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Abstract

Voters determine their preferences over alternatives based on cases
(or arguments) that are raised in the public debate. Each voter is
characterized by a matrix, measuring how much support each case
lends to each alternative, and her ranking is additive in cases. We
show that the majority vote in such a society can be any function
from sets of cases to binary relations over alternatives. A similar
result holds for voting with quota in the case of two alternatives.

1 Introduction

Information that becomes available to the public prior to elections may have

unpredictable effects. The fact that a presidential candidate has used drugs

in his youth may be a fatal blow to his popularity among some voters. Among

others, it may be taken as a minor misdemeanor or even a sign of an open

mind. Having been a member of a Trotzkyist party three decades before the

upcoming elections may well be viewed as a virtue by some voters, and as a

vice by others. Even less anecdotal pieces of information, such as a successful

military career, are open to various interpretations, and will typically have

differential impact on voters.
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It follows that it is not always clear which facts, or cases will affect elec-

tions in favor of a given candidate. It is even less clear how such cases interact.

Imagine, for instance, that the ex-Trotzkyist candidate has also used drugs

in his youth. Assume that none of these cases can turn a majority of vot-

ers against the candidate. But if the voters who find that drugs are a sign

of an open mind are not those who favor Trozkyism, it is possible that the

combination of the two cases will generate a “coalition of minorities” (Downs

(1957)) against the candidate.

In this paper we consider a very simple model, according to which each

voter uses cases in an additive manner. Specifically, for each voter i, each

case c, and each candidate x, there is a number wi(x, c) such that, given a

set of cases M , voter i prefers candidate x to y iff1

P
c∈M wi(x, c) >

P
c∈M wi(y, c).

or P
c∈M [wi(x, c)− wi(y, c)] > 0.

While this model is rather restrictive, we will see that it allows for signif-

icant freedom in terms of patterns of majority votes. Consider, for instance,

a society containing three individuals, who have to choose between candidate

x and candidate y. Suppose that there are three conceivable cases. The fol-

lowing matrix provides the value of the vector (wi(x, c)− wi(y, c))c for each

voter:

W1 c d e
1 3 −1 −1
2 −1 3 −1
3 −1 −1 3

1Gilboa and Schmeidler (1999) axiomatize this rule. They assume that the voter can
rank the candidates given any conceivable memory that is composed of repetitions of past
cases.
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Rows correspond to individuals, and columns — to cases. Thus the entry

in row i and column c is the number wi(x, c)−wi(y, c), measuring the degree

of support that case c lends to candidate x, as compared to candidate y, in

the eyes of voter i. Given the set M1 = {c}, a majority of candidates favor
y to x: case c convinces voter 1 that x is preferred to y, but it convinces

voters 2 and 3 of the opposite. Alternative x will also be voted down given

the set M2 = {d}: this time it is the coalition of voters 1 and 3 that oppose
alternative x. But if the union of the two sets, M1 ∪M2 = {c, d}, is brought
forth, voters 1 and 2 vote for x and only voter 3 prefers y. In fact, in this

example majority vote ranks alternative y above x given any single case, but

this ranking is reversed for any set that contains at least two cases. Moreover,

if all cases are cited, x is unanimously chosen.

To consider another example, consider the following matrix

W2 c d e
1 5 −3 −3
2 −3 5 −3
3 −3 −3 5

In this example, y is preferred to x given any single case. Given any pair

of cases, majority vote favors x to y. But, as opposed to the example W1, in

W2 citing all cases together reverses the pattern again, and y is chosen over

x. Finally, in the following matrix (with five voters)

W3 c d e
1 3 −1 −1
2 −1 3 −1
3 −1 −1 3
4 −1 −1 −1
5 −1 −1 −1

alternative y is preferred to x for all sets of cases apart from the entire

set C = {c, d, e}.
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How erratic can majority vote be? Are there any conclusions that can

be drawn from the way a society votes given certain subsets of cases to the

way it votes given other subsets? The negative answer is given below. Our

main result is that practically any pattern of votes (as a function of subsets of

cases) can emerge as a result of a democratic vote. We present the model and

the main result in Section 2. In Section 3 we discuss the case of votes with

quotas. We show that the choice between two alternatives is as unpredictable

in this case as in the case of simple majority vote. Section 4 is devoted to

the proofs, and Section 5 — to a brief discussion.

2 Model and Main Result

Let N = {1, ..., n} (n ≥ 0) be a set of voters. They are asked to rank

alternatives in a finite set X. The public debate preceding the vote mentions

a subset M of cases from a finite set of conceivably relevant cases C. For

each voter i ∈ N , each case c ∈ C, and each alternative x ∈ X, there is a
decision weight wi(x, c), interpreted as in the Introduction. We refer to the

set of voters, coupled with their decision weights w = (wi(x, c))i∈N,x∈X,c∈C ,

as a population (N,w).

