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Abstract

Given a sequence (s0, s1, . . . , sN ) of observations from a finite set S,
we construct a process (sn)n≤N that satisfies the following properties:
(i) (sn)n≤N is a piecewise Markov chain, (ii) the conditional distribu-
tion of sn given s0, . . . , sn−1 is close to the empirical transition given
by the observed sequence, for most n’s, (iii) under (sn)n≤N , with high
probability the empirical frequency of the realized sequence is close to
the one given by the observed sequence. We generalize this result to
the case that the conditional distribution of sn given s0, . . . , sn−1 is
required to be in some polyhedron Vsn−1 .
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1 Introduction

We are interested in approximating a finite given sequence by a simple
stochastic process. The basic problem can be summarized as follows.

Let σ = (s0, s1, . . . , sN ) be a sequence over a finite set S of states. For
s ∈ S, the number of visits to s along σ is defined to be Nσ

s = |{n < N, sn =
s}| (not counting the last state in the sequence). The empirical frequency
of s in σ is νσ

s := Nσ
s /N , and the empirical transition (along σ) out of s is

qσ(t | s) =
|{n < N, (sn, sn+1) = (s, t)}|

Nσ
s

, for t ∈ S.

Does there exist a “simple” process (sn)n≤N such that

(i) the conditional law of sn+1 given (s0, ..., sn) is close to qσ(· | sn) a.s.
for most n’s;

(ii) with high probability under (sn)n≤N , the empirical frequency of s ∈ S
is close to the observed frequency νσ

s of s along σ ?

The naive solution is to define (sn)n≤N as a Markov chain with the em-
pirical transitions qσ as transition function. As the next example illustrates,
this solution fails.

Example 1.1 Let S = {a, b}, and consider the sequence σ = (a, a, . . . , a, b, b, . . . , b, a)
of N a’s followed by N b’s, and one a at the end. The empirical transition
qσ is given by

qσ(a | b) = qσ(b | a) = 1− qσ(b | b) = 1− qσ(a | a) = 1/N.

Let (sn)n≤2N+1 be the Markov chain with transition qσ, starting from a.
With a probability bounded away from zero, sn = a for every n ≤ 2N + 1.
In particular, condition (ii) is not satisfied. More generally, one can prove
that for this example no Markov chain satisfies both conditions (i) and (ii).

In the sequel we show that, provided N is sufficiently large, there exists
a piecewise Markov chain on S with at most |S| pieces that approximates
σ in the sense of (i) and (ii).

A remark is in order. We here insist on one-step transitions, by asking
that the approximating process be a (piecewise) Markov chain on S. By
this insistence, we potentially loose much information on the structure of
the sequence. Indeed, the sequence 001100110011...will be approximated
(for lack of a better term) by the Markov chain on {0, 1} with transitions
(1
2 , 1

2) in each state. Plainly, a Markov chain of order 2 would approximate
perfectly the given sequence. More generally, there is a tradeoff between
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the order of the chain and the quality of the approximation. Our results
indicate that piecewise Markov chains (of order 1) are sufficient to get a
good appromixation, when only one-step transitions matter.

Note that this restriction is natural when only the transition matrix of
the sequence σ is known.

Our motivation stems from the analysis of zero-sum stochastic games, see
e.g. Blackwell and Ferguson (1968), Mertens and Neyman (1981) or Rosen-
berg et al. (2002). Such games are Markov Decision Processes with two com-
peting decision makers. When analyzing the optimal behavior of a player
who does not perfectly observe the actions chosen by his opponent, one is
led to the following problem. One player, called the adversary, controls a
S-valued process (sn)n≤N , where S is a finite set of states. In each of finitely
many stages, he chooses the law yn according to which the next state sn+1

is selected. A second player, called the statistician, suffers a loss r(sn,yn)
where r is concave in y. The statistician gets only to observe the realized se-
quence of states, but he does not observe the value of yn or his loss r(sn,yn).
One can further restrict the statistician to observe only the transition matrix
(Ns→t)s,t∈S , where Ns→t = #{n < N, (sn, sn+1) = (s, t)}. The statistician
wishes to estimate ex-post his total loss L :=

∑N
n=0 r(sn,yn). On the ba-

sis of his information, the natural idea for the statistician is to compute,
for each s ∈ S, the distribution ŷ(s) ∈ ∆(S) that is closest to the empirical
transitions out of state s, and to suggest the quantity L̂ =

∑
s∈S Nsr(s, ŷ(s))

as an estimate for the loss, where Ns is the number of visits to s.
For a given strategy τ of the adversary (i.e., a rule that dictates for every

stage n which yn to choose on the basis of the available information), the
expectation Eτ

[
L̂

]
of this estimator1 is typically higher than the expected

loss Eτ [L], due to the concavity of r. In other words, L̂ will fail to be, even
approximately, an unbiased estimator of the loss.

The basic question we are interested in is whether, for every observed
transition matrix, there is a “simple” strategy τ̃ of the adversary such that
Eeτ [L] is close to L̂. This question reduces to the above problem.

In the actual game-theoretic motivating problem, the player’s strategy
choice is restricted: for each n ∈ N, yn has to belong to a given com-
pact polyhedron V (sn) of probability measures over S. This caveat makes
the analysis in Section 3 of the corresponding problem substantially more
difficult.

The question we study may be viewed as a variant of the following prob-
lem. Given a realization (s0, . . . , sN ) of an unknown hidden Markov chain,
find a hidden Markov chain that best approximates the given realization.
This question was initially studied by Baum and Petrie (1966) and Baum et
al. (1970). This problem has several application, including ecology (Baum

1The expectation is taken w.r.t. the law of the process induced by the strategy.
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and Eagon (1967), speech recognition (see, e.g., Rabiner (1989) and gene
finding (see, e.g., Burge and Karlin (1997)). In construct to finding the op-
timal hidden Markov chain that approximates the given sequence, we find
a piecewise hidden V -Markov chain that approximates the sequence.

The paper is organized as follows. In Section 2, we investigate the prob-
lem with no polyhedral restriction. Next, we turn in Section 3 to the general
problem.

2 The Basic Problem

For every finite set K, let |K| be the number of elements in K, and let ∆(K)
be the space of probability distributions over K. Throughout the paper we
fix a finite set S of states.

2.1 Presentation

Let N ∈ N, and let σ = (s0, s1, . . . , sN ) be a finite sequence in S of length
N + 1. For s ∈ S, let Ns = |{n < N |sn = s}| be the number of visits to s in
σ (the last state of the sequence is not counted), and define the empirical
frequency of s in σ as

νσ
s =

Ns

N
.

The (empirical) transitions out of s along σ are defined by

qσ(t | s) =
|{n < N, (sn, sn+1) = (s, t)}|

Ns
, t ∈ S. (1)

qσ(t | s) is defined whenever the denominator in (1) does not vanish; that
is, whenever the state s is visited by the sequence. If Ns = 0, we let qσ(· | s)
be arbitrary. Note that qσ is a transition function over S.

A piecewise Markov chain is the concatenation of Markov chains. For-
mally,

Definition 2.1 Let K be a positive integer. A process (sn)n≤N is a piece-
wise Markov chain with K pieces if there exists a non-decreasing sequence
(nk)0≤k≤K of integers with n0 = 0 and nK = N , such that for each k =
1, . . . , K, the process (sn)nk−1≤n≤nk

is a Markov chain.

Given a S-valued process (sn)n≤N , s ∈ S, and m ∈ N, we denote F
s
m =

1
m |{0 ≤ n ≤ m− 1 | sn = s}| the empirical frequency of s from stage 0 up
to stage m − 1 inclusive, and F s

m = 1
m |{1 ≤ n ≤ m | sn = s}|. We also

denote by P the law of (sn)n≤N , and by qn the conditional law of sn+1

given (s1, ..., sn). Our basic theorem is the following.
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Theorem 2.2 For every ε > 0 sufficiently small, every ρ ∈ (0, 1/2(4|S|+1),
and every ζ ∈ (0, 2ρ), there exists N0 ∈ N such that the following holds.
For every sequence σ of length N ≥ N0, there is a piecewise Markov chain
(sn)n≤N with |S| pieces over S such that, for each s ∈ S,

B1 If νσ
s ≥ 1

Nρ , then P(|F s
N − νσ

s | ≥ ενσ
s ) ≤ 1

Nζ .

B2 ‖qn − qσ(· | sn)‖∞ < ε, a.s. for at least N − |S| values of n < N .

2.2 On Markov chains

In the present section we present some general results on Markov chains,
that have their own interest. We first provide a result on the speed of
convergence of an irreducible Markov chain to its invariant measure. Next,
we collect a few observations on the expected exit time from domains of S.
Let q : S → ∆(S) be a transition rule over S. Given s ∈ S we denote by
Ps,q the law of the Markov chain (S, q) starting from s. We denote by Es,q

the corresponding expectation operator. When there is no risk of confusion,
we may abbreviate Ps,q and Es,q to Ps and Es respectively. The hitting
time of C ⊆ S is denoted TC := min {n ≥ 0 : sn ∈ C}, the minimum of an
empty set being +∞. For t ∈ S, we abbreviate T{t} to Tt and we denote by
T+

t = min {n ≥ 1, sn = t} the first return to t. Finally, for C ⊂ S, C = S \C
denotes the complement of C in S.

