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Abstract

A multi-player Dynkin game is a sequential game in which at every
stage one of the players is chosen, and that player can decide whether
to continue the game or to stop it, in which case all players receive
some terminal payoff.

We study a variant of this model, where the order by which players
are chosen is deterministic, and the probability that the game termi-
nates once the chosen player decides to stop may be strictly less than
one.

We prove that a subgame-perfect ε-equilibrium in Markovian strate-
gies exists. If the game is not degenerate this ε-equilibrium is actually
in pure strategies.
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1 Introduction

Dynkin (1969) introduced the following zero-sum game of optimal stopping.
The game involves two players, and two stochastic processes: (in)n∈N is a
{1, 2}-valued process, which indicates which player is active at stage n, and
(rn)n∈N is a R2-valued process, which indicates the terminal payoff.

At every stage n, the two players are informed of past and current values
of the two processes. Player in, the active player at stage n, decides whether
he continues or stops. The game stops at the first stage θ in which the active
player chooses to stop. The payoff (paid by player 2 to player 1) is rθ if
θ < +∞ and zero otherwise. A pure strategy of player i is a stopping time
that is consistent with the rules of the game.

Dynkin proved that this game has a value if supn∈N |rn| ∈ L1, and con-
structed pure ε-optimal strategies for the two players. Dynkin’s ε-optimal
strategies are subgame-perfect in the sense that after every finite history, the
continuation strategy is ε-optimal in the subgame defined by that history.

An extensive literature developed from this seminal work. In a discrete
time framework, much attention was paid to the case where the players are
allowed to stop simultaneously. In the zero-sum case, several authors, in-
cluding Kiefer (1971) and Neveu (1975), provided sufficient conditions for
the existence of the value, when players are restricted to stopping times.
Rosenberg et al. (2001) proved (under a minimal boundedness condition)
that the value always exists, provided the players are allowed to use random-
ized stopping times. In the two-player non-zero-sum case, Shmaya and Solan
(2002) proved that an ε-equilibrium always exists in randomized stopping
times (again, under some boundedness condition).

Dynkin’s (1969) result implies that in every multi-player Dynkin game
(without simultaneous moves) an ε-equilibrium exists. Indeed, let σi be a
pure ε-optimal strategy of player i in the zero-sum game in which player i
maximizes his expected payoff, and all other players try to minimize player
i’s payoff. Let σ−i

i be a pure ε-optimal strategy of i’s opponents in this
game. One can verify that the strategy profile in which each player i follows
σi until a deviation occurs (since each σi is pure, a deviation is detected
immediately), and upon deviation of player j all his opponents switch to
σ−j

j , is a 2ε-equilibrium.
The model of multi-player Dynkin games offers a stylized framework to

analyze various issues of timing games. For example, in situations of shrink-
ing markets (see, e.g., Ghemawat and Nalebuff (1985), Fine and Li (1989)),
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n firms have to decide when to exit a shrinking market. Once a firm exits,
we remain with a market with n− 1 firms, which can be solved inductively,
hence the overall game reduces to a Dynkin game.

A similar situation occurs in takeover games, where n firms strategically
decide to make a takeover attempt on opponent firms.

Another related model is that of multi-player duels, or n-uels (see, e.g.,
Kilgour (1975, 1977) or Kilgour and Brams (1997)). In this model, n gunners
alternately have the option to shoot one of their opponents or to abstain.
Since once a gunner hits one of his opponents we are left with a game with
n−1 players, which can be solved inductively, the game is essentially reduced
to a Dynkin game where players have several stop actions.

As the ε-equilibrium we presented above involves threats of punishment,
which might be non-credible, it is desirable to know whether a subgame-
perfect ε-equilibrium exists for every ε > 0. To this day, it is still not known
whether every multi-player Dynkin game has an ε-equilibrium.

When |I| = 2, the proof of Shmaya and Solan (2002) can be used to
show the existence of a subgame-perfect ε-equilibrium. Solan (2002) uses
the theory of differential inclusions to prove the existence of a subgame-
perfect ε-equilibrium when (i) the sequence (in) is i.i.d., and (ii) rn depends
only on in (so that the terminal payoff depends only on the identity of the
player who terminates the game.)

In the present paper we analyze the following class of I-player games. A
deterministic sequence (in, pn, rn) ∈ I × [0, 1] × RI is given. At each stage
n player in chooses whether to continue or to stop. If he continues, the
game continues to the next stage, while if he stops a lottery is performed.
With probability pn the game terminates, yielding the payoff rn, while with
probability 1− pn the game continues.

The assumption that the order of players is deterministic is restrictive
but sometimes relevant. On the other hand, allowing the probability of
termination to be strictly less than one is quite natural: a takeover attempt
is not always successful, and the accuracy of a gunner is not always perfect.

Our main result states that if the sequence (rn) of payoffs is bounded, a
subgame-perfect ε-equilibrium in Markovian strategies exists. Moreover, un-
less the game is degenerate, this ε-equilibrium is in pure strategies. However,
in degenerate cases, a subgame-perfect 0-equilibrium need not exist. Since
the subgame-perfect ε-equilibrium we identify is in Markovian strategies, it
is robust to the information players receive along the game; all they need to
know is the stage of the game. Translated to the n-uel model, this means
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that there is a subgame-perfect ε-equilibrium which is also a subgame-perfect
ε-equilibrium in the silent n-uel, in which players do not observe missed shots.

In degenerate cases, there need not be subgame-perfect ε-equilibria in
pure strategies. This is to be contrasted with (i) finite games of perfect
information and (ii) two-player zero-sum Dynkin games, where a subgame
perfect (ε-) equilibrium in pure strategies always exists.

We hope that the combination of the arguments we use here with the
techniques presented by Shmaya and Solan (2002) and Solan (2002) can be
used to further study multi-player Dynkin games.

Another motivation to our study is linked to the observation that deter-
ministic Dynkin games form a simple class of stochastic games. By now, some
results are available on the existence of equilibrium payoffs in multi-player
stochastic games, see Solan (1999) and Vieille (2000). By contrast, apart
from few classes of games, there are no results on the existence of subgame-
perfect equilibrium payoffs and useful techniques are yet to be found. We
hope that this paper will contribute to this emerging literature.

