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Abstract: The adequate representation of crop response functions is crucial for agri-environmental modeling and analysis. So 

far, the evaluation of such functions focused on the comparison of different functional forms. The perspective is expanded in 

this article by considering an alternative regression method. This is motivated by the fact that exceptional crop yield observa-

tions (outliers) can cause misleading results if least squares regression is applied. We show that such outliers are adequately 

treated if robust regression is used instead. The example of simulated Swiss corn yields shows that the use of robust regression 

narrows the range of optimal input levels across different functional forms and reduces potential costs of misspecification. 

Key words: production function estimation, production function comparison, robust regression, crop response 

 

 

1 Introduction 
The adequate representation of production or crop yield 

functions is crucial for modeling purposes in agricultural 

and environmental economic analyses. The discussion and 

estimation of different functional forms has therefore 

gained much attention in agronomic and agricultural 

economics literature. Various functional forms have been 

considered so far, but less attention has been given to the 

estimation techniques in general and the impact of excep-

tional crop yield observations (outliers) in particular. The 

latter is important since the Least Squares (LS) fitting crite-

rion can produce misleading results if data sets contain 

outliers, such as exceptionally low yields caused by ex-

treme weather events or climate situations. In order to 

address this problem we apply robust regression. In con-

trast to Swinton and King (1991), who used robust regres-

sion methods for trend estimation within crop yields, our 

focus is on the estimation and comparison of crop produc-

tion functions. To this end, we take the example of corn 

(Zea mays L.) yields in Switzerland. 

Observed yield data would provide insufficient estimation 

possibilities due to a lack of variation within the data. In 

contrast, biophysical simulation can generate an enlarged 

data base compared with field observations. It particularly 

enables the creation of more comprehensive datasets of 

crop yields with respect to the variation of analyzed factors 

such as agricultural inputs, while keeping other factors 

such as soil properties constant. In our study, we apply a 

meta-modeling approach that makes use of crop yield data 

generated with a biophysical simulation model to estimate 

and compare crop production functions.  
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The assessment of functional forms can be based on the 

coefficient of determination (e.g. Alivelu et al., 2003), re-

sidual distribution (e.g. Bélanger et al., 2000), non-nested 

hypothesis testing (e.g. Frank et al., 1990) and potential 

misspecification costs (e.g. Llewelyn and Featherstone, 

1997). Using LS and robust regression, we devote special 

attention to the cost of misspecification which constitutes 

an economic approach to the comparison of production 

functions. This allows us to assess the potential income 

loss that would arise from using calculations based on LS 

instead of robust regression methods or from an improper 

specification of the production function.  

The remainder of this paper is organized as follows. Sec-

tion 2 provides a brief presentation of the production func-

tions that are used throughout our analysis, and Section 3 

is devoted to the data used. In Section 4, the estimation 

methodology is introduced, while the estimation results 

are presented in Section 5. Subsequently, optimal input 

levels and the cost of misspecification are investigated in 

Section 6. Finally, the advantage of applying robust regres-

sion techniques in production function estimation is dis-

cussed in the concluding Section 7. 
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2 Production Functions 
Three types of crop production functions are analyzed in 

this study: two polynomial specifications (the quadratic 

and the square root function) and the Mitscherlich-Baule 

function. These functional forms are frequently used in the 

literature and proved to accurately capture the underlying 

relationships (Ackello-Ogutu et al., 1985, Anderson and 

Nelson, 1975, Berck and Helfand, 1990, Frank et al., 1990, 

Fuchs and Löthe, 1996, Heady and Dillon, 1961, Jalota et al., 

2007, and Llewelyn and Featherstone, 1997, Rajsic and 

Weersink, 2008, Yadav et al., 2003). 

Being aware that corn yields are driven by numerous fac-

tors, we focus our analysis on two crucial production fac-

tors: nitrogen fertilizer and irrigation water. Thus, produc-

tion functions are used to describe corn yield responses to 

nitrogen and irrigation water such as shown in Llewelyn 

and Featherstone (1997). By focusing on these two variable 

factors, the production process is represented by a simple 

analytical description that implicitly considers other pro-

duction factors such as soil and climate (Godard et al., 

2008). Together with the concentration on three func-

tional forms, this restriction serves the sake of clarity in our 

investigation.  

The quadratic form, shown in equation (1), consists of an 

additive composition of the input factors, their squared 

values, and an additional interaction term. The latter elu-

cidates whether the input factors are independent of each 

other or not. The quadratic function is formally defined as 

follows: 

  
Y =

0
+

1
N +

2
W +

3
N

2
+

4
W

2
+

5
N W  (1) 

Y denotes corn yield per area, N the amount of inorganic 

nitrogen applied, and W irrigation water applied. The i’s 

are parameters that must satisfy the subsequent condi-

tions in order to ensure decreasing marginal productivity 

of each input factor:  1
,

2
> 0  and  3

,
4
< 0 . Furthermore, 

if  5
> 0  the two input factors are complementary. They 

are competitive if  5
< 0 , while  5

= 0  indicates independ-

ence of the two input factors.  

