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Abstract

The paper proposes a new class of continuous-time asset pricing models where

negative jumps play a crucial role. Whenever there is a negative jump in asset re-

turns, it is simultaneously passed on to diffusion variance and the jump intensity,

generating self-exciting co-jumps of prices and volatility and jump clustering. To

properly deal with parameter uncertainty and in-sample over-fitting, a Bayesian

learning approach combined with an efficient particle filter is employed. It not

only allows for comparison of both nested and non-nested models, but also gener-

ates all quantities necessary for sequential model analysis. Empirical investigation

using S&P 500 index returns shows that volatility jumps at the same time as neg-

ative jumps in asset returns mainly through jumps in diffusion volatility. We find

substantial evidence for jump clustering, in particular, after the recent financial

crisis in 2008, even though parameters driving dynamics of the jump intensity

remain difficult to identify.
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1 Introduction

The financial meltdown of 2008 and the recent European debt crisis in 2011 raise ques-

tions about how likely extreme events are and how extreme events can be modeled

as they have already impacted financial markets worldwide and have had far-reaching

consequences for the world economy. Understanding dynamics of extreme events thus

becomes crucial to many financial decision makings, including investment decision,

hedging, policy reaction and rating. An important class of models is the continuous-

time diffusions (Hull and White, 1986; Heston, 1993), which can effectively capture

stochastic volatility and volatility clustering. However, empirical explorations have

found that extreme events in asset prices are very unlikely to happen under standard

diffusion models and a jump component is needed to capture discontinuous movements

in asset prices. Both parametric and nonparametric studies provide strong and con-

vincing evidence on significance of jumps in asset returns1.

However, only stochastic volatility and jumps in asset returns may not capture

the real dynamics of asset prices and therefore cannot generate enough probability of

extreme events. It has been recognized that a big jump, in particular a big negative

jump in asset prices, tends to be associated with an abrupt move in asset volatility,

i.e., co-jumps of prices and volatility. Furthermore, market turmoils seem to tell that

an extreme movement in markets tends to be followed by another extreme movement,

resulting in jump clustering. To document these facts, Table 1 reports the S&P 500

index returns and the corresponding standard deviations computed using the previous

22-day returns during the four turbulent periods, covering the Black Monday in 1987,

the crash of the Internet Bubble in 2002, the bankruptcy of Lehman Brothers during

the global financial crisis in 2008, and the European debt crisis in 2011. In all turbulent

periods, extreme price movements are accompanied by high volatility and both extreme

events and volatility are cluttered.

1Parametric studies include Bates (1996, 2000), Bakshi, Cao, and Chen (1997), Pan (2003), Eraker,
Johannes and Polosn (2003), Eraker (2004), among others, whereas nonparametric works include
Barndorff-Nielson and Shephard (2007), Aı̈t-Sahalia and Jacod (2009, 2011), Cont and Mancini (2008),
and Lee and Hannig (2010)
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— Table 1 around here —

Obviously, diffusion-based multi-factor volatility models are not good enough for

capturing co-jumps of prices and volatility and jump clustering as there is no mech-

anism to trigger extreme movements in asset returns and volatility during a turmoil.

Not surprisingly, Bates (2000) and Chernov et al. (2003) have found that the two-factor

volatility model does not offer substantial improvements over the single-factor volatility

model. In the literature, two strands, which have pursued to accommodate co-jumps

of prices and volatility and jump clustering, co-exist. One strand uses synchronized

Poisson process to model asset returns and diffusion volatility (Duffie, Pan, and Sin-

gleton, 2000; Eraker, Johannes, and Polson, 2003; Eraker, 2004). In this framework,

a jump arrives in returns and diffusion volatility that not only moves price but also

pushes up diffusion volatility. Since the process for diffusion volatility is persistent,

another large volatility value is expected in the next period. Consequently, another

extreme movement in asset price is highly likely to be followed, even if there is no jump

arrival. Another strand proposes a mechanism whereby jumps in asset returns feedback

to the jump intensity, leading to self-excitation (Aı̈t-Sahalia, Cacho-Diaz, and Laeven,

2010; Carr and Wu, 2010). Here, large jumps in asset returns increase the likelihood of

extreme events in future asset returns and generate aggregate volatility jumps through

the jump intensity.

While both approaches can generate co-jumps of prices and volatility and a correla-

tion structure in extreme price movements, the implications of them are different. First,

the propagating mechanism of extreme events is different. In particular, the correlation

in extreme events is driven by the correlation in the high volatility regime in the former

approach but by the correlation in the intensity in the latter. Second, the amount of

conditional kurtosis generated by the two approaches is likely to be different. As the

sampling interval gets smaller, it is expected that the impact of diffusion volatility on

the kurtosis is smaller than that of jumps. Thus the amount of short-term tail risk

after a market crash is likely to differ in the two cases. These differences inevitably

have implications for short-term option pricing and risk management. Therefore, it
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is important to empirically examine the relative importance of these two alternative

mechanisms.

In the present paper, we propose a new class of continuous-time asset pricing mod-

els where both channels of co-jumps of prices and volatility and jump clustering are

allowed. In our specification, negative jumps play crucial roles. Whenever there is

a negative jump in asset returns, it is simultaneously passed on to diffusion variance

and the jump intensity. Therefore, the likelihood of the future extreme events can be

enhanced through jumps in diffusion volatility or jumps in the jump intensity or both.

The importance of negative jumps can be motivated from empirical observations in

Table 1 where in all cases turmoils start with negative jumps. It is also consistent

with our understanding of financial markets where investors are more sensitive to ex-

treme downside risk. Our model has closed-form conditional expectation of volatility

components, making it easy to use in volatility forecasting and risk management.

The new model contains multiple dynamic unobserved factors including diffusion

volatility, the jump intensity, and (negative and positive) jumps. Since a richer model

framework is adopted here, we are naturally concerned about parameter uncertainty

and in-sample over-fitting inherent in batch estimation. To deal with these issues, we

introduce a Bayesian learning approach for the proposed model. In practice, sequential

estimation of both parameters and latent factors is much more relevant than batch

estimation as we cannot obtain future information and need to update our belief when-

ever new observations arrive. First, to filter the unobserved states and estimate the

likelihood for a given set of model parameters, we develop an efficient hybrid particle

filter. It efficiently disentangles the diffusion component and the positive and negative

jumps. The algorithm performs much better than the conventional bootstrap sampler

for outliers that are an integral part of the financial data and of our model. Second,

we turn to a sequential Bayesian procedure to conduct joint inference over the dynamic

states and fixed parameters. In particular, we employ the marginalized resample-move

algorithm developed in Fulop and Li (2010), which is general and needs little design

4



effort from users2. The essence of the approach is to approximately marginalize out

the hidden states by running a particle filter for fixed parameter sets. Then a recursive

resample-move algorithm is used on the marginalized system. The algorithm provides

marginal likelihoods of individual observations that are crucial for sequential model

analysis with respect to information accumulation over time. It is important to point

out that the simulated samples obtained at any time only depend on past data so the

approach is free from hindsight bias.

