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Abstract

It has been noticed that whether a preference relation can be represented by
state-independent utilities as opposed to state-dependent utilities may depend on
which acts count as constant acts [Schervish et al., 1990]. Indeed, this remark un-
derlies an extension of Savage’s expected utility theory to the state-dependent case
that was proposed by Edi Karni [Karni, 1993]. This paper contains a characteri-
sation of the preference relations that permit a choice of acts which can play the
role of constant acts, and relative to which there is a representation involving a
state-independent utility function. This result applies both in the Savage and in the
Anscombe & Aumann frameworks. It has as an immediate corollary an extension
of Karni’s representation theorem. Finally, it is of methodological interest, insofar
that it harnesses techniques from mathematical logic to prove a theorem of interest
to decision theorists and economists.
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1 Introduction
There has been much discussion of representations of preferences with state-
dependent utilities [Karni et al., 1983, Karni and Schmeidler, 1993, Karni, 1993,
Karni and Mongin, 2000, Drèze, 1987, Schervish et al., 1990]. In several of these dis-
cussions, it has been noted that, by redefining which acts count as “constant”, one will
transform a state-independent representation into a state-dependent one, and inversely,
transform a state-dependent representation into a state-independent one. To take the
example proposed in [Schervish et al., 1990], if the objects of choice are bets on the
exchange rates between dollars and yen – in Savage’s terminology, the states of the
world are the exchange rates between dollars and yen, and the acts are functions taking
exchange rates to monetary prizes – then a representation which is state-independent
when the prizes are formulated in dollars will be state-dependent when the prizes are
formulated in yen. Indeed, the idea that failures of Savage’s state-independence axioms
come about because the consequences do not yield the acts which are “really” constant
is behind some theories of state-dependent utility. Most notably, the extension to Sav-
age’s expected utility theory proposed several years ago by Edi Karni [Karni, 1993]
relies precisely on this idea. In particular, he introduces the notion of constant valu-
ation acts, which, although they are not constant acts, play the role of constant acts
in a Savage-like representation theorem; the theorem obtained does not assume state-
independence with respect to the constant acts, but only state-independence with re-
spect to the constant valuation acts.

The intriguing idea that state-dependence might merely be due to the choice of con-
stant acts, or if you prefer, of consequences, poses the immediate question: under what
conditions is there a choice of acts that can play the role of constant acts and that yield
a state-independent utility representation? To put it another way, let us say that there is
essentially a state-independent utility representation when there is a set of acts, which
have all the necessary properties of constant acts, with respect to which the preference
relation has a state-independent utility representation. The question is: when is there
essentially a state-independent utility representation? Reformulated in the terms intro-
duced by Karni [Karni, 1993], the question is: when do an appropriate set of constant
valuation acts exist? To the extent that Karni assumes the existence of constant valua-
tion acts in his result, this is a question about the cases where his result applies. In the
current paper, this question shall be answered by characterising the set of preference or-
ders which essentially admit state-independent utility representations. The result shall
hold for any state space – from the finite to the atomless – and any set of consequences
which is either finite or the set of lotteries over a finite number of outcomes. In other
words, it applies in two of the main paradigms used in current literature: that of Savage
[Savage, 1954] and that of Anscombe & Aumann [Anscombe and Aumann, 1963].

The situation with respect to the state-independence of utilities differs subtlely be-
tween the two paradigms. First of all, they share a common main axiom for state
independence, which Savage calls P3 and Anscombe & Aumann call monotonicity.
This axiom states that, for any pair of constant acts, the first is preferred to the sec-
ond if and only if, for any non-null event, the first is preferred to the second given
that event. It is this axiom that shall be the focus of attention in the present paper.
The main result characterises the cases where an appropriate set of acts can be found
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Table 1: No essential state independence

s1 s2
c3 first first
c2 second second equal
c1 third

which satisfy this axiom; these are said to be the cases where monotonicity essentially
holds. However, the axiom has different consequences in the two paradigms. In the
Anscombe & Aumann paradigm, if one assumes reversal of order, the monotonicity
axiom is sufficient to obtain a representation involving a state-independent utility func-
tion. By contrast, in the Savage framework, it is not sufficient: monotonicity (Savage’s
P3) only assures ordinal state-independence but not cardinal state-independence. For
the latter, the extra axiom P4 is required. (For extended discussion of these points,
see [Karni and Mongin, 2000, Karni, 1993].) The axiom P4 can only be stated when
a set of constant acts is given: it enters the scene at a stage after it has been deter-
mined whether a set of constant acts exists which satisfies monotonicity. A traditional
treatment of P4 shall be assumed in the paper where required, since it is not the main
subject of the paper.

At first blush, it might seem surprising that the result obtained here is not trivial:
one might expect that any preference relation which has a state-dependent utility repre-
sentation would satisfy monotonicity, under appropriate modifications in what counts
as constant acts. A simple example illustrates why this is not necessarily the case.
Consider a decision problem with two states of the world, s1 and s2, and three conse-
quences c1, c2 and c3, and consider the acts f , which takes both states to c1, g, which
takes s1 to c1 and s2 to c2, h, which takes both states to c2, i, which takes s1 to c2
and s2 to c3 and j, which takes s1 to c3 and s2 to c1. Consider a preference relation
with f ∼ g ≺ h ≺ i ≺ j: there exist preference relations ordering the acts in this
way and satisfying the basic postulates of Savagian decision theory (weak order and
Savage’s sure-thing principle, or Anscombe & Aumann’s independence).1 Such a pref-
erence relation establishes preferences orders on consequences, given states, which are
shown in Table 1. For this preference relation, there is no set of acts that could count as
constant acts (in the sense that other acts can be defined in terms of them) and satisfy
monotonicity. A triple of acts which could be taken as constant acts must take differ-
ent values on each state of the world; however, for each such triple, a pair of the acts
must be indifferent given s2 (those which take the values c1 and c2), although there is
a definite preference between them given s1. Since both states are evidently non null,
it follows that the axiom cannot be satisfied.