The square root function (equation 2) is very similar to the 

quadratic form but produces different shapes of the 

curves. The square root form is defined as follows: 

  
Y =

0
+

1
N

1/ 2
+

2
W

1/ 2
+

3
N +

4
W +

5
(N W )

1/ 2  (2) 

To ensure decreasing marginal productivity of each input 

factor, the parameters must satisfy the same conditions as 

for the quadratic form, and their interpretation is identical.  

The Mitscherlich-Baule function (Equation 3) allows for a 

growth plateau, which follows from the von Liebig ap-

proach to production functions (see Paris, 1992, for histori-

cal notes). Moreover, this functional form is characterized 

by continuously positive marginal productivities of the 

input factors. It does not exhibit negative marginal pro-

ductivities, as the above polynomial forms. Formally, the 

Mitscherlich-Baule function is given by  

  
Y =

1
(1 exp(

2
(

3
+ N ))) (1 exp(

4
(

5
+W )))  (3) 

with 
 1

 representing the growth plateau, and 
 3

 and 
 5

 

that include nitrogen in the soil (
 3

) and water endow-

ments (
 5

) such as soil moisture. The coefficients 
 2

 and 

 4

 describe the influence of the corresponding input fac-

tors on the yield. Unlike the classical von Liebig production 

function, the Mitscherlich-Baule function allows for factor 

substitution. It is not linear limitational in the input factors 

as the von Liebig function, i.e. the isoquants are not right-

angled.  
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3 Data 
Our analysis and estimation of production functions is 

based on simulated corn yield data that is generated with 

the CropSyst model. This is a deterministic crop yield simu-

lation model that has been widely used and validated (see 

Stöckle et al., 2003, for a review of studies using CropSyst). 

It involves various above and below ground processes, 

such as soil water budget, soil-plant nitrogen budget, crop 

phenology, canopy and root growth, biomass production, 

crop yield, residue production and decomposition, and soil 

erosion by water. These processes are simulated with daily 

time step. The model is calibrated to field trials and sample 

data. Model settings and calibration for the Swiss Plateau 

region are presented in Torriani et al. (2007).  

In our analysis, CropSyst is driven by daily weather data 

from six different locations on the Swiss Plateau for the 

years 1981 – 2003, as provided by the Swiss Federal Office 

of Meteorology and Climatology (MeteoSwiss). These 

locations are distributed over the eastern Swiss Plateau 

ranging from 06°57’ to 08°54’ longitude and are located at 

elevation levels between 422 and 565 meter above sea level 

(Finger and Schmid, 2007). Compared to an approach with 

one single location, the use of observations from six differ-

ent weather stations broadens the database and allows us 

to represent a large proportion of the entire Swiss corn 

producing acreage.  

The simulation and subsequent data analysis are restricted 

to one uniform type of soil for all locations, characterized 

by texture with 38% clay, 36% silt, 26% sand and soil or-

ganic matter content at 2.6% weight in the top soil layer (5 

cm) and 2.0% in lower soil layers (Torriani et al., 2007). 

Moreover, the type of management is uniform for all simu-

lations. Identical seeding dates, irrigation settings (possi-

ble from day one after sowing to harvesting, never exceed-

ing field capacity), fertilizer type (inorganic nitrogen fertil-

izer) and fertilizer application dates are applied in CropSyst 

(Finger and Schmid, 2007). This approach avoids distor-

tions due to non-uniform soil and management properties.  

To have a comprehensive data set, one simulation is con-

ducted without application of fertilizer and irrigation for 

each location and each year. Furthermore, additional com-

binations of irrigation and fertilizer are generated ran-

domly. Taking nitrogen fertilizer application rates from 0 

to 320 kg/ha and irrigation water from 0 to 340 mm, this 

results in 212 different levels of nitrogen application to the 

plants and 60 different levels of irrigation. 

The resulting dataset consists of 527 observations. Assum-

ing a dry matter content of 85%, average yields for three 

different ranges of irrigation W and fertilizer N application, 

respectively, are shown in Table 1. This rough approxima-

tion of the average corn yields reveals a global yield maxi-

mum for   71 W 140  and   76 N 150 . Simulated corn 

yields decrease if the amounts of irrigated water or applied 

fertilizer deviate from those input ranges. 