We use S&P 500 index returns ranging from January 2, 1980 to October 30, 2011

(in total, 8,033 observations) to empirically investigate our self-exciting models. This

dataset is long enough and contains typical market behaviors: the 87’s market crash, the

98’s Asian financial crisis, the 02’s dot-com bubble burst, the 08’s global financial crisis,

the 11’s European debt crisis, and calm periods in between. We find that both sources of

co-jumps in volatility and returns help explain our dataset. The evidence for the channel

through diffusion volatility is robust ever since the 1987 market crash. The parameter

driving the feedback from negative return jumps to diffusion volatility is well identified

and less than one. In contrast, the self-exciting jump intensity becomes important at the

onset of the 08’s global financial crisis. The out-of-sample model diagnostics suggest

that the data call for co-jumps in returns and jump intensities, but the parameters

driving the intensity dynamics remain hard to identify. The substantial uncertainty

about the jump dynamics is mirrored in large uncertainty about the magnitude of

jump intensities during the recent financial crisis.

Our results have important implications for risk management. As diffusion volatility

jump is a necessary component in modeling the stock market index and volatility co-

jumps at the same time as negative jumps in asset returns, traditional hedging strategies

such as only using the underlying assets and/or using both underlying and derivatives

are no longer workable. We show that different models have different VaR requirements,

2There has already been progress towards tackling parameter learning in general state-space models.
See Liu and West (2001), Gilks and Berzouini (2001), Storvik (2002), Flury and Shephard (2009), and
Carvalho et al. (2010). For discussion of these methods, see Fulop and Li (2010). For a similar and
concurrent contribution, see Chopin et al. (2011).
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especially at financial crises. Models with diffusion volatility jumps are capable of

generating high enough values of VaR when extreme events happen. Furthermore,

the big uncertainty in the jump intensity may lead to important risk management

implications in the form of substantially higher tail risk measures.

The paper makes three separate contributions to the literature. First, a new class

of continuous-time asset pricing models is proposed. It provides a nice framework

to investigate where volatility jump is from and how it interacts with jumps in asset

returns. Second, a generic econometric approach is developed that allows us to perform

joint sequential inference over the states and the parameters with respect to information

accumulation over time. Third, we provide new insights to extreme price movements

and co-jumps of prices and volatility.

Our work is related to previous studies. Jacod and Todorov (2010) and Bandi and

Reno (2011) find that asset returns and their volatility jump together. Their results are

based on high frequency data that become available only after 1990s. The use of daily

data allows us to go much further back into the history. One advantage of using a longer

time span is that we can have more jumps and hence potentially more episodes of jump

clustering. Focusing completely on the volatility dynamics, Wu (2011) and Todorov and

Tauchen (2011) show that volatility does jump. Our results are in accord with them

but we go further and allow two different channels through diffusion volatility and the

jump intensity. This also differentiates us from existing papers where either only the

diffusion channel is present (Eraker, Johannes, and Polson, 2003; Eraker, 2004) or only

the jump intensity is affected by return jumps (Aı̈t-Sahalia, Cacho-Diaz, and Laeven,

2010; Carr and Wu, 2010). We find that the diffusion channel is more important and

remains significant even when the jump channel is allowed. As of the jump channel,

our results are weaker than in Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2010) and Carr

and Wu (2010). This may be either due to the differences in the samples, or to the fact

that our specification is more general.

The rest of the paper is organized as follows. Section 2 builds the self-exciting

Lévy asset pricing models. Section 3 develops an efficient hybrid particle filter and
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introduces our Bayesian learning algorithm. Section 4 presents empirical results and

discuss their implications using S&P 500 index returns. Finally, section 5 concludes

the paper. Detailed algorithms of the particle filter and Bayesian learning are given in

Appendices.

2 Self-Exciting Asset Pricing Models

Under a probability space (Ω,F, P ) and the complete filtration {Ft}t≥0, the asset price

St has the following dynamics

lnSt/S0 =

∫ t

0

µsds+
(
WT1,t − kW (1)T1,t

)
+
(
JT2,t − kJ(1)T2,t

)
, (1)

where µt is the instantaneous mean, W is a Brownian motion, J is a jump component,

and kW (1) and kJ(1) are convexity adjustments for the Brownian motion and the jump

process and can be computed from their cumulant exponents: k(u) ≡ 1
t
ln
(
E[euLt ]

)
,

where Lt is either Wt or Jt.

The dynamics (1) indicates two distinct types of shocks to asset returns: small

continuous shocks, captured by a Brownian motion, and large discontinuous shocks,

modeled in this paper by the Variance Gamma process of Madan, Carr, and Chang

(1998), a stochastic process in the class of infinite activity Lévy processes. The jump

component is important for generating the return non-normality and capturing extreme

events. The empirical study by Li, Wells, and Yu (2008) shows that the infinite activity

Lévy models outperform the affine Poisson jump models. Furthermore, the recent

nonparametric works by Aı̈t-Sahalia and Jacod (2009, 2011), Cont and Mancini (2008),

and Lee and Hannig (2010) provide strong evidence on infinite activity jumps in asset

returns.

The Variance Gamma process can be constructed through subordinating a Brownian

motion with drift using an independent subordinator

Jt = ωSt + ηW̃ (St), (2)
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where W̃t is a standard Brownian motion, and St is a subordinator that has the Gamma

process St = Γ(t; 1, v) with unit mean rate and variance rate v. Alternatively, it can

be decomposed into the upside component, J+
t , and the downside component, J−

t , such

that

Jt = J+
t + J−

t ,

= Γu(t;µu, vu)− Γd(t;µd, vd), (3)

where Γu is a Gamma process with mean rate µu and variance rate vu, Γd is a Gamma

process with mean rate µd and variance rate vd, and

µu =
1

2

(√
ω2 + 2η2/v + ω

)
, vu = µ2

uv, (4)

µd =
1

2

(√
ω2 + 2η2/v − ω

)
, vd = µ2

dv. (5)

Ti,t defines a stochastic business time (Clark, 1973; Carr et al., 2003; Carr and Wu,

2004), which captures the randomness of the diffusion variance (i = 1) or of the jump

intensity (i = 2) over a time interval [0, t]

Ti,t =

∫ t

0

Vi,s−ds,

which is finite almost surely. Vi,t, which should be nonnegative, is the instantaneous

variance rate (i = 1) or the jump arrival rate (i = 2), both of them reflecting the

intensity of economic activity and information flow. Stochastic volatility or stochastic

jump intensity is generated by replacing calendar time t with business time Ti,t. The

time-changed jump component has the decomposition of JT2,t = J+
T2,t

+ J−
T2,t

and its

convexity adjustment term is kJ(1)T2,t =
(
k+J (1) + k−J (1)

)
T2,t.

