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Abstract

We model how intensively dealers monitor public information to avoid being picked off by pro-
fessional day traders when monitoring is costly. Price competition among dealers is hampered by
their incentive to share monitoring costs. The risk of being picked off by the day traders makes
dealers more competitive. The interaction between these effects determines whether a firm quote
rule improves trading costs and price discovery. Our empirical results support the prediction that
professional day traders prefer stocks with small spreads, but offers less support for the prediction

that their trading leads to wider dealer spreads.
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Introduction

Nasdaq’s Small Order Execution System (SOES) allows brokerage firms to execute small orders
automatically at the best quotes posted by Nasdaq dealers. Participation in SOES and in its new
incarnation SuperSoes is mandatory for all dealers, who must post firm quotes for a minimum
quantity, fixed by Nasdaq. Although it was intended for retail investors, SOES mainly attracted
professional day traders (labeled SOES “bandits” by Nasdaq dealers). The bandits make money
by detecting short-term price trends and trading before all dealers have incorporated this new
information into their quotes.! SOES bandits and their alleged adverse impact on Nasdaq trading
costs, liquidity, and volatility has been the subject of a long and heated policy debate.?

Harris and Schultz (1998) examine SOES bandit trading strategies and profits using data from

two brokerage firms that cater to bandits. They conclude:

The existence and profitability of SOES bandits raise new questions about the efficiency
of different market structures. Bandits do not have any more information than the mar-
ket makers that they trade against and in many cases they have less information. But
bandits still make money. In response, Nasdaq market makers have expended consider-
able effort to eliminate SOES bandits through regulation. They have invested hundreds
of thousands of dollars in proprietary software to update quotes when bandits trade
against them. Why do not market makers just hire traders to keep track of other deal-
ers’ quotes, Instinet quotes and SelectNet quotes and update their own prices in a more

timely fashion? [p. 61]

How do market makers combine software and labor to ensure that their quotes reflect all avail-
able information? This question is central to understanding the profitability of SOES bandits.
How should traders at market making firms, or bandits for that matter, allocate their time be-
tween processing relevant information for a given stock and the most valuable alternative use of
their time? In other words, how much should they invest in costly monitoring. We attempt to
address these questions by developing a model of market making where both market makers and
bandits must choose how intensively to monitor information. We consider two forms of moni-

toring: (i) mews monitoring and (ii) quote monitoring. News monitoring entails monitoring, for



example, public announcements, whereas quote monitoring is limited to monitoring other dealers’
quote updates. News monitoring is costly because the correct interpretation of, say, a corporate
announcement requires human attention. In contrast, the use of software makes the marginal cost
of quote monitoring very low.

In our model, dealers post firm quotes and select how intensively they monitor news. They
never monitor news continuously because it is costly to do so. At times dealer quotes do not reflect
all public information because monitoring is imperfect. These so called stale quotes provide profit
opportunities for the bandits. Bandits also monitor news and quote updates with a view to detect
these opportunities and exploit them by trading with dealers before they update their quotes. In
equilibrium, bandits’ expected trading profits are positive. Dealers offset their losses to the bandits
by gains from trading with liquidity traders.

We obtain three main results. First, news monitoring by one dealer can generate either a positive
or a negative externality for the other dealers. By monitoring quote updates, a dealer can free ride
on the efforts that his competitors exert to monitor the flow of information. Thus, monitoring gives
rise to a positive externality. On the other hand, bandits may discover that some dealers’ quotes are
stale by observing other dealers’ updating their quotes. This introduces a negative externality of
monitoring. Whether the positive or the negative externality is stronger depends on how quickly the
dealers react to quote updates. Second, these externalities influence the dealers’ bidding behavior.
The positive externality induces dealers to match the best quotes rather than to undercut them.
This effect produces multiple equilibria in which dealers earn strictly positive expected profits. In
contrast, the negative externality generates an equilibrium with very low liquidity in which only
one dealer posts the inside spread and makes zero expected profits. Third, the bandits’ ability to
profit from the information in quote updates hinges on the fact that quotes are firm and order
execution is automatic. We show that relaxing the firm quote rule, e.g., allowing the dealers an
option to “back away” from their quotes, can increase (decrease) spreads and slow down (speed
up) price discovery, depending upon which equilibrium is obtained.