A binary relation %⊂ X × X is reflexive if x % x for every x ∈ X. It
is complete if x % y or y % x for every x, y ∈ X. Observe that a complete
relation is also reflexive. The asymmetric and symmetric parts of % are

denoted, as usual, as Â and ∼, respectively. A relation % is trivial if %=

X×X, that is, if x ∼ y for every x, y ∈ X. Let the set of all complete binary
relations on X be R = R(X).

Given a set of casesM ⊂ C, we define society’s preferences by a majority
vote. Formally, %((N,w),M)⊂ X ×X is defined as follows: for every x, y ∈ X
and every M ⊂ C, x %((N,w),M) y iff

#{i ∈ N | P
c∈M wi(x, c) >

P
c∈M wi(y, c)} ≥

#{i ∈ N | P
c∈M wi(x, c) <

P
c∈M wi(y, c)}.
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Observe that%((N,w),M) is complete for everyM . Thus, given a population

of voters (N,w), majority vote defines a function

V(N,w) : 2C → R

by

V(N,w)(M) =%((N,w),M).

The question we address in this paper is the following: given a function

U : 2C → R, can it be the majority vote of some population? That is,

is there a population (N,w) such that V(N,w) = U? An obvious necessary

condition is that U(∅) be trivial. The following result states that this is also

a sufficient condition.

Theorem 1 Let there be given a function U : 2C → R. There exists a
population (N,w) such that V(N,w) = U iff U(∅) is trivial.

In the very specific case where C contains only one element, the statement

is a slight generalization of McGarvey (1953) Theorem.

3 Voting with a Quota

There are many decisions in which regular majority does not suffice. For

instance, suppose that the set X does not represent candidates for a public

position, but two choices: approve a proposed constitutional amendment or

reject it. In many countries, an amendment would require more than 50%

of the votes in order to be approved. Assume, then, that there is a quota

q ∈ [1
2
, 1) such that an amendment is approved only if the proportion of voters

supporting it is q or higher. Which sets of cases will induce a q-majority for

the amendment?

Formally, define, for q ∈ [1
2
, 1), %((N,w),M,q)⊂ X ×X as follows: for every

x, y ∈ X and every M ⊂ C, x %((N,w),M,q) y iff
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#{i ∈ N | P
c∈M wi(x, c) >

P
c∈M wi(y, c)} ≥ q|N |.

When q > 1
2
, %((N,w),M,q) is not expected to be complete. One may ask

whether any function from subsets of cases to (not necessarily complete)

binary relations can be the result of a q-majority vote of some population.

The negative answer is given by Vieille (2002). He shows that, even if |X| = 2,

for every q > 1
2
, there exists a set of cases C and a function from 2C to R

that cannot coincide with %((N,w),M,q) for any (N,w) (that is, that cannot be

the q-majority vote of any population).

In the absence of a q-majority for either alternative, society still has to

make a choice. To this end, there should be a default alternative that is

chosen unless there is a q-majority against it. For instance, in the vote

on a constitutional amendment, the default is that the amendment is not

approved, unless it is supported by at least q of the votes.

Assume, then, that X = {x, y} and that y is the default alternative.
Thus, we re-define %((N,w),M,q) as follows: x % (Â)((N,w),M,q)y iff

#{i ∈ N | P
c∈M wi(x, c) >

P
c∈M wi(y, c)} ≥ (>)q|N |

and y Â((N,w),M,q) x whenever x %((N,w),M,q) y does not hold. Let Rs

be the subset of R consisting of strict relations (i.e., for %∈ Rs, either

x Â y or y Â x, but not both). Given a population (N,w) we define

V(N,w,q)(M) =%((N,w),M,q) and ask, which functions U : 2C → Rs can be

the q-majority vote of some population? That is, for which U is there a

population (N,w) such that V(N,w,q) = U?

Proposition 2 Assume that X = {x, y} as above and q > 1
2
. Let there be

given a function U : 2C → Rs. There exists a population (N,w) such that

V(N,w,q) = U iff U(∅) is trivial.