The problem in the example seems to be that the preference orders given the differ-
ent states do not have sufficient structure in common to permit a choice of constant acts
which could satisfy monotonicity. The idea behind the result proposed in this paper is

1The continuity or Archimedianity axioms are left to one side in the example, since we are treating the
finite case.

3



Brian Hill When is there state independence?

based on this observation. The monotonicity axiom implies that, to support a state-
independent representation, a set of acts which may count as constant should be such
that one of these acts is preferred to another given a particular state if and only if the
former is preferred to the latter given any other state. This naturally yields the condition
that, for any two states, the order on the consequences given one state is isomorphic to
the order on the consequences given the other. If, for a particular state, there is a single
maximal element in the preference order given that state, and for another state, there
are two maximal elements in the preference order given the second state, there can be
no set of essentially monotonic acts which can play the role of constant acts: for such
acts need to take different values on each of the states, and so there will be ties given
one state though there will be strict preference given the other state.

Naturally, this basic idea needs to qualified when applied to the general case. For
one, the reasoning only applies to non-null states. Furthermore, the case of atomless
state spaces, where it is illegitimate to reason in terms of states (since they are not
events) will be more complicated. Finally, the isomorphism condition as expressed
above may seem an unnatural “axiom” for essential state-independence; in any case, it
becomes unwieldy, especially in the atomless case. For this reason, we shall use some
basic tools of modern mathematical logic to formulate and prove the result. These
shall allow us to represent rigorously the set of sentences which correctly describe the
properties of the relevant orders. Such sets of sentences shall be called theories. So, for
a given event, there will be a theory of the preference order over constant acts given that
event, and this theory captures many of the important properties of the order. Under a
technical condition, such theories may be used to define a theory for each state of the
state space. The condition for essential monotonicity proposed in the main result of
the paper (Theorem 2 in Section 3) is the following: the theories for different states are
identical. When and only when this condition is satisfied, a set of acts exists that one
may take as constant acts, and that satisfy monotonicity.

In Section 2, a definition of what is required for a set of acts to be able to be taken as
constant acts is given, and conditions for monotonicity and (for the case of the Savage
framework) cardinal state independence on such sets of acts are stated. These condi-
tions is satisfied if and only if there is a representation with a state-independent utility
function on these acts. In Section 3, some basic logical notions are introduced, and a
characterisation theorem is proven, giving necessary and sufficient conditions for the
existence of a set of acts on which the monotonicity condition defined in the Section 2
holds. Furthermore, the set of constant acts satisfying monotonicity has rather strong
uniqueness properties (Corollary 1). The final section, Section 4, contains a represen-
tation theorem which follows immediately from this characterisation (Theorem 3), and
some concluding remarks regarding the interest of the result. Proofs of the main results
will be found in the Appendix.

2 Essential monotonicity
Let S be a set of states, with a σ-algebra of events, and C a finite set of consequences
or a finite set of outcomes; in the latter case the consequences are considered to be
the lotteries over these outcomes. Throughout the paper, n will denote the number of
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elements of C. Note that there is a naturally defined σ-algebra in the (Boolean) algebra
generated by S ×C: namely the product of the σ-algebra of events with the “discrete”
σ-algebra, containing all singletons of C. Let A be the set of measurable functions
from S into C. The acts are the measurable functions from the set of states S into the
set of consequences. If C is the set of consequences, then A is the set of acts; if the
set of consequences are the set of lotteries over C, the set of acts is basically the set of
mixtures of the set A.2 Note that, each element of A is canonically associated with a
subset of S ×C; furthermore, since the elements of A are measurable functions, these
subsets are measurable with respect to the measure structure described above. In this
paper, the same symbol will be used to denote the element of A and the corresponding
subset of S × C. Finally, � is a preference relation on the set of acts (and thus on
A), with ≺ and ∼ being the related strict preference relation and indifference relation.
Throughout the paper, it will be assumed that this relation is non-trivial (there are
f, g ∈ A such that f ≺ g).

For the rest of the paper, the functions mentioned (f , g, and so on) shall be assumed
to be measurable, as will the sets of states (A, B, E and so on): in other words, they
will be assumed to be events.

Finally, for an event A ⊆ S, fAg will be the function which takes the values of f
on A and the values of g on Ac.

The set of constant acts has two properties which render is important with respect to
the set of all acts: firstly, any act can be expressed as an appropriate “mix” of constant
acts; secondly, for each act, there is a unique way to do so. However, the set of constant
acts is not the only such set with these properties; any such set will be called a basis.

Definition 1 (Basis). A basis B is a set {bi ∈ A | i = 1, . . . , n}, such that, for each
s ∈ S and for each c ∈ C, there is a unique bi with bi(s) = c.

The set C defines a canonical basis: namely, the set of acts taking a given element
of C for any state of the world. Let this basis be called BC .

The following result assures that the notion of basis is well-defined even in the case
where the measurability of acts is non-trivial (in particular in the Savage paradigm).

Proposition 1. Consider a basis B. For each f ∈ A, there is a unique measurable
function f b : S → B such that f(s) = f b(s)(s).

For a basis B, �B will be used to denote the restriction of the preference relation
� to the elements of B. Similarly, for any event A, �BA will be used to denote the
restriction of the preference relation �A – the preference relation on acts given A – to
the elements of B.

The traditional notion of null event shall be employed: an event A is null iff, for
any pair f, g ∈ A, f ∼A g.