Despite the frequent claims that bandits have an adverse impact on trading costs and liquidity,
there is surprisingly little empirical evidence to support this claim. It is difficult to obtain direct
evidence on this effect because the spread and the level of bandit activity are interdependent. An

increase in the spread triggers the exit of some bandits, whereas an increase in the number of



bandits triggers a widening of the spread. We disentangle this interdependence by formulating a
two-equation model, which we use to test whether more bandit activity leads to wider spreads.
Consistent with the predictions of our theoretical model, we find, for two different samples, that a
wider spread is associated with less SOES bandit activity. However, only for a sample of the most
actively traded stocks do we find that a higher level of SOES bandit activity is associated with
a wider spread, and even in this case the effect is statistically significant only at the 10% level.
For a second sample of less actively traded stocks we cannot reject the null hypothesis that bandit
activity has no effect on the bid-ask spread.

Battalio, Hatch, and Jennings (1997) show that SOES bandits speed up the price discovery
process and are more likely to trade in volatile periods. We obtain theoretical and empirical results
consistent with their findings. Harris and Schultz (1997) report evidence consistent with a reduction
in SOES bandit activity following a reduction in the minimum depth from 1000 to 500 shares. In our
model, a decrease in the mandatory quoted depth causes fewer bandits to enter and thus tightens
the spread. Our empirical results provide strong support for the former prediction but only weak
support for the latter one. We also show theoretically that another effect of a reduction in the
minimum quoted depth is to slow down price discovery.

Our model is related to Copeland and Galai (1983), who analyze the free-trading option aspect
of fixed quotes. We show how the free-trading option problem arises in equilibrium as a result of
costly monitoring. Kandel and Marx (1999) develop a theoretical model to study whether odd-
eighth avoidance is a rational response by Nasdaq dealers to SOES bandits. In their model the
profit opportunities of the SOES bandits are implicitly assumed to be due to imperfect monitoring
by the dealers. We explicitly model how stale quotes or profit opportunities may arise. Kumar and
Seppi (1994) model how index arbitrageurs learn information from quote updates. In their model
the index arbitrageurs always observe quote updates more quickly than do dealers, which is not the
case in our analysis for the bandits vis-a-vis the dealers.

The article is organized as follows. In Section 1, we develop the model. In Section 2, we present
the optimal monitoring strategies and the information externalities. In Section 3, we derive the
equilibrium spreads given the monitoring strategies. In Section 4, we examine how relaxing the
firm quote rule affects market quality. In Section 5, we derive empirical implications for the level

of SOES bandit activity and the bid ask spread. In Section 6, we estimate a two-equation model



of SOES bandit activity and the bid ask spread. In Section 7, we summarize our conclusions. All

proofs are in the Appendix.

1 The Model

1.1 The Structure of the Trading Game

There is a single risky asset with a liquidation value, V. At the beginning of the trading round,
the expected liquidation value is vg. There are three types of traders: (i) M > 2 dealers, (ii)) N > 1
bandits, and (iii) liquidity traders. All traders are risk neutral.

A trading round consists of three stages, as illustrated in Figure 1. In the quoting stage, dealers
simultaneously quote their spreads, {S,}ﬁzjlw . Dealer i’s bid quote is b; = vg — % and his ask quote
is a; = vg + % We denote the inside spread (the smallest posted spread) by Sp. The number of
dealers posting the inside spread is denoted M;. Dealer quotes are firm for up to ) shares, the
minimum quoted depth. In the monitoring stage, after observing the quotes, the dealers and the
bandits choose their monitoring levels. This choice determines the probability that a trader is the
first to discover an innovation in the asset value. In the trading stage, one of the following events
occurs. With probability o < 1, there is an innovation in the asset value. In this case the new asset
value is either vy = vg + § or v1 = vo — § with equal probabilities. Conditional on an innovation,
a bandit may buy or sell the asset before dealers update their quotes. With probability (1 — «a),
there is no innovation. In this case, with probability 8 > 0, a buy or a sell order is submitted by
a liquidity trader, with equal probabilities. The expected size of the liquidity trader’s order is §Q).
With probability (1 — 3), no order is submitted.

Market orders are evenly split among the dealers posting the best quotes. A dealer trades %
shares of a liquidity trader’s order. A bandit places at most L orders of size () and cannot place

more orders than the total quoted depth, M,Q. Hence the total size of a bandit trade is,
QS(M(,) = Min{Mb, L}Q = Min{l,L/Mb} X MbQ. (1)

Each dealer trades %ﬂf”) = Min{1, L/M}Q shares of a bandit’s order. For conciseness, we denote

the portion of the quoted depth which is exposed to bandits by x*(Mp) = Min{1, L/M,}. We refer



to 2°(My) as the dealer’s participation rate in bandit trades.?