Given a transition function q over S, i = 1, 2, we set for every non empty
subset C of S

νq
C(s) =

∑
t∈C µtq(s | t)∑
t∈C µtq(C|t) for every s ∈ C, and (2)

Kq
C =

∑

s∈C

νC(s)Es,q[eC ].

The numerator (resp. the denominator) in the definition of νq
C is the long

run frequency of transitions from C to s (resp. from C to C). Thus, νq
C(s)

is the probability that the first stage in C the process visits is s, while Kq
C

is the average length of a visit to C.
We shall use below the identity (easily derived from the ergodic Theo-

rem), that holds whenever the invariant measure µ of q exists.

∑

s∈D

νq
D(s)Es,qσ [TD] =

∑
s∈D µs∑

s∈D µsqσ(D | s) . (3)

2.2.1 Convergence to the invariant measure

Definition 2.3 Given k > 0, q : S → ∆(S) over S is k-mixing if Es,q[T+
t ] ≤

k, for every s, t ∈ S.
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Note that every mixing transition rule is irreducible.

Theorem 2.4 Assume that q : S → ∆(S) is n-mixing, with invariant mea-
sure µ. Let m ∈ N and ε ∈ (0, 1

4) be such that εm > 4n. Then, for every
s, t ∈ S,

Pt(|F s
m − µs| > εµs) <

9(2n + 1)
mε2

. (4)

Remark 2.5 Inspection of the proof shows that inequality (4) holds more
generally for each state s ∈ S such that maxt∈S Et,q [T+

s ] ≤ n.

Remark 2.6 Since
∣∣F s

m − F s
m

∣∣ ≤ 1
m , one has, under the assumptions of

Theorem 2.4,

Pt(|F s
m − µs| > εµs +

1
m

) <
9(2n + 1)

mε2
. (5)

Remark 2.7 Theorem 2.4 is related to a recent generalization of Hoeffd-
ing’s inequality to uniformly ergodic chains by Glynn and Ormoneit (2002).

Proof. Denote by T+,1
s + ... + T+,p

s the pth return time to s. For
each m, the event |F s

m − µs| ≥ εµs is included in the union of the two events{
T+,1

s + ... + T
+,dmµs(1−ε)e
s ≥ m

}
and

{
T+,1

s + ... + T
+,bmµs(1+ε)c
s ≤ m

}
. For

notational convenience, set mε := dmµs(1− ε)e and mε := bmµs(1 + ε)c.
We first deal with the case s = t. In this case the variables T+,k

s are iid,
and share the law of T+

s under Ps.
By Chebycheff inequality, since Es [T+

s ] = 1
µs

and the variables are inde-
pendent,

Ps(T+,1
s + ... + T+,mε

s ≥ m) = Ps

(
T+,1

s + ... + T+,mε
s − mε

µs
≥ m− mε

µs

)

≤ mεvarsT
+
s(

m− mε
µs

)2 ≤
mεvarsT

+
s(

mε− 1
µs

)2 ,

where the second inequality holds since m− mε
µs
≥ mε− 1

µs
, and

Ps,q(T+,1
s + ... + T+,mε

s ≤ m) ≤ Ps

(
mε

µs
− (T+,1

s + ... + T+,mε

s ) ≥ mε

µs
−m

)

≤ mεvarsT
+
s(

mε

µs
−m

)2 ≤
mεvarsT

+
s(

mε− 1
µs

)2 .

Hence,

Ps,q(|F s
m − µs| ≥ εµs) ≤ (mε + mε)varsT

+
s(

mε− 1
µs

)2 . (6)
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Since q is n-mixing, 1
µs

= Es [T+
s ] ≤ n < εm/4. Therefore, the denominator

in (6) is at least 9
16m2ε2. On the other hand, by Aldous and Fill (2002,

Chapter 2, page 21, identity (22))

varsT
+
s × µs = 2EµTs + 1− 1

µs
. (7)

Since q is n-mixing, EµTs ≤ EµT+
s ≤ n, hence varsT

+
s × µs ≤ 2n + 1. Since

mµs ≥ m/n > 4/ε > 1, and mε + mε ≤ 2mµs + 1 ≤ 3mµs, we obtain

Ps(|F s
m − µs| ≥ εµs) ≤ 16× 3(2n + 1)

9mε2
.

This concludes the proof in the case s = t.
Assume now s 6= t. We estimate Pt(T

+,1
s + ... + T+,mε

s ≥ m) and
Pt(T

+,1
s + ... + T+,mε

s ≤ m) in turn. Since q is n-mixing, we obtain by
Markov inequality

Pt(T+
s ≥ ε2m) ≤ n

mε2
. (8)

On the other hand, by following the steps of the previous computation,

Pt(T+,1
s ≤ ε2m,T+,1

s + ... + T+,mε
s ≥ m) ≤ Ps(T+,2

s + ... + T+,mε
s ≥ m(1− ε2))

≤ (mε − 1)varsT
+
s

(m(1− ε2)− mε−1
µs

)2
≤ (mε − 1)varsT

+
s

(m(ε− ε2))2
, (9)

and

Pt(T+,1
s + ... + T+,mε

s ≤ m) ≤ Ps(T+,2
s + ... + T+,mε

s ≤ m− 1)

≤ (mε − 1)varsT
+
s

(mε−1
µs

+ 1−m)2
≤ (mε − 1)varsT

+
s

(mε + 1− 2
µs

)2
. (10)

In both (9) and (10), the denominator is at least
(

1
2mε

)2. Therefore, sum-
mation of (8), (9) and (10) yields

Pt(|F s
m − µs| ≥ εµs) ≤ 4varsT

+
s (mε + mε − 2) + nm

m2ε2
.

Since mε + mε − 2 ≤ 2mµs, one gets

Pt(|F s
m − µs| ≥ εµs) ≤ 4× 2(2n + 1) + n

mε2
,

hence the result.
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2.2.2 Expected exit times

We assume throughout this section that q is irreducible. We use repeatedly
the following inequality

Es

[
TL

] ≤ Es

[
TL∪t

]
+ Et

[
TL

]
, (11)

that holds for every L ⊂ S and every s, t ∈ L.

Proposition 2.8 Let C ⊂ S, with |C| > 1. Define ρ1(C) = maxD⊂C mins∈D Es

[
TD

]
and ρ2(C) = maxs∈C Es

[
TC

]
. One has

Es

[
TD

] ≤ |D| ρ1(C) for every D ⊂ C and every s ∈ D, and (12)
Es

[
TC

] ≥ ρ2(C)− (|C| − 1)ρ1(C) for every s ∈ C. (13)

Proof. We prove (12) by induction over |D|. Plainly, the inequality
holds for singletons. Assume that the result holds for every subset of size k.
Let D ⊂ C be of size k + 1, and let s ∈ D. By the definition of ρ1(C), there
is t ∈ D, such that Et

[
TD

] ≤ ρ1(C). By (11) and the induction hypothesis
for D \ t,

Es

[
TD

] ≤ Es[TD∪t] + Et[TD] ≤ (|D| − 1)ρ1(C) + ρ1(C).

We now prove (13). Let s ∈ C be given. For t 6= s ∈ C, one has, by (11)
and (12)

Es

[
TC

] ≥ Et

[
TC

]−Et

[
TC∪s

] ≥ Et

[
TC

]− (|C| − 1)ρ1(C). (14)

The result now follows by taking the maximum over t in (14).

Corollary 2.9 Under the notations of Proposition 2.8, one has

Ps

(
TC < Tt

) ≤ 2 |C| ρ1(C)
ρ2(C)− (|C| − 1)ρ1(C)

for each C ⊂ S, s, t ∈ C.

(15)

Proof. Let C ⊂ S, and s, t ∈ C be given. We modify the Markov chain
by collapsing C to a single state, still denoted C, and we set q(t | C) = 1,
so that EC [Tt] = 1. This modification does not affect Ps

(
TC < Tt

)
. By

Aldous and Fill (2002, Chapter 2, Corollary 10),

Ps(TC < Tt) =
Es [Tt] + Et

[
TC

]−Es

[
TC

]

EC [Tt] + Et

[
TC

] . (16)

Since EC [Tt] = 1, one has Es [Tt] ≤ Es

[
Tt∪C

]
+ 1. By (11), Et

[
TC

] −
Es

[
TC

] ≤ Et

[
Ts∪C

]
. By (12), the numerator in (16) is at most 1 +

Et[TC∪s] + Es[TC∪t] ≤ 2(|C| − 1)ρ1(C) + 1.
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On the other hand, the denominator is equal to 1 + Et

[
TC

]
, hence, by

(13), at least ρ2(C)− (|C| − 1)ρ1(C).