The paper is arranged as follows. In Section 2 we present the model and
the main result. Several examples appear in Section 3. The proof of the
main result appears in Section 4.

2 The Model and the Main Result

2.1 Deterministic multi-player Dynkin games

A deterministic multi-player Dynkin game Γ = (I, (in, pn, rn)n∈N) is given by

• A finite set I of players.

• For every n ∈ N, a triplet (in, pn, rn) ∈ I × [0, 1]×RI .

The triplet (in, pn, rn) specifies who is allowed to stop at stage n, the proba-
bility that the game terminates if player in decides to stop, and the terminal
payoff if the game terminates at stage n, respectively.

The game is played in stages. At each stage n ∈ N, provided the game has
not terminated yet, player in has to choose whether to Continue or Stop. If he
decides to continue, the game continues to stage n + 1. If he decides to stop,
a lottery takes place (all lotteries in the game, including random choices by
the players, are independent.) With probability pn the game terminates, and
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the terminal payoff for the players is given by the vector rn. With probability
1− pn the game continues to stage n + 1. If the game never terminates, the
payoff is zero for all players.1

We denote by θ the termination stage of the game, i.e., the first stage in
which a player decides to stop and the game terminates. Thus, the payoff to
player i ∈ I is ri

θ1θ<∞.

2.2 Strategies and results

A strategy of player i ∈ I maps the set of information sets of player i to the
set of mixed moves of player i. We let Ni = {n ∈ N | in = i} be the set of
stages in which player i is active.

We are going to restrict the players to Markovian strategies; namely,
strategies that depend only on the stage, and not on the history. We will
prove below that the game admits a subgame-perfect ε-equilibrium in Marko-
vian strategies. By a general observation (see, e.g., Fudenberg and Tirole
(1991, p.501)), this subgame-perfect ε-equilibrium remains a subgame-perfect
ε-equilibrium without the restriction to Markovian strategies.

In the present context, a (behavior Markovian) strategy of player i is a
function σi : Ni → [0, 1], where σi(n) is the probability assigned by player i
to stop at stage n, provided the game does not terminate before that stage.
We denote the set of strategies of player i by Σi.

A strategy profile (or simply a profile) is a vector σ = (σi)i∈I of strategies,
one for each player.

Every strategy profile σ ∈ ×i∈IΣ
i induces a probability distribution Pσ

over the space of plays, or infinite histories. The corresponding expectation
operator is Eσ. Thus, the expected payoff to player i given a strategy profile
σ is

γi(σ) := Eσ[ri
θ1θ<∞].

Before we state our result, we first recall standard equilibrium notions.

Definition 1 Let ε ≥ 0. A strategy profile σ is an ε-equilibrium if for every
player i ∈ I and every strategy τ i ∈ Σi,

γi(σ) ≥ γi(σ−i, τ i)− ε.

1Equivalently, we may assume that, with probability pn, player in is given the op-
portunity to stop for sure. For each strategy profile, the payoff is the same under both
interpretations of the game.
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We mention that, for any ε′ > ε, an ε-equilibrium is a uniform ε′-equilibrium;
that is, it is an ε′-equilibrium (a) in every discounted game, provided the
discount factor is sufficiently small, and (b) in every N -stage game, provided
N is sufficiently large. Indeed, the proof provided in Solan and Vieille (2001,
Proposition 2.13) does adapt to the present framework.

For n ∈ N, we denote by γn(σ) the expected payoff induced by the
strategy profile σ in the subgame starting at stage n.

A strategy profile is a subgame-perfect (ε-)equilibrium of a game if it
induces an (ε-)equilibrium in any subgame. In the present context, this
amounts to the following definition.

Definition 2 Let ε ≥ 0. A strategy profile σ is a subgame-perfect ε-equilibrium
if for every n ∈ N, every player i ∈ I, and every τ i ∈ Σi,

γi
n(σ) ≥ γi

n(σ−i, τ i)− ε.

Our main result is the following.

Theorem 3 Let Γ = (I, (in, pn, rn)n∈N) be a deterministic Dynkin game. If
the sequence (rn)n∈N is bounded, then for every ε > 0 the game Γ admits a
subgame-perfect ε-equilibrium in Markovian strategies.

We conclude this section with two comments.
As will be clear from the proof, in most cases, there is a pure subgame-

perfect ε-equilibrium. However, this is not always true (see Example 3 be-
low). This is in sharp contrast with finite extensive games of perfect infor-
mation and with two-player zero-sum Dynkin games.

Our proof is valid as long as γ(σ) is uniformly bounded, for every profile
σ (which is the case when the sequence (rn)n∈N is bounded.) If this does not
hold, there are strategies σ such that the corresponding payoff for at least one
player is infinite, so that the payoff function of the game is not well-defined.

3 Examples

In the present section we provide several examples, that illustrate the main
features of the model.

Example 1: Take I = {1, 2, 3} and

(in, pn, rn) =


(1, 1, (1, 0, 3)) n = 1 modulo 3,
(2, 1, (3, 1, 0)) n = 2 modulo 3,
(3, 1, (0, 3, 1)) n = 0 modulo 3.
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In words, at the first stage, player 1 can stop the game, thereby yielding
the payoff vector (1, 0, 3). If player 1 chooses to continue, at the second
stage player 2 can stop the game, yielding the terminal payoff (3, 1, 0). If
player 2 chooses to continue as well, at the third stage player 3 can stop the
game, yielding the terminal payoff (0, 3, 1). The process then repeats itself
cyclically. This game is a variation upon a game studied by Flesch et al.
(1997).

We will characterize all pure subgame-perfect 0-equilibrium profiles of
that game, using backward induction.

Let σ be such a 0-equilibrium. Assume that at stage 3n, for some n ≥ 2,
player 3 stops with probability 1; that is, σ3(3n) = 1. In particular, γ3n(σ) =
(0, 3, 1).

Consider the subgame starting at stage 3n− 1. In that subgame, player
2 receives γ2

3n(σ) = 3 if he chooses to continue at stage 3n − 1, while he
receives only 1 if he chooses to stop. By the subgame-perfect equilibrium
condition, player 2 continues at stage 3n− 1, that is, σ2(3n− 1) = 0. Hence
γ3n−1(σ) = γ3n(σ) = (0, 3, 1).