1.2 News Monitoring and Quote Monitoring

Dealers and bandits become aware of new information by directly monitoring the information flow,
an activity that we call news monitoring.? We model news monitoring as follows. Let \;(> 0)
be the monitoring level of dealer i and let v;(> 0) be the monitoring level of bandit j. If new
information arrives, the probability that a trader, say m, is first to observe news is denoted by

Prob(f = m). This probability depends on the monitoring levels as follows

Ai :
Prob(f:i)EP(/\i)E)\4_FZ I W Vie M, (2)
7 ms£r 7'M ]
Prob(f = j) = P(7;) = & vj €N, (3)

Vi Dkt Ve i A
where M denotes the set of dealers and N denotes the set of bandits. We assume P(0) = 0 and
P(400) = 1. A zero monitoring level corresponds to no monitoring of news at all. Conversely,
an infinite monitoring level corresponds to continuous news monitoring. For any intermediate
level news monitoring is imperfect. The probability that a trader is first to observe an innovation
increases in his own monitoring level and decreases in the aggregate monitoring level. Monitoring
requires effort and the monetary disutility associated with this effort is captured by a strictly

increasing and strictly convex cost function W(l). We assume that

v = (4)

where [ denotes the monitoring level and the parameter ¢ > 0 determines the scale of the monitoring
cost for a given monitoring level.> Bandits and dealers simultaneously choose their monitoring
levels, after observing the inside spread. We denote the vector of the dealers’ monitoring levels by
A(Sp, M) = (M (Sps Mp), ..., A, (Sp, Myp)). Dealers posting wider spreads than the inside spread
choose not to monitor, since orders are only routed to the dealers at the inside. Analogously,
v(Sp, My) = (71(Sp, M), ..., v~ (Sp, Mp)) denotes the bandits’ monitoring levels.

Dealers and bandits also monitor quote updates (quote monitoring). Dealers use the information



revealed by quote changes to update their quotes. Bandits use quote updates to detect stale quotes.
We assume that when a dealer is first to update his quotes, there is a probability ® that one bandit
reacts to this quote update before the other dealers react. In this case, each bandit has an equal
probability (1/N) of reacting first. With probability (1 — ®), the other dealers update their quotes
before any one of the bandits react. Thus, ® measures the relative advantage of the bandits in
quote monitoring (if ® = 0, dealers always react more quickly than bandits and vice versa if & = 1).
Quote monitoring is pointless when there is only one dealer at the inside. Hence, for M, = 1, we
set & = 0.

In practice, bandits and dealers use software that alerts them to quote updates in different
securities. For this reason, we assume that ® does not depend on the levels of news monitoring.
One likely determinant of this probability, which is not examined here, is the fixed cost of the
trading technology used. Other determinants include rules concerning firm quotes and automatic
quote updates. We return to the firm quote rule in Section 4.

The optimal response for the dealers and the bandits in the trading stage is as follows. If a
dealer is first to observe the new information, he revises his quotes. If his competitors react to
this quote update before the bandits, they revise their quotes as well. If a bandit is first to react
to a quote update or to observe new information, she submits buy (sell) orders when she observes
a good (bad) signal.” Tables 1 and 2 list the payoffs for the dealers and the bandits, for a given

spread and fixed monitoring levels.

1.3 Discussion of the Assumptions

The quantity, @, corresponds to the minimum quoted depth in the SOES system. Nasdaq dealers
execute orders at their posted quotes that are larger than the minimum quoted depth. SOES bandits
typically do not take part in these trades since they are negotiated by phone. This slows down
the execution process and dealers can back away from their quotes upon realizing that a bandit
is trying to initiate a trade (see Harris and Schultz (1997) and Houtkin (1998)). Accordingly, the
size of liquidity trades can be larger than @ (i.e., 6 > 1). NASD rules prohibit individual bandits
from initiating more than one position (i.e., L = 1) in the same stock within a five minute interval.
By varying L we can study the effects of relaxing this rule. It is worth stressing that variations

in L are not equivalent to variations in 4. The reason is that the size of bandits’ trades depend



on the total quoted depth but not the size of liquidity trades. Hence a decrease in the number of
dealers at the inside necessarily enlarges a dealer’s participation rate in liquidity trades but may
leave unchanged his participation rate in bandit trades (if L is large enough).