The next result deals with the transition function qC of the Markov chain
q watched on C (see Aldous and Fill (2001, Chapter 2, Section 7.1)):

qC(t | s) = q(t | s) +
∑

u/∈C

q(u | s)Pu(TC = Tt), for every s, t ∈ C. (17)

By Aldous and Fill, qC is irreducible, and its invariant measure µC coincides
with the invariant measure of q, conditioned on C.

Corollary 2.10 For s, t ∈ C, one has Es,qC [Tt] ≤ (|C|−1)ρ1(C)
minu∈C Pu,q(Tt<TC) .

Proof. Let t ∈ C be given. For convenience, set α := maxs∈C Es,qC [Tt].
Let s ∈ S achieve the maximum in the definition of α. By (12)

α = Es,qC [Tt] ≤ Es,q

[
TC∪t

]
+ Ps,q(TC < Tt)α.

≤ (|C| − 1)ρ1(C) + αPs,q(TC < Tt).

Then, for every s′ ∈ C,

Es′,qC [Tt] ≤ α ≤ (|C| − 1)ρ1(C)
1−Ps,q(TC < Tt)

≤ (|C| − 1)ρ1(C)
minu∈C Pu,q(Tt < TC)

,

as desired.

2.2.3 A structure theorem

Here we prove a structure result which states that for every finite sequence
of states in S there is a partition of S such that the number of times the
sequence exits a given atom of the partition is much smaller than the number
of visits to any strict subset of this atom. The sequence moves around inside
the atom much more quickly than from one atom to another.

For every positive integer N ∈ N, every sequence (s0, s1, . . . , sN ) of
states, and every subset C ⊂ S, define

RC = | {n < N | sn /∈ C, sn+1 ∈ C} |+ 1s0∈C .

RC is the number of C-runs along the sequence (see Feller (1968, II.5)). For
convenience of notations, we omit the dependency of RC on the sequence.
Note that RC\D ≤ RC + RD for every proper subset D of C, and that
|RC −RS\C | ≤ 1. Note also that RC ≥ |{n < N |sn ∈ C, sn+1 /∈ C}|
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Theorem 2.11 For every positive integer N , every sequence (s0, s1, . . . , sN ),
of states in S, and every a > 0, there is a partition C of S such that the
following holds for every C ∈ C.

P1 RC ≤ (a + 1)|C|.
P2 For each proper subset D of C, RD > aRC .

Proof. Observe that the trivial partition C = {S} satisfies P1, since
RS = 1.

Among all the partitions that satisfy P1, let C be one with maximal
number of atoms. Denote k = |C|. We prove that C satisfies P2. Otherwise,
there is C ∈ C, and there is a proper subset D of C, such that RD ≤ aRC .

Consider the partition C \{C}∪{D, C \D}; that is, we further partition
the set C into two sets D and C \D. We show that this new partition, that
has k + 1 elements, satisfies P1 as well, contradicting the maximality of C.
Indeed, RD ≤ aRC ≤ (a + 1)k+1, and RC\D ≤ RC + RD ≤ RC(a + 1) ≤
(a + 1)k+1.

Remark 2.12 The partition need not be unique. Indeed, if |S| = 2 and
a < n

2 ≤ (a + 1)2, the two partitions of S satisfy P1 and P2.

Remark 2.13 When a > 2, the collection of all partitions that satisfy P2
is a lattice in the following sense: if C and D are two partitions that satisfy
P2, then for every C ∈ C and D ∈ D, if the intersection C ∩D is not empty
then it is equal to C or D. In particular, the partition considered in the
proof of Theorem 2.11 is unique.

Indeed, let C and D be two partitions that satisfy P2 such that, for some
C ∈ C and D ∈ D, the intersection P = C ∩ D is not empty, and a strict
subset of both C and D.

For every set A which is disjoint of P set

kA = #{n < N | sn ∈ P, sn+1 ∈ A}.

Then kD + kD\P = kC + kC\P = RP − 1sN∈P , kC\P + kD\P ≤ RP − 1sN∈P ,
kC ≤ RC − 1sN∈P , and kD ≤ RD − 1sN∈P . It follows that

RP −1sN∈P ≥ kC\P +kD\P ≥ 2RP −2×1sN∈P −kC−kD ≥ 2RP −RC−RD.

In particular, by P2

RC + RD − 1sN∈P ≥ RP ≥ a×max{RC , RD},

a contradiction when a > 2.
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2.3 Proof of Theorem 2.2

To prove Theorem 2.2 it is sufficient to consider only exhaustive sequences;
namely, sequences that visit all states in S (by dropping from S states that
are never visited). However, as the proof of the more general Theorem 3.6
below refers to the proof of Theorem 2.2, it is more convenient not to make
this assumption.

We prove Theorem 2.2 first by considering periodic and exhaustive se-
quences, and then by looking at a general sequence.

Let ε > 0 be small enough, let ρ ∈ (0, 1/2(4|S|+ 1)), and let ζ ∈ (0, 2ρ)
be fixed.

2.3.1 The case of periodic exhaustive sequences

We choose N0 ∈ N such that (N.i) N
(4|S|+1)ρ−1
0 ≤ ε/(2|S| + 1), (N.ii) N4ρ

0 ≥
max{11|S|, 2/ε}, (N.iii) N2ρ−ζ

0 ≥ 4 × 19 |S| /ε2, and (N.iv) Nρ
0 ≥ 4 |S| + 1.

Let N ≥ N0, and we set a = N4ρ.
We assume here that the sequence σ = (s0, s1, . . . , sN ) is periodic and

exhaustive: sN = s0 and Ns ≥ 1 for every s ∈ S. The proof of the following
lemma is left to the reader.

Lemma 2.14 The empirical transition function qσ is irreducible. Its in-
variant measure is µs = Ns

N .

Let C = (S1, . . . , SK) be a partition of S obtained when applying Theo-
rem 2.11 to σ and a. For C ⊂ S, we let nC :=

∑
s∈C Ns denote the number

of stages spent in C along σ. We abbreviate nSk
to nk.

Proposition 2.15 With the notations of Proposition 2.8, one has

ρ1(Sk) ≤ max
D⊂Sk

nD

RD − 1
≤ 2

a
ρ2(Sk), for every k such that |Sk| > 1.

Proof. By Lemma 2.14
∑

s∈D µs = nD
N and

∑
s∈D µsq

σ(D | s) =
|{n<N |sn∈D,sn+1 /∈D}|

N . Therefore,

nD

RD
≤

∑

s∈D

νD(s)Es,qσ [TD] ≤ nD

RD − 1
(18)

Fix k ∈ {1, . . . , K}. By (N.ii) a ≥ 2, hence 1
aRSk

−1 ≤ 2
a × 1

RSk
. Hence,

for every D ⊂ Sk, by (18), the definition of C, and (18) again,

min
s∈D

Es,qσ [TD] ≤ nD

RD − 1
≤ nSk

aRSk
− 1

≤ 2
a

nk

RSk

≤ 2
a

max
s∈Sk

Es,qσ

[
TSk

]
=

2
a
ρ2(Sk).

The result follows, by taking the supremum over D ⊂ Sk.
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We now construct a piecewise Markov chain with K pieces. The kth
piece is used for nk stages, and its goal is to approximate the empirical
transitions on Sk. In those stages, the process will remain in Sk.

Let m0 = 0, and for every positive integer k ≤ K define mk = n1 + n2 +
· · ·+ nk.

For every k = 1, . . . ,K define a transition rule q′k : S → ∆(S) as follows.
If nk < N1−ρ we define q′k = qσ. Otherwise we define

q′k(t | s) =
{

qk(t | s) s ∈ Sk, t ∈ Sk

µk(t) s 6∈ Sk, t ∈ Sk

where qk is the transition function of the Markov chain qσ watched on Sk

(see Eq. (17)) and µk is the invariant measure of qk. Let (sn)0≤n≤N be
the piecewise Markov chain that starts in S1 and follows the transition rule
q′k from stage mk up to mk+1, for each k. The exact way the initial state
is chosen is irrelevant. We will show that it satisfies the requirements of
Theorem 2.2.

We first show that condition B2 is satisfied. Fix k ∈ {1, . . . , K}, and let
s ∈ Sk. If nk < N1−ρ then q′k(· | s) = qσ(· | s). Otherwise,

‖q′k(· | s)− qσ(· | s)‖ ≤
∑

u/∈Sk

qσ(u | s) ≤ RSk

Ns
.

If Sk = {s} is a singleton, then by Theorem 2.11(P1) and (N.i) the right
hand side is bounded by (a+1)|S|

N1−ρ < ε, while if |Sk| ≥ 2, by (N.ii) the right

hand side is bounded by
RSk
aRSk

< ε. Therefore, ‖qn − qσ(· | sn)‖ < ε holds
a.s. whenever n 6= mk, for k = 0, .., K − 1.