Table 1: Average simulated corn yields 1981–2003 

 Applied nitrogen in kg/ha 
 0–75 76–150 151–320 

0–70 6 955 8 872 8 521 
71–140 7 293 9 717 9 100 

Applied 
irrigation 
water in 
mm 141–340 7 275 8 814 9 158 

Source: CropSyst simulations 
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In our meta-modeling approach, output of the biophysical 

model is restructured into crop production functions. Thus, 

key relationships among the factors studied can be iso-

lated (Jalota et al., 2007). Total (aggregated) values for 

nitrogen application, irrigation and corn yield are used for 

production function estimation. In contrast, sub-processes 

in the biophysical model are conducted on a daily time 

step. Thus, the relationships estimated in the crop produc-

tion functions do not replicate factor relationship settings 

in the biophysical model, i.e. in the data generating proc-

ess. Similar meta-modeling approaches have been used, 

for instance, by Jalota et al. (2007), and Llewelyn and 

Featherstone (1997).  

Due to the field experimental design in the crop yield 

simulation, the dataset contains quasi-continuous input-

output combinations. In contrast to discrete application of 

inputs (i.e. a few levels of inputs) in a field experiment, 

quasi-continuous input levels enable a regression rather 

than an analysis of variance approach in this study. Thus, 

the resulting dataset is suitable for production function 

estimation. Moreover, the random application of inputs 

enables unbiased estimation of the production function 

coefficients. Input levels are uncorrelated with other vari-

ables that also influence corn yields but are not considered 

in the production function estimations, such as environ-

mental factors that are held constant in the simulations. 

Thus, no omitted variable bias will occur for the coefficient 

estimates of nitrogen and irrigation water in the crop 

production functions.  



7 

4 Outliers and Estimation Methodology 
Exceptional climatic years are supposed to lead to excep-

tional crop yield levels and to have an extraordinary influ-

ence on plant response to irrigation and fertilization. As a 

consequence, they may involve outliers that deviate from 

the relationship described by the majority of the data.  

Two standard examples for outliers in a linear simple re-

gression model are presented in Figure 1. Point A clearly 

deviates from the typical linear relationship between the 

dependent (y) and the independent (x) variable. Such ‘ver-

tical’ outlier is characterized by an unusual observation in 

the dependent variable. The impact of vertical outliers on 

the estimation of regression coefficients is usually small 

and mainly affects the regression intercept (Sturm and de 

Haan, 2001). If unusual observations occur in the set of 

independent variables, these outliers are called leverage 

points. If such leverage point deviates from the linear 

relationship described by the majority of observations it is 

called ‘bad leverage point’ such as Point B in Figure 1. Due 

to the exposed position of the outlier it has a leverage 

effect on the coefficient estimation. In contrast, a leverage 

point is called ‘good leverage point’ if it does not deviate 

from the typical relationship. Good leverage points are no 

outliers and even improve the regression inference as 

these points reduce standard errors of coefficient esti-

mates. 

  

 

 

Figure 1: Examples for outlying observations 

Note: Regression lines are fitted using ordinary least squares (OLS) and reweighted least squares (RLS). Source: According to Sturm and de 

Haan (2001) 
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In this study, Reweighted Least Squares (RLS) regression is 

applied for the estimation of eqns. (1) and (2), using the 

ROBUSTREG procedure in the SAS statistical package. RLS is 

a weighted LS regression, which is based on an analysis of 

Least Trimmed Squares (LTS) residuals In crop production 

function estimation, a vertical outlier is characterized by 

observations with an exceptional (low) yield level. Bad 

leverage points consist of observations with an excep-

tional input-output relationship for very low or high levels 

of inputs application. With regard to the functional rela-

tionship between corn yields and application of nitrogen 

and irrigation, we particularly expect climatic conditions to 

be influential. For instance, the amount of rainfall can 

influence droughts or moisture built up, and thus indi-

rectly restrict yield levels. Furthermore, the plants are ex-

pected to respond specifically to management under cer-

tain climatic conditions. The response to irrigation and 

fertilization, for instance, changes under high and low 

water stress situations.  

The occurrence of outliers is not exclusive to agricultural 

issues. Rather, outliers are frequently observed in empirical 

data sets and particularly considered in the applied statis-

tics, econometrics and economics literature (e.g. Huber, 

1996, Hubert et al., 2004b, Sturm and de Haan, 2001). The 

breakdown point concept is used to quantify robustness 

properties of a regression estimator. It is defined as the 

smallest amount of arbitrary outlier contamination which 

can carry an estimator over all bounds (Hubert et al., 

2004a). The estimator becomes unreliable beyond this 

border line.  

Ordinary least squares (OLS) regression possesses the 

lowest possible breakdown point of 1/n, where n denotes 

the number of observations. This indicates that OLS can 

not cope with a single outlier because one outlier can be 

sufficient to move the coefficient estimates arbitrarily far 

away from the actual underlying values. Thus, outliers 

cause unreliable coefficient estimates if OLS is applied. 