In some equilibria only one dealer can profitably post the inside spread. In these equilibria
sidelined dealers are exposed only to bandits, since liquidity traders are executed at the inside
quotes. Hence the sidelined dealers widen their spreads to avoid being picked off. In order to
account for this reaction within our static model, we simply assume that orders are only routed to
the dealers posting the inside spread.® This is in fact the case in SOES.

We assume that bandits unwind their positions at the mid-quote (v1) subsequent to information
arrival. Bandits frequently unload their positions on Selectnet or Instinet and trade within the
quoted bid-ask spread. In fact Harris and Schultz (1998) find that when bandits lay off their
positions, they trade at the spread mid-point or at a more favorable price in 90% of the cases.
More generally, we could assume that bandits pay a fixed fraction 7 of the spread when they close
out their positions (as in Kandel and Marx (1999)). They would then gain (o — (14 7)S)/2 instead
of (6 — S)/2 when they initiate a trade. This just scales up the effect of the spread on bandits’
payoffs and would not qualitatively affect our results.

Finally, the probability of a liquidity trade after an informational event is assumed to be zero.
This assumption could easily be relaxed. Increasing the probability of a liquidity trade after an
innovation reduces the risk of being picked off for the dealers and is tantamount to a decrease in

the probability of an informational event («).

2 Monitoring

We focus on perfect equilibria of the trading game. In a perfect equilibrium, (i) traders’ monitoring
strategies (\*(Sp, Mp) and ~v*(Sp, Mp)) form a Nash equilibrium given the outcome of the quoting
stage, and (ii) dealers’ quotes form a Nash equilibrium, given the monitoring strategies. We start

by analyzing the monitoring strategies.



2.1 Monitoring Externalities

In this section, we show that news monitoring by one dealer can generate a positive or a negative
externality for the other dealers. Consider one dealer, say i. There are two ways dealer ¢ can be
picked off. In the first case, a bandit reacts first to news. Using Equation (3), this event occurs
with probability

Prob(f € N) = A;ﬁ (5)

where g = >, A and y4 = 2,7, are the aggregate monitoring levels. In the second case, a
different dealer (i.e., not dealer i) observes the news and updates his quotes, and a bandit is first
to react to the quote update. The probability of this event is ®Prob(f € M;\i). Using Equation

(2), we obtain

Prob(f € My\i) = At

(6)

Let T14(\;, A—i,y) be dealer i’s expected profit for given levels of monitoring, A_; and =, for the
other dealers and the bandits, respectively. Using the payoffs listed in Table 1, we get the following

expression for dealer i’s expected profit:

My(A\i, A—iyy) = —alx®(My)Prob(f € N) + x°(My — 1)®Prob(f € Mp\i)] (0_2517)62
$,60
1= )8 S = ) VM, =2 (7)

The first term represents dealer i’s expected loss when he is picked off. The second term corresponds
to dealer 7’s expected gain from trading with a liquidity trader. The last term is the monitoring
cost incurred by dealer i. The expected loss for dealer ¢ is affected by the monitoring levels chosen

by himself as well as the levels chosen by the other dealers.

Proposition 1. Consider two dealers i and m who are posting the inside spread. There exists a
cut-off ® = #% < 1 such that news monitoring by dealer m is a:

» : . Ollg(Ai,A—s, : 5
1. Positive externality for dealer i, or W >0,if &< P,

2. Negative externality for dealer i, or, %’:‘L‘m <0,if®>d .

An increase in news monitoring by dealer m increases the probability that dealer m will be



first to observe news. This indirectly benefits dealer i, since a quote update by dealer m signals
to dealer ¢ that his quotes are stale. Thus, an increase in news monitoring by dealer m reduces

81’%(::6/\/) < 0). This is the source of the

the risk of dealer i being picked off by bandits (that is
positive externality. There is, however, a second effect, since bandits also monitor quote updates.
An increase in news monitoring by dealer m increases the risk of dealer ¢ being picked off by
bandits who discover stale quotes through quote monitoring (that is %ﬁﬂ/‘b\i) > 0). This is
the source of the negative externality. If dealer i reacts sufficiently quickly to dealer m’s quote
updates (® < @), the reduction in the picking off risk due to news monitoring is larger than the

increase in the picking off risk due to quote monitoring. If bandits are relatively quicker (® > ®),

the reverse is true.

2.2 Equilibrium in the Monitoring Stage

Dealer i chooses the monitoring level that maximizes his expected profit. Using Equation (7), the

first order condition is

OProb(f € N)
o\

OProb(f € Mp\i)] (0 = S)Q ./
In > =T ().