We now prove that condition B1 is satisfied. Let k ∈ {1, . . . ,K} be
given. If nk < N1−ρ, then νσ

s < 1
Nρ for every s ∈ Sk, hence B1 holds for

such states. If nk ≥ N1−ρ and Sk = {s} is a singleton then F s
N = νσ

s , and
B1 holds as well.

We may thus assume that nk ≥ N1−ρ and |Sk| ≥ 2. We establish the
claim by proving first that qk is mixing, and by using Theorem 2.4.

Lemma 2.16 The transition function qk on Sk is N1−3ρ-mixing.

Proof. By Corollary 2.10, for every s, t ∈ Sk

Es,qk
[Tt] ≤ (|Sk| − 1)ρ1(Sk)

1−maxu∈Sk
Pu,qσ(TSk

< Tt)
.

Abbreviate ρ1(Sk) and ρ2(Sk) to ρ1 and ρ2 respectively. By Corollary 2.9,
the denominator is at least 1− 2 |Sk| ρ1

ρ2−(|Sk|−1)ρ1
. Therefore,

Es,qk
[Tt] ≤ (|Sk| − 1)ρ1 × ρ2 − (|Sk| − 1)ρ1

ρ2 − (3 |Sk| − 1)ρ1
≤ 2 |Sk| ρ1, (19)

12



where the second inequality follows by Proposition 2.15 and (N.ii).
By Proposition 2.15 and Theorem 2.11(P2)

ρ1 ≤ max
D⊂Sk

nD

RD − 1
<

N

a− 1
≤ N1−3ρ

2 |Sk| − 1, (20)

since Nρ ≥ 4 |S|+ 1. The result follows by (19) and (20).

By Section 2.2.2, the invariant measure of qk is νσ(· | Sk), where νσ(t |
Sk)) = Nt/nk for t ∈ Sk. By (N.i), Remark 2.6, and (N.iii),

Ps,qk

(
|F t

nk
− νσ(t | Sk)| > ενσ(t | Sk)

)

≤ Ps,qk

(
|F t

nk
− νσ(t | Sk)| > ε

2
νσ(t | Sk) +

1
nk

)

≤ 4× 19N1−3ρ

nkε2
≤ 4× 19N1−3ρ

ε2N1−ρ
≤ 1
|S| ×

1
N ζ

. (21)

Since the process (sn) does not visit t ∈ Sk except in the kth phase, B1
follows from (21) by summation over t.

2.3.2 The sequence σ = (s0, s1, . . . , sN ) is arbitrary

Choose N0 ∈ N such that (N’.i) N
2ρ(4|S|+1)−1
0 ≤ ε−2ε2

2|S|+1
, (N’.ii) N8ρ

0 ≥
max{11|S|, 2/

(
ε− 2ε2

)
)}, (N’.iii) N4ρ−ζ

0 ≥ 4 × 19 |S| / (
ε− 2ε2

)2, (N’.iv)
N1−2ρ

0 ≥ |S|
ε2 , (N’.v) Nρ

0 ≥ 1
1−ε2 , and (N’.vi) N2ρ

0 ≥ 4 |S|+ 1.
Let N ≥ N0, and let σ = (s0, ..., sN ) be an arbitrary sequence in S. We

will add few states to σ, so as to get a periodic and exhaustive sequence.
We then apply the results of Section 2.3.1 to the new sequence, and then
prove that similar estimates hold for the original sequence.

Let S∗ = ∪N
n=0{sn} ⊆ S be the set of states visited by σ. Consider

the sequence σ∗ = (s0, s1, . . . , sN , s∗1, . . . , s
∗
r, s0), where r = |S| − |S∗| is the

number of states not visited by σ, and S\S∗ = {s∗1, . . . , s∗r}. By construction,
this new sequence is periodic and exhaustive. The length N∗ + 1 of this
sequence is N + r + 2 < N + |S|+ 2.

One can verify that N∗ satisfies (N.i-iv) with ρ′ := 2ρ and ε′ := ε− 2ε2.
Therefore there is a piecewise Markov chain2 (sn)n≤N∗ such that B1 and B2
hold w.r.t. νσ∗ . Observe that each state s∗j ∈ S \ S∗ constitutes a singleton
in the partition C associated with σ∗. We assume that the last r stages
are devoted to these elements of the partition, and we now check that the
restriction (sn)n≤N of the process to the first N stages satisfies B1 and B2.

2In Section 2.3.1, we set q′k = qσ whenever nk < N1−ρ. We still set here q′k to be qσ

and not qσ∗ . This does not affect conclusions B1 and B2 for σ∗.
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We start with B1. Let s ∈ S with νσ
s ≥ 1

Nρ . By (N’.iv),

∣∣∣νσ
s − νσ∗

s

∣∣∣ ≤ r + 1
N

≤ νσ
s

r + 1
N1−2ρ

≤ ε2νσ
s . (22)

By (N’.v),

νσ
s ≥

1
Nρ

=⇒ νσ∗
s ≥ 1

N2ρ
⇒ P

(∣∣∣F s
N∗ − νσ∗

s

∣∣∣ ≥ ε′νσ∗
s

)
≤ 1

N ζ
. (23)

In such a case, by (N’.iv)

∣∣F s
N∗ − F

s
N

∣∣ ≤ r + 1
N

≤ ε2νσ
s .

Hence, by (22),
∣∣F s

N − νσ
s

∣∣ ≤ ∣∣F s
N∗ − νσ∗

s

∣∣ + 2ε2νσ
s . Condition B1 follows

using (23).

We now prove B2. By construction, except for at most |S| stages, qn =
qσ(· | sn), or both

∣∣qn − qσ∗(· | sn)
∣∣ ≤ ε′ and N∗

sn
≥ min{a,N1−ρ} ≥ N4ρ.

In the latter case, by (N’.iii),
∣∣qσ∗(·|sn)− qσ(· | sn)

∣∣ ≤ 1/N4ρ ≤ ε′, which
concludes the proof.

3 The General Problem

3.1 Presentation

For every state s ∈ S let Vs ⊆ ∆(S) be a non-empty polyhedron,3 and set
V = (Vs)s∈S . The set Vs should be thought of as the set of permissible
transitions from s.

Throughout this section, V is fixed.

Definition 3.1 A V -process is a S-valued process (Xn) such that for every
n ≥ 1, the conditional distribution of sn given s1, s2, . . . , sn−1 is in Vsn−1.

We here generalize the question addressed in the previous section. Given
a sequence σ, does there exist a simple V -process that approximates σ, in
the sense of Theorem 6. In general, such an approximation needs not exist.
Indeed, as the following two examples show, if all V -processes are reducible,
or if the sequence is not “typical”, meaning that the empirical transitions
are “far” from any V -process, such a construction is not possible. In the
following two examples, Vs is a singleton for each s ∈ S, so there is a unique
V -process, which is a Markov chain.

3A polyhedron is a convex hull of finitely many points.
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Example 3.2 (A reducible Markov chain) Consider a problem with three
states {a, b, c}. Assume V is such that for any V -process, states b and c are
absorbing, whereas if the process is in state a, with equal probabilities it
moves to states b and c. When the initial state is a, there are two pos-
sible sequences under the unique V -process, each is realized with probabil-
ity 1/2: (a, b, b, b, . . . , b) and (a, c, c, c, . . . , c). But if the given sequence is
(a, b, b, b, . . . , b) there is no V -process that satisfies both (i) and (ii).

Example 3.3 (A non-typical sequence) Assume there are two states {a, b},
and Va = Vb = {1

2a + 1
2b}.

Assume the given sequence is (a, a, · · · , a). There is no V -process that
satisfies (i) and (ii), provided N is sufficiently large.

Thus:

• The sequence σ may be completely atypical of any V -process.

• Transitions out of states that are transient under any V -process may
not be approximated.

We now define the notion of typical sequences w.r.t. V = (Vs)s∈S , prove
that for every V -process, the probability that the realized sequence is typical
is close to 1, and prove that for every typical sequence there is a hidden
piecewise V -Markov chain with at most |S| pieces that approximates the
typical sequence in the sense of (i) and (ii) above.

Therefore, we will assume that V contains an irreducible transition func-
tion b = (bs)s∈S , and limit our analysis to sequences that are typical, in the
following sense.

Definition 3.4 Let N ∈ N, and δ, ε > 0. A sequence (s0, s1, . . . , sN ) is
(N, δ, ε)-typical if there exists v ∈ V such that

∣∣∣1− v(t|s)
q(t|s)

∣∣∣ < ε for every

s, t ∈ S that satisfy Nsq(t | s) ≥ N δ or Nsv(t | s) ≥ N δ. The set of
(N, δ, ε)-typical sequences is denoted by TN

δ,ε.

As we prove in the sequel, under some constraints on the parameters the
probability of the typical sequences is close to 1, under any V -process.