The instantaneous variance rate and the jump arrival rate are modeled with the
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following stochastic differential equations

dV1,t = κ1(θ1 − V1,t)dt+ σ11
√
V1,tdZt − σ12dJ

−
T2,t
, (6)

dV2,t = κ2(θ2 − V2,t)dt− σ2dJ
−
T2,t
, (7)

Equation (6) captures stochastic variance of the continuous shocks, where Z is a stan-

dard Brownian motion and is allowed to be correlated toW with a correlation parameter

ρ in order to accommodate the diffusion leverage effect. Diffusion variance also depends

on the negative jumps J−, indicating that there will be an abrupt increase in V1,t once

there is a negative jump in asset price. If κ1 is positive and small, Equation (6) sug-

gests a persistent autoregressive structure in V1,t. An abrupt increase in V1,t would then

imply that the future diffusion variance tends to be high and decays exponentially at

the speed κ1. Equation (7) models the stochastic intensity of jumps. When κ2 > 0, it is

a mean-reverting pure jump process. The specification implies that the jump intensity

relies only on the negative jumps in asset returns.

The conditional expectation of the jump intensity (7) can be found as follows3

E[V2,t|V2,0] =
κ2θ2

κ2 − σ2µd

(
1− e−(κ2−σ2µd)t

)
+ e−(κ2−σ2µd)tV2,0, (8)

from which its long-run mean can be obtained by letting t→ +∞,

V̄2 =
κ2θ2

κ2 − σ2µd

. (9)

Solutions (8) and (9) indicate that the conditional expectation of the jump intensity is

a weighted average between the current intensity, V2,0, and its long-run mean, V̄2. Using

(8) and (9), the conditional expectation of diffusion variance (6) can also be analytically

3Define f(t) = eκ2tE[V2,t|V2,0]. f(t) can be analytically found by solving the ODE

f ′(t) = σ2µdf(t) + κ2θ2e
κ2t,

from which we obtain the conditional expectation (8).
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found

E[V1,t|V1,0] = e−κ1tV1,0 + θ1

(
1− e−κ1t

)
+ σ12µd

[1− e−κ1t

κ1
V̄2

+
e−(κ2−σ2µd)t − e−κ1t

κ2 − σ2µd − κ1

(
V̄2 − V2,0

)]
, (10)

and its long-run mean is given by

V̄1 = θ1 +
σ12
κ1
µdV̄2. (11)

The conditional expectation of diffusion variance composes of two parts, one arising

from the square-root diffusion part (the first two terms on the right-hand side in (10))

and the other from negative return jumps (the last term on the right-hand side in

(10)). If the jump intensity is constant, the contribution of jumps to the conditional

diffusion variance becomes constant over time. In what follows, we normalize θ2 to be

one in order to alleviate the identification problem because the jump component, J ,

has non-unit variance.

Dependence of diffusion variance and the jump intensity only on negative jumps in

asset returns is a consistent observation obtained from Table 1 where turmoils always

start with negative jumps. It is also consistent with the well documented empirical reg-

ularity in financial markets that react more strongly to bad macroeconomic surprises

than to good surprises (Andersen et al., 2007). This is because the stability and sus-

tainability of future payoffs of an investment are largely determined by extreme changes

in economic conditions, and investors are more sensitive to the downside movements in

the economy.

The above model (hereafter SE-M1 ) indicates that time-varying aggregate volatility

is contributed by two sources: one arises from time-varying diffusion volatility and

the other from the time-varying jump intensity. Whenever there is a negative jump

in asset return, diffusion volatility and the jump intensity move up significantly and

simultaneously. Consequently, aggregate volatility jumps. The self-exciting behavior is
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captured through two channels: (i) a negative jump in asset return pushes up the jump

intensity, which in turn triggers more jumps in future asset returns; (ii) a negative jump

in asset return makes diffusion volatility jump, and this high diffusion volatility tends to

entertain big movements in future asset returns. In contrast, existing literature allows

only one of these channels at a time. In particular, Eraker, Johannes, and Polson (2003)

and Eraker (2004) allow co-movement of return jumps and diffusion volatility through

a synchronized Poisson process, while Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2010) and

Carr and Wu (2010) link only the jump intensity to jumps in asset returns.

The central questions we are concerned about in the present paper are the dynamic

structure of extreme movements and how asset return jumps affect total volatility. In

order to explore these issues, we also investigate the following nested models: (i) SE-

M2 : the self-exciting model where diffusion volatility does not jump, and the total

volatility jump and the the jump clustering are from the time-varying jump intensity;

(ii) SE-M3 : the model where the jump intensity is constant, and the total volatility

jump and the self-exciting effect are only from the diffusion volatility process; and (iii)

SE-M4 : no volatility jumps and no self-exciting effects. Obviously, the SE-M4 model

is nested by the SE-M2 model and the SE-M3 model. However, the SE-M2 model and

the SE-M3 model do not nest each other.

3 Econometric Methodology

In this section, we present our Bayesian learning method. Section 3.1 develops an

efficient hybrid particle filter, which provides us more accurate likelihood estimate and

separates the diffusion component, positive jumps and negative jumps. Section 3.2

briefly presents the parameter learning algorithm for model estimation.

3.1 An Efficient Hybrid Particle filter

Our model can be cast into a state-space model framework. After discretizing the return

process for a time interval τ using the Euler method, we have the following observation
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equation

lnSt = lnSt−τ +
(
µ− 1

2
V1,t−τ − k(1)V2,t−τ

)
τ +

√
τV1,t−τwt + Ju,t + Jd,t, (12)

where wt is a standard normal noise, and Ju,t and Jd,t are the upside and downside

jumps.