2As shall be discussed below, in the case where the set of consequences is the set of lotteries over C,
the Reversal of Order axiom shall be assumed, so every act is equivalent to a mixture of acts yielding only
certain lotteries (lotteries where one outcome has probability 1), that is, to a mixture of elements of A
[Fishburn, 1970, Ch 13]. It is thus legitimate to focus attention on A; this will permit formulation of results
which apply to both the Savage and Anscombe & Aumann paradigms.
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As discussed in the Introduction, there is an axiom for state-independence which
is common to the the Savage and the Anscombe & Aumann paradigms: P3 or mono-
tonicity. This axiom shall be the centre of attention in this paper. In particular, we
will say that monotonicity essentially holds if there is a basis with respect to which the
preference order is monotonic.

Definition 2 (Essential monotonicity). Monotonicity essentially holds iff there is a
basis B such that, for every non-null event A, and for all i, j, bi �A bj iff bi � bj .

Call this basis an essentially monotonic basis.

The definitions have been formulated so as to cover both “frameworks” or “paradigms”
of Savage-style decision theory: that proposed by Savage himself [Savage, 1954] and
those proposed by Anscombe & Aumann [Anscombe and Aumann, 1963]. Let us in-
troduce a little notation to allow us to refer to these paradigms.

We shall be said to be working with the Anscombe & Aumann framework when
the set of states S is assumed to be finite and the set of consequences is assumed to
be a set of lotteries over a finite set of outcomes C. Furthermore, the basic axioms
in [Anscombe and Aumann, 1963] except the principal axiom for state-independence
– monotonicity – shall be assumed: namely weak order, independence, continuity and
reversal of order.3

We shall be said to be working with the Savage framework when the set of states S
is a suitably rich (infinite) set, and the set of consequences is the finite setC, which does
not possess any particular structure. Furthermore, the basic axioms in [Savage, 1954]
except those which assure state-independence – P3 and P4 – shall be assumed: namely
weak order, the sure-thing principle, and axioms to insure continuity and Archimedi-
anity, such as Savage’s P6 and P7 (see also [Gilboa, 1987, Hill, 2007]).

Both these frameworks require, for state-independence of utility, a monotonicity
axiom (Savage calls it P3, Anscome & Aumann call it Monotonicity). The main dif-
ference between their axioms and the notion of essential monotonicity in Definition
2 is that, while the former demand that a property holds with respect to a given ba-
sis, namely BC , the latter only requires that there is a basis with respect to which the
property holds.

However, whereas monotonicity is enough to ensure a state-independent utility rep-
resentation in the Anscombe & Aumann framework, it only ensures ordinal state inde-
pendence in the Savage framework, and not cardinal state independence; in particular,
it is not sufficient to yield a state-independent utility function [Karni, 1993]. The fur-
ther axiom required is Savage’s P4, reproduced below in the notation of the current
paper.

Definition 3 (Cardinal state independence). Suppose that monotonicity essentially
holds with essentially monotonic basis B. There is, in addition, cardinal state inde-
pendence iff for every pair of events A and B and every bi, bj , bk, bl ∈ B such that
bi ≺ bj and bk ≺ bl, biAbj � biBbj iff bkAb

l � bkBbl.

The following theorem is little more than a rewording of the theorems in [Savage, 1954,
Anscombe and Aumann, 1963].

3Reversal of Order shall be assumed throughout this paper. Although removing this assumption is one
way to gain state-dependence [Drèze, 1987], this paper only concentrates on the Monotonicity axiom.
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Theorem 1. Suppose that there is a representation of � by a measurable function4

U : S × C → < which is unique up to a positive affine transformation.
If the setup is the Anscombe & Aumann framework, suppose that monotonicity

essentially holds, with an essentially monotonic basis B.
If the setup is the Savage framework, suppose that monotonicity essentially holds

and cardinal state-independence holds, with an essentially monotonic basis B.
Then there is a probability measure p on S and a function u on B such that, for any

f, g ∈ A, f � g if and only if∫
S

p(s)u(f b(s))ds 6
∫

S

p(s)u(gb(s))ds

Furthermore, p is unique and u is unique up to a positive affine transformation.5

Note that the converse direction is trivially true: if there is such a representation,
then monotonicity essentially holds (and cardinal state-independence holds).

3 Characterising essential monotonicity
The goal of this section, the main section of the paper, is to characterise essential
monotonicity. This characterisation (Theorem 2), combined with Theorem 1 above,
will yield a generalised representation theorem (Theorem 3 in Section 4).

As above, it shall be assumed in this section that a representation of � has been
obtained by a measurable function U : S ×C → <; it is thus assumed that the axioms
required for such a representation (weak order, the sure-thing principle or indepen-
dence, and so on) hold.

To state and prove the characterisation result (Theorem 2), it will be necessary to
introduce some basic logical machinery. In what follows, the necessary elements are
briefly presented. The reader is referred to any textbook of mathematical logic, such as
[Chang and Keisler, 1990], for further details.

Definition 4 (Language). For x, y, . . . a set of variables, 6 and = two binary relations
on variables (in the case below, on variables and constants), ¬,∧,∨,→,∀,∃ the logical
connectives of first-order logic (respectively read as not, ‘and,’ ‘or’, ‘if . . . then’, ‘for
all’, ‘there exists’), the language L = (x, y, . . . ,6,=,¬,∧,∨,→,∀,∃) is defined to
be the set of sentences constructed from sentences of the form x = y and x 6 y (for x,
y variables) using the connectives.

Furthermore, Lc is defined to be the extension of L obtained by adding n constants
c1, . . . , cn; that is, it is the set of sentences constructed from sentences of the form
x = y, x 6 y, x = cj, x 6 cj, ci = ck and ci 6 ck using the connectives.