Definition 3.5 A process (sn)n≤N is a (piecewise) hidden Markov chain
over S if there exists an auxiliary finite set T and a (piecewise) Markov
chain (zn)n≤N over S×T such that (sn)n≤N is the marginal of (zn)n≤N over
S.

Following the notations of Definition 3.5, let p(· | (s, t)) be the transition
function of (zn)n≤N . If the marginal over S of p(· | (s, t)) belongs to Vs for
each (s, t) ∈ S×T , the process (sn)n≤N is a V -process, due to the convexity
of Vs. It is typically not a Markov chain. In such a case, we say that (sn)n≤N

is a hidden (piecewise) V -Markov chain.
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Theorem 3.6 Assume that there is an irreducible transition function b ∈
V , and set B := maxs,t∈S Es,b [Tt]. Let ψ, η ∈ (0, 1) be given. There exist
δ, ε > 0 and N1 ∈ N such that the following holds. For every N ≥ N1

and every (N, δ, ε)-typical sequence (s0, s1, . . . , sN ), there exists a hidden
piecewise V -Markov chain with at most |S| pieces such that

G1 If νσ
s ≥ 1

Nδ , then P(|F s
N − νσ

s | ≥ ηνσ
s ) ≤ 1

Nδ .

G2 Let N0 = |{n < N : ‖qn − qσ(· | sn)‖ > η }|. Then E [N0] ≤ NψB.

3.2 Typical sequences

Theorem 3.7 below states that most sequences are typical, provided the
parameters are chosen properly. Its proof uses the following large deviation
estimate for Bernouilli variables. Let (Xn)n∈N be an infinite sequence of
i.i.d. Bernouilli r.v.s with parameter p, and denote for every positive integer
n, Xn =

∑n
i=1 Xi/n. By Alon et al (2000, Corollary A.14),

P(| Xn − p |> εp) ≤ 2 exp(−cεpn),

where cε = min{ε2,−ε + (1 + ε) ln(1 + ε)} is independent of n and p. In
particular, for every positive integer k,

P

(
sup
pn≥k

| Xn − p |> εp

)
≤ 2

∞∑

n=dk/pe
exp(−cεpn) ≤ 2 exp(−cεk)

1− exp(−cεp)
. (24)

Observe that for every ε sufficiently small, ε2/3 < cε ≤ ε2/2.

Theorem 3.7 Let δ, ε > 0 be given. For each ξ ∈ (0, δ/4), there exists
N0 ∈ N such that, for every N ≥ N0 and every V -process π,

P(TN
δ,ε) ≥ 1− 1

N ξ
.

Proof. Let δ, ε ∈ (0, 1) and ξ ∈ (0, δ/4) be given. For each s ∈ S, let
V ∗

s be the (finite) set of the extreme points of Vs. Choose ξ′ ∈ (ξ, δ/4).
Set ε′ = ε/(1 + ε). Let N0 ∈ N be large enough so that the following

conditions are satisfied for each N ≥ N0: (i) 2 exp(−cε′N
δ/4)

1−exp(−cε′Nδ/4−1)
≤ 1/N ξ′ , (ii)

N ξ′−ξ ≥ 3 |S|∑s∈S |V ∗
s | and (iii) N δ/2 ≥ 1/ε. Let N ≥ N0, and let (sn)n≤N

be any V -process.
We first present the V -process (sn)n≤N in an alternative way, by writing

the conditional distribution of sn+1 given s0, . . . , sn as a convex combination∑
v∈V ∗sn

bn(v)v of the extreme points of Vsn (the weights bn(v) being random
themselves).

Consider the process π′ = (sn,vn)n≤N : given the past, vn ∈ V ∗
sn

is
selected according to bn, then sn+1 is selected according to vn. Plainly, the
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law of the sequence of states is the same under both processes. We shall
deal with the process π′.

Define ns,v = |{n < N, (sn,vn) = (s, v)}| to be the number of times the
extreme point v was chosen at s, ns =

∑
v∈V ∗ ns,v the number of visits to

s, and q(t | s, v) = |{n < N, (sn,vn, sn+1) = (s, v, t)}| /ns,v. Note that the
empirical transitions out of s are given by q(t | s) =

P
v∈V ∗ ns,vq(t|s,v)

ns
, and

define v∗s =
P

v∈V ∗ ns,vv

ns
. Both are defined whenever ns > 0. As Vs is convex,

v∗s ∈ Vs. We will show that with high probability, v∗= (v∗s) is close to q in
the sense of Definition 3.4.

Fix for a moment s, t ∈ S and v ∈ V ∗
s . Plainly, ns,vv(t) < N δ/4 if

v(t) < N δ/4−1. We now assume that v(t) ≥ N δ/4−1. Let (Xn)n≤N be a
sequence of i.i.d. Bernouilli r.v.s with parameter v(t). By (24) and (i)

P
(
ns,vv(t) ≥ N δ/4 and | q(t | s, v)− v(t) |> ε′v(t)

)
≤ 2 exp(−cε′N

δ/4)
1− exp(−cε′N δ/4−1)

≤ 1
N ξ′ .

(25)
We now claim that

P
(
ns,vv(t) < N δ/4 and ns,vq(t | s, v) ≥ N δ/2

)
≤ 2/N δ/4. (26)

Indeed, setting n =
⌊
N δ/4/v(t)

⌋
, the left hand side in (26) is at most

P
(
sup

{
X1 + · · ·+ Xk, kv(t) < N δ/4

}
≥ N δ/2

)
≤ P

(
X1 + · · ·+ Xn ≥ N δ/2

)
.

By Markov inequality, the right-hand side is at most nv(t)/N δ/2 ≤ 2/N δ/4.
Eqs. (25) and (26) yield together

P
(
ns,v max{v(t),q(t | s, v)} ≥ N δ/4 ⇒| q(t | s, v)− v(t) |≤ ε′v(t)

)
≥ 1− 3

N ξ′ .

(27)
Let T be the set of all sequences (s0, v0, s1, v1, . . . , sN ) that satisfy the

implication in (27), for every s, t ∈ S and every v ∈ V ∗
s . By (ii), P(T ) ≥

1− 1
Nξ . We will show that every sequence in T is (N, δ, ε)-typical.
Let us be given a sequence in T . Let ns,v, ns, q(t | s, v), q(t | s) and v∗ be

the values of the r.v.s. ns,v, ns, q(t | s, v), q(t | s) and v∗ respectively for this
sequence. Assume that s, t ∈ S satisfy nsq(t | s) ≥ N δ (the same argument is
valid also in the case nsv(t) ≥ N δ). We prove that |q(t | s)−v(t)| ≤ εq(t | s).
We first claim that for every v ∈ V ∗

s ,

ns,v|q(t | s, v)− v(t)| ≤ ε′

1− ε′
nsq(t | s). (28)

Indeed, if ns,v max{q(t | s, v), v(t)} ≥ N δ/2 then by (27) v(t) ≤ 1
1−ε′ q(t |

s, v), and therefore

ns,v|q(t | s, v)− v(t)| ≤ ε′ns,vv(t) ≤ ε′

1− ε′
ns,vq(t | s, v) ≤ ε′

1− ε′
nsq(t | s),
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where the last inequality holds since nsq(t | s) =
∑

v∈V ∗s
ns,vq(t | s, v). If,

on the other hand ns,v max{q(t | s, v), v(t)} < N δ/2 then

ns,v|q(t | s, v)− v(t)| ≤ N δ/2 ≤ nsq(t | s)/N δ/2,

and (28) holds by (iii).
By summing (28) over all v ∈ V ∗

s we get,

|q(t | s)− v∗s(t)| ≤
∑

v∈V ∗s

ns,v

ns
|q(t | s, v)− v(t)| ≤ ε′

1− ε′
q(t | s) = εq(t | s),

as desired.

The requirement ξ < δ/4 arises from the use of Markov inequality. A
slight modification of the argument would improve the bound to δ/2. It is
not clear whether this latter bound is optimal.

3.3 Proof of Theorem 3.6

We here prove Theorem 3.6. The proof mostly follows the proof of Theorem
2.2. The main complication is the following. Each piece qk of the Markovian
approximation that was constructed in Section 2 was obtained by watching
the empirical transition function q on a specific subset Sk. Characteristics of
the corresponding chain qk (invariant measure, mixing time) were then easily
derived from the properties of q and of the partition of S. By constrast, each
piece of the approximation is here required to be a V -process. Thus, the
former choice for qk may no longer be admissible, and one is led to choose
the V -process that is closest (in some sense) to qk on Sk. Properties of this
process are obtained from results on perturbations of Markov chains to be
found in Solan and Vieille (2002).

3.3.1 Fixing parameters

Let ψ, η ∈ (0, 1) be given. Choose ε > 0 small enough so as to satisfy the
following conditions, with L =

∑|S|
n=1

(|S|
n

)
n|S|. (E1) ε < η/56L < η, (E2)

ε < 1
20L2|S|2 , (E3) ε < 1

3×2|S| and (E4) 4
1−ε(1 + 54εL) ≤ L .