This vulnerability of least squares estimation to outlying 

observations has been demonstrated in various studies 

(e.g. Hampel et al., 1986, Huber, 1996, and Rousseeuw and 

Leroy, 1987). Reliable results are provided by OLS if and only 

if outlier diagnostic and treatment tools such as robust 

regression methods or robust regression diagnostics are 

applied as well. The application of these methods ensures 

the non-inclusion or the appropriate down-weighting of 

outliers in the analysis. 

A simple outlier diagnostic tool is the scatter plot that 

enables the detection of outliers in simple regression 

cases. However, this is impossible if the dimension of the 

problem exceeds the simple regression case and the num-

ber of observations is very large, such as for our analysis. 

Outlier diagnostics based on residual plots might suffer 

from outliers (Rousseeuw and Leroy, 1987), in particular for 

bad leverage points. Outliers can tilt the (original) regres-

sion line and have small regression residuals. Thus, outliers 

might not be discovered in residual plots (Sturm and de 

Haan, 2001). Other diagnostic tools are required to identify 

outlying or influential observations. However, they may 

involve additional problems. Studentized and jackknifed 

residuals, Cooks distances and other diagnostics based on 

Hat matrix elements, for instance, are susceptible to the so 

called masking effect. If more than one outlier occurs, 

these outlier diagnostics might not be able to detect a 

single one because one outlier can be masked by the pres-

ence of others (Rousseeuw and Leroy, 1987). Multiple-case 

diagnostics or high-breakdown diagnostics have to be 

employed instead. In this study we therefore apply robust 

regression and outlier identification based on robust re-

gression residuals for identification and adequate treat-

ment of outliers. This contrasts with two different ap-

proaches frequently used for the estimation of crop pro-

duction functions. 
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Usually, the impact of climatic extreme events is reduced 

by introducing dummy variables for certain states of cli-

mate variables, or the estimation is conducted separately 

for different states of climate variables or different years 

(e.g. Fuchs and Löthe, 1996, Jalota et al., 2007, Rajsic and 

Weersink, 2008). Even though these methods aim to take 

different productivity levels of input factors for different 

states of climatic variables into account, they are usually 

based on factor relationship assumptions rather than on 

the data itself. Moreover, these methods might considera-

bly reduce the power of the analysis due to the loss of 

degrees of freedom. In contrast, various approaches to 

robust regression analysis have been proposed (e.g. Ham-

pel et al., 1986, and Rousseeuw and Leroy, 1987). They en-

able the identification of outliers taking the crop yield data 

into account using all observations in the dataset.  

The main idea of robust regression is to give little weight 

to outlying observations in order to isolate the true under-

lying relationship. In this context, the notation “true rela-

tionship” is restricted to an econometrical interpretation, 

while the excluded observations can be of particular inter-

est from a scientific point of view. However, the inclusion 

of outliers in the analysis does not allow for trustful re-

gression inference. By contrast, separated analyses of 

outliers and inliers can lead to an information gain. 

In this study, reweighted least squares (RLS) regression is 

applied for the estimation of quasi-linear quadratic and 

square root production functions (equations 1 and 2). RLS is 

applied in favor of other robust regression methods due to 

its good robustness and efficiency properties (see 

Rousseeuw and Leroy, 1987, for details). RLS is a weighted 

LS regression, which is based on an analysis of least 

trimmed squares (LTS) regression residuals. LTS is a high-

breakdown regression technique, i.e. it can possess the 

highest possible breakdown point of . In contrast to OLS 

estimation, LTS coefficient estimates are thus reliable in 

presence of outliers. Based on the idea of trimming the 

largest residuals the LTS fitting criterion is defined as fol-

lows: 

  

Min
ˆ

(r
2
)

i=1

h

i:n

 (4) 

2

( )
( )

i
r  are the ascending ordered squared (robust) re-

siduals and h is the so-called trimming constant. In our 
analysis, 

  
h = (3n + p +1) / 4  is employed (SAS Institute, 

2004), with p denoting the number of coefficient that are 

estimated.  

The computation of LTS coefficients is neither explicit nor 

iterative, but follows an algorithm described in Rousseeuw 

and Leroy (1987). Because the efficiency of LTS estimation is 

low, LTS results allow not for trustful inference. Thus, LTS 

estimation is only used as a data analytic tool for outlier 

identification. An observation is identified as an outlier if 
the absolute standardized robust residual 

  
r
i

/ ˆ exceeds 

the cutoff value of 2.5. 
 
r
i
 and 

 
ˆ  are the (robust) LTS re-

siduals and scale estimates, respectively. This cutoff- value 

choice is motivated by a (roughly) 99% tolerance interval 

for Gaussian distributed standardized residuals (Sturm and 

de Haan, 2001). Coefficient estimates of RLS regression are 

defined as follows 

  