4Measurable, that is, with respect to the product σ-algebra mentioned above.
5Naturally, in the Anscombe & Aumann framework, this representation can be reformulated in a

simpler but extended form. First of all, since the state space is finite, the integral reduces to a
sum. Furthermore, since acts can be expressed as mixtures of acts yielding certain lotteries (footnote
2), it is common to consider acts as functions from S × C to the reals satisfying certain conditions
[Karni et al., 1983, Karni and Mongin, 2000, Fishburn, 1970]. It is thus possible to recover a representa-
tion of the following, standard, form from the representation given in the text: for any acts f, g, f � g iff∑

S

∑
B p(s)u(b

i)fb(s, bi) 6
∑

S

∑
X p(s)u(bi)gb(s, bi).
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A sentence φ of L (resp. Lc) is said to be closed iff all the variables which appear
in φ appear within the scope of a quantifier. That is, for each variable x appearing in φ,
it appears in one of the following formats: . . . ∀x(. . . x . . . ) . . . or . . . ∃x(. . . x . . . ) . . .

As a point of notation, we shall treat > as the reverse relation (x > y defined as
y 6 x) and < as the strict relation ((x 6 y) ∧ ¬(y 6 x)), and ∼ is indifference with
respect to the order ((x 6 y) ∧ (y 6 x)).

These are particular cases of the standard definition of first-order languages – they
are languages with only two relations, no functions and, in the case of L, no constants.
See [Chang and Keisler, 1990] for more details. The definition of a language makes
explicit its expressive power – the things it can say – in terms of the sentences which
belong to it. The language Lc is more expressive than L since the former can refer
directly to particular elements, using the constants ci, whereas the latter cannot. On the
other hand, the language L is rich enough to say something useful about the structure
of the relation 6. This is illustrated in the following example.

Example 1. ψ = ∃x∀y(y 6 x) says that there is a maximal element of 6.
ψ′ = ∀x∀y(x ∼ y) says that the relation 6 ranks all elements equivalently.
ψ′′ = ∃x(c1 < x) says that there is an element above c1.
The first two sentences belong to L and Lc, whereas the last one only belongs to

Lc. These three sentences are closed, whereas ψ′′′ = c1 < x is not closed: x does not
appear in the scope of any quantifier.

The languages defined above will be useful insofar as they can be used to talk about
various orders (such as the order �BC on the constant acts). The abstract definition
given above does not say anything about how they can be used to talk about orders
on sets. For this, the notion of interpretation of a language and truth in a structure is
required.

Definition 5 (Interpretation). Let an order structureM = (X,�) be a set X with an
order �. L (resp. Lc) can be interpreted onM by interpreting 6 as �. Formally: (for
Lc) let h be a function from the set of constants into X – it is called an interpretation
of the constants – and (for L and Lc) let g be a function from the set of variables of
the language into X – it is called an assignment of the variables. M, h, g � φ is the
notation used to express the fact that the sentence φ ∈ L (resp. φ ∈ Lc) is true inM
under the interpretation h and the assignment g. � is defined inductively as follows:

• M, h, g � x 6 y iff g(x) � g(y)

• M, h, g � ci 6 y iff h(ci) � g(y)

• M, h, g � x = y iff g(x) = g(y)

• M, h, g � ci = y iff h(ci) = g(y)6

• M, h, g � ¬φ iff it is not the case thatM, h, g � φ

• M, h, g � φ ∧ ψ iff it is not the case thatM, h, g � φ

6And similarly for other combinations of order, equality, constant and variable.
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• M, h, g � ∀xψ iff, for any assignment g′,M, h, g′ � ψ7

The interpretation of the closed sentences of the language in an order structureM
is completely specified by the interpretation h of the constants.

Throughout the rest of the paper, an interpretation of the relevant language in the
appropriate order structure is assumed. For the case of Lc, the only interpretations of
interest will be in order structures where the set is the set of acts taking the same value
in C for all s ∈ S. Henceforth, it will be assumed that the interpretation h takes a
constant of the language ci to the act which takes the value ci ∈ C for each s ∈ S; this
interpretation will not be explicitly mentioned below.8

Having defined what it is to interpret a language in an order structure, one may
begin to talk about the sentences of a language which are true in a given order structure,
and about which order structures are such that a given set of sentences are true in them.
For this, the following definitions shall prove useful.

Definition 6 (Theory and model). A set of closed sentences of L (resp. Lc) is called a
theory of the language L (resp. Lc).

An order structureM is a model of a theory T if, for all φ ∈ T ,M � φ.
A theory T is said to be consistent if there exists a model of it.
A consistent theory T is said to be complete if, for each closed sentence φ of the

language, either φ ∈ T or ¬φ ∈ T .
Finally, the theory T (M) of an order structureM is defined as follows: T (M) =

{φ ∈ L |M � φ} (resp. Tc(M) = {φ ∈ Lc | M � φ}).

The following facts follow almost immediately from the definitions.

Fact 1. Let Tc be a theory of the language Lc; there is a unique restriction of Tc to the
language L, the theory T = {φ ∈ L|φ ∈ Tc}. Furthermore, if Tc is consistent (resp.
complete), then so is T .

Fact 2. If a consistent theory Tc in the language Lc contains, for each c,d ∈ Lc, one
of c < d, c ∼ d or c > d, then it is complete.

The following example illustrates the notion of a theory of an order structure.

Example 2. If (X,�) has a maximal element, then the sentence ψ in Example 1 is
true in it; it belongs to T ((X,�)).

These definitions are standard in the logical literature; see [Chang and Keisler, 1990]
for example. That work gives proofs of the following well-known facts.