Thus, in the case of two alternatives our results extends to a majority

vote with quota q > 1
2
. This result does not extend to the case |X| > 2.
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Observe that with more than two alternatives the default choice defines a

complete binary relation on X. In general, it is easy to see that not every

pattern of choices may be the majority vote for any q. For instance, for

q > 2
3
one may set the default to be a cycle x Â y Â z Â x, and require that,

for a given case, preferences be the reverse cycle. It is easy to see that no

population can exhibit such preferences, because no population can vote for

a Condorcet cycle with q > 2
3
.2

4 Proofs

4.1 Proof of Theorem 1:

Step 1: The case |X| = 2

Assume that X = {x, y}. Without loss of generality, we will assume
that all voters discussed will satisfy wi(y, c) = 0 for all c ∈ C. Thus, a

voter with decision weights (wi(x, c))x∈X,c∈C will be characterized by a vector

wi = (wi(x, c))c∈C. She prefers x to y given M ⊂ C if P
c∈M wi(x, c) > 0.

Some preliminary definitions will prove useful. For a set of cases D ⊂ C
with |D| = d, a voter with decision weights wi is said to be a D+ voter if

wi(c) =

½
1

d+1
if c ∈ D

−1 if c /∈ D .

Observe that a D+ voter (strictly) prefers x to y givenM 6= ∅ if and only
if M ⊂ D, and she (strictly) prefers y to x otherwise. A voter is a D− voter

if −wi(c) defines a D+ voter. Thus, a D− voter (strictly) prefers y to x given

M 6= ∅ if and only if M ⊂ D, and she (strictly) prefers x to y otherwise.
A population (N,w) is a k-D+ population if N consists of 2k voters,

where k are D+ voters, and k are ∅− voters. If (N,w) is a k-D+ population,

then, given M 6= ∅, x Â((N,w),M) y if M ⊂ D and x ∼((N,w),M) y otherwise.
2However, it is not clear that this is the most natural definition of the problem when

|X| > 2. Indeed, majority vote with q > 1
2 may not be a very natural procedure for more

than two alternatives.
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Similarly, a population (N,w) is a k-D− population if N consists of 2k voters,

where k are D− voters, and k are ∅+ voters. Thus, if (N,w) is a k-D−

population, then, given M 6= ∅, y Â((N,w),M) x if M ⊂ D and x ∼((N,w),M) y

otherwise.

We now turn to the proof. Let there be given a function U : 2C → R such
that U(∅) is trivial. ForM ⊂ D, denote U(M) by <M and let ÂM , ∼Mhave

their usual meaning. We wish to construct a population (N,w) such that

V(N,w)(M) =%((N,w),M)=<M . This population will be constructed inductively

as the union of k-D+ and k-D− populations, for appropriately chosen sets D

and numbers k.

Let (D1, ..., D2|C|−1) be an enumeration of all non-empty subsets of C

that is non-increasing with respect to set cardinality. That is, if r > s, then

|Dr| ≤ |Ds|. Thus, D1 = C, whereas D2|C|−|C|, ...,D2|C|−1 are singletons. We

will prove the following claim by induction:

Claim: For every 1 ≤ r ≤ 2|C| − 1, there exists a population (Nr, w(r))

such that, for all Ds with s ≤ r, %((Nr ,w(r)),Ds)=<Ds.

Thus, the majority vote of population (Nr, w(r)), V(Nr ,w(r))(M), will agree

with the target relation <M for the first r sets in (D1, ..., D2|C|−1). Setting

r = 2|C| − 1 will complete the proof of Step 1.

Proof of Claim:
For r = 1, consider <C. If x ∼C y, set Nr to be empty. Otherwise, if

x ÂC y, let (Nr, w(r)) be a 1-C+ population.

Assume that the claim is true for r − 1 ≥ 1, and that (Nr−1, w(r−1))

is the population provided by the induction hypothesis. We will construct

(Nr, w(r)) such that Nr is a superset of Nr−1 and w(r) — an extension of

w(r−1). Consider Dr. If <Dr equals %((Nr−1,w(r−1)),Ds), (Nr, w(r)) can be set

equal to (Nr−1, w(r−1)). Suppose, then, that the two differ. Assume, first,

that x %((Nr−1,w(r−1)),Ds) y but that y ÂDr x. Define (Nr, w(r)) to be the

disjoint union of (Nr−1, w(r−1)) and a k-D−
r population for a large enough

k. Observe that k can be chosen so that the majority for y in the k-D−
r
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population outweighs the majority that might exist for x in (Nr−1, w(r−1)).

Specifically, choose

k = 1
2
[#{i ∈ Nr |

P
c∈M w(r−1)i(x, c) >

P
c∈M w(r−1)i(y, c)}−

#{i ∈ Nr |
P

c∈M w(r−1)i(x, c) <
P

c∈M w(r−1)i(y, c)}] + 1.

Observe that the difference in square brackets is even, since our construc-

tion involves only the disjoint union of populations, within each of which

either there is a tie between the two alternatives, or there is an even-size

majority for one of them.