ˆ
RLS

= X
'
WX( )

1

X
'
WY  (5) 

The diagonal elements of the weighting matrix 

  
(W = diag w

1
,…,w

n{ })  () are generated by an indicator 

function, IOutlier: 

  

w
i
= I

Outlier

r
i

ˆ
2.5

 (6) 

The indicator function generates weights of zero for ob-

servations that are identified as outliers and weights of 

one otherwise. RLS regression is applied for coefficient 

estimation of quasi linear functional forms, using the 

ROBUSTREG procedure in the SAS statistical package (SAS 

Institute, 2004). An example for the better robustness 

properties of RLS compared to OLS is indicated in Figure 1. 
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OLS coefficient estimates change in the presence of out-

liers, in particular for bad leverage points. In contrast, RLS 

coefficient estimates are not affected by outliers in this 

example. 

Because LTS regression is not suitable for nonlinear prob-

lems such as the Mitscherlich-Baule function (equation 3), 

iterative approaches are required. Robust regression is 

implemented in this case by using iteratively reweighted 

least squares (IRLS). In order to reduce the influence of 

outliers on estimation results, weights are generated with 

M-estimation using Tukey’s biweight (Hampel et al., 1986) 

such as shown in equation (7) that follows Hogg (1979). 

These weights are re-estimated at each step of iteration 

until convergence. 

  

w
i
=

(1 (r
i
/ ˆ c)

2
)

2
, r

i
/ ˆ c

0, r
i
/ ˆ > c

 (7) 

 
r
i
 is the (robust) IRLS residual and 

 
ˆ the (robust) scale 

estimate and c a tuning constant. Following Hogg (1979), 

we employ the median of absolute deviations from the 

median (MAD) for robust scale estimation and set the 

tuning constant to 5.0. In contrast to LTS, IRLS is no high 

breakdown estimation technique. In order to validate 

results, we conduct sensitivity analysis of crucial factors 

such as starting values and tuning constant. We use the 

Levenberg-Marquardt algorithm (see Moré, 1978, for de-

tails) that ensures stable estimation for highly correlated 

coefficient estimates that occur in our analysis (Schaben-

berger et al., 1999). In this study the nonlinear Mitscher-

lich-Baule function is estimated with IRLS using the NLIN 

procedure in the SAS software package. Furthermore, all 

estimations are corrected for heteroscedasticity following 

Johnston and DiNardo (1997).  

Besides the most important property of giving trustworthy 

coefficient estimates, robust regression provides detailed 

insight in the structure of the data. If LS and robust regres-

sion results are considerably different and many outliers 

are indicated, the observations identified as outliers reveal 

their origin and can exhibit inappropriateness of the em-

ployed model structure. Above all, the interpretation of 

outliers is indispensable. Ruling out that outliers are 

caused by typing, copying or measuring errors, this inter-

pretation should take not only statistical but mainly rea-

sons from the subject matter science into account (Ham-

pel, 2002). Thus, in the following, all estimations are con-

ducted with both least squares and robust regression and 

outlier interpretation is provided. 

 

 



11 

5 Estimation Results 
Within our dataset, the largest number of observations 

identified as outliers are in the year 2003. About 25% of the 

observations that are identified by the RLS method as 

outlier or are given very small weights in the IRLS method, 

can be attributed to this year1. It is characterized by high 

temperatures and low precipitation in the relevant seed-

ing-to-harvest period that caused particularly low corn 

yields in all Europe (Ciais et al., 2005). Other years with 

exceptionally low levels of precipitation and high tempera-

tures in the corn growing season (e.g. 1983, 1991) also fre-

quently occur in the lists of outlying observations. 

The reason for the existence of outliers in these years is 

twofold. First, the yield levels are lower than usually. Sec-

ond, the relationship between independent and depend-

ent variables is affected by different reactions to input 

levels in situations where one of the inputs is a limiting 

factor. The yield response to irrigation water is higher than 

usual if – unlike in normal years – water constitutes a 

limiting factor for the plants in the Swiss Plateau. Fur-

thermore, the interaction between fertilizer and irrigation 

water is higher because the plants’ response to nitrogen 

also highly depends on water availability as nitrogen is 

taken up by the roots in a water solution.  

 
1  In total RLS identifies 43 outliers for the quadratic production 

function and 37 for the square root function. Moreover, 36 ob-
servations have weights smaller than 0.25 in the IRLS estimation 
of the Mitscherlich-Baule function 

Table 2 presents the estimation results for the quadratic 

and the square root production functions, respectively. It 

shows that each estimation coefficient has the correct (i.e. 
the expected) sign. The coefficient 

 5

 (Applied Nitrogen * 

Irrigation Water) is not significantly different from zero in 

the four estimated polynomial functions. This indicates 

that rainfall is sufficient to ensure efficient nitrogen up-

take under normal climatic conditions in Switzerland. 