We take the diffusion variance V1,t, the jump intensity V2,t, and the upside/downside

jumps Ju,t/Jd,t as the hidden states. Diffusion variance and the jump intensity follow

(6) and (7), and the upside/downside jumps are gammas. After discretizing, we have

the state equations as follows

V1,t = κ1θ1τ + (1− κ1τ)V1,t−τ + σ11
√
τV1,t−τzt − σ12Jd,t, (13)

V2,t = κ2θ2τ + (1− κ2τ)V2,t−τ − σ2Jd,t, (14)

Ju,t = Γ(τV2,t−τ ;µu, vu), (15)

Jd,t = −Γ(τV2,t−τ ;µd, vd), (16)

where zt is a standard normal noise, which is correlated to wt in (12) with the correlation

parameter ρ.

For a given set of model parameters, Θ, filtering is a process of finding the pos-

terior distribution of the hidden states based on the past and current observations,

p(xt|y1:t,Θ), where xt = {V1,t, V2,t, Ju,t, Jd,t}, and y1:t = {lnSs}ts=1. Because this poste-

rior distribution in our model does not have analytical form, we turn to particle filters

to approximate it. Particle filters are simulation-based recursive algorithms where the

posterior distribution is represented by a number of particles drawn from a proposal

density

p̂(xt|y1:t,Θ) =
M∑
i=1

w̃
(i)
t δ

(
xt − x

(i)
t

)
, (17)

where w̃
(i)
t = ω

(i)
t /

∑M
j=1 ω

(j)
t with ωt and w̃t being the importance weight and the

normalized importance weight, respectively, x
(i)
t is the state particle, and δ(·) denotes
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the Dirac delta function.

Particle filters provide an estimate of the likelihood of the observations

p̂(y1:t|Θ) =
t∏

l=1

p̂(yl|y1:l−1,Θ), (18)

where

p̂(yl|y1:l−1,Θ) =
1

M

M∑
i=1

w
(i)
l . (19)

Importantly, the approximated likelihood (18) is unbiased: E[p̂(y1:t|Θ)] = p(y1:t|Θ) (Del

Moral, 2004), where the expectation is taken with respect to all random quantities used

in particle filters.

The most commonly used particle filter is the bootstrap filter of Gordon, Salmond,

and Smith (1993), which simply takes the state transition density as the proposal

density. However, the bootstrap filter is known to perform poorly when the observation

is informative on the hidden states. Our model has this feature because when we observe

a large move in asset price, the jump can be largely pinned down by the observed return.

On the other hand, when the return is small, it is almost due to the diffusion component

and contains litter information on the jump. Hence, to provide an efficient sampler, we

use an equally weighted two-component mixture as the proposal on the jump: the first

component is a normal draw, equivalent to sampling from the transition density of the

diffusion component, and the second component involves drawing from the transition

law of the jump. We need this second component to stabilize the importance weights

for small observed returns. Otherwise, we would compute the ratio of a normal and

a gamma density in the importance weights which is unstable around zero. When

the return is positive, we use this mixture as the proposal for the positive jump and

the transition density for the negative jump, and vice-versa. See Appendix A for the

algorithm.
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3.2 A Parameter Learning Algorithm

While particle filters make state filtering relatively straightforward, parameter learning,

i.e., drawing from p(Θ|y1:t) sequentially, remains a difficult task. Simply including the

static parameters in the state space and applying a particle filter over p(Θ, xt|y1:t) does

not result in a successful solution due to the time-invariance and stochastic singularity

of the static parameters that quickly leads to particle depletion. In what follows, we use

a generic solution to the parameter learning problem proposed by Fulop and Li (2010).

The key to this algorithm is that particle filters provide an unbiased estimate of the true

likelihood, so that we can run a recursive algorithm over the fixed parameters using the

sequence of estimated densities, p̂(Θ|y1:t) ∝
∏t

l=1 p̂(yl|y1:l−1,Θ)p(Θ), for t = 1, 2, . . . , T .

Define an auxiliary state space by including all the random quantities produced by

the particle filtering algorithm. In particular, denote the random quantities produced

by the particle filter in step l by ul = {x(i)l , ξ
(i)
l ; i = 1, . . . ,M}. Then at time t, the filter

will only depend on the population of the state particles in step t− 1, so we can write

ψ(u1:t|y1:t,Θ) =
t∏

l=1

ψ(ul|ul−1, yl,Θ), (20)

where ψ(u1:t|y1:t,Θ) is the density of all the random variables produced by the particle

filter up to t. Furthermore, the predictive likelihood of the new observations can be

written as

p̂(yt|y1:t−1,Θ) ≡ p̂(yt|ut, ut−1,Θ). (21)

We then construct an auxiliary density, which has the form

p̃(Θ, u1:t|y1:t) ∝ p(Θ)
t∏

l=1

p̂(yl|ul, ul−1,Θ)ψ(ul|ul−1, yl,Θ). (22)

The unbiasedness property in likelihood approximation means that the original target,

p(Θ|y1:t), is the marginal distribution of the auxiliary density. If we can sequentially

draw from the auxiliary density, we automatically obtain samples from the original

target.
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Assume that we have a set of weighted samples that represent the target distribution,

p̃(Θ, u1:t−1|y1:t−1), at time t−1:
{(

Θ(n), u
(n)
t−1, p̂(y1:t−1|Θ)(n)

)
, s

(n)
t−1;n = 1, . . . , N

}
, where

st−1 denotes the sample weight. Notice that for each n, the relevant part of u
(n)
t−1

are M particles after resampling representing the hidden states {x(i,n)t ; i = 1, . . . ,M}.

Therefore, in total we have to maintain M × N particles of the hidden states. The

following recursive relationship holds between the target distributions at t− 1 and t,

p̃(Θ, u1:t|y1:t) ∝ p̂(yt|ut, ut−1,Θ)ψ(ut|ut−1, yt,Θ)p̃(Θ, u1:t−1|y1:t−1), (23)

from which we can arrive to a set of samples representing the target distribution,

p̃(Θ, u1:t|y1:t), at time t through the marginalized resample-move approach developed

by Fulop and Li (2010). See Appendix B for an outline of the algorithm.

The marginalized resample-move approach has a natural byproduct of the marginal

likelihood of the new observation

p(yt|y1:t−1) ≡
∫
p(yt|y1:t−1,Θ)p(Θ|y1:t−1)dΘ, (24)

from which a sequential Bayes factor can be constructed for sequential model compari-

son. For any models M1 and M2, the Bayes factor at time t has the following recursive

formula

BFt ≡
p(y1:t|M1)

p(y1:t|M2)
=
p(yt|y1:t−1,M1)

p(yt|y1:t−1,M2)
BFt−1. (25)

Our particle learning algorithm naturally has the marginal likelihood estimate (29),

which can be used in (25) for model assessment and monitoring over time.