—a |2°(My) + 2 (M — 1)P

The terms inside the brackets measure the marginal reduction in the probability of being picked

off due to increased monitoring by dealer i. Using Equations (5) and (6), we rewrite this as’

2 (My)ya+2° (M — 1)@ > A | = T (Ng). (8)

a0 — S)Q [
m#i

2(Aa +74)?

Using the payoffs listed in Table 2, we obtain the following expression for the expected profit
of bandit j, ITs(y;, A, 7—;),

alc— S N s S Prob(f € My)
L. 0 15) = 5 [rons = gty + 2L EM guag, 1)) —wi), 0)
where Prob(f € My) = )\:‘ﬁ is the probability that a dealer is first to observe new information.

The term inside brackets is the expected trade size for a bandit. Bandits exploit stale quotes either
by (i) learning about news first, or (ii) reacting quickly to quote changes. In the first case she

trades Q°(M;) shares whereas in the second case she trades Q°(M;, — 1) shares. Bandit j chooses



the monitoring level that maximizes her expected profit. The first order condition is

aQ®(My)(o — Sp) (N —h(®, L)
2(Aa +74)? N

at+d | =T (7). (10)
57#]

where h(®, L) = @% < 1. A Nash equilibrium of the monitoring stage is a set of monitoring

levels that solve Equations (8) and (10). This equilibrium is symmetric if all the traders of a given

type choose the same monitoring level.
Lemma 1. If there exists a Nash equilibrium in the monitoring stage, it is symmetric.

Let A* (7*) be the monitoring level chosen by each dealer (bandit) in equilibrium. From Equation
(4), we get that W'(l) = cl/2. Using this expression, we rewrite the system of Equations (8) and
(10) characterizing traders’ best responses as

Ot(J — Sb)Q
(MpA* + Nv*)?

[2°(My)Ny* + 2°(My — D)®(M, — 1)A*] = e\, (11)

and
aQ®(My)(o — Sp) (N —h(®, L)
(MyA* + Nv*)? N

YMpA* 4+ (N — 1)7*| = ev™. (12)
Solving this system of equations yields the equilibrium monitoring levels.

Proposition 2. When M, dealers post an inside spread Sy < o, the equilibrium of the monitoring

stage is unique and is characterized by the following monitoring levels for the bandits and the

dealers:
" N — h((I), L) OéQS(Mb)(O' — Sb)
My) = 1
" OJNQS(MZ,)(G - Sb) N~*

M) = = . 14
A" (S, M) cMZ(N +1—h(®,L))2  My(N — h(®, L)) (14)

For these monitoring levels, the expected profits of the dealers and the bandits are

. s 1—a)Bds

T5(53, M3) = 3 [~ (W), @, 1) (o — 53) + T 02050 (15)
with C(My, ®, L) = N + N (16)

T N+1-—h(®,L)  2M,(N+1-h(®,L)2
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2N(N +1—h(®,L)) — (N — h(®, L))?
4N(N +1—h(®,L))?

IT5(S, N) = aQ*(Mp) (o — Sp) (17)

The proposition reveals several interesting properties of the monitoring strategies. First, bandits
and dealers always put some effort into news monitoring, i.e., v* > 0 and A* > 0. In particular, it
is never optimal for bandits to entirely base their trading strategies on dealers’ quote updates.'”
Second, the optimal monitoring levels decrease in the spread. When the dealers increase their
spread, bandits monitor the market less intensively, since the potential profit from picking off
dealers is lower. The dealers react by monitoring less.!! The negative term in a dealer’s expected
profit is the expected trading loss to bandits (‘the cost of market-making’). Part of this cost,
C(M,®, L), reflects the joint effect of all traders’ monitoring decisions on the probability of a

dealer being picked off and his monitoring cost.

Lemma 2. The component of the cost of market making which is determined by traders’ monitoring

decisions, C(M,®, L), increases with .

An increase in the bandits’ relative advantage in quote monitoring implies a greater picking off
risk for the dealers. They react by choosing higher monitoring levels, other things equal. But, in
equilibrium, this is insufficient to fully counter-balance the increase in the risk of being picked off.
Hence an increase in ® results in a higher monitoring cost and a greater risk of being picked off.
Lemma 2 follows. Proposition 2 also holds when only one dealer posts the inside spread (M, = 1).
In this case ® = 0 since quote monitoring is pointless. Hence the function C' takes the value

C(1,0, L) and we denote it C(1) for simplicity.

