidth = 40 m -0.15 1.15 -0.20 1.00 1.00 1.03 1.00 1.10 passed passed 

  Bridge & no cycle facility -0.04 1.04 -0.45 1.00 1.00 1.00 1.02 1.00 passed passed 

  Contraflow cycling & no crossroad 0.78 2.18 -1.02 1.00 1.00 0.98 0.98 0.99 passed passed 

  Cycle facility & crossroad     

 

    

 

  

 

    

  Facility 1 (unidir.) & Crossroad 1 (yield/stop) 0.72 0.61 -0.65 1.00 1.00 0.97 0.97 1.03 passed passed 

  Facility 2 (bidir.) & Crossroad 1 (yield/stop) -1.74 -0.75 -0.89 1.00 1.00 1.06 1.00 1.02 passed passed 

  Facility 3 (mark.) & Crossroad 3 (traffic light) 0.77 1.11 1.15 1.00 1.00 1.02 1.00 1.00 passed passed 

  Facility 3 (mark.) & Crossroad 4 (round.) -0.45 0.67 0.66 1.00 1.00 1.00 0.98 1.02 passed passed 

  Facility 4 (sugg.) & Crossroad 2 (right-of-w.) -0.34 1.31 -0.66 1.00 1.00 1.09 1.00 1.02 passed passed 

  Facility 0 (no facility) & Crossroad 4 (round.) -0.07 1.25 -0.08 1.00 1.00 1.00 0.97 0.98 passed passed 

  Tram tracks     

 

    

 

  

 

    

  Class 1 (crossing tram tracks) -0.95 -1.20 0.22 1.00 1.00 0.97 1.03 1.00 passed passed 

  Class 3 (on-road tram tracks) -0.56 -0.75 -0.45 1.00 1.00 1.07 1.05 1.03 passed passed 

  Number of garages (d ≤100m)     

 

    

 

  

 

    

  Range 0 (no garage) 1.33 0.33 0.03 1.00 1.00 0.99 1.00 1.00 passed passed 

  Distance shopping center -0.12 1.75 -1.47 1.00 1.00 0.98 0.98 1.00 passed passed 

continued on next page 
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continued 

Geweke diagnostic 

(Z score)a 

Gelman-Rubin 

diagnosticb 

Raftery-Lewis 

diagnostic (I)c 

Heidelberg-Welch 

diagnosticd 

Variables 
Chain 

1 

Chain 

2 

Chain 

3 

Point 

estimate 

97.5% 

quantile 

Chain 

1 

Chain 

2 

Chain 

3 Stationarity Halfwidth 

  Proximity parking-cycle facility     

 

    

 

  

 

    

  Parking & Facility 1 (unidirectional) 1.25 -0.91 0.30 1.00 1.00 1.05 1.00 1.03 passed passed 

  Parking & Facility 2 (bidirectional) 0.23 -0.20 -0.43 1.00 1.00 1.03 0.95 1.03 passed passed 

Traffic     

 

    

 

  

 

    

  Van & truck traffic (6 a.m.-10:59 p.m.)     

 

    

 

  

 

    

  Class 2 (low) 1.68 1.20 0.76 1.00 1.00 1.03 1.12 1.05 passed passed 

  Class 3 (moderate) 1.50 0.53 -0.43 1.00 1.00 1.05 1.00 1.03 passed passed 

  Class 4 (high) -0.06 -0.44 0.47 1.00 1.00 1.04 1.00 0.98 passed passed 

  Class 5 (very high) -1.04 0.96 0.66 1.00 1.00 1.03 0.95 1.02 passed passed 
 

a Fraction in 1st window = 0.1; fraction in 2nd window = 0.5 
b Potential scale reduction factors (psrf); multivariate psrf = 1 
c I = dependence factor; quantile = 0.025; accuracy = +/- 0.005; probability = 0.95 
d Precision of halfwidth test = 0.1; note that stationarity and halfwidth tests are passed for the 3 Markov chains 
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Appendix E 

Publications and personal 

contribution to this thesis 
 

 

 

Within the framework of the federal research project named SHAPES (funded by 

Belspo), parts of the two first papers were published in peer-reviewed journals, 

i.e. in Transport Policy (Chapter 2) and in Transportation Research Part A 

(Chapter 3). Two other chapters of this thesis (Chapters 4 and 5) will also be 

submitted in a near future to other peer-reviewed journals (especially those 

focused on the analysis of road accidents).  
 

On the request of the jury members selected within the framework of this PhD. 

thesis, I here aim at giving further details about my personal contribution for 

each of the papers/chapters (see Appendix E.1 for an objective approximate of 

the % of the time budget I devoted). As first author of these four papers, I 

conducted most of the research tasks (90-95% of the time budget), especially 

those related to the review of the literature, the data collection, the analysis of 

the results and the publication of results. Contribution of co-authors amounts to 

approximately 5-10% of the total time budget devoted to the papers. In 

particular, Isabelle Thomas (supervisor of this thesis, UCL-CORE) was of great 

aid to help me defining the objectives and gave me fruitful comments as regards 

the data collection, the methodology and the draft version of the papers 

(especially as regards Chapters 2 and 3). Within the framework of Chapter 3, 

Claire Dujardin (UCL-CORE) also provided fruitful comments as regards the 

definition of the variables, the methodological choices and the draft version of 

the paper. Finally, Bas de Geus (VUB) and Joris Aertsens (VITO) provided 

some of the data used in Chapter 4. 
 