4 Empirical Results

In this section, we present estimation results and discuss their empirical implications.

Models are estimated using the Bayesian learning approach discussed in Section 3. In

implementation, we set the number of state particles to be 10,000 and the number
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of parameter particles to be 2,000. The thresholds N1 and N2 are equal to 1,000.

These tuning-parameters are chosen such that the acceptance rate at the move step is

relatively high and the computational cost is reasonable. Section 4.1 presents the data

used for model estimation, and Section 4.2 discusses the empirical results.

4.1 Data

The data used to estimate the models are the S&P 500 stock index ranging from January

2, 1980 to October 30, 2011 in daily frequency, in total 8,033 observations. This dataset

contains typical financial market behaviors: the recent European debt crisis, the global

financial crisis in the late 2008, the market crash on October 19, 1987 (-22.9%), the

volatile market and relatively tranquil periods. Table 2 presents descriptive statistics

of index returns. The annualized mean of index returns in this period is around 7.8%

and the annualized historical volatility is about 18.4%. A striking feature of the data

is high non-normality of the return distribution with the skewness of -1.19 and the

kurtosis of 29.7. The Jarque-Bera test easily rejects the null hypothesis of normality

of returns with a very small p-value (less than 0.001). The index returns display very

weak autocorrelation. The first autocorelation is about -0.03, while the sixth one is as

small as 0.008.

— Table 2 around here —

Figure 1 plots S&P 500 index returns and standard deviations computed from the

previous 22-day returns at each time. The companion of abrupt moves in volatility

to extreme events in returns is very clear, and turbulent periods tend to be realized

through many consecutive large up and down return moves. What is hard to gauge is

the extent to which these are due to high diffusion volatility or persistent fat tails. The

model estimates that follow will shed more lights on this issue.

— Figure 1 around here —
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4.2 Estimation and Empirical Implications

A. Model Monitoring and Diagnostics

In a Bayesian context, model comparison can be made by the Bayes factor, defined

as the ratio of marginal likelihoods of models4. Table 3 presents the overall Bayes

factors (in log) for all models investigated using all available data. We find that the

SE-M1 model and the SE-M3 model, both of which allow negative return jumps to

affect diffusion volatility, outperforms the SE-M2 model and the SE-M4 model that

exclude this channel. For example, the log Bayes factors between the SE-M1 model

and the SE-M2/SE-M4 models are about 18.4 and 19.2, respectively, and the log Bayes

factors between the SE-M3 model and the SE-M2/SE-M4 models are about 14.3 and

15.1, respectively. Thus, there is considerable evidence in the data for negative return

jumps affecting diffusion volatility and co-jumps of returns and volatility. Furthermore,

there seems to be evidence for return jumps affecting the jump intensity. Comparing

the SE-M1 model where both self-exciting channels are allowed to the SE-M3 model

where only diffusion volatility is influenced by return jumps, the former is preferred

with a log Bayes factor of 4.11.

— Table 3 around here —

The above batch comparison does not tell us how market information accumulates

and how different models perform over time. Does one model outperform the other one

at a certain state of economy, but underperforms it at another state of economy? Our

Bayesian learning approach has a recursive nature and produces the individual marginal

likelihood of each observation over time. One can then construct the sequential Bayes

factors and use them for real-time model monitoring and analysis.

Figure 2 presents the sequential Bayes factors (in log) that gives us a richer picture

on model performance over time. We notice from the upper panels that in the beginning

when market information is little, both the SE-M1 model and the SE-M3 model, which

4In Bayesian statistics, for two models M1 and M2, if the value of the log Bayes factor of M1 to M2

is between 0 and 1.09, M1 is barely worth mentioning; if it is between 1.09 and 2.3, M1 is substantially
better than M2; if it is between 2.3 and 3.4, M1 is strongly better than M2; if it is between 3.4 and
4.6, M1 is very strongly better than M2; and if it is larger than 4.6, M1 is decisively better than M2.
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are the two best models according to the Bayes factor in Table 3, perform nearly the

same as the SE-M2 model and the SE-M4 model. As market information accumulates

over time, in particular after the 87’s market crash, the SE-M1 model and the SE-M3

model begin to outperform the other two models. The lower left panel of Figure 2

shows that the SE-M1 model with the time-varying jump intensity begins to dominate

the constant jump-intensity model, the SE-M3 model, at the onset of the 2008 financial

crisis. In this respect, the last three years of the sample differ from the previous data

where these two models perform similarly. Interestingly, as for the SE-M2 model and

the SE-M4 model, both of which shut down the diffusion volatility jump component, at

the beginning the two models perform nearly the same as log sequential Bayes factors

vary around zero. At the 87’s market crash the log Bayes factor of the SE-M2 model

to the SE-M4 model moves abruptly to a level above 2 and almost stays there till

2002 dot-com bubble burst. Afterwards, the Bayes factor decreases gradually to a

value around 1. This result indicates that the diffusion volatility jump is necessary

component in modeling S&P 500 index and models shutting down this component are

clearly misspecified.

— Figure 2 around here —

B. Information Flow and Parameter Learning

Table 4 presents the parameter estimates (5%, 50%, and 95% quantiles) of all models

using all available data. Focusing on parameter estimates in the SE-M1 model and the

SE-M3 model that are two best models according to the sequential Bayes factors, we find

that the jump-size related parameters and the diffusion volatility-related parameters

have narrow 90% credible intervals, indicating that it is easy to identify these parameters

using all available data. In particular, the self-exciting effect parameter σ12 has the

posterior mean of about 0.51 and the 90% credible interval of 0.32-0.65 in the SE-M1

model, and it has the posterior mean of about 0.49 and the 90% credible interval of 0.35-

0.64 in the SE-M3 model. These narrow credible intervals imply that diffusion volatility

does jump at the same time as negative jumps in returns. However, even though the
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sequential model comparison indicates that the time-varying jump intensity model (SE-

M1) is better than the constant jump intensity model (SE-M3), in particular since

the 08’s global financial crisis, the parameter estimates of the jump intensity-related

parameters (κ2 and σ2) in the SE-M1 model have large credible intervals, indicating

that it is hard to identify these parameters only using the time-series of underlying

index data.

— Table 4 around here —

In the SE-M1 and SE-M3 models, we find that the posterior mean of ω is negative

(about -0.07) and its 90% credible interval is narrow and in negative side, indicating

that index returns jump downward more frequently than jump upward. The jump

structure parameter v has a posterior mean of about 0.86 and a 90% credible interval

of [0.39, 1.57] in the SE-M1 model, and it has a posterior mean of about 0.96 and a 90%

credible interval of [0.37, 1.86] in the SE-M3 model, implying that in general, small/tiny

jumps happen with a very high frequency and large/huge jumps occur only occasionally.