Table 2: Coefficient estimates for the quadratic and 
the square root production functions 

Variable OLS – Estimation RLS – Estimation 
 Quadratic production function 

(equation 1) 
Intercept 6638.265 (165.05)** 6661.421 (179.24)** 
N 25.64327 (17.62)** 27.55239 (22.71)** 
W 6.046902 (5.62)** 5.578582 (5.75)** 
N2 -0.07104 (12.22)** -0.07236 (14.94)** 
W2 -0.01797 (3.87)** -0.0162 (3.88)** 
NW 0.007766 (1.51) 0.00373 (0.89) 
adj. R2 0.5680 0.7065 
 Square root production function 

(equation 2) 
Intercept 6589.997 (155.02)** 6601.924 (162.13)** 
N1/2 297.1821 (12.42)** 313.0936 (16.34)** 
W1/2 75.09137 (4.26)** 67.1385 (4.17)** 
N -11.2156 (6.88)** -10.544 (8.15)** 
W -3.03419 (2.40)* -2.49922 (2.17)* 
(NW)1/2 1.46442 (1.43) 0.364377 (0.45) 
adj. R2 0.5834 0.7330 

Note: Statistics in parentheses are t statistics  
(**) – indicates significance at the 1% level 
(*) – indicates significance at the 5% level  
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In Table 3, the Mitscherlich-Baule production function 

estimates are presented with coefficient estimates show-

ing the expected signs. Using both LS and robust regres-

sion, the Mitscherlich-Baule function reaches higher good-

ness of fit than the respective estimates of the quadratic 

and square root forms. The coefficient estimates for irriga-
tion water and water endowment 

4
 and 

5
) are not 

significantly different from zero at the level of five percent 
in the LS estimation. In contrast, the coefficients 

4
 and 

5
 are significant at the one percent level if robust regres-

sion (IRLS) is used. Moreover, the coefficient estimate for 

5
 increases remarkably if IRLS regression is applied. This 

is explained by the fact that mainly dry years are excluded 

or down-weighted in the robust regression, such that the 

estimated soil water endowment is higher for the remain-

ing observations.  

Even though all differences in coefficient estimates be-

tween LS and robust regression are not significant at the 

5% level, the application of robust regression leads to rea-

sonable shifts in coefficient estimates and their level of 

significance for all functional forms. However, the decision 

on the most appropriate estimation technique cannot 

exclusively be based on statistical measures. For instance, 

the goodness of fit cannot be compared between LS and 

robust estimation.  The deletion of outliers increases, by 

definition, the goodness of fit for the regression on the 

remaining observations. Hence, conclusions on the appro-

priateness of functional forms and estimation techniques 

can be drawn if and only if the misspecification costs are 

calculated and interpreted, as shown in the subsequent 

section. 

Table 3: Coefficient estimates for the Mitscherlich-
Baule production function 

 Estimation Method 
Variable LS (Levenberg-

Marquardt)  
IRLS (Levenberg-
Marquardt) 

1
 9180.6 (95.14)** 9410.3 (87.7)** 

 2

 0.0288 (5.72)** 0.0266 (7.38)** 

 3

 50.6952 (5.96)** 48.3036 (7.75)** 

 4

 0.0598 (1.22) 0.0304 (2.95)** 

 5

 45.1410 (1.24) 71.2249 (3.10)** 

adj. R2 0.736 0.809 

Note: Statistics in parentheses are t statistics  
(**) – indicates significance at the 1% level 
(*) – indicates significance at the 5% level  

 



13 

6 Optimal Input Levels and Costs of Misspecification 
The knowledge of production functions is crucial for mod-

eling purposes and economic analyses that are concerned 

with optimal resource allocation. This usually involves an 

assessment of optimal input and output levels, which is 

generally determined through maximization of a suitably 

defined objective function. For the purpose of our analysis, 

this is given by the subsequent profit function 

( , )
Corn Nitrogen Irrigation

P f W N P N P W=   (8) 

where the net return (or quasi-rent) per hectare  is equal 

to the gross return (crop price PCorn times corn yield f(W,N), 

minus total nitrogen costs (nitrogen price PNitrogen times 

amount of nitrogen applied N) and total irrigation costs 

(irrigation price PIrrigation times amount of irrigation water 

W) per hectare. For simplicity, other costs are assumed to 

be constant and therefore irrelevant for calculating the 

profit maximizing input combination. By maximizing the 

above profit function (equation 8), the optimal input levels 

are determined through the following first-order condi-

tions: 

  

f (W , N
*
)

N
=

P
Nitrogen

P
corn

 and 

  

f (W
*
, N )

W
=

P
Irrigation

P
corn

  (9) 

Where   N *  and *
W  are the profit maximizing input levels 

of nitrogen fertilizer and irrigation water, respectively. In 

other words, efficiency in production requires employment 

and remuneration of all production factors according to 

their value of marginal product. This is satisfied if, for each 

input factor, the input price equals the crop price multi-

plied with the factor’s marginal productivity.  