Fix β ∈ (0, 1
2

(
A
L

)|S| × ε(1−ε)
L×|S|4 ), where A=1/2. Set α = 1

2β|S|L2 , and

α′ = α/2−|S|
2|S| . Then β < 1/20|S|2L2, so that α′ ≥ 2.

Choose ψ′ ∈ (0, ψ), ξ ∈ (0, ψ′/(|S|+1)), δ′ ∈ (0, ξ/2), and δ ∈ (0, min{δ′, (1−
ψ)/2}). Set a = N ξ. This choice implies that for every N ∈ N sufficiently
large the following inequalities hold. (C1) N δ′ ≥ N δ+1, (C2) N δ ≥ 3

ε(1−3ε) ,

(C3) 2+16L |S| (N +S+2)ψ′× 1
1−|S|N−δ < Nψ/ |S|, (C4) ηN1−2δ ≥ 1, (C5)

4BL |S|N δ+ψ′−1 ≤ (N + |S| + 2)−δ ≤ ε/2, (C6) N1−2δ−ψ ≥ 42B |S| /ε2,
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(A1) β(a − 1) ≥ (N + S + 2)δ′ , (A2) a − 1 ≥ 1
2β|S| , (A3) 2a ≤ N ,

(A4) (a + 1)|S| ≤ Nψ′ ≤ N , (A5) 4×72
ε2N1−δ

(
N

a−1 + B
)
≤ N−δ

L|S|2 , (A6) B(1 +

3ε) (a+1)|S|
N1−δ ≤ 1

2Nδ , and (A7) Nψ/|S| ≥ 1 + 2(1 + 3ε)N δ(a + 1)|S|.

3.3.2 The periodized sequence

Let σ be an (N, δ, ε)-typical sequence. For every s ∈ S choose v(· | s) ∈ Vs

such that, for every t,

Nσ
s max{qσ(t | s), v(t | s)} ≥ N δ ⇒

∣∣∣∣1−
v(t | s)
qσ(t | s)

∣∣∣∣ ≤ ε. (29)

Let σ∗ = (s∗0, . . . , s
∗
N∗) be the periodic and exhaustive sequence that is gen-

erated from σ as in the proof of Theorem 2.2. Following the notations used
in Section 2, we let Ns := Nσ

s , N∗
s := Nσ∗

s , and q∗ := qσ∗ denote the empir-
ical transitions along σ∗, and n∗C :=

∑
s∈C N∗

s denote the number of stages
spent in C ⊂ S along σ∗. By (C1),

N∗
s max{q∗(t | s), v(t | s)} ≥ N δ′

∗ ⇒ Ns max{qσ(t | s), v(t | s)} ≥ N δ
∗ .

In that case, by (C2),
∣∣∣1− Ns→t

N∗
s→t

∣∣∣ ≤ ε
3 , where Ns→t and N∗

s→t are the number

of transitions from s to t along σ and σ∗ respectively, and
∣∣∣1− Ns

N∗
s

∣∣∣ ≤ ε
3 .

Hence
∣∣∣1− q∗(t|s)

qσ(t|s)
∣∣∣ ≤ ε (see Lemma 15 in Solan and Vieille (2002)). There-

fore,

N∗
s max{q∗(t|s), v(t|s)} ≥ N δ′

∗ ⇒
∣∣∣∣1−

v(t|s)
q∗(t | s)

∣∣∣∣ ≤ 3ε. (30)

In other words, σ∗ is (N∗, δ′, 3ε)-typical.

Lemma 3.8 Let s ∈ S such that Ns ≥ N1−δ. One has ‖v(·|s)− qσ(·|s)‖ ≤
η.

Proof. Let t ∈ S be given. If max{v(t|s), qσ(t|s)} ≤ η, one has
|v(t|s)− qσ(t|s)| ≤ η. Otherwise, by (C4), Ns max{v(t|s), qσ(t|s)} ≥ ηN1−δ ≥
N δ. Therefore, by (29) and (E1), |v(t|s)− qσ(t|s)| ≤ εqσ(t|s) < η.

3.3.3 The approximating process

Let (S1, S2, . . . , SK) be a partition of S that is given by Theorem 2.11 w.r.t.
σ∗ and a. We abbreviate n∗Sk

to n∗k. Note that every state that is not visited
by σ constitutes a singleton in this partition. Let K0 =

{
k, n∗k ≥ N1−δ∗

}
be the atoms that are visited many times and, for k ∈ K0, set nk =
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⌈
n∗kP

k∈K0
n∗k

N

⌉
. The approximating process π has |K0| pieces. For conve-

nience, assume that K0 = {1, ..., |K0|}.
Let m∗

0 = 0, and for every k = 1, . . . , K define m∗
k = n1+n2+ · · ·+nk. It

follows a hidden V -Markov chain pk from stage m∗
k up to m∗

k+1. All auxiliary
Markov chains are defined on the same set S×T , with T = S∪{¤}, where ¤
is an additional symbol. The initial state of the process is irrelevant. Unless
otherwise stated, E stands for the expectation w.r.t. the law of π.

For k ∈ K0, it is convenient to introduce the auxiliary transition function
qk defined by

qk(· | s) =
{

v(·|s) s ∈ Sk

q∗(· | s) s /∈ Sk
. (31)

Thus, qk coincides with v on Sk and with q∗ on Sk.
Next, we define a transition function pk over S × T as follows:

• From state (s,¤), where s ∈ Sk: first s′ ∈ S is drawn according to
v(·|s); if s′ ∈ Sk, pk moves to (s′, ¤); if s′ /∈ Sk, t ∈ Sk is drawn with
probability Ps′,qk

(TSk
= Tt), and pk moves to (s′, t).

• From state (s, t), where s 6= t and t ∈ Sk: first s′ ∈ S is drawn
according to b(·|s); if s′ = t, pk moves to (s′, ¤); if s′ 6= t, pk moves to
(s′, t).

• From state (s, t), where s /∈ Sk and t ∈ Sk ∪{¤}: (s′, t′) is drawn with
probability b(s′|s) × Ps,qk

(TSk
= Tt′). If s′ = t′, pk moves to (s′, ¤).

Otherwise, pk moves to (s′, t′).

All other transitions from these states receive probability zero. Tran-
sitions in other states are irrelevant. Note that the marginal over S of
pk(·|(s, t)) belongs to Vs.

We now loosely describe the behavior of the S-coordinate. Starting from
Sk, this coordinate evolves according to v until exit from Sk occurs. Then,
the entry state in Sk is chosen at random, and the S-coordinate evolves
according to b until that particular state is reached. The behavior resumes
from the beginning. The T -coordinate of the auxiliary chain serves as an
indicator of whether b or v is currently used and, if relevant, specifies which
entry state in Sk has been selected.

The third item in the definition of pk is introduced to take care of the
initial stage in phase k, where the current state is inherited from the previous
phase. It is used only at stage m∗

k.
Note that qn = v(·|sn) holds whenever tn = ¤ and n 6= m∗

k, for k =
1, . . . , K. Observe that there is an ergodic set Ek for pk that contains Sk ×
{¤}. Let νk be the invariant measure of pk on Ek.
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We proceed by proving several properties of the hidden Markov chain
pk.

The case where Sk is a singleton is albeit simpler, but also has some
specific features. Therefore we shall postpone it and assume first in sections
3.3.4-3.3.7 that |Sk| ≥ 2.

3.3.4 Perturbation of Markov chains: reminder

We here introduce a result due to Solan and Vieille (2002). Given C ⊆ S
with |C| ≥ 2, and an irreducible transition rule q1 over S with invariant
measure µ1, set

ζC
q1 = min

∅⊂D⊂C

∑

s∈D

µ1
sq

1(C | s).

This is a variation of the conductance of a Markov chain, that was originally
defined by Jerrum and Sinclair (1989), and was used in the study of the rate
of convergence to the invariant measure (see also Lovasz and Kannan (1999),
Lovasz and Simonovits (1990)).

Definition 3.9 Let q1 be an irreducible transition function on S with in-
variant measure µ1, let C ⊆ S with |C| ≥ 2, and let β, ε > 0. A transition
rule q2 is (β, ε)-close to q on C if (i) q2(· | s) = q1(· | s) for every s 6∈ C; (ii)∣∣∣1− q2(t|s)

q1(t|s)
∣∣∣ < ε for every s, t ∈ C such that µ1

s max{q1(t | s), q2(t|s)} ≥ βζC
q1.

The next result summarizes Theorems 4 and 6 in Solan and Vieille
(2002). Recall that L =

∑|S|−1
n=1

(|S|
n

)
n|S|.

Proposition 3.10 Let ε ∈ (0, 1/2|S|), A > 0 and β ∈ (0, 1
2

(
A
L

)|S|× ε(1−ε)
L×|S|4 ).