We repeat this argument with the subgame starting at stage 3n− 2. By
continuing at stage 3n − 2 player 1 receives 0, as the game will be termi-
nated at stage 3n, while by stopping he receives 1. By the subgame-perfect
equilibrium condition, σ1(3n− 2) = 1 and γ3n−2(σ) = (1, 0, 3).

Applying this backward induction argument repeatedly, we get that σ3(3n−
3) = 0, σ2(3n − 4) = 1, σ1(3n − 5) = 0 and σ3(3n − 6) = 1. The cycle of
length 6 then repeats itself.

On the other hand, if σ3(3n) = 0 for some n ≥ 2, then σ3(3n − 3) = 1
and the previous analysis holds.

Thus, there are two pure subgame-perfect 0-equilibria: (a) at odd stages
the active player stops, and at even stages the active player continues, and
(b) at even stages the active player stops, and at odd stages the active player
continues.

In each pure equilibrium, the players agree on who shoots first. We believe
that the interpretation of these two equilibria is quite appealing: Suppose
there are three gunners. If gunner 1 thinks that gunner 2 is going to shoot
tomorrow gunner 3 (or gunner 1 if gunner 3 is already dead), he has no reason
to shoot today: he is better off by letting gunner 2 be done with gunner 3,
and shoot gunner 2 the next time he can. On the other hand, if gunner 1
thinks that gunner 2 is not going to shoot tomorrow if gunner 3 is still alive,
but shoot gunner 1 if gunner 3 is already dead, and that gunner 3 is going to
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shoot him the day after, he is indifferent between shooting and not shooting
gunner 2, as he is going to die anyway, so he can as well shoot gunner 2
today.

Remark 4 This game admits other subgame-perfect equilibria. In partic-
ular, the profile in which each player stops with probability 1/2 whenever
active, is a subgame-perfect equilibrium. In a sense, it corresponds to the
cyclic equilibrium constructed by Flesch et al. (1997).

In the next example, we allow for probabilities of success below one.

Example 2: Consider the following modification of Example 1, where
I = {1, 2, 3}, and

(in, pn, rn) =


(1, 1, (1, 0, 3)) n = 1 modulo 3,
(2, 1/2, (3, 1, 0)) n = 2 modulo 3,
(3, 1/2, (0, 3, 1)) n = 0 modulo 3.

Thus, when player 1 stops the game terminates with probability 1, while
when either player 2 or player 3 stops the game terminates with probability
1/2.

As we did in Example 1, we characterize the set of subgame-perfect 0-
equilibrium in pure strategies. Let σ be such a strategy profile. Let n > 0
and i be the active player at stage n. By the subgame-perfect equilibrium
condition, σi(n) = 1 if γi

n+1(σ) < 1 and σi(n) = 0 if γi
n+1(σ) > 1.

Let n ≥ 3, and assume that σ1(3n + 1) = 1. Then γ3n+1(σ) = (1, 0, 3),
and therefore σ3(3n) = 0. This implies that γ3n(σ) = γ3n+1(σ) = (1, 0, 3),
and therefore σ2(3n− 1) = 1.

It follows that

γ3n−1(σ) =
1

2
(3, 1, 0) +

1

2
(1, 0, 3) = (2,

1

2
,
3

2
),

and therefore σ1(3n− 2) = σ3(3n− 3) = 0 and σ2(3n− 4) = 1.
Then

γ3n−4(σ) =
1

2
(3, 1, 0) +

1

2
(2,

1

2
,
3

2
) = (

5

2
,
3

4
,
3

4
),

and therefore σ1(3n− 5) = 0 and σ3(3n− 6) = 1.
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One therefore has

γ3n−6(σ) =
1

2
(0, 3, 1) +

1

2
(
5

2
,
3

4
,
3

4
) = (

5

4
,
15

8
,
7

8
),

and therefore σ2(3n− 7) = 0, σ1(3n− 8) = 0 and σ3(3n− 9) = 1.
Finally,

γ3n−9(σ) =
1

2
(0, 3, 1) +

1

2
(
5

4
,
15

8
,
7

8
) = (

5

8
,
39

16
,
15

16
),

and therefore σ2(3n− 10) = 0, and σ1(3n− 11) = 1.
Therefore, any pure subgame-perfect 0-equilibrium must repeat the se-

quence of actions (starting with player 1) (S,C,S;C,C,S;C,S,C;C,S,C). Along
this cycle, player 1 first stops, then player 3 stops twice in a row, then player 2
stops twice in a row. This difference with the subgame-perfect 0-equilibrium
of Example 1 arises since the probability of termination is here below one.
By further decreasing the probabilities pn for n = 2 or 3 mod3, while keep-
ing pn = 1 for n = 1 mod 3, one can create examples in which all pure
subgame-perfect equilibria have cycles of arbitrary length.

This example highlights one effect of low values for (pn). Note indeed that
the expected payoff, starting from some stage n, is a convex combination of
rn and of the continuation payoff (the expected payoff, starting from stage
n+1). The weight of rn depends on the probability of termination, but cannot
exceed pn. In particular, when the probability of termination is low, the
expected payoff is close to the continuation payoff. Therefore, if some player
has an incentive to stop only once the continuation payoff reaches a certain
threshold, many stages may be required so that this threshold is reached.
Thus, if the game has a periodic equilibrium, lowering the probabilities of
termination often results in periodic equilibria with longer and longer periods.

We next introduce a two-player game that has no subgame-perfect 0-
equilibrium and no pure subgame-perfect ε-equilibrium.

Example 3: Take I = {1, 2}, and

(in, pn, rn) =

{
(1, 1, (−1, 2)) n is odd,
(2, 1, (−2, 1)) n is even.

Fix ε ∈ (0, 1), and let σ be the strategy profile defined by σ1(2n + 1) = 1
and σ2(2n + 2) = ε for every n ≥ 0. We claim that σ is a subgame-perfect
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ε-equilibrium. One should verify that player 1 (resp. player 2) cannot profit
by deviating in the subgames that start at odd (resp. even) stages. Consider
first the subgame that starts at stage 2n + 1, for some n ≥ 0. By stopping
at stage 2n + 1 player 1 receives −1, while, since player 2 eventually stops
with probability 1, player 1’s payoff is at most −1, whatever he plays. In
the subgame starting at stage 2n + 2, player 2’s expected payoff under σ is
ε + 2(1− ε) = 2− ε, whereas the maximal payoff to player 2 in the game is
2.