In the further analysis, we set the corn price equal to CHF 

0.642 kg-1, the average annual value for the period 1981-

2003 in Switzerland (SBV, 1982-2004). We assume a con-

stant nitrogen price of CHF 1.6 kg-1 (extrapolated from 

ammonium nitrate 27.5 to pure nitrogen) at the 1993 level 

(LBL, 1993), and a price for irrigation water of CHF 0.06 m-3 

(Finger and Schmid, 2007). Using these data, the optimal 

input levels are calculated according to equation (9) and 

represented in Table 4. 

 

Table 4: Optimal input levels, yield, and maximum net return 

Functional Form-
Estimation Method 

Optimal amount of 
Nitrogen applied 

(kg/ha) 

Optimal amount of 
irrigation Water ap-

plied (mm) 

Optimal yield 
(kg/ha) 

Maximum net re-
turn (CHF/ha) 

     

Quadratic-OLS 172.8 179.6 9695 5840.32 
Square Root-OLS 131.3 133.9 9180 5602.82 
Mitscherlich-Baule-OLS 111.2 61.3 9078 5613.55 
     

Quadratic-RLS 177.4 163.8 9859 5947.68 
Square Root-RLS 147.7 108.6 9324 5684.56 
Mitscherlich-Baule-IRLS 124.9 116.7 9286 5691.51 

Note: LS indicates least squares, RLS reweighted least squares, and IRLS iteratively reweighted least squares estimation. 
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It shows that all optimal input levels are within the range 

of the data, and the general results about the functional 

forms remain the same as in other studies. As in Ackello-

Ogutu et al. (1985), the polynomial functions recommend 

higher fertilizer use than the Mitscherlich-Baule functions.  

With 61.3 mm of irrigation water and 111.2 kg/ha of nitro-

gen, the lowest input use is recommended by the 

Mitscherlich-Baule function estimated with LS. This goes 

along with the lowest yield (9078 kg/ha) and an estimated 

net revenue of 5613.55 CHF/ha. In contrast, the robust 

estimated quadratic function shows the highest yield 

(9859 kg/ha) and nitrogen use (177.4 kg/ha) and the high-

est profit (5947.68 CHF/ha), while the quadratic LS func-

tion implies the highest optimal amount of irrigation wa-

ter with 179.6 mm. Thus, the quadratic form implies a 

higher optimal use of nitrogen and irrigation water than 

all other functions. This extends to the evidence given by 

Anderson and Nelson (1975) about the overestimation of 

optimal nitrogen amounts by the quadratic form to the 

optimal use of irrigation water.  

Furthermore, the results in Table 4 show that the robust 

versions of production function estimates systematically 

lead to higher profit maximizing yields and higher profits 

than their non-robust counterparts. Moreover, for each 

functional form, the optimal amount of nitrogen fertilizer 

application increases if robust regression results are taken 

instead of LS results. And, except for the case of the 

Mitscherlich-Baule function, robust regression leads to the 

expected adjustment towards lower use of irrigation water 

in the profit maximizing situation. All in all, the use of 

robust estimation narrows the range of optimal input 

levels across the different functional forms. 

Table 4 shows furthermore, that the selection of the func-

tional form and estimation method both affect the result 

of the economic optimization and allocation problem. This 

relates to the concept of misspecification costs, which we 

employ for the final evaluation of production functions 

and estimation methods. The relative costs of misspecifi-

cation are defined as the decrease in net return if optimal 

input levels of an incorrect function are used instead of 

those of the real underlying production function. The basic 

idea of this concept is to minimize the potential loss of a 

misspecification of the production function. Usually, the 

focus is on the potential loss due to the wrong functional 

form. In the following, we also consider the costs of using 

the improper estimation technique. 

Table 5 gives the relative costs of misspecification. The 

nine cells in the upper left-hand corner correspond to the 

traditional approach where only functional forms esti-

mated with LS are compared. If for instance the quadratic 

function would be the true underlying form, the use of the 

square root function induces a cost of misspecification of 

CHF 93.01. For the Mitscherlich-Baule function, this in-

creases to CHF 297.88 . The latter exhibits the highest costs 

of misspecification, while the square root function is the 

most appropriate if the misspecification-cost criterion is 

employed.  