7As is standard practice, the negation, the conjunction and the universal quantification are treated as
primitive, and the other connectors as definable in terms of them (φ ∨ ψ defined as ¬(¬φ ∧ ¬ψ), φ → ψ
defined as ¬(φ ∧ ¬ψ), ∃xFx defined as ¬∀x¬Fx). This implies that, in definitions such as this, only the
clauses for the negation, the conjunction and the universal quantification need be stated.

8Note that this interpretation implies that, firstly, each pair of constants has a different interpretation,
and secondly, that for each element of the ordered structures considered here, there is a constant which is
interpreted by this element. Thus, each of the theories in the language Lc considered below will contain the
sentences ¬(ci = cj), for each i, j ∈ {1, . . . , n}, and ∀x(x = c1 ∨ x = c2 ∨ · · · ∨ x = cn).
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Fact 3. For any order structureM, the theory ofM is consistent and complete. Fur-
thermore, for any complete and consistent theory T , there is an order structureM such
that T is the theory ofM. (This is true for both L and Lc.)

Fact 4. Any two finite order structures have the same theory in L iff they are isomor-
phic.

Furthermore, given any two finite order structures (X,�1) and (X,�2) with X
having n elements, and given a fixed interpretation of the constants of Lc in X ,9 the
two order structures have the same theory in Lc iff they are identical.

This fact indicates the expressivity of the languages L and Lc. On the one hand,
using sentences of L, it is possible to distinguish any pair of (finite) sets equipped with
an order. Or, to put it another way, L can describe completely the relative positions of
the elements in the order on a given (finite) set. On the other hand, given an appropriate
interpretation, Lc can distinguish between isomorphic orders on the same set which or-
der the elements of the set differently. The power of these languages will be harnessed
in the characterisation of essential monotonicity.

These preparatory remarks being made, the application of these notions to the case
in hand may now begin. The following definitions will prove crucial.

Definition 7. For an event A ⊆ S, let T (A) =
⋂

A′⊆A T (C,�BC

A′ ); that is, the inter-
section of the theories of (C,�BC

A′ ), for A′ subevents of A. Similarly for Tc(A).

Note that, by construction, T (A) is consistent for all A.

Definition 8. For any s ∈ S, define T (s) as follows: for any sentence φ ∈ L, φ ∈ T (s)
iff there exists an event A such that s ∈ A and φ ∈ T (A). Similarly for Tc(s).

Proposition 2. For all s ∈ S, T (s) and Tc(s) are consistent.

The following technical notion will be required in the theorem.

Definition 9. The pair (A,�) is said to be monotonic complete if and only if, for any
f, g ∈ A, there is a partition {Ei} of S into events Ei which are disjoint and whose
union is S, such that, for each i, f �Ei g if and only if, for any event A ⊆ Ei, f �A g.

Proposition 3. Suppose that (A,�) is monotonic complete. Then T (s) is complete for
any s ∈ S. Similarly for Tc(s).

Monotonic completeness is only required in the case of infinite state spaces (the
Savage paradigm): if S is finite, then it applies automatically, and the condition in the
proposition above (and in Theorem 2 below) is empty. Intuitively, monotonic complete-
ness demands that, for any pair of acts, there be a set of events covering the state space
such that the acts are in a stable preference order given these events: for any subevent,
the order given this subevent is the same as the order given the original event. It implies
that there is no infinite strictly decreasing sequence of events such that the preference
order on the acts given the events does not settle as one goes down the sequence.

9Recall that this interpretation satisfies the assumption stated after Definition 5; namely, that the theories
involved contain the sentences in footnote 8.
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For the purposes of the characterisation below, monotonic completeness essentially
guarantees that the basis which one constructs consists only of measurable functions.
It is noteworthy that the set of consequences (and thus constant acts) determines which
functions from states to consequences are measurable (ie. those functions where the
inverse image of each consequence is measurable). Thus, if one replaces the set of
constant acts by a set of unmeasurable functions satisfying the condition in Definition
1, and the set of consequences by the elements of this set (as in Proposition 1), the
functions which were measurable according to the notion of measurability implied by
the set of consequences are no longer measurable with respect to this new set of func-
tions, and those which are measurable with respect to the new set are not measurable
with respect to the old. Since the preference relation is defined on the set of functions
measurable with respect to the original set of consequences, the new set of unmea-
surable functions cannot be used in the representation of this relation; for this reason,
Definition 1 demands that elements of the basis be acts (ie. functions measurable with
respect to the set of consequences). Monotonic completeness implies that a basis of
acts can be constructed, and thus used in the representation of the preference relation.

Finally, the classic definition of null events can be extended to states, as follows.

Definition 10. s ∈ S is null iff T (s) contains ∀x∀y(x ∼ y).10

We may now state the main theorem of the paper.

Theorem 2. Monotonicity essentially holds iff (A,�) is monotonic complete and, for
any non-null s1, s2 ∈ S, T (s1) = T (s2).

The proof of the theorem operates by constructing a basis B that is essentially
monotonic. It has, as a corollary, that if there is essentially monotonicity, then the
essentially monotonic basis has the following uniqueness property.

Corollary 1. Suppose that monotonicity essentially holds, and suppose that B1 and
B2 are two essentially monotonic bases. Then, for each bi1 ∈ B1, there is a bi2 ∈ B2

such that, for any non-null event A, bi1 ∼A bi2. Furthermore, for each bi1 ∈ B1,
|{bi2 ∈ B2| for any non-null event A, bi1 ∼A bi2}| = |{b

j
1 ∈ B1| bi1 ∼ b

j
1}|.

This corollary may be understood as indicating the difference in degree of freedom
between essential monotonicity and cardinal state-independence: it implies that if there
is essential monotonicity, there is cardinal state independence with respect to one of
the essentially monotonic bases if and only if there is cardinal state independence with
respect to them all.