3 Spreads and Monitoring Externalities

The results in the previous section are all conditional on a spread. In this section we determine
the set of equilibrium spreads. We show that there are two important determinants of the inside
spread: (1) the probability that bandits react quickly to quote updates (®), and (2) the number of

orders submitted by a bandit (L).

11



3.1 The Set of Equilibrium Spreads

Consider a situation in which all dealers (M, = M > 2) post the inside spread S;. This is an
equilibrium spread if no dealer has an incentive (i) to widen his spread or (ii) to improve upon the

inside spread. The first condition requires that dealers do not expect to incur losses, that is

I (S5, M) > 0.

Let S (M, ®, L) be the spread such that this equation is binding (the zero expected profit spread).

Using Equation (15), we get

) ( Mz*(M)C (M, ®, L) ) ' (18)

S(M,®,L) = ao aMz*(M)C(M,®,L) + (1 — a) 36

In equilibrium, the inside spread must be at least S for the dealers to break even. A dealer does
not improve upon the inside spread if the profit earned by posting the inside spread is at least as

large as the profit he would obtain if he unilaterally undercuts. This requires
ALL(S}) = IL5(S5, M) — ILi(S{, 1) > 0. (19)

Using Equation (15), we obtain

ATI(Sy) = % a0 — S)(C(1) — " (M)C(M, @, L)) — S5((1 - a)38) -

(20)

The dealer who undercuts gains a larger share of the order flow from liquidity traders (he executes
the entire order of a liquidity trader instead of a fraction equal to 1/M). This effect encourages
undercutting and is captured by the last term inside the brackets. However, there are two counter-
acting effects that discourage the dealer from undercutting. First, the fraction of the dealer’s depth
at risk increases from x*(M) to 100%. Second, the dealer monitors more. These two effects increase
the cost of market making (this is captured by C(1) — 2*(M)C(M,®,L)). They are analyzed in

detail in the following sections. For the moment, notice that if

C(1) — 25(M)C(M,®,L) > 0, (21)

12



then AII decreases with the spread. Hence the condition AIl > 0 holds when the spread is
sufficiently small. Specifically, let S be the spread such that a dealer is just indifferent between

undercutting or matching the quotes (‘the maximal spread’). The maximal spread solves AII(S) =

0. Hence,

S(M,®,L) = ac <aAC—|—A(1C— a)&), (22)

with

M[C(1) — 2*(M)C(M, &, L)]
(M —-1) '

AC(M,®,L) = (23)

A dealer is better off not improving upon the inside spread when S; < S. We conclude that S is
an equilibrium spread if and only if it belongs to [S’ ,5]. The next lemma provides the condition

under which this interval is nonempty.

Lemma 3. There exists an equilibrium with M > 2 dealers posting the inside spread if and only if

S(M,®,L) < S(M,®, L), that is

1 C(1)—a2°(M)O(M,®, L)

1-—<
M_

(24)

The left-hand side represents the increase in the market share of a dealer who undercuts. The
cost associated with undercutting is captured by the term on the right-hand side of the inequality.
When Inequality (24) is strict, the maximal spread is strictly larger than the zero profit spread
(S > 5’) and non-competitive spreads can be sustained in equilibrium. Below we study in detail

the conditions under which this inequality holds.

3.2 The Effect of Monitoring Externalities

We now show how the positive externality associated with news monitoring helps dealers earn
strictly positive expected profits, whereas the negative externality reduces the number of dealers
who post the inside spread. In order to better convey the intuition, we assume in this section that
a bandit can only submit one order of the maximum order size (L = 1). Analysis of the general
case is deferred to Section 4.3. This means that x*(M) = Min{l,L/M} = 1/M. In this case,
Inequality (24) simplifies to

c(1)—C(M,®,1) > 0. (25)

13



For ® = 0, the dealers’ monitoring costs and therefore C'(M,0,1) decrease with the number of
dealers posting the inside spread (see Equation (16)). We refer to this effect as the cost sharing
effect. Intuitively, the number of dealers grows, each dealer can free ride on a larger number of
dealers’ monitoring efforts without facing an increase in the risk of being picked off. This is a result
of the positive externality of monitoring which exists when & is sufficiently small. Accordingly, for

® = 0, Inequality (25) is always (strictly) satisfied and we obtain the following result.
Proposition 3. In the absence of quote monitoring by the bandits (® =0),

1. All the dealers post the inside spread in equilibrium (no sidelined dealers).

2. There is a multiplicity of equilibrium spreads: any spread Sy € [S(M,0,1),S(M,0,1)] is a
Nash equilibrium. For all the equilibria in which the inside spread is strictly larger than

S’(M,O, 1), the dealers earn strictly positive expected profits.'?