The mean-reverting parameter estimate κ1 of the diffusion volatility process is a little

bit larger in the SE-M1 model than in the SE-M3 model (4.68 vs. 4.16), but both

estimates of θ1 and σ11 are very similar in both models. The negative estimate of ρ,

which is about -0.6 in both models, reveals existence of the diffusion leverage effect.

The long-run means of diffusion volatility and the jump intensity are given by (11) and

(9), respectively, in the SE-M1 model. Using the estimates in Table 4, they are 0.028

and 1.127, respectively. In the SE-M3 model, the long-run mean of diffusion volatility

is given by V̄1 = θ1+σ12µd/κ1, which is about 0.029 using the corresponding parameter

estimates in Table 4. Thus, the model-implied unconditional return volatility is 18.4%

in the SE-M1 model and 18.3% in the SE-M3 model, both of which are close to the

historical return volatility (18.4%).

Our Bayesian learning approach provides us more than parameter estimates them-

selves. It gives us the whole picture of how parameters evolve over time with respect to

accumulation of information. Figure 3 presents the sequential learning of the jump and
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diffusion volatility-related parameters in the SE-M1 model. Clearly, all parameters have

big variations at the beginning when market information is very little. With respect

to accumulation of information, the credible intervals become narrower and narrower.

We find that the jump-related parameters, the mean-reverting parameter, and the self-

exciting effect parameter usually take long time to reach reliable regions, indicating

information on these parameters accumulates very slowly, and in practice we need long

dataset to obtain accurate estimates. Similar results can also be obtained from the

parameter learning in the SE-M3 model. Figure 4 presents the jump intensity-related

parameter learning (κ2 and σ2). We find from the upper panels that credible intervals of

these two parameters are barely narrowing down over time. Only from the 08’s financial

crisis on, we observe a little narrowing-down of their credible intervals, indicating jump

clustering becomes important when incorporating this new information. The lower pan-

els plot the prior and posterior distributions (solid and dashed lines, respectively) of

these two parameters. The dispersions of both priors and posteriors are very big. This

result indicates that the information we have is not enough to well identify these two

parameters.

— Figure 3 around here —

— Figure 4 around here —

C. Volatility and Jump Filtering

Embedded in our learning algorithm is an efficient hybrid particle filter. One merit

of this particle filter is that it can separate positive jumps and negative jumps. This

separation is important from both the statistical and the practical perspectives. Sta-

tistically, it makes our self-exciting models feasible to estimate since both diffusion

volatility and the jump intensity depend only on the negative jump. Practically, in-

vestors are mostly concerned about negative jumps. The ability to disentangle negative

jumps provides us an important tool for risk management.

Figure 5 presents the filtered diffusion volatility and the filtered jump intensity in

the SE-M1 model. We can see that whenever there is a big negative jump, diffusion
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volatility and the jump intensity abruptly move up to a high level. However, there are

some important differences between the two state variables. Diffusion volatility is well

identified with a tight 90% credible interval. In contrast, our ability to pin down the

jump intensity is much more limited as we can see that its credible intervals are wide

during crisis periods. Further, there seems to be an abrupt change in the behavior of

this latent factor since the 2008 crisis. Prior to this episode, after widening the credible

intervals of jump intensities during crisis periods, they quickly revert to their long-run

mean, whereas they have remained consistently high and wide since the 08’s financial

crisis. It suggests that as far as the tails are concerned, the recent crisis is special, with

a sustained probability of large extreme events going forward.

We have seen that the parameters driving the jump intensity have large 90% credible

intervals. It is interesting to examine the extent to which these results are due to pa-

rameter uncertainty. For this purpose, Figure 6 depicts the filtered dynamic states when

the full-sample posterior means of the fixed parameters are plugged into the particle

filter. In the case of diffusion volatility (the upper panle), the picture does not change

much, consistent with the relatively tight posteriors on most diffusion parameters. The

only notable difference is a smaller peak around the 1987 crash. This can be explained

by the large uncertainty at this point on the parameter driving the volatility feedback,

σ12. The real-time posterior contains larger values that give rise to a more pronounced

volatility feedback phenomenon. However, when looking at the lower panel, we observe

much larger difference. First, fixing the parameters considerably shrinks the credible

intervals, suggesting that a large part of the uncertainty in jump intensities observed

before in Figure 5 is the result of parameter uncertainty. Second, the peak in jump

intensities in 1987 is bigger than before, a mirror image of what we have observed for

diffusion volatility. Finally, when parameters are fixed, even after 2008, the jump in-

tensities revert back to their long run mean fairly quickly and the credible interval does

not stay wide. Thus, the large uncertainty about the tails in the future seems mainly

related to the lack of precise knowledge about the parameters driving the dynamics of

the jump intensity.
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— Figure 5 around here —

— Figure 6 around here —

The filtered negative jumps in the lower panel of Figure 7 can effectively capture

all market turmoils such as the 87’s market crash, the 98’s Asian financial crisis, the

08’s financial crisis and the 11’s European debt crisis. However, as shown in the upper

panel of Figure 7, the filtered positive jumps are very small. This is a new and poten-

tially important empirical result, suggesting that whenever jump in volatility is taken

into account, the positive jump component in index returns is not so important and

the positive movements in index returns can be captured by the diffusion component.

This finding reinforces our choice of giving negative jumps more prominence. Similar

implications are also revealed by the SE-M3 model.

— Figure 7 around here —

D. Learning, Volatility Jumps, and Risk Management

Both sequential model analysis and parameter learning point to the fact that the

SE-M1 model and the SE-M3 model are the two best candidates in modeling S&P

500 index returns. Therefore, the following results can be reached. First, diffusion

volatility does jump at the same time as negative jumps in index returns; Second, there

is substantial evidence of jump clustering, in particular after the 08’s financial crisis

even though the jump intensity-related parameters are still hard to be identified.

These results have important implications for risk management. As diffusion volatil-

ity jump is a necessary component in modeling the stock market index and volatility

co-jumps at the same time as negative jumps in asset returns, traditional hedging

strategies such as only using the underlying assets and/or using both underlying and

derivatives are no longer workable. Furthermore, the big uncertainty in the jump inten-

sity may lead to important risk management implications in the form of substantially

higher tail risk measures.