Thus %((Nr ,w(r)),Dr) equals <Dr . The main observation is, however, that

%((Nr−1,w(r−1)),Ds) also equals<Ds for s < r. To see this, let s < r and consider

Ds. Ds differs from Dr (since s 6= r), and it is not a subset of Dr (which is

possible only if s > r). Hence the k-D−
r population we add, (Nr\Nr−1, w(r)),

consists of exactly k voters who prefer x to y given Ds, and k voters whose

preferences are reversed. This implies that whatever was the majority vote

in (Nr−1, w(r−1)) given Ds, it is identical for (Nr, w(r)) given Ds.

Next assume that x Â((Nr−1,w(r−1)),Ds) y but that y ∼Dr x. The same

construction applies with

k = 1
2
[#{i ∈ Nr |

P
c∈M w(r−1)i(x, c) >

P
c∈M w(r−1)i(y, c)}−

#{i ∈ Nr |
P

c∈M w(r−1)i(x, c) <
P

c∈M w(r−1)i(y, c)}].

Finally, the cases in which y %((Nr−1,w(r−1)),Ds) x are dealt symmetrically

(by addition of an appropriate k-D+
r population).¤

Step 2: The case |X| > 2

Assume that X = {x1, ..., xm}. Consider two alternatives, xp and xq. For

everyM ⊂ C, restrict the relation U(M) to {xp, xq}. Use Step 1 to construct
a population (Np,q, w(p,q)), defined for {xp, xq}, such that V(Np,q,w(p,q))(M)

equals U(M) on {xp, xq} for every M . We now extend the decision weights
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w(p,q) of voters in Np,q from {xp, xq} to all of X in two distinct ways, and we

will eventually take the union of the two populations thus generated.

First, let (N t
p,q, w

t
(p,q)) be a population of voters (with preferences defined

over all of X), where, for each voter and given any M , {xp, xq} are ranked
above all other alternatives, where the rest are ranked by their index. This

can be done, for instance, by setting w(p,q)i
(xr, c) = −r− 1 for all r /∈ {p, q},

for all c ∈ C, and all i ∈ N t
p,q. Recall that the construction in step 1 produced

weights wi(x, c) ∈ [−1, 1]. It follows that the new weights defined for xr are

lower than those for {xp, xq}.
Next, let (N b

p,q, w
b
(p,q)) be a population of voters (again, with preferences

defined over all of X), for which the opposite is true: given any M , {xp, xq}
are ranked below all other alternatives, where the rest are ranked in reverse

index order. For instance, set w(p,q)i
(xr, c) = +r + 1 for all r /∈ {p, q}, for all

c ∈ C, and all i ∈ N b
p,q.

Now consider the population generated by the union of (N t
p,q, w

t
(p,q)) and

(N b
p,q, w

b
(p,q)). Let there be given a setM ⊂ C. Majority vote between xp and

xq is identical in both sub-populations, and is identical to U(M). Hence it

is also the majority vote in the new population (N t
p,q ∪ N b

p,q, w
t
(p,q) ∪ wb

(p,q)).

For any pair of indices {r, s} 6= {p, q}, exactly half of the new population
prefers xr to xs, and the other half has reverse preferences. Hence the new

population is indifferent between any pair {xr, xs} such that {r, s} 6= {p, q}.
Finally, consider a population that is the disjoint union of

¡
m
2

¢
sub-

population, one for each pair {xp, xq}, constructed as above. Majority vote
in the entire population between {xp, xq} is determined by the {xp, xq} sub-
population, and therefore coincides with U(·).¤¤

4.2 Proof of Proposition 2:

Step 1: rational q
Assume that q = t

t+s
where t > s > 0 are natural numbers. The proof

in this case mimics the Step 1 in the proof of Theorem 1, with the following
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modification.

A population (N,w) is a k-l-D+ population if N consists of k + l voters,

where k are D+ voters, and l are ∅− voters. If (N,w) is a s-t-D+ population,

then, givenM 6= ∅, x Â((N,w),M,q) y if M ⊂ D and x ∼((N,w),M,q) y otherwise.

Similarly, a population (N,w) is a k-l-D− population if N consists of k + l

voters, where l are D− voters, and k are ∅+ voters. Thus, if (N,w) is a

s-t-D− population, then, given M 6= ∅, y Â((N,w),M,q) x if M ⊂ D and

x ∼((N,w),M,q) y otherwise.