We next prove that the game has no subgame-perfect ε-equilibrium in
pure strategies. Assume to the contrary that there exists such a profile σ.

We first claim that there is an infinite set of even stages in which player
2 chooses to stop. Otherwise, let N be the maximal integer such that player
2 stops at stage 2N (set N = 0 if player 2 never stops). Consider now
the subgame that starts at stage 2N + 2. By the definition of N , player
2 never stops in this subgame. Since σ is a subgame-perfect ε-equilibrium,
this implies that under σ player 1 never stops in this subgame: by never
stopping he receives 0, while by stopping he receives −1. But this leads to a
contradiction, as it implies that player 2 can profit 1 by deviating: by never
stopping he receives 0, while by stopping he receives 1.

We next claim that there is at most one even stage in which player 2
chooses to stop. Together with the previous paragraph, this shows that there
cannot be a subgame-perfect ε-equilibrium. Assume that player 2 stops at
stage 2N , with N > 1. Since σ induces an ε-equilibrium in the subgame that
starts at stage 2N−1, and since player 2 stops at stage 2N , under σ player 1
stops at stage 2N − 1. However, since player 1 stops at stage 2N − 1, under
σ player 2 continues in all stages 2k for k < N : by continuing in all these
stages he receives 2, while his payoff upon stopping is 1.

This example shows that pure subgame-perfect ε-equilibria need not exist.
Such a case may arise when there is a player i who by stopping gives everyone
else high payoff, but he himself receives low payoff. It is then in the interest
of his opponents to threaten him that if he does not stop, one of them will
eventually stop and punish player i. The punisher, however, stops with low
probability, so that player i has a chance to correct his behavior and stop
the game at a later stage.

We finally prove that there is no subgame-perfect 0-equilibrium. We
argue by contradiction, and we let σ be a subgame-perfect 0-equilibrium. For
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i = 1, 2, we denote by ci the strategy that always continues, i.e., ci(n) = 0
for each n ∈ Ni. Note first that, for each n ∈ N, one has

Pσ(θ < +∞ | θ ≥ n) = 1. (1)

Indeed, the sequence (Pσ(θ < +∞ | θ ≥ n))n∈N would otherwise decrease
to zero, hence the sequence (γn(σ))n∈N would converge to zero, and player 2
would have a profitable deviation in the subgame starting at stage n, for n
large enough. By (1) the game terminates with probability 1, hence at least
one of the players eventually stops with probability 1:

Pσ1,c2(θ < +∞ | θ ≥ n) = 1 for each n ∈ N, or (2)

Pc1,σ2(θ < +∞ | θ ≥ n) = 1 for each n ∈ N. (3)

If (2) holds, then c2 is the best reply to σ1 in all subgames, hence σ2 = c2.
Since the unique best reply of player 1 to c2 is c1, one gets σ = (c1, c2) – a
contradiction to (1).

If (3) holds, there are infinitely many even integers n such that σ2(n) > 0.
By optimality of σ1, and since (3) holds, one has σ1(n− 1) = 1 for any such
n. Therefore, (2) holds – a contradiction.

4 The Proof of Theorem 3

In the present section we prove Theorem 3.

4.1 Preliminaries

In this subsection, we analyze few degenerate cases, and slightly rephrase the
problem. The core of the proof of Theorem 3 is in subsection 4.4.

Let Γ = (I, (in, pn, rn)n∈N) be a deterministic Dynkin game. Since the se-
quence (rn)n∈N is bounded, we can assume w.l.o.g. that payoffs are bounded
by 1.

Let Γ̃ = (I, (in, pn, r̃n)n∈N) be another game with the same sequence
of active players and the same probabilities of success. Since the payoff
functions of the two games differ by at most supn∈N ‖rn− r̃n‖, any subgame-
perfect ε-equilibrium of Γ̃ is a subgame-perfect ε′-equilibrium of Γ, where
ε′ = ε + supn∈N ‖rn − r̃n‖.
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Since we are looking for an ε-equilibrium, and since payoffs are bounded,
there is no loss of generality in assuming that the range of the sequence
(rn)n∈N is finite, and that if (i, r) and (j, r̃) are two distinct elements in that
range then rk 6= r̃k for every k ∈ I.

Notice now that Theorem 3 will follow if we prove that there is a subgame-
perfect ε-equilibrium in some subgame of Γ. Indeed, the conclusion for Γ
will then follow by applying backward induction to the first stages of the
game. Moreover, since finite extensive games with perfect information have
pure subgame-perfect equilibria, the resulting profile will be pure when the
subgame-perfect ε-equilibrium of the subgame is pure.

Let IR be the finite range of the sequence (in, rn)n∈N. For each (i, r) ∈ IR
define

π(i, r) =
∑
{pn | n ∈ N, (in, rn) = (i, r)}

and set IR∞ = {(i, r) ∈ IR | π(i, r) = +∞}. If π(i, r) = +∞ then if player
i stops whenever (in, rn) = (i, r), and all players continue in all other stages,
the game will eventually terminate, and the terminal payoff will be r.

We now argue that we may assume w.l.o.g. that

π(i, r) = +∞ for each (i, r) ∈ IR. (4)

As a first step, we prove that we may assume w.l.o.g. that

π(i, r) = 0 for each (i, r) /∈ IR∞. (5)

Choose first N ∈ N large enough such that∑
n≥N :(in,rn)=(i,r)

pn < ε/|IR| for each (i, r) /∈ IR∞. (6)

Such an N exists since IR is a finite set. Denote by ΓN the subgame that
starts at stage N . Let Γ̃N = (I, (in, p̃n, rn)n∈N) be the game that coincides
with ΓN except that p̃n = 0 whenever (̃in, r̃n) /∈ IR∞.

By (6), the payoff functions of the two games ΓN and Γ̃N differ by at most
2ε. Therefore, any subgame-perfect ε-equilibrium of Γ̃N is a subgame-perfect
3ε-equilibrium of ΓN , and, by backward induction, yields a subgame-perfect
3ε-equilibrium of Γ.