4 A representation theorem and concluding remarks
The results in this paper may have more widespread implications than at first seems.
Firstly, they have a representation theorem as an immediate corollary: if one has deter-
mined necessary and sufficient conditions on the preference relation for it to be repre-
sented by a function from state–consequence pairs into the real numbers (an “expected

10For the informal reading of this sentence, see Example 1.
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utility” function), the results presented here reveal a supplementary condition, which,
when added, is necessary and sufficient for the existence of a choice of a set of constant
acts relative to which there is a representation of the preference relation by a probabil-
ity and a state-independent utility function. The representation theorem, stated below,
is thus an immediate corollary of Theorems 1 and 2.

Theorem 3. Suppose that the necessary and sufficient axioms hold for a representa-
tion of � by a measurable function U : S × C → < which is unique up to a positive
affine transformation. Suppose furthermore that monotonic completeness holds and,
for any non-null s1, s2 ∈ S, T (s1) ⊆ T (s2). Finally, if the setup is the Savage frame-
work, suppose that cardinal state independence holds with respect to any essentially
monotonic basis.11

Then there is a basis B, a probability measure p on S and a function u on B such
that, for any f, g ∈ A, f � g if and only if∫

S

p(s)u(f b(s))ds 6
∫

S

p(s)u(gb(s))ds

Furthermore, p is unique and u is unique up to a positive affine transformation.12

As anticipated in the Introduction, this theorem can be thought of as a general-
isation of the theorem proposed by Karni [Karni, 1993, Theorem 3.1]. In a word,
Karni’s theorem assumes an essentially monotonic basis as given, whereas the Theo-
rem 3 does not suppose such a basis, but instead contains a condition under which such
a basis exists.13 Another difference between the two theorems is perhaps worthy of
note. Whereas the theorem in [Karni, 1993] deals exclusively with the Savage frame-
work, replacing some of Savage’s other axioms (notably P5, P6 and P7) by versions
expressed in terms of the essentially monotonic basis, the results obtained in this pa-
per, and notably Theorem 3, apply to both the Savage and the Anscombe & Aumann
frameworks. To do this, it supposes that necessary and sufficient conditions have been
obtained for the representation of the preference relation by an “expected utility” func-
tion U . While such conditions are well-known for the Anscombe & Aumann frame-
work [Fishburn, 1970, p146], they have proved more difficult to obtain for the Savage
framework. Some advances have however been made in this direction, most notably
in [Wakker and Zank, 1999, Hill, 2007]. They seem to suggest that the reformulation
of the Savage axioms P5, P6 and P7 in terms of an essentially monotonic basis which
Karni proposes in [Karni, 1993] is unnecessary: these axioms are basically required
to get the “expected utility” representation, and this can be done at a stage before the
question of state independence enters onto the scene.

As noted, in the Savage framework, monotonicity does not guarantee cardi-
nal state-independence. Several state-dependent utility theories have been pro-

11Note that, by Corollary 1, demanding cardinal state independence with respect to any essentially mono-
tonic basis is equivalent to demanding it with respect to a single essentially monotonic basis.

12The remarks in footnote 5 about the simplifications of the formulation in the Anscombe & Aumann
paradigm apply here.

13The terminology “essentially monotonic basis” has been introduced here and does not appear in
[Karni, 1993]; however the assumption of such a basis is what is effectively underlying the result in that
paper.
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posed in that framework relying on this fact: they only drop cardinal state inde-
pendence whilst keeping ordinal state independence (monotonicity); examples are
[Karni and Schmeidler, 1993, Wakker and Zank, 1999]. The characterisation theorem
proved here provides an immediate extension of these results, requiring not mono-
tonicity but the conditions which guarantee essential monotonicity. (This is analogous
to the extension of Savage’s and Anscombe & Aumann’s representation theorem ob-
tained in Theorem 3.) Moreover, as noted in the remarks following Corollary 1, the
result indicates the limited “degree of freedom” between monotonicity and cardinal
state independence: if monotonicity essentially holds, the uniqueness properties of the
set of acts which may count as an essentially monotonic basis are so strong that if one
such set satisfies cardinal state independence, they all do. This paper is concerned with
the possibility of producing monotonicity (ordinal state independence) by redefining
what counts as constant acts; the uniqueness result implies that there is no analogous
way of obtaining cardinal state independence just by redefining the constant acts.

It is noteworthy that the results proven here imply that not all preference rela-
tions which admit state-dependent representations are essentially monotonic. It follows
that any theorem which elicits a state-dependent representation employing a technique
which relies on the fact that the preference is monotonic but with respect to another
set of constant acts, such as that in [Karni, 1993], will not apply to all preference rela-
tions admitting state-dependent representations. This opens the question of the degree
to which given representations for state-dependent utilities treat “essentially” state-
independent utilities or not: it is perhaps important to distinguish the state-dependent
utility theorems which can deal with preference relations which are not essentially
monotonic from those which cannot. Most of the results mentioned here, with the
possible exception of [Karni et al., 1983, Drèze, 1987], are in the latter category.

Let us make a final remark on the logical techniques employed above. It would
not be surprising if such techniques could be applied beyond the problem dealt with
here: after all, an important branch of logic, model theory, is concerned precisely with
the possibilities of characterising mathematical structures and classes of mathematical
structures in terms of sets of sentences (or “axioms”) which they satisfy. It may turn
out that some of the notions and results from that domain will prove useful to decision
theorists, and perhaps economists more generally. Given this possibility, the contribu-
tion of this article is not limited to the characterisation of situations where sets of acts
could be found which support state-independent utility representations, or to the exten-
sion of the theorem in [Karni, 1993]. It makes an important technical contribution, by
introducing logical techniques in the field of decision theory.