One continues to construct the population (N,w) inductively, as in the

Claim in the proof of Theorem 1. The only difference is that, if there is a need

to add a sub-population to (Nr−1, w(r−1)) in order to obtain (Nr, w(r)), one

adds a ks-kt-D+ population for a large enough natural k (in case x ÂDr y)

and a ks-kt-D− population for a large enough natural k (in case y ÂDr x).¤
Step 2: irrational q
The proof relies on approximating q by rational numbers. As in the case

of a rational q, the construction is based on successive additions of k-l-D+

populations and k-l-D− populations, as the need may be. Only in this con-

struction one uses ks-kt-D+ populations and ks-kt-D− populations, where

t > s > 0 are natural numbers such that t
t+s

approximates q. Specifically,

consider stage r in the induction of the Claim. Assume, without loss of

generality that, that x ÂDr y but that y Â((Nr−1,w(r−1)),Dr,q) x, hence we

are about to add a ks-kt-D+
r population. We first choose k, then s and t.

Choose k > q
1−q
|Nr−1|. The population we add will have k(s+ t) > k voters,

and will therefore outweigh the existing population Nr−1 by a ratio of
q

1−q

or more. That is, for any s, t > 0 adding a ks-kt-D+
r population will result

in x Â((Nr,w(r)),Dr ,q) y. It is left to choose s, t > 0 such that Â((Nr ,w(r)),Dp,q)

agrees with Â((Nr−1,w(r−1)),Dp,q) for p < r. To this end, let

ε = minp<r | q − #{i∈Nr−1 |
P

c∈Dp
w(r−1)i(x,c)>

P
c∈Dp

w(r−1)i(y,c)}
|Nr−1| |
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Observe that ε > 0. Choose t > s > 0 such that | t
t+s
− q| < |Nr−1|

k(s+t)
ε. The

existence of such s, t can be derived from the theory of continued fractions.

Indeed, the approximation by continued fractions of an irrational q yields a

sequence (pn, qn) of integers such that limn→+∞ qn = +∞ and
¯̄̄
q − pn

qn

¯̄̄
≤ 1

q2
n
.

Thus, one may set t = pn and s+ t = qn where n is large enough.

It follows that, for every p < r,

sign
³
q − #{i∈Nr−1 |

P
c∈Dp

w(r−1)i(x,c)>
P

c∈Dp
w(r−1)i(y,c)}

|Nr−1|
´

=

sign
³
q − #{i∈Nr |

P
c∈Dp

w(r)i(x,c)>
P

c∈Dp
w(r)i(y,c)}

|Nr|
´

that is, x Â((Nr,w(r)),Dp,q) y iff x Â((Nr−1,w(r−1)),Dp,q) y. This completes the

proof.¤¤

5 Discussion

Our result assumes that voter’s preferences are additive in cases. There are

many reasons for which this assumption may be unrealistic. For instance,

imagine that voters prefer candidates who exhibited strong ideological con-

victions in their youth, irrespective of the ideology they subscribed to. A

case in which a candidate supported a communist party, as well as a case in

which the candidate supported a fascist party, will speak well of the candi-

date. But the combination of these cases will point to incoherence, lack of

integrity, or opportunism.

Preferences may not be additive in cases also due to logical inferences that

voters can make, based on strategic reasoning. As pointed out by Glazer and

Rubinstein (2001), the very fact that one party brings forth a particular

argument while it could have brought forth another may be informative in

its own right. Whereas Grice (1975, 1989) may be viewed as suggesting a

strategic analysis of conversations based on the assumption that speakers and

listeners play a common interest game, Glazer and Rubinstein apply strategic

reasoning to debates, in which interests are far from common. Athreya,
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Gilboa, and Schmeidler (2002) analyze Glazer and Rubinstein’s example in

the case-based model we use here. They show that even if preferences are

additive in cases, inferences based on strategic reasoning may lead to non-

additive functions, because mentioning one case in a debate is equivalent to

bringing forth an entire set of cases.

Aragones, Gilboa, Postlewaite, and Schmeidler (2002) discuss situation in

which cases are used to draw the listeners’ attention to analogies or to certain

regularities. These may change the way voters view cases they already know

of, and may therefore be another reason for non-additivity in the way voters

react to cases.

Our main thesis is that the impact of a set of cases on voters may be

hard to predict based on the impact of other sets of cases. Our results

show that even a simple preference structure suffices to render society choice

rather complex. Introducing more realistic preferences will only strengthen

our point.

Throughout the paper we refer to elements of C as “cases”, which are

to be thought of as facts or stories. But the formal model also allows other

interpretations. In particular, members of C may be arguments that are

being raised for or against certain alternatives. Again, one finds that a very

simple rule for aggregation of arguments at the individual level already yields

complex patterns of majority votes.
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