As the game Γ̃N satisfies (5), one can assume w.l.o.g. that (5) holds.
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Thus, we are led to analyze games such that, for each (i, r) ∈ IR, either
π(i, r) = 0 or π(i, r) = +∞. If π(i, r) = 0 for each (i, r) ∈ IR (so that IR∞ =
∅), the payoff function of the game is identically zero and the conclusion of
Theorem 3 follows trivially.

Assume now that IR∞ 6= ∅. Consider the game obtained by dropping all
stages n such that π(in, rn) = 0 (and by relabeling stages). Since there are
infinitely many stages n such that π(in, rn) = +∞, the resulting game is again
a deterministic multi-player Dynkin game. Plainly, any subgame-perfect ε-
equilibrium of this new game is also a subgame-perfect ε-equilibrium of the
initial game (with the proper identification of stages, and with an arbitrary
behavior in the stages that have been dropped).

It follows that we can assume w.l.o.g. that (4) holds.

4.2 A partition into blocks

In the present section, we fix ε < 1/40. Given ε, we define a partition of the
set N of stages into blocks. This partition will be used in the sequel to prove
Theorem 3.

We will use the following technical result.

Lemma 5 (Rosenberg et al, 2002, Lemma 18) Let n ∈ N, and let p1, . . . , pn

be non-negative reals that satisfy
∑n

i=1 pi < 1/20. Then

n∑
i=1

pi − 20(
n∑

i=1

pi)
2 ≤

n∑
i=1

pi

i−1∏
j=1

(1− pj) ≤
n∑

i=1

pi.

Observe that
∑n

i=1 pi
∏i−1

j=1(1− pj) is the probability that the result of at
least one out of n coins with parameters p1, . . . , pn is Head. In particular it
is equal to 1−∏n

i=1(1− pi).

Corollary 6 Let ε < 1/40, n ∈ N, and p1, . . . , pn be non-negative reals that
satisfy

∑n
i=1 pi ≥ ε. Then

∑n
i=1 pi

∏i−1
j=1(1− pj) ≥ ε/2.

Proof. The proof is divided into three cases.
If

∑n
i=1 pi ≤ 1/20 the claim follows from Lemma 5 and since ε < 1/40.

If there is i such that pi ≥ ε the claim holds trivially.

13



Otherwise, there is a subset I ⊂ {1, . . . , n} such that 1/20−ε ≤ ∑
i∈I pi ≤

1/20. Then

n∑
i=1

pi

i−1∏
j=1

(1− pj) = 1−
n∏

i=1

(1− pi) ≥ 1−
∏
i∈I

(1− pi)

≥ 1

20
− ε− 20

(
1

20
− ε

)2

≥ ε− 20ε2 ≥ ε/2,

where the second inequality follows from Lemma 5, and the third one holds
since the function x − 20x2 is monotonic decreasing for x < 1/20 and since
ε < 1/40.

We are now ready to define the partition of N into blocks. Set n0 = 1
and, for l ∈ N, define the initial stage nl of block l to be

nl = min{n > nl−1 |
∑

nl−1≤k<n,(ik,rk)=(i,r)

pk ≥ ε ∀(i, r) ∈ IR}.

Since π(i, r) = +∞ for each (i, r) ∈ IR, all nl, l ∈ N, are finite.
By Corollary 6, in each block all players have a probability at least ε/2

to terminate the game with any vector they choose.

4.3 A simple case

Under the assumption that π(i, r) = +∞ for each (i, r) ∈ IR, the proof
proceeds by induction over the number of elements in IR. The conclusion is
easy if |IR| = 1, and is left to the reader.

We now analyze a somewhat degenerate case that generalizes Example 2.
This is the only place in the proof where we use the induction hypothesis.

Lemma 7 Assume that there exists (i, r) ∈ IR such that

rj ≥ r̃j for every (j, r̃) ∈ IR.

Then for each ε > 0 there is a subgame-perfect ε-equilibrium.

The lemma states that if there is a terminal payoff r that is preferred by
each player i to all terminal payoffs i controls, then a subgame-perfect ε-
equilibrium exists.

14



Proof. We assume w.l.o.g. that ε < 1/40, and we split the discussion
into three cases.
Case 1: ri ≥ 0.
Let σ be the pure strategy profile in which player i stops whenever (in, rn) =
(i, r), and all players continue in all other stages, i.e.,

σin(n) = 1 if and only if (in, rn) = (i, r).

Fix n ∈ N. We prove that σ induces a 0-equilibrium in the subgame
that starts at stage n. Since π(i, r) = +∞, the game eventually terminates,
and therefore the expected payoff is r. Player i cannot gain by deviating,
since his payoff is at most ri if he terminates the game, and 0 ≤ ri if he
always continues. Every player j 6= i cannot gain by deviating either, since
his payoff under σ is rj, while if he deviates his payoff is in the convex hull
of rj and {r̃j, (j, r̃) ∈ IR}, hence at most rj.

Case 2: ri < 0, and there is (j, r̃) ∈ IR such that i 6= j and r̃i < ri.
In this case, we elaborate upon the construction in Example 3. We will

have player i stop at all stages in {n ∈ N : (in, rn) = (i, r)}, and player j
stop with some small probability at stages in {n ∈ N : (in, rn) = (j, r̃)}. The
choices of the corresponding probabilities should fulfill two conditions: (i)
these values should be small enough so that ‖γn(σ)− r‖ < ε, for each n ∈ N
and (ii) they should be high enough so that, if player i were to continue at
all stages, the game would still stop a.s. in finite time. These two conditions
relate to the two dual aspects of the threat. By condition (i) the threat will
be used on the equilibrium path with small probability. By condition (ii) it
will provide incentives to player i to act as required.

Recall the partition of N into blocks that was defined in Section 4.2, and
that nl is the first stage of block l, l ≥ 0.

Since for every l ≥ 0 one has
∑

nl≤n<nl+1:(in,rn)=(j,r̃) pn ≥ ε, there is a func-
tion x : N → [0, 1] such that for every l ≥ 0 one has

∑
nl≤n<nl+1:(in,rn)=(j,r̃) xnpn =

ε2.
We let σ be the strategy profile in which player i stops whenever (in, rn) =

(i, r), player j stops with probability xn whenever (in, rn) = (j, r̃), and all
players continue otherwise, i.e.,

σin(n) =


1 if (in, rn) = (i, r),
xn if (in, rn) = (j, r̃),
0 otherwise.