Let q1 be an irreducible transition function on S. Assume that |C| ≥ 1 and
that Ps,q1(T+

t < T+
C

) ≥ A, for every s, t ∈ C. Let q2 be (β, ε)-close to q1 on
C. Then all states of C belong to the same ergodic set E for q2. Moreover,
for every s ∈ C and every D ⊂ C ,

|µ2(s | C)− µ1(s | C)| < 18εLµ1(s | C), (32)

L−1 ≤ Es,q2

[
TD

]

Es,q1

[
TD

] ≤ L, and L−1 ≤ Kq2

D

Kq1

D

≤ L. (33)

In addition, let χ ∈ (0, βζC
q1 ] be any number such that, for every s, t ∈ C,

µ1
s max{q1(t | s), q2(t|s)} ≥ χ ⇒

∣∣∣∣1−
q2(t | s)
q1(t | s)

∣∣∣∣ < ε. (34)

Then at least one of the following holds.

(i)L−1Kq1

C ≤ Kq2

C ≤ LKq1

C , or (ii)Kq1

C ≥ 1
2 |S|×

µ1
C

χ
and Kq2

C ≥ 1
L
× 1

2 |S|×
µ1

C

χ
.

(35)
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3.3.5 Perturbation of Markov chains: application

We here apply Proposition 3.10 to the transition functions q∗ and qk (defined
in (31)), and to C = Sk.

Lemma 3.11 If |Sk| ≥ 2 then the transition function qk is (β, 3ε)-close to
q∗ on Sk.

Proof. Using (30) it now suffices to prove that Nδ′∗
N∗ ≤ βζSk

q∗ .
Let C be an arbitrary non-empty subset of Sk. One has

∑

s∈C

µsq
∗(C | s) =

RC − 1s0∈C

N∗
≥ RC − 1

N∗
≥ a− 1

N∗
. (36)

By taking the minimum over C, this yields ζSk
q∗ ≥ a−1

N∗ . The result follows
by (A1).

We denote below by ρ̂i, i = 1, 2, the value of the mixing constant ρi

(defined in Proposition 2.8) for the transition function qk. We abbreviate K
for Kq∗ , and K̂ for Kqk .

Lemma 3.12 If |Sk| ≥ 2 then ρ̂1(Sk) ≤ 2
α ρ̂2(Sk), where α = 1/(2β |S|L2).

Proof. By (33), ρ̂1(Sk) ≤ Lρ1(Sk). We argue now that

KSk
≥ 1

2β |S| ×
µSk

ζSk
q∗

. (37)

For C ⊂ Sk one has by (3)

KSk

µSk

=
1∑

s∈Sk
µsq∗(Sk|s)

≥ N∗
RSk

≥ a
N∗
RC

≥ (a− 1)
1∑

s∈C µsq∗(C|s)
,

where the last inequality follows by (36) and since RC ≥ aRSk
≥ a. Eq.

(37) follows by optimizing over C, using (A2). By (35) and (37),

ρ̂2(Sk) ≥ K̂Sk
≥ 1

L
× 1

2β |S| ×
µSk

ζSk
q∗

. (38)

Fix C ⊂ Sk. By (38),

ρ̂2(Sk) ≥ 1
L
× 1

2β |S| ×
µC∑

s∈C µsq∗(C|s)
≥ 1

L
× 1

2β |S| ×KC

≥ 1
L2

× 1
2β |S| × K̂C ≥ 1

L2
× 1

2β |S| ×min
s∈C

Es,qk

[
TC

]
.

The result follows by taking the maximum over C.
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3.3.6 Estimates on E
[
Nk

0

]

Let Nk
0 =

∣∣{m∗
k ≤ n < m∗

k+1 : ‖qn − qσ(·|sn)‖ > η
}∣∣. The goal of this sec-

tion is to prove Lemma 3.16 below.
Recall that Ek is the ergodic set for pk that contains Sk×{¤}, and that

νk is the invariant measure of pk on Ek.

Lemma 3.13 If |Sk| ≥ 2 then νk(Sk × {¤}) ≥ 1− 2Bbρ2(Sk) .

Proof. We shall use the following fact. Let q be an irreducible transition
function over a finite set Ω, with invariant measure µ. Let C ⊂ Ω, and let
C = Ω\C. Then

µ(C)
µ(C)

≥ mins∈C Es,q

[
TC

]

maxs∈C Es,q [TC ]
. (39)

We apply this observation to pk and Ek, with C = Sk × {¤}. Plainly,
E(s,t),pk

[
TSk×{�}

]
= Es,b [Tt] ≤ B for each (s, t) with t 6= ¤, s, while by

(13), Lemma 3.12, and (E2),

min
s∈Sk

E(s,�),pk

[
T

Sk×{�}
]

= min
s∈Sk

Es,qk

[
TSk

]

≥ ρ̂2(Sk)− (|Sk| − 1)ρ̂1(Sk) ≥ ρ̂2(Sk)
(
1− 4βL2(|S| − 1)|S|) ≥ 1

2
ρ̂2(Sk).

By (39), one gets
νk(Sk × {¤})
νk(Sk × {¤}) ≤

2B

ρ̂2(Sk)
,

hence νk(Sk × {¤}) ≤ 2Bbρ2(Sk) .

Lemma 3.14 If |Sk| ≥ 2 then

ρ̂2(Sk) ≥ 1
2L |S|

n∗k
Nψ′
∗

.

Proof. We will use the fact that KSk
≥ n∗k/RSk

(see (3)).
By (30), and since δ′ < ψ′, (34) holds with χ = Nψ′−1

∗ . We distinguish
two cases. If KSk

≥ 1
2|S|

n∗k
N∗×χ , then by (35)

ρ̂2(Sk) ≥ K̂Sk
≥ 1

L
× 1

2 |S| ×
n∗k

N∗ × χ
=

1
L
× 1

2 |S| ×
n∗k

Nψ′
∗

.

If on the other hand KSk
< 1

2|S|
n∗k

N∗×χ , then

ρ̂2(Sk) ≥ K̂Sk
≥ 1

L
KSk

≥ 1
L
× n∗k

RSk

≥ 1
L
× n∗k

(a + 1)|S|
,

which gives also the result by (A4).

In particular, by (C5), νk(Sk × {¤}) ≥ 1/2.
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Lemma 3.15 For every ω ∈ Ek and every s ∈ Sk one has

Eω,pk

[
T+

(s,�)

]
≤ (|Sk| − 1)ρ̂1(Sk) + 2B

minu∈Sk
Pu,v(Ts < TSk

)
+ 1.

Proof. It is a simple adaptation of the proof of Corollary 2.10. We
repeat it, with few modifications. Let ω ∈ Ek and s ∈ Sk be given. Note
that

Eω,pk

[
T+

(s,�)

]
≤ 1 + max

ω′∈Ek

Eω′,pk

[
T(s,�)

]
. (40)

For convenience, set α := maxt∈Sk
E(t,�),pk

[
T(s,�)

]
. Let t ∈ Sk achieve the

maximum in the definition of α. By (11) and (12)

α = E(t,�),pk

[
T(s,�)

] ≤ Et,v

[
TSk∪s

]
+ Pt,v(TSk

< Ts)(α + B)

≤ (|Sk| − 1)ρ̂1(Sk) + B + α×max
u∈Sk

Pu,v(TSk
< Ts)

Therefore,

α ≤ (|Sk| − 1)ρ̂1(Sk) + B

minu∈Sk
Pu,v(T+

s < TSk
)
. (41)

For ω ∈ Ek\(Sk ×¤),

Eω,pk

[
T(s,�)

] ≤ B + α. (42)

The result follows from (40), (41) and (42).

nk

Lemma 3.16 If |Sk| ≥ 2 then

E
[
Nk

0

]
≤ 1
|S|BNψ.

Proof. We introduce Ñk
0 = |{n ≤ nk : tn 6= ¤}| . Thus, by Lemmas 3.8,

E
[
Nk

0

] ≤ supω Eω,pk

[
Ñk

0

]
. By Lemma 3.13, Eνk,pk

[
Ñk

0

]
≤ nkνk(Ek\(Sk×

{¤})) ≤ 2B × nkbρ2(Sk) . Therefore,

min
ω∈Sk×{�}

Eω,pk

[
Ñk

0

]
νk(Sk × {¤}) ≤

∑

ω∈Sk×{�}
Eω,pk

[
Ñk

0

]
νk(ω)

≤ Eνk,pk

[
Ñk

0

]
≤ 2B × nk

ρ̂2(Sk)
.

Since νk(Sk × {¤}) ≥ 1/2, this yields

min
ω∈Sk×{�}

Eω,pk

[
Ñk

0

]
≤ 4B × nk

ρ̂2(Sk)
. (43)
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Let γ = maxω∈Sk×{�}Eω,pk

[
Ñk

0

]
, and let ω1 ∈ Sk × {¤} be a state that

achieves the maximum. Since pk follows b once the process leaves Sk×{¤} ,
one has, for each ω2 ∈ Sk × {¤},

γ = Eω1,pk

[
Ñk

0

]
≤ Eω2,pk

[
Ñk

0

]
+ Pω1,pk

(TEk\(Sk×{�}) < Tω2)(B + γ).