Also note that, within the framework of the SHAPES project, I contributed as 

co-author to the publication of other papers and scientific reports (see below), as 

well as I published two papers in proceedings of international conferences 

(BIVEC-GIBET 2009, 2011). 
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Appendix E.1: Approximate % of the time budget devoted 

to each task and chapter (the remaining % is attributable to 

co-authors) 
 

  Chap. 2 Chap. 3 Chap. 4 Chap. 5 Mean 

Objectives/methodology 60% 70% 95% 95% 80% 

Literature review 100% 100% 100% 100% 100% 

Data collection 80% 95% 80% 100% 89% 

Statistical/geographical treatments 100% 100% 100% 100% 100% 

Analysis/discussion of the results 90% 90% 95% 95% 93% 

Writing & revision process 90% 90% 95% 95% 93% 

Mean 87% 91% 94% 98% 92% 

 

 

 

 

List of published chapters (peer-reviewed publications) 
 

Vandenbulcke, G., Dujardin, C., Thomas, I., de Geus, B., Degraeuwe, B., 

Meeusen, R., Int Panis, L. (2011). Cycle commuting in Belgium: Spatial 

determinants and ‘re-cycling’ strategies. Transportation Research Part A 45, 

118-137. [http://dx.doi.org/10.1016/j.tra.2010.11.004] 
 

Vandenbulcke, G., Thomas, I., de Geus, B., Degraeuwe, B., Torfs, R., 

Meeusen, R., Int Panis, L. (2009). Mapping bicycle use and the risk of 

accidents for commuters who cycle to work in Belgium. Transport Policy 16, 

77-87. [http://dx.doi.org/10.1016/j.tranpol.2009.03.004] 

 

 

List of chapters to submit 
 

Vandenbulcke, G., Thomas, I. (et al?). Accident risk when cycling in Brussels: 

an innovative spatial case-control approach. On-going paper. 
 

Vandenbulcke, G., Thomas, I., de Geus, B., Aertsens, J., Romain, M., Int 

Panis, L. Reported versus unreported cycling accidents: a spatial network 

analysis for Brussels. On-going paper. 

 

 

Publications as co-author (not reported in this thesis) 
 

de Geus, B., Vandenbulcke, G., Int Panis, L., Thomas, I., Degraeuwe, B., 

Cumps, E., Aertsens, J., Thomas, I., Torfs, R., Meeusen, R. A prospective 
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cohort study on minor bicycle accidents: commuter cyclists in Belgium. 

Accepted for publication in Accident Analysis and Prevention. 

Aertsens, J., de Geus, B., Vandenbulcke, G., Degraeuwe, B., Broekx, S., De 

Nocker, L., Liekens, I., Mayeres, I., Meeusen, R., Thomas, I., Torfs, R., 

Willems, H., Int Panis, L. (2010). Commuting by bike in Belgium, the costs 

of minor accidents. Accident Analysis and Prevention 42 (6), 2149-2157. 
 

Int Panis, L., de Geus, B., Vandenbulcke, G., Willems, H., Degraeuwe, B, 

Bleux, N., Mishra, V., Thomas, I., Meeusen, R. (2010). Exposure to 

particulate matter in traffic: A comparison of cyclists and car passengers. 

Atmospheric Environment 44 (19), 2263-2270. 
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Data sources and on-line 

resources 
 

BRIC (Brussels Regional Informatics Center) – Brussels Urban Information 

System (UrbIS) database: http://www.cirb.irisnet.be/ 
 

BRIC – GeoLoc (orthophotos): http://geoloc.irisnet.be/ 
 

Brussels Mobility – IRIS II (Mobility Plan): 

http://www.bruxellesmobilite.irisnet.be/ 
 

Town of Brussels (mobility and public works) – Map of the “comfort area”: 

http://www.bruxelles.be/artdet.cfm/4009 
 

DGSEI (Directorate-General Statistics and Economic Information) – Road 

accidents (2006-2008) and 2001 socio-economic census: http://statbel.fgov.be/ 
 

EROS (Earth Resources Observation and Science) Center, Shuttle Radar 

Topography Mission (SRTM) – Elevation data set (Belgium): 

http://eros.usgs.gov/ 
 

Federal Planning Bureau – Transport database [in French]:  

http://www.plan.be/databases/database_det.php?lang=fr&TM=28&IS=60&DB

=TRANSP&ID=14 
 

Federal Public Service (FPS) Mobility and Transports – 

http://www.mobilit.fgov.be/  
 

Google Earth – Aerial photography and satellite imagery (June 8th 2004, April 

30th 2007, August 31st 2009): 

http://www.google.co.uk/intl/en_uk/earth/index.html 
 

IBGE–BIM (Institut Bruxellois pour la Gestion de l’Environnement) – Data on 

motorized traffic (2006) for the Brussels Capital-Region: 

http://www.ibgebim.be/ 
 

SANET v.4 (Spatial Analysis on Networks), extension for ArcGIS 9.3 – Software 

for network analyses: http://sanet.csis.u-tokyo.ac.jp/ 
 

WinBUGS (Windows-based version of the BUGS software) – Software for 

Bayesian analyses: http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/contents.shtml 
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