15



We prove that σ is a subgame-perfect 2ε-equilibrium. Let n ∈ N and
consider the subgame that starts at stage n.

The definition of σ, Lemma 5 and Corollary 6 imply that (a) the proba-
bility that player i stops under σ in each block l, conditioned that the game
reaches stage nl, is at least (1 − ε2)ε/2, and (b) the probability that player
j stops under σ in each block l, conditioned that the game reaches stage nl,
is between (1− ε)ε2/2 and ε2.

This implies that ‖γn(σ)− r‖ ≤ 2ε. Furthermore, (a) and (b) imply that
under any unilateral deviation the game terminates with probability one.

Since for every player k and every (k, r′) ∈ IR one has r′k ≤ rk ≤
γk

n(σ) + 2ε, no player k 6= i can profit more than 2ε by deviating from σ in
the subgame that starts at stage n. Since r̃i ≤ ri ≤ γi

n(σ) + 2ε, the same
applies to player i.

Case 3: ri < 0, and r̃i ≥ ri for every (j, r̃) ∈ IR with i 6= j.
In that case, by the assumption of the lemma, the strategy of player i

that always continues is a weakly dominant strategy.
Consider the modified game where one sets pn = 0 whenever in = i, or,

alternatively, one drops all stages in which in = i. Note that player i is a
dummy in the modified game.

By the induction hypothesis, the modified game admits a subgame-perfect
ε-equilibrium σ′. Extend σ′ to a profile σ in the original game, by instruct-
ing player i to continue at all stages n. Then σ is a subgame-perfect ε-
equilibrium.

4.4 The general case

In view of Lemma 7, Theorem 3 will follow from Proposition 8 below.

Proposition 8 Let Γ be a deterministic multi-player Dynkin game. Assume
that for every (i, r) ∈ IR, (i) π(i, r) = +∞, and (ii) there is (j, r̃) ∈ IR such
that r̃j > rj. Then, for every ε > 0, the game Γ has a subgame-perfect
ε-equilibrium in pure Markovian strategies.

Note that Example 3 does not fit into Proposition 8. We do not know
whether a subgame-perfect 0-equilibrium exists or not. The rest of this sec-
tion is devoted to the proof of the proposition.

As remarked at the beginning of Section 4.1, we can assume w.l.o.g. that
for every (i, r), (j, r̃) ∈ IR, either (i, r) = (j, r̃), or rk 6= r̃k for every k.
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For every i ∈ I set

mi = max{ri | (i, r) ∈ IR}.

This is the maximal terminal payoff player i can receive when stopping alone.
Let ρi ∈ RI be the unique vector r such that (i, r) ∈ IR and ri = mi

(uniqueness is guaranteed by the preceding paragraph).
Finally, set

W = {w ∈ RN | wi ≤ mi for some i ∈ I}.

This is the set of all payoff vectors w such that at least one player is better
off by stopping at some stage rather than continuing forever and receiving
w.

An important property of the set W is that if the continuation payoff
at stage n is w ∈ W , and if player in prefers to stop rather than continue
(that is, win ≤ rin

n ), then the expected payoff if player in stops at stage n,
(1− pn)w + pnrn, is in W . Formally, for every n ∈ N,

w ∈ W and win ≤ rin
n imply (1− pn)w + pnrn ∈ W. (7)

Indeed, under the assumptions, (1 − pn)win + pnr
in
n ≤ rin

n ≤ min , and (7)
follows.

We will prove the existence of a subgame-perfect ε-equilibrium. We as-
sume w.l.o.g. that ε < 1/40, and that furthermore ε < 1

2
min(i,r) 6=(j,r̃) |ri− r̃i|.

Let l ∈ N be given. We will define a pure profile σl up to stage nl. We will
simultaneously construct a sequence (wl(n))nl

n=1 of vectors in W . As a first
approximation, the vector wl(n) may be interpreted as the expected payoff
under σ from stage n onwards.

As for now, we fix l ∈ N and we write σ and w instead of σl and wl

respectively.
We define both σ and w backwards. We let w(nl) be an arbitrary point

in W ∩ [−1, 1]I . We deal with each of the blocks inductively (starting with
the lth one). Let k ≤ l. Assuming w(nk) ∈ W is already defined, we define
now σ and w over the stages n = nk−1, . . . , nk − 1.

Given w(n+1) and σin(n), we set w(n) = σin(n)pnrn+(1−σin(n)pn)w(n+
1), so that we need only define σin(n). Thus, if w(n+1) is the expected payoff
from stage n+1 onwards, w(n) is the expected payoff from stage n onwards.
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We will define σin(n) such that (i) σin(n) is pure, and (ii) σin(n) = 1 implies
rin
n ≥ win(n + 1). Since w(nl) ∈ W and by (7), this implies that w(n) ∈ W

for every n ≤ nl.

Case 1 wi(nk) ≤ mi − ε for some i ∈ I.
We define σ by backward induction, with an appropriate tie-breaking

rule. Set σin(n) = 1 if rin
n ≥ win(n + 1), and σin(n) = 0 otherwise.

Thus, at stage n, player in compares his continuation payoff win(n+1) to
the payoff rin

n he would get by stopping, and he continues or stops accordingly.

Case 2 wi(nk) > mi − ε for each i ∈ I.
Fix i∗ ∈ I such that wi∗(nk) ≤ mi∗ . Since w(nk) ∈ W , such a player

exists. We will define σ so that at the final stages of the block only player
i∗ will possibly stop. In earlier stages, σ will be defined using backward
induction as in Case 1.

Formally, let nk−1 ≤ n < nk. Assume that σ has been defined for stages
q = n+1, . . . , nk−1. We define σ at stage n as follows. Denote by π(n+1, nk)
the probability under σ that, starting from stage n + 1, the game terminates
under σ before stage nk, i.e.,

π(nk, nk) = 0, and π(q, nk) = σiq(q)pq+(1−σiq(q))π(q+1, nk) for n+1 ≤ q < nk.

Then:

• if π(n + 1, nk) < ε, we set σin(n) = 1 if both in = i∗ and ri∗
n ≥ wi∗(n)

hold. We set σin(n) = 0 otherwise;

• if π(n + 1, nk) ≥ ε, we set σin(n) = 1 if rin
n ≥ win(n), and σin(n) = 0

otherwise.