By Corollary 2.9 and Lemma 3.12, Pω1,pk
(TEk\Sk×{�} < Tω2) ≤ 2|S|

α/2−|S| =
1/α′. Since α′ ≥ 2, one gets by letting ω2 vary

γ ≤ α′

α′ − 1
min

ω∈Sk×{�}
Eω,pk

[
Ñk

0

]
+

B

α′ − 1
≤ 2 min

ω∈Sk×{�}
Eω,pk

[
Ñk

0

]
+ B.

(44)
Finally, for each ω′ ∈ S × T , by (43), (44), Lemma 3.14 and (C3),

Eω′,pk

[
Ñk

0

]
≤ Eω′,pk

[
TSk×{�}

]
+ max

ω∈Sk×{�}
Eω,pk

[
Ñk

0

]

≤ B + B + 2× min
ω∈Sk×{�}

Eω,pk

[
Ñk

0

]

≤ 2B + 8B × nk

ρ̂2(Sk)

≤ 2B + 16L |S|BNψ′
∗ × N∗

N∗ − |S|N1−δ∗
≤ BNψ/ |S| .

3.3.7 Estimates on F̃ s
nk

Let F̃ s
nk

denote the frequency of visits to (s,¤) during phase k. The lemma
below is a mixing-type result. It is very close to Lemma 2.16.

Lemma 3.17 If |Sk| ≥ 2 then for every ω ∈ Ek and every s ∈ Sk,

Eω,pk

[
T+

(s,�)

]
≤ 2|S|L N

a− 1
+ 4B + 1

Proof. We repeat the proof of Lemma 2.16 with minor adjustments.
Abbreviate ρ̂1(Sk) and ρ̂2(Sk) to ρ̂1 and ρ̂2 respectively. By Lemma 3.15,

Eω,pk
[T+

(s,�)] ≤
(|Sk| − 1)ρ̂1 + 2B

minu∈Sk
Pu,v(T+

s < TSk
)

+ 1.

By Corollary 2.9, the denominator is at least 1− 2 |Sk| bρ1bρ2−(|Sk|−1)bρ1
. There-

fore,

Eω,pk
[T+

(s,�)] ≤ ((|Sk| − 1)ρ̂1 + 2B)× ρ̂2 − (|Sk| − 1)ρ̂1

ρ̂2 − (3 |Sk| − 1)ρ̂1
+1 ≤ 2 |Sk| ρ̂1+4B+1,
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where the second inequality follows by Lemma 3.12 and (E3).
Eq. (33) implies that ρ̂1 < Lρ1(Sk), and by Proposition 2.15, ρ1(Sk) ≤

maxD⊂Sk

nD
RD−1 ≤ N

a−1 . The result follows.

Define ν�k (s) = νk((s,¤))/νk(Sk × {¤}). This is the invariant measure
of pk conditioned on Sk × {¤}.

Proposition 3.18 If |Sk| ≥ 2 then P
(∣∣∣F̃ s

nk
− ν�k (s))

∣∣∣ > 2ε
1−εν

�
k (s)) + 1

nk

)
≤

1
2|S| × 1

Nδ .

Proof. By Remarks 2.5, 2.6 Lemma 3.17, (A3) and (A5), for each
ω ∈ Ek,

Pω,pk

(
|F (s,�)

nk
− νk((s,¤))| > ενk((s,¤)) +

1
nk

)

≤ 9
ε2nk

(
2(2|S|L N

a− 1
+ 4B + 1) + 1

)

≤ 2× 72
1

ε2nk
(|S|L N

a− 1
+ B) ≤ 1

2|S| ×
1

N δ
. (45)

Since νk(Sk × {¤}) ≥ 1/2, by Lemmas 3.13 and 3.14, and by (C5),
∣∣∣νk((s,¤))− ν�k (s)

∣∣∣ ≤ 2νk(Ek\(Sk × {¤}))× νk((s,¤)) ≤ ενk((s,¤)).

Therefore if
∣∣∣F̃ s

nk
− νk((s,¤))

∣∣∣ ≤ ενk((s,¤)) + 1
nk

then
∣∣∣F̃ s

nk
− ν�k (s))

∣∣∣ ≤
2ε

1−εν
�
k (s) + 1

nk
. The result follows by (45).

Corollary 3.19 If |Sk| ≥ 2 then

P
(∣∣∣F̃ s

nk
− νσ∗(s | Sk))

∣∣∣ > 55εLνσ∗(s | Sk)
)
≤ 1

2 |S| ×
1

N δ
.

Proof. Recall that ν�k is the invariant measure of qk conditioned on Sk.
On the other hand, the invariant measure of q∗ conditioned on Sk is simply
νσ∗(·|Sk). By Lemma 3.11 and Proposition 3.10,

∣∣∣ν�k (s)− νσ∗(s | Sk)
∣∣∣ ≤ 18× 3εLνσ∗(s | Sk),

The claim follows by Proposition 3.18, (E4) and since νσ∗(s | Sk) ≥ a
N∗ ≥

1
N1−δ .
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3.3.8 The singleton case: Sk = {s}
By Lemma 3.8, Nk

0 is at most |{n : (sn, tn) 6= (s,¤)}|. The next lemma is
an analog of Lemma 3.13. Its proof is however significantly different.

Lemma 3.20 One has νk((s,¤)) ≥ 1−B(1 + 3ε) (a+1)|S|
N1−δ .

Proof. We first provide a lower bound for v(s | s). By Theorem 2.11

q∗(S\{s} | s) ≤ Rs

N∗
s

≤ (a + 1)|S|

N1−δ
.

Using (30), this yields

v(S\{s} | s) ≤ (1 + 3ε)
(a + 1)|S|

N1−δ
.

We apply (39) to q = pk, Ω = Ek and C = {(s,¤)} to get

νk(Ek\(s,¤))
νk((s,¤))

≤ Bv(S\s|s) ≤ B(1 + 3ε)
(a + 1)|S|

N1−δ
.

The rest of the proof for the singleton case follows closely the proof for
|Sk| ≥ 2.

Corollary 3.21 One has P(
∣∣∣F̃ s

nk
− 1

∣∣∣ > 2ε) ≤ 1
2K × 1

Nδ .

Proof. By definition of pk, maxt∈Ek
Et,pk

[
T+

(s,�)

]
≤ B + 1. Therefore,

using Remark 2.5 to pk, ε and s = (s,¤),

P
(∣∣∣F̃ s

nk
− νk((s,¤))

∣∣∣ > ενk((s,¤))
)
≤ 9(2B + 3)

nkε2
.

By Lemma 3.20 and (A6), |νk((s,¤))− 1| ≤ ε. The result follows using
(C6).

Lemma 3.22 One has E
[
Nk

0

] ≤ BNψ

K .

Proof. We follow the proof of Lemma 3.16, and define Ñk
0 accordingly.

For each ω ∈ Ek one has, by Lemma 3.20 and (A7)

Eω,pk

[
Ñk

0

]
≤ Eω,pk

[
T(s,�)

]
+ E(s,�),pk

[
Ñk

0

]

≤ B + E(s,�),pk

[
Ñk

0

]
≤ B + 2Eνk,pk

[
Ñk

0

]

≤ B + 2nkνk(Ek\(s,¤))

≤ B + 2NB(1 + 3ε)
(a + 1)|S|

N1−δ

≤ BNψ/K.
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3.3.9 Conclusion

We here conclude the proof of Theorem 3.6. Note first that N0 =
∑

k Nk
0.

Therefore, G2 follows from Lemmas 3.16 and 3.22. Let now s ∈ Sk with
νσ

s ≥ 1
Nδ . Plainly, NF

s
N − nkF̃

s
nk

is the total number of visits to s that are
not counted in F̃ s

nk
: there are at most

∑
k Nk

0 many of them.
Since E

[∑
k Nk

0

] ≤ BNψ one has by Markov inequality and (C6)

P

(∑

k

Nk
0 > ε

N

N δ

)
≤ BN δ+ψ−1

ε
≤ 1

2N δ
.

Therefore, using Corollaries 3.19 and 3.21, the probability that both inequal-
ities

∑
k Nk

0 ≤ εN1−δ and
∣∣∣F̃ s

nk
− νσ∗(s | Sk))

∣∣∣ ≤ 55εLνσ∗(s | Sk) hold for

every k and every s ∈ Sk, is at least 1− 1
Nδ . On this event, by (E1),

∣∣∣F s
N − νσ∗

s

∣∣∣ ≤
∣∣∣∣F

s
N − nk

N
F̃ s

nk

∣∣∣∣ +
1
N

F̃ s
nk
|nk − n∗k|+

n∗k
N

∣∣∣F̃ s
nk
− νσ∗(s | Sk)

∣∣∣

≤ 56εLνσ∗
s .

This proves G1.
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