The cost sharing effect deters dealers from improving upon the inside spread and explains why
non-competitive spreads can be sustained. When quote monitoring is possible, & > 0, there is a
counteracting effect. Instead of simply lowering the monitoring costs, an additional dealer at the
inside spread also increases the number of potential quote updates that bandits can use to learn
about news. This effect (the source of the negative externality) lowers dealers’ incentive to share
monitoring costs. In particular the cost of market making with two dealers may then be larger
than with only one dealer, despite the cost sharing effect. A second dealer at the inside enables
bandits to exploit quote updates. This triggers a jump in the risk of being picked off relative to
the case with one dealer and therefore matching the quotes of a single dealer can be suboptimal.

This is the rationale for equilibria with only one dealer at the inside.

Lemma 4. In the presence of quote monitoring by the bandits (P > 0), we observe that either
(a) all the dealers post the inside spread (My = M) or (b) only one dealer posts the inside spread

(My =1), in equilibrium.

The bandits’ ability to quickly exploit the information contained in quote updates (the value of

®) determines the nature of the equilibrium as shown in the next two propositions.

Proposition 4. There exists ®*(M,N) € (0,1) such that when 0 < ® < ®*(M, N):
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1. All the dealers post the inside spread in equilibrium.

2. There is a multiplicity of equilibrium spreads: any spread Sy € [S(M,®,1),S(M,®,1)] is a

Nash equilibrium. Dealers earn strictly positive expected profit when Sy > S(M, o, 1).

When dealers react sufficiently quickly to quote updates (® < ®*), news monitoring by each
dealer is a positive externality for the other dealers. Thus, the cost sharing effect dominates. For
® > ®* the increased risk of being picked off due to quote monitoring dominates the cost sharing
effect. This is formally stated in the next proposition. We denote the zero profit spread when only

one dealer posts the inside spread by S(1).

Proposition 5. When ®*(M,N) < ® < 1, the Nash equilibrium of the quoting stage is such that

only one dealer (M = 1) posts the inside spread, which is S; = S(1). The expected profit of the

dealer posting the inside spread is zero.

In order to prevent bandits from exploiting the quote updates, dealers undercut each other until
a single dealer, who breaks even, remains at the inside spread. If another dealer were to match this
inside spread, then the two dealers would incur a loss. This is due to the jump that results in the
probability of being picked off. Consequently, a large relative advantage in quote monitoring for

the bandits may dramatically reduce liquidity (a form of market breakdown).!?

3.3 The Effect of Multiple Orders by Bandits

In this section we study the effect of the maximum quantity that bandits are allowed to trade, L.
Recall that a dealer’s participation rate in trades initiated by bandits is
1 if L>M,

¥ (M) = (26)
L/M if L< M.

Notice that (M) > ﬁ when L > 1 and M > 1. Now consider a dealer who undercuts his

competitors and suppose L > 1. His participation rate in bandits’ trades increases but relatively
less than when L = 1, since 1 — 2%(M) < 1 —1/M. This makes undercutting more attractive when

L > 1 since part of the cost to undercutting (greater exposure to bandits) is smaller than when
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L = 1 whereas the benefit (greater participation rate in liquidity trades) is unchanged. This effect
strengthens the dealers’ incentives to price compete. Nevertheless, the cost sharing effect that we
identified in the previous section still holds. It remains dominant as long as L is not too large.

Proposition 4 generalize as follows.

Proposition 6. There exists L*(M) > 1 such that for L < L*(M) and ® < ®(M,N,L): (i) all
the dealers post the inside spread in equilibrium and (ii) there are multiple equilibrium spreads: any

spread Sy € [g(M, ®,L),S(M,®, L)] is an equilibrium.

The cut-off @ is the value of ® such that Inequality (24) is binding (i.e., is such that the maximal
spread and the zero profit spread are identical). For values of ® strictly smaller than this cut-off,
the zero profit spread is strictly smaller than the maximal spread and dealers earn rents in equilibria
where Sp > S. In the appendix we show that ® decreases with L. It is equal to ®* when L = 1
and it is equal to zero when L = L*(M). Allowing bandits to place multiple orders shrinks the set
of values of ® for which dealers can sustain non-competitive spreads. This set is always empty for
L > L*(M). In this case, there is no positive value of ® (and therefore no positive ®) such that

Inequality (24) is satisfied.