Here we investigate different Value-at-Risk (VaR) measures implied by our models

and learning algorithm. Table 5 reports summary statistics of one-day and one-week
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Value-at-Risk numbers both for the full sample and the recent financial crisis period, i.e.,

the sample after Lehmans’ bankruptcy on September 15, 2008. We have the following

interesting findings. First, look at the 1% VaR, a frequently used day-to-day measure of

“normal” risk. We find that the difference across the different models in the average VaR

numbers is moderate. They are about -0.024 for the one-day measure and are about

-0.076 for the one-week measure. However, we do observe that the minimum VaR’s

in the full sample are much more extreme for the models with the jump feedback to

diffusion volatility (SE-M1/SE-M3). For example, the minimum one-day VaR’s implied

by the SE-M1 and SE-M3 models are about -0.110, while those impled by the SE-M2

and SE-M4 models are about -0.076. Similar results can also been noticed in one-week

minimum VaR’s. These mainly reflect the fact that the SE-M2 and SE-M4 models

miss the peak in volatility after the 1987 crash. Next, let us check what the 0.1% VaR

numbers convey. These can be interpreted as a measure of tail risk. Here for the full

sample minimum VaR’s we find again large differences across the models but the division

lies between the models with and without self-exciting jumps, i.e., SE-M1/SE-M2 vs.

SE-M3/SE-M4, with the former exhibiting much larger tail risk. For example, the full

sample one-day minimum VaR’s implied by the SE-M1/SE-M2 models are about -0.30,

much larger than those implied by SE-M3/SE-M4 models. Overall these results suggest

that both feedback channels are important but their risk management implications are

somewhat different, with self-exciting jumps exerting their influence deeper in the left

tail.

— Table 5 around here —

5 Concluding Remarks

We introduce a new class of self-exciting asset pricing models where negative jumps play

important roles. Whenever there is a negative jump in asset return, this negative jump

is simultaneously passed on to diffusion variance and the jump intensity, generating

co-jump of prices and volatility and jump clustering. We investigate the models by
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employing a Bayesian learning approach. Using S&P 500 index returns ranging from

January 2, 1980 to October 31, 2011, we find that negative jumps in asset returns lead to

jumps in total volatility mainly through diffusion variance. We find substantial evidence

of jump clustering even though parameters driving the jump intensity remain difficult

to identify. Our results have important risk management implications in practice.

There are several interesting research directions that our results open up. First,

it would be interesting to examine what we can find if option prices are included in

the dataset. This should have the potential to better identify the jump intensity pro-

cess. Second, the sequential nature of our joint parameter and state estimation routine

promises several practical applications like derivative pricing or portfolio allocation.

Appendix A. A Hybrid Particle Filter

The algorithm of the proposed hybrid particle filter consists of the following steps:

• Step 1: Initialize at t = 0: set initial particles to be
{
V

(i)
1,0 = θ1;V

(i)
2,0 = 1; J

(i)
u,0 =

0; J
(i)
d,0 = 0

}M

i=1
and give each set of particles a weight 1/M ;

• Step 2: For t = 1, 2, . . .

⋆ If Rt = lnSt − lnSt−τ > 0,

– draw J
(i)
d,t from its transition law (16);

– draw J
(i)
u,t both from its transition law (15) and its conditional posterior dis-

tribution Ju,t = lnSt−lnSt−τ−(µ− 1
2
V1,t−τ−k(1)V2,t−τ )τ−Jd,t−

√
τV1,t−τwt,

which is normally distributed. Equal weights are attached to particles ob-

tained from the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ )p(J

(i)
u,t|V

(i)
2,t−τ )

0.5p(J
(i)
u,t|V

(i)
2,t−τ ) + 0.5ϕ(µ̄, σ̄)

,
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where ϕ(·, ·) represents the normal density with mean µ̄ = lnSt − lnSt−τ −

(µ− 1
2
V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
d,t and standard deviation σ̄ =

√
τV

(i)
1,t−τ ;

⋆ Otherwise, if Rt = lnSt − lnSt−τ < 0,

– draw J
(i)
u,t from its transition law (15);

– draw J
(i)
d,t both from its transition law (16) and its conditional posterior dis-

tribution Jd,t = lnSt− lnSt−τ −(µ− 1
2
V1,t−τ −k(1)V2,t−τ )τ−Ju,t−

√
V1,t−τwt,

which is normally distributed. Equal weights are attached to particles ob-

tained from the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt|J (i)
u,t, J

(i)
d,t , V

(i)
1,t−τ , V

(i)
2,t−τ )p(J

(i)
d,t |V

(i)
2,t−τ )

0.5p(J
(i)
d,t |V

(i)
2,t−τ ) + 0.5ϕ(µ̄, σ̄)

,

where ϕ(·, ·) represents the normal density with mean µ̄ = lnSt − lnSt−τ −

(µ− 1
2
V

(i)
1,t−τ − k(1)V

(i)
2,t−τ )τ − J

(i)
u,t and standard deviation σ̄ =

√
τV

(i)
1,t−τ ;

⋆ Normalize the weight: w̃
(i)
t = w

(i)
t /

∑M
j w

(j)
t ;

• Step 3: Resample (Stratified Resampling)

– Draw the new particle indexes by inverting the CDF of the multinomial char-

acterized by w̃
(i)
t at the stratified uniforms i+U(i)

M
where U (i) are iid uniforms;

– reset the weight to 1/M ;

• Step 4: Update the diffusion variance and the jump intensity particles using

(13) and (14), where zt = ρwt+
√

1− ρ2z̃t with z̃ being an independent standard

normal noise.

In implementation, when drawing Gamma random numbers, we sample from an

approximate Gamma distribution using proposals from the rejection sampling algo-

rithm in Ahrens and Dieter (1974) and Marsaglia and Tsang (2000). However, to keep
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the algorithm parallel, instead of rejection sampling, we attach importance weights to

account for the difference between the proposal and the target gamma.

Appendix B. The Marginalized Resample-Move Ap-

proach

As discussed in the text, we have the following recursive relationship between the target

distributions at t− 1 and t,

p̃(Θ, u1:t|y1:t) ∝ p̂(yt|ut, ut−1,Θ)ψ(ut|ut−1, yt,Θ)p̃(Θ, u1:t−1|y1:t−1), (26)

from which we can arrive to a set of samples representing the target distribution,

p̃(Θ, u1:t|y1:t), at time t through the following three steps:

Augmentation Step. For each Θ(n), run the particle filtering algorithm on the new

observation, yt. This is equivalent to sampling from ψ(ut|u(n)t−1, yt,Θ
(n)).