Appendix
Throughout this appendix, f c, f ci , fd will be used to denote the constant acts yielding
elements c, ci, d ∈ C.

Proof of Proposition 1. Set f b(s) = bi where bi is the unique element of the B where
bi(s) = f(s). It remains to show that f b is an act (ie. a measurable function). For each
i and for each c ∈ C, {s | f(s) = c = bi(s)} = {s | f(s) = c} ∩ {s | bi(s) = c}: that
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is, it is the intersection of two measurable sets (since both f and bi are measurable), and
thus itself measurable. For each i, {s | f(s) = bi(s)} =

⋃
c∈C{s | f(s) = c = bi(s)}:

this is a finite union of measurable sets and thus measurable. Hence f b is measurable.

Sketch of proof of Theorem 1. The proof is essentially a combination of parts of those
in [Anscombe and Aumann, 1963, Savage, 1954]. For this reason, only a brief sketch
shall be presented here; the reader is referred to those works for details.

Given the uniqueness properties of U , it can be supposed that it takes value zero on
null events. Define u(bi) =

∫
bi dU and p(A) =

∫
bi∩(A×C)

dU/u(bi) for all events A
and bi ∈ B. It is necessary to show that p is a probability measure on S: that is, firstly,
that it is a function independent of B, and secondly, that it satisfies the probability
axioms.

Consider first independence of p with respect to B in the Anscombe & Aumann
framework. Essential monotonicity implies that �BA and �B coincide for any non-
null event A, so that u represents �BA, as does the restriction of U to A × C. By the
uniqueness properties of u in the Anscombe & Aumann framework, it follows that
there is a constant αA such that

∫
bi∩(A×C)

dU = αAu(bi) for any bi: p(A) = αA and
is thus independent from B.

Now consider independence of p with respect to B in the Savage framework. If an
event A is such that

∫
bi∩(A×C)

dU/u(bi) = 1
2 for some i, then

∫
bj∩(A×C)

dU/u(bj) =
1
2 for all j ∈ {1, . . . , n}: if not, then there will be j, k and l such that bk ≺ bi

and bl ≺ bj (or both �) and biAb
k ∼ biAcbk but bjAb

l � bjAcbl contradicting cardi-
nal state independence. Reasoning by induction, it can be shown that similar proper-
ties hold for events A′ with

∫
bi∩(A′×C)

dU/u(bi) = m
2p for any positive integers m

and p. For any event B, using increasingly accurate bounds by events A′ such that∫
bi∩(A′×C)

dU/u(bi) = m
2p , the value of

∫
bi∩(B×C)

dU/u(bi) can be fixed as accu-
rately as one would like, and is the same for all i ∈ {1, . . . , n}. This value is p(B) and
is thus well-defined.

Finally, it is easy to see that p takes values between 0 and 1, that p(S) = 1, and
that it is additive, since U is additive. The uniqueness properties of p are immediate;
those of u follow easily from those of U and the specific properties of the frameworks
(reversal of order in the case of the Anscombe & Aumann framework; cardinal state
independence in the case of the Savage framework).

Proof of Proposition 2. Suppose that T (s) is not consistent. Then there exist A1, A2,
s ∈ A1, s ∈ A2, with φ ∈ T (A1) and ¬φ ∈ T (A2). But A1 ∩ A2 is an event:
A1 ∩ A2 ⊆ A1 so φ ∈ T (A1 ∩ A2) and A1 ∩ A2 ⊆ A1 so ¬φ ∈ T (A1 ∩ A2)
contradicting the fact that T (A) is consistent for every event A. So T (s) is consistent.
Similarly for Tc(s).

Proof of Proposition 3. Reason in Lc. Consider a pair of constant acts f c and fd. By
monotonic completeness, there is a partition {Ei}, such that, for each i, f c �Ei

fd

if and only if, for any A ⊆ Ei, f c �A fd. So, for each Ei, one and only one of
c < d, c ∼ d or c > d is in Tc(Ei). So exactly one of these sentences is in Tc(s),
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for s ∈ Ei. By this reasoning, for each pair of constants ci, cj in Lc, exactly one of
ci < cj, ci ∼ cj or ci > cj is in Tc(s). So, by Fact 2, Tc(s) is complete. It follows
from Fact 1 that T (s) is complete.

In the proof of Theorem 2, the following lemma will be useful.

Lemma 1. Suppose that (A,�) is monotonic complete. Then, for each s ∈ S, there is
an event E, s ∈ E such that T (s) = T (E).

Proof. Reason in Tc(s). In the proof of Proposition 3, it was shown that, for each pair
of constants c, d, there is an event Ecd with s ∈ Ecd such that the sentence c < d
(resp. c ∼ d, c > d) is in T (Ecd) iff it is in T (s). Let E be the intersection of Ecd

over all pairs c, d ∈ C. E is an event since it is an intersection of events; it is non-
empty because it contains s. Furthermore, by construction Tc(E) = Tc(s), and so (by
Fact 1) T (E) = T (s).

Proof of Theorem 2. Necessity. Suppose there is essentially state independence with
basis B and let T be the theory of (B,�B). It shall be shown (1) that monotonic
completeness holds, and (2) that T (s) = T for all non-null s ∈ S.

(1) Consider any pair of acts f, g ∈ A. By Proposition 1, there are corresponding
measurable functions f b, gb : S → B. Since these acts are measurable, there are two
partitions {Ef

j }, {E
g
k} of S such that f b (respectively, gb) takes constant values on

each of the Ef
j (resp. Eg

k). Let {Ei} be the coarsest refinement of {Ef
j } and {Eg

k}.14

On each of the elements Ei, both f b and gb take constant values in B. Moreover, since
B is an essentially monotonic basis, for any element Ei, f �Ei g iff, for any event
A ⊆ Ei, f �A g. So (A,�) is monotonic complete.