The square root function is similar to the quadratic form, 

but flatter in its surface and comes therefore closer to the 

plateau approach of the Mitscherlich-Baule specification 

(Ackello-Ogutu et al., 1985). Optimal input recommenda-

tions based on the square root function are correspond-

ingly situated between those of the other two approaches 

we consider here. 
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Table 5: Relative Costs of Misspecification 

 Cost of using optimal input levels based on: 
When the true 
function is: 

Quadratic-
OLS 

Square Root-OLS Mitscherlich-
Baule-OLS 

Quadratic-
RLS 

Square 
Root-RLS 

Mitscherlich-
Baule-IRLS 

Quadratic-OLS 0 93.01 297.88 4.23 77.85 135.18 
Square Root-OLS 30.61 0 39.83 32.13 8.41 2.01 
Mitscherlich-
Baule-OLS 113.22 41.38 0 109.97 41.86 27.34 

Quadratic-RLS 3.77 104.65 296.39 0 68.59 145.23 
Square Root-RLS 7.18 27.08 35.49 8.45 0 23.14 
Mitscherlich – 
Baule-IRLS 57.52 54.08 3.11 51.85 9.86 0 

Note: LS indicates least squares, RLS reweighted least squares and IRLS iteratively reweighted least squares estimation. 

 

Table 5 further reveals that, in most cases, the use of ro-

bust estimation methods results in lower costs of mis-

specification than the standard LS approach, and that the 

square root specification performs better under this crite-

rion than the other functional forms. This becomes obvi-

ous when comparing the top left-hand cells with the bot-

tom right-hand ones, as well as from the comparison of 

the misspecification costs in the different lines of Table 5.  

Only in the cases where the square root specifications are 

assumed to be the true underlying functions does the 

quadratic LS estimation show slightly lower costs of mis-

specification than its RLS counterpart. Furthermore, square 

root function estimation with LS leads to a marginally 

lower decrease of the net profit than its robust counter-

part if the Mitscherlich-Baule-LS is assumed to be the 

underlying function.  

Altogether, this supports the suggestion that the RLS esti-

mation of the square root function is the best approxima-

tion of the real underlying crop response relationship. 

These findings further support the use of robust regression 

methods, besides the previously made recommendation 

from an econometrical point of view. 
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7 Summary and Conclusions 
The proper representation of crop production functions is 

crucial for economic analyses that aim at determining 

optimal production levels and input use under different 

conditions. In our study, simulated corn yield data for the 

Swiss Plateau are used for the estimation of crop produc-

tion functions, with particular consideration of yield re-

sponse to nitrogen fertilizer and irrigation water applica-

tion. Three functional forms are considered: the quadratic, 

the square root, and the Mitscherlich-Baule function. In 

addition, robust and standard regression methods are 

used for the estimation. 

We found the square root function to be the most appro-

priate form to represent the data generated with corn yield 

simulations for Switzerland. Furthermore, exceptional 

climatic events, such as the summer drought in 2003, are 

proved to be the major source of misleading results if the 

least squares criterion is used to estimate production func-

tion coefficients. Robust regression methods are recom-

mended instead. The use of robust estimation narrows the 

range of optimal input levels across the different func-

tional forms. Thus, differences between functional forms 

are reduced by applying robust regression. This conclusion 

is further supported by a comparison of the relative costs 

of misspecification. Using robust instead of least squares 

regression generally results in lower costs of misspecifica-

tion. Irrespective of the true underlying functional form, 

optimal input levels based on robust estimated functions 

reduce the maximum costs of misspecification compared 

to the counterparts estimated with least squares regres-

sion. Thus, our investigation shows that, besides the func-

tional form, the estimation method is decisive for produc-

tion function comparisons.  

The improved estimation of production functions might be 

valuable in practice because crop production functions are 

widely applied, for instance, to assess agro-environmental 

policy measures (e.g. Godard et al., 2008) to compare crop-

ping systems (Yadav et al., 2003) or to project future agri-

cultural water demand (e.g. Medellín-Azuara et al., 2008). 

Moreover, climate – and thus crop yield – extreme events 

are expected to occur more often in the future due to 

climatic change (e.g. Fuhrer et al., 2006). The properties of 

robust regression to ensure efficient and reliable coeffi-

cient estimation in presence of outliers might thus be 

particularly valuable for applications and economic as-

sessments related to climate change issues (see e.g. Finger 

and Schmid, 2008). Furthermore, robust regression en-

sures efficient and accurate estimation of functional forms 

and thus of regression residuals. Since the latter are used 

to estimate yield variation with respect to input use (e.g. 

Just and Pope, 1979, Finger and Schmid, 2008), robust 

regression improves the estimation of both production 

functions and yield variation functions. Altogether, robust 

regression is a valuable tool for a wide range of agronomic 

and agri-environmental modeling problems that require a 

proper representation of crop response functions to vari-

able inputs, such as nitrogen fertilizer and irrigation water. 
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