Reweighting Step. The incremental weights are equal to p̂(yt|u(n)t , u
(n)
t−1,Θ

(n)), leading

to new weights

s
(n)
t = s

(n)
t−1 × p̂(yt|u(n)t , u

(n)
t−1,Θ

(n)), (27)

and the estimated likelihood of the fixed parameters is updated as

p̂(y1:t|Θ)(n) = p̂(y1:t−1|Θ)(n) × p̂(yt|u(n)t , u
(n)
t−1,Θ

(n)). (28)

Then, the weighted sample
{(

Θ(n), u
(n)
t , p̂(y1:t|Θ)(n)

)
, s

(n)
t ;n = 1, . . . , N

}
is distributed

according to our target p̃(Θ, u1:t|y1:t). The normalized weight is given by π
(n)
t =

s
(n)
t∑N

k=1 s
(k)
t

and the effective sample size is ESSt =
1∑N

k=1(π
(k)
t )2

. The marginal likelihood of the new
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observation, essential for model comparison, can be computed as

f(yt|y1:t−1) ≡
∫
p(yt|y1:t−1,Θ)p(Θ|y1:t−1)dΘ

≈
N∑
k=1

π
(k)
t−1s

(k)
t . (29)

Notice that the steps so far do not enrich the set of the fixed parameters represented

by the particles. As the target distribution is changing, this will lead to a gradual

deterioration of the performance of the algorithm. To deal with this issue, whenever the

effective sample size falls below some fixed value B1, we implement a resample-move

step in the sense of Gilks and Berzouini (2001) and Chopin (2002). The resample-

move approach is a hybrid of particle methods and MCMC. Here, the population is

first resampled proportional to the weights to multiply particles with high probability.

Then, the set of particles is enriched by passing the particles through a Metropolis-

Hasting kernel that does not change the target distribution, but improves its support

and diversity.

Resample-Move Step. If ESSt < B1, we further consider the following two steps.

(1) Resample the particles proportional to π
(n)
t and provide an equally-weighted sample

{Θ(n), u
(n)
t , p̂(y1:t|Θ)(n);n = 1, . . . , N}. (2) Move each particle through a Markov kernel

with a stationary distribution p̃(Θ, u1:t|y1:t) while the number of unique particles is

below some threshold B2. Here we use marginal particle MCMC kernels from Andrieu

et al (2010) with a proposal distribution of the form

h(Θ, u1:t|Θ′) = ht(Θ|Θ′)ψ(u1:t|Θ), (30)

where ht(Θ|Θ′) is a proposal that can be adapted to the past of the algorithm. For

example, it can be an independent multivariate normal proposal with its mean and

covariance fitted to the sample posterior covariance of Θ. Proposing from ψ(u1:t|Θ)

simply entails the running of a particle filter through the entire data-set at Θ. Impor-

tantly, the random numbers used here are independent from the past of the algorithm.
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The acceptance probability of a new proposed particle (Θ∗, u∗1:t, p̂(y1:t|Θ)∗) is

min

{
1;

p(Θ∗)p̂(y1:t|Θ)∗

p(Θ(n))p̂(y1:t|Θ)(n)
ht(Θ

(n)|Θ∗)

ht(Θ∗|Θ(n))

}
. (31)

Notice that we can actually obtain a joint sample from p(Θ, xt|y1:t) from our learning

algorithm by drawing one particle of the hidden states for each Θ(n) at any time t.

Alternatively, we can use the full particle population and approximate any expectation

E
[
f(Θ, xt) | y1:t

]
as

E
[
f(Θ, xt) | y1:t

]
≈

N∑
n=1

M∑
i=1

π
(n)
t f(Θ(n), x

(i,n)
t ). (32)
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Table 2: Summary Statistics of S&P Index Returns

Returns Mean Std. Skewness Kurtosis Min Max

0.078 0.184 -1.193 29.73 -0.229 0.110

ACF ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

-0.028 -0.044 -0.004 -0.015 -0.016 0.008

Note: The table presents descriptive statistics of data for model estimation and empirical analysis.
Data are from January 2, 1980 to October 31, 2011 in daily frequency. In total, there are 8,033
observations. Mean and standard deviation are annualized. ρ’s stand for autocorrelations.
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Table 3: Log Bayes Factors at Final Time T

SE-M1 SE-M2 SE-M3 SE-M4

SE-M1 0.000 — — —

SE-M2 18.40 0.000 — —

SE-M3 4.110 -14.29 0.000 —

SE-M4 19.21 0.817 15.10 0.000

Note: The table presents the log Bayes factor of the column model to the row model using all available
S&P 500 index return data from January 2, 1980 to October 31, 2011. The interpretation of values in
the table is given in Footnote 4.
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Figure 1: S&P 500 Index Returns and Realized Volatility

Note:The figure plot S&P 500 index returns (upper panel) ranging from January 2, 1980 to October
31, 2011, and realized volatility (lower panel) which is computed using the previous 22-day returns at
each time.
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Figure 2: Sequential Model Comparison

Note: The Figure plots the sequential log Bayes factors for recursive model comparison and monitoring.
The dashed lines in each panel represents 0, 1.09, 2.3, and 3.4, respectively, which determine how strong
one model outperforms the other. The statistical interpretation of these values is given in Footnote 4.
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Figure 3: Parameter Learning: Jump and Diffusion Voaltility

Note: The figure presents the learning of the jump and diffusion volatility-related parameters in the
SE-M1 model using the S&P 500 index return starting from January 2, 1980. 5% quantile, mean, and
95% quantile are reported.
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Figure 4: Parameter Learning: Jump Intensity

Note: The upper panels presents the learning of the jump intensity-related parameters in the SE-M1
model using the S&P 500 index return starting from January 2, 1980. 5% quantile, mean, and 95%
quantile are reported. The lower panels plot the kernel densities of the prior (solid line) and posterior
(dashed line) distributions of each parameter.
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Figure 5: Filtered Diffusion Volatility and the Jump Intensity

Note: The figure presents 5% quantile, mean, and 95% quantile of the filtered diffusion volatility
(
√
V1,t) and the filtered jump intensity (V2,t) in the SE-M1 model using the algorithm presented in

Section 3.
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Figure 6: Filtered Diffusion Volatility and the Jump Intensity without Parameter Uncertainty

Note: The figure presents 5% quantile, mean, and 95% quantile of the filtered diffusion volatility
(
√
V1,t) and the filtered jump intensity (V2,t) in the SE-M1 model when the full-sample estimates of

the fixed parameters are plugged into the particle filter.
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Figure 7: Filtered Jumps

Note: The figure presents the filtered positive jumps (J+
t ) and the filtered negative jumps (J−

t ) in the
SE-M1 model using the algorithm presented in Section 3.
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