We now prove that under σ, the probability of termination in any single
block is bounded away from zero.

Lemma 9 For each k such that 0 ≤ k < l, one has

Pσ(θ < nk+1 | θ ≥ nk) ≥ ε/3.

Proof. We will prove that π(nk, nk+1) ≥ ε/3. We consider Cases 1 and
2 in turn.

We first assume that Case 1 holds, and we let i∗ ∈ I be a player such
that wi∗(nk+1) ≤ mi∗ − ε.
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1. If σi∗(n) = 1 whenever (in, rn) = (i∗, ρi∗), one has by Corollary 6
π(nk, nk+1) ≥ ε/2.

2. If σi∗(n) = 0 for some n such that (in, rn) = (i∗, ρi∗), then wi∗(n+1) >
mi∗ . Observe now that, since payoffs are bounded by one, one has

wi∗(n + 1) ≤ π(n + 1, nk+1) + (1− π(n + 1, nk+1))w
i∗(nk+1).

By the choice of i∗ one has wi∗(nk+1) ≤ mi∗ − ε, so that

π(n + 1, nk+1) ≥
ε

1−mi∗ + ε
≥ ε/3.

Since π(nk, nk+1) ≥ π(n + 1, nk+1), the conclusion also follows in that
case.

We next assume that Case 2 holds and we let i∗ ∈ I be the player distin-
guished in the definition of σ.

1. Assume first that σj(n) = 1 for some n and some player j 6= i∗. By
definition of the profile σ, one then has π(n + 1, nk+1) ≥ ε/2, hence
π(nk, nk+1) ≥ π(n + 1, nk+1) ≥ ε/2.

2. Assume now that σin(n) = 0 whenever in 6= i∗. In that case, wi∗(n) ≤
mi∗ for each n. Indeed, only player i∗ stops, and his payoff is the
average of wi∗(nk+1) ≤ mi∗ and ρi∗

i∗ = mi∗ . Therefore σi∗(n) = 1
whenever (in, rn) = (i∗, ρi∗), and one gets π(nk, nk+1) ≥ ε/2, as in Case
1, item 1.

We will now let l vary and we denote by σl and wl the objects that were
defined above. The pure strategy profile σl may be identified with a point
in {0, 1}N (the nth component being the behavior at stage n of the active
player in). Since the product space {0, 1}N is compact (and metrizable),
the sequence (σl)l≥0 has a subsequence that converges to some pure strategy
profile σ∗. For notational convenience, we still denote this subsequence by
(σl)l≥0. Since σl is a pure strategy for every l ∈ N, for every fixed n ∈ N the
first n components of σ∗ coincide with the first n components of σl, provided
l is sufficiently large. For such l’s, the behavior in the first n stages of the
game under the two strategy profiles σ∗ and σl coincide.
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Our goal is to prove that σ∗ is a subgame-perfect ε-equilibrium. We first
prove that the play terminates Pσ∗-a.s. in each subgame. We will then relate
the payoff γ(σ∗) to the sequence (wl)l∈N (Lemma 11) and prove that no player
has a profitable one-stage deviation (Lemma 12) under σ∗. The conclusion
follows (Proposition 14), after we prove that no single player is responsible
for the termination of the game (Lemma 13).

Corollary 10 For each k ∈ N, one has

Pσ∗(θ < nk+1 | θ ≥ nk) ≥ ε/3.

Proof. Let l > k be large enough so that σ∗ coincides with σl up to stage
nk+1, and apply Lemma 9.

Lemma 11 For each n ∈ N, one has

γn(σ∗) = lim
l→∞

wl(n).

Proof. We prove the result for n = 1. The proof is similar for the
subgame that starts at any stage n ∈ N.

Let k ∈ N be given. For each l ≥ k, one has

γ(σ∗) = Eσ∗ [rθ1θ<nk
] + Pσ∗(θ ≥ nk)γnk

(σ∗), and

wl(1) = Eσl
[rθ1θ<nk

] + Pσl
(θ ≥ nk)wl(nk).

For l large enough, the two profiles σl and σ∗ coincide up to stage nk. In
particular, Eσ∗ [rθ1θ<nk

] = Eσl
[rθ1θ<nk

] and Pσ∗(θ ≥ nk) = Pσl
(θ ≥ nk). By

Corollary 10

‖γ(σ∗)− wl(1)‖ ≤ 2(1− ε

3
)k

provided l is large enough, and the result follows.

The next lemma says in substance that no player can increase his payoff
by more than 3ε by modifying his strategy in a single stage.

Lemma 12 Let n ∈ N be given. The following implications hold.

• If σin
∗ (n) = 0 then γin

n+1(σ∗) ≥ rin
n − 3ε.

• If σin
∗ (n) = 1 then γin

n+1(σ∗) ≤ rin
n .
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Proof. Let n ∈ N be given. Let l ∈ N be sufficiently large so that nl > n.
We first prove a related statement for the strategy profile σl. Let k < l be
determined by nk ≤ n < nk+1.

By construction, σin
l (n) is defined using backward induction, except in

one case where σin
l (n) is required to be zero. In Case 1 one has σin

l (n) = 1 if
rin
n ≥ win

l (n + 1) and σin
l (n) = 0 otherwise. In Case 2 one has win

l (nk+1) ≥
min − ε and π(n + 1, nk+1) < ε. Therefore, | win

l (nk+1) − win
l (n + 1) |< 2ε,

which yields win
l (n+1) ≥ min − 3ε ≥ rin

n − 3ε. Hence, in both cases, one has

win
l (n + 1) ≤ rin

n if σin
l (n) = 1, and

win
l (n + 1) ≥ rin

n − 3ε if σin
l (n) = 0.

The conclusion follows by taking the limit l → +∞ and using Lemma 11.

We now prove that the play terminates a.s., even if a single player chooses
to continue whenever active. Recall that ci is the strategy of player i that
always continues.

Lemma 13 For every i ∈ I and every n ∈ N, one has

Pci,σ−i
∗

(θ < +∞ | θ ≥ n) = 1.