(2) Suppose that T (s) is not equal to T for every non-null s ∈ S, and pick non-null
s ∈ S such that T (s) 6= T . Note that, since T (s) and T are complete (Proposition 3 and
Fact 3), it follows that they are inconsistent. By Lemma 1, there is an event E, s ∈ E
such that T (E) = T (s). By the expressivity of the language L (Fact 4), it follows that
there are disjoint pairs of subsets K,K ′ ⊆ {1, . . . , n} and L,L′ ⊆ {1, . . . , n} such
that

1. for every k′ ∈ K ′, k ∈ K, k′′ ∈ {1, . . . , n} \ (K ∪ K ′), and for all A ⊆ E,
f ck′ �BC

A f ck �BC

A f ck′′ ; for every l′ ∈ L′, l ∈ L, l′′ ∈ {1, . . . , n} \ (L ∪ L′),
bl
′ �B bl �B bl′′ ; and |K ′| = |L′|.

2. for all k1, k2 ∈ K and for all A ⊆ E, f ck1 ∼BC

A f ck2 ; for every l1, l2 ∈ L,
bl1 ∼B bl2 ; and |K| 6= |L|.

Suppose that |L| < |K| (the case |L| > |K| is treated similarly). Let bj ∈ B be
a largest element below {bl| l ∈ L} (for all l ∈ L, bj ≺B bl, for every bj

′
such that

bj
′ ≺B bl for all l ∈ L, bj

′ �B bj). Since T (E) describes the properties common to
orders �BC

A , for all non-null A ⊆ E, and since T describes �BA for these A, by state-
independence, the elements of B above the elements of {bl| l ∈ L} must take values

14That is, the coarsest partition each of whose elements are contained in a single element of {Ef
j } and in

a single element of {Eg
k}.
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in the set of consequences {ck′ | k′ ∈ K ′}. Similarly, the elements of {bl| l ∈ L} must
take values in {ck| k ∈ K}. Since the element bj is the largest element below {bl| l ∈
L}, the values on subsets of E must be the most preferred among the consequences
which are not in {ck′ | k′ ∈ K ′} ∪ {ck| k ∈ K}. However, since |K| > |L|, these will
all be cki such that ki ∈ K. So, for any non-null A ⊆ E, bj ∼A f ck ∼A bl for any
k ∈ K and l ∈ L, contradicting the definition of bj . This contradicts the assumption
that B is an essentially state-independent basis. So T (s) = T .

Sufficiency. Since monotonic completeness holds, Tc(s) is complete for any s
(Proposition 3); by Facts 3 and 4, there is an unique order �s on C such that (C,�s)
is a model of Tc(s).

Since, for any non-null s1, s2 ∈ S, T (s1) = T (s2), it follows from fact 4, that for
any non-null s1, s2 ∈ S, the orders (C,�s1) and (C,�s2) are isomorphic. So they
have the same structure for all non-null s ∈ S: the same number of maximal elements,
the same number of second best elements and so on. Hence one can define a set of acts
bi by induction as follows:

• b1(s) is the maximal element in (C,�s), where, if there are several, then any
one is chosen.

• for i > 1, bi(s) is the maximal element in (C \ {bk(s) | k < i},�s), where, if
there are several, then any one is chosen.

It is easy to see that the bi are well-defined, and form a basis B.
To prove essential monotonicity of this basis, suppose not; that is, suppose that

there is bi, bj and a non-null event A such that bi � bj but bi �A bj . Either there is
a non-null event A′ ⊆ A such that, for any non-null A′′ ⊆ A′, bi �A′′ b

j , or there is
none.

Consider the former case: using the hypothesis and the the fact that (A,�) is mono-
tonic complete, pick a sufficiently small non-null event A′, such that there exist con-
stant functions f c1 and f c2 with bi �A′ f

c1 �A′ f
c2 �A′ b

j and such that the same
inequalities hold for any A′′ ⊆ A′. But this contradicts the construction of bi and bj

on s ∈ A′: since the construction was supposed to yield bj more preferred than bi, bi

should have the value c2 or lower and bj should have the value c1 or higher. So this
case cannot hold.

Suppose on the other hand that no suchA′ exists. Construct the following sequence
of non-null events: pick any A1 ⊂ A such that bi �A1 b

j – this exists because there
is no A′ ⊆ A such that, for any non-null A′′ ⊆ A′, bi �A′′ b

j . Since bi �A bj , it
follows from the sure-thing principle that bi �A\A1 b

j . However, there is no non-null
A′ ⊆ A \ A1 such that for any non-null A′′ ⊆ A′, bi �A′′ b

j ; because if there were,
this would contradict the assumption that there is no A′ ⊆ A with this property. So
there exists non-null A2 ⊆ A \ A1 with bi �A2 bj . Furthermore, A \ (A1 ∪ A2)
inherits from A the property that there is no non-null A′ ⊆ A \ (A1 ∪ A2) such that
for any non-null A′′ ⊆ A′, bi �A′′ b

j , so a non-null subset A3 may be chosen, such
that bi �A3 b

j . One thus constructs a sequence of disjoint non-null events Ak which
are subsets of A and such that bi �Ak

bj for all k. Furthermore, the limit of the unions
of these events is A, for if not, there would be a non-null A′ ⊆ A such that, for any
non-null A′′ ⊆ A′, bi �A′′ b

j , and this is not the case by assumption. By the sure
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thing principle, it follows that bi �A bj , contrary to the hypothesis.15 This completes
the proof of state-independence, and indeed, of the theorem.
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