Proof. We argue by contradiction, and we assume that, for some player
i ∈ I, the sequence Pci,σ−i

∗
(θ < +∞ | θ ≥ n) converges to zero when n goes

to +∞. By Corollary 10 the game eventually terminates, so that Pσ∗(θ <
+∞ | θ ≥ n) = 1 for every n. Therefore, it must be the case that player
i terminates the game: Pσi

∗,c−i(θ < +∞ | θ ≥ n) = 1 for every n, and
limn→+∞ ‖γn(σ∗)− γn(σi

∗, c
−i)‖ = 0.

We first prove that limn→+∞ γn(σ∗) = ρi, and then deduce a contradiction
with the basic assumption made on Γ.

Step 1 : The sequence (γi
n(σ∗))n∈N has a limit.

Let n ∈ N be arbitrary. If n ∈ Ni then Lemma 12 implies that γi
n(σ∗) ≥

γi
n+1(σ∗). On the other hand, for n /∈ Ni, one has γi

n(σ∗) = γi
n+1(σ∗) if

σin
∗ (n) = 0, and

|γi
n(σ∗)− γi

n+1(σ∗)| = pn|ri
n − γi

n+1(σ∗)| ≤ 2pn

if σin
∗ (n) = 1. Therefore, for every two positive integers n ≥ m, one has

γi
m(σ∗) ≥ γi

n(σ∗)− 2
∑

m≤q<n;q /∈Ni

pq1σ
iq
∗ (q)=1

. (8)
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Let ε̃ ∈ (0, 1/40) be given. Choose Nε̃ ∈ N sufficiently large so that
Pci,σ−i

∗
(θ < +∞ | θ ≥ Nε̃) < ε̃/2. For such Nε̃, one has by Corollary 6∑

Nε̃≤q<+∞;q /∈Ni
pq1σ

iq
∗ (q)=1

≤ ε̃. Therefore, by (8),

γi
m(σ∗) ≥ γi

n(σ∗)− 2ε̃, for every n ≥ m ≥ Nε̃.

This implies the convergence of (γi
n(σ∗))n∈N, since it is a bounded sequence.

Step 2 : limn→+∞ γn(σ∗) = ρi.
Denote λ := limn→+∞ γn(σ∗). We first prove that λi = mi.
Fix δ > 0 sufficiently small, and take k sufficiently large so that (i)

|γnk
(σ∗) − λ| < δ, (ii) |γnk+1

(σ∗) − λ| < δ, and (iii) Pci,σ−i
∗

(θ < +∞ | θ ≥
nk) < δ.

By Lemma 11 and since σ∗ = liml→+∞ σl, there is l > k sufficiently large
such that (i) |wl(nk) − λ| < δ, (ii) |wl(nk+1) − λ| < δ, and (iii) Pci,σl

(θ <
nk+1 | θ ≥ nk) < δ.

Consider now the block that is played between stages nk and nk+1 under
σl. By (iii), the probability that the game terminates by a player j 6= i is
smaller than δ. Therefore, player i never stops at a stage n such that in = i
and ri

n < λi − 2δ. However, the probability that player i stops at a stage n
such that in = i and ri

n = mi is at least ε/2. Therefore

2δ > wi
l(nk)− wi

l(nk+1) >
ε

2
(mi − λi)− 3δ and − δ < mi − λi,

so that −δ < mi − λi < 10δ/ε. As δ is arbitrary, the first claim follows.
Hence, limn→+∞ γi

n(σ∗) = mi. This yields limn→+∞ γi
n(σi

∗, c
−i) = mi.

Since ρi ∈ RI is the unique vector such that (i, r) ∈ IR and ri = mi,
and since γn(σi

∗, c
−i) is in the convex hull of {r̃ : (i, r̃) ∈ IR}, one has

limn→+∞ γn(σi
∗, c

−i) = ρi. Finally, this implies limn→+∞ γn(σ∗) = ρi.

Step 3 : The contradiction
By assumption, there exists (j, r̃) ∈ IR such that r̃j > ρj

i . Since Pci,σ−i
∗

(θ <
+∞ | θ ≥ m) < 1 for some m ∈ N, and since π(j, r̃) = +∞, there
are infinitely many stages n such that (in, rn) = (j, r̃) and σj

∗(n) = 0.
For each such n, by Lemma 12, one has r̃j = rj

n < γj
n+1(σ∗). Therefore,

lim supn→+∞ γj
n(σ∗) ≥ r̃j. Since r̃j > ρj

i = limn→+∞ γj
n(σ∗), we get a contra-

diction.

Proposition 14 σ∗ is a subgame-perfect 3ε-equilibrium.
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Proof. Let i ∈ I be given. We prove that player i cannot gain more than
3ε by deviating from σ∗. The same proof will hold in any subgame, thereby
showing the subgame-perfectness property.

Define the sequence (Xn)n∈N of random variables by Xn = ri
θ if θ < n

and Xn = γi
n(σ∗) if θ ≥ n. Let τ i be an arbitrary strategy of player i. By

Lemma 13, the sequence (Xn)n∈N converges Pτ i,σ−i
∗

-a.s. to X∞ := rθ1θ<+∞,
hence

lim
n→+∞

Eτ i,σ−i
∗

[Xn] = Eτ i,σ−i
∗

[rθ1θ<+∞] = γi(τ i, σ−i
∗ ). (9)

On the other hand, let n ∈ N, and denote by Hn the past play up to
stage n. We shall prove that

Eτ i,σ−i
∗

[Xn+1|Hn] ≤ Xn + 3ε1θ=n, a.s. (10)

On the event θ < n, both Xn and Xn+1 are equal to ri
θ. Consider now the

event θ ≥ n. If in 6= i, one has

Xn = γi
n(σ∗) = Eσ∗ [Xn+1|Hn] = Eτ i,σ−i

∗
[Xn+1|Hn],

where the last equality follows since the two profiles (τ i, σ−i
∗ ) and σ∗ coincide

at stage n. In both cases, (10) follows trivially. Finally, if in = i, one has
Xn = Xn+1 = γi

n+1(σ∗) if σin
∗ (n) = 0 and Eτ i,σ−i

∗
[Xn+1|Hn] = pnr

i
n + (1 −

pn)γi
n+1(σ∗) otherwise. Inequality (10) then follows by Lemma 12.

By taking expectations in (10), and by summing over n, one obtains
limn→+∞Eτ i,σ−i

∗
[Xn] ≤ X1 + 3ε which yields, by (9),

γi(τ i, σ−i
∗ ) ≤ γi(σ∗) + 3ε.
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