Proposition 7. Suppose that either (a) ® > &(M, N, L) and L < L*(M) or (b) L > L*(M). Then
the unique equilibrium is such that only one dealer posts the inside spread which is equal to 5’(1)

and he earns zero expected profits.

These results generalize Proposition 5. Under the conditions of Proposition 5, the benefit to
undercutting dominates the cost of undercutting and a zero expected profit equilibrium ensues.
When @ > & and L < L*(M), the result obtains because sharing the monitoring costs is no
longer attractive, as explained in the previous section. When L > L*, the result obtains because
the increase in a dealer’s exposure to bandits’ trades is too small to deter undercutting. It is
noteworthy that only one dealer posts the inside spread in equilibrium when L is large.'* This
suggests that unbridled trading by bandits can result in a decline in the total quoted depth. It also
provides a justification for a limit on the number of positions that a bandit can initiate within a
short interval of time. We conclude this section by considering the effect of a change in ® on the

set of equilibrium spreads.
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Lemma 5. Suppose L < L*(M) and & < d. The zero expected profit spread, S, increases with ®
whereas the mazimal spread, S, decreases with ®. Furthermore S(M,®,L) = S(M,®, L) = S(1).

In the other cases, the equilibrium spread s S’(l), which does not depend on ®.

An increase in the bandits’ relative advantage in quote monitoring increases the cost of market
making (see Lemma 2). This explains why the zero expected profit spread increases with @.
Dealers gain less in sharing monitoring costs when ® increases and non-competitive spreads are
more difficult to sustain. Thus, an increase in ® reduces the maximal spread.

Figure 2 summarizes the results. When & < $ and L < L*(M), there is a multiplicity of
equilibrium spreads. Two equilibria are of particular interest: (1) the maximal spread equilibrium

(Sy = S), which is the preferred equilibrium for a dealer and (2) the zero expected profit equilibrium

(S§ = 5), which is preferred by liquidity traders.

4 Market Design

In this section we analyze some market design issues that are motivated by some actual and proposed
trading rules. We then show how theses policies affect spreads and price discovery in our model.

Nasdaq responded to the dealers’ complaints about the SOES bandits by proposing to replace
SOES with N*prove (1994) and NAqcess (1995). These systems were never approved by the SEC.
One common feature of these trading systems is a delayed execution feature that allows dealers
a short time interval during which they could decline to accept an incoming trade. This feature
relaxes the firm quote requirement and consequently makes it harder for bandits to execute trades.
In particular, trading strategies that rely on quote monitoring are less effective under these rules.
Thus, we can interpret these proposals as a shift of the relative advantage in quote monitoring to
the dealers (a lower ® in the model).

Interestingly, one of the existing trading rules on Nasdaq also affects the dealers ability to up-
date their quotes rapidly. Nasdaq’s Autoquote Policy prohibits software that would automatically
update one dealer’s quotes as a function of other dealers’ quotes. By forcing a dealer to update his
quotes manually when he receives an alert, this policy increases the time required for him to adjust
his quotes. Thus, allowing auto-quoting can also be interpreted as a shift of the relative advantage

in quote monitoring favoring the dealers.
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We consider a base case where ® is positive but small enough, ¢ < <i>, and 1 < L < L* to avoid
a situation with only one dealer posting the inside spread.'® We refer to our base case as a market
design with a firm quote rule. We then compare this case with a relazed quote rule where ® is lower
than in the base case, i.e., we shift the advantage in quote monitoring to the dealers. We take this

lower value to be zero (¢ = 0), without affecting the results.

Corollary 1. When the equilibrium of the quoting stage is the maximal spread equilibrium (zero

expected profit equilibrium), the inside spread is smaller (larger) under the firm quote rule.

Consider Figure 2. If the dealers post the zero expected profit spread, then the equilibrium
spread is clearly larger when ® > 0. This reflects the fact that the adverse selection risk is larger
when bandits can use the information revealed by quote updates to pick off dealers. However if
the dealers post the maximal spread, the conclusion is reversed: the equilibrium spread is smaller

when ® > 0.

Corollary 2. The monitoring level chosen by a dealer in equilibrium s always larger under the

firm quote rule, both in the zero expected profit and in the maximal spread equilibria.

A firm quote rule strengthens the dealers’ incentive to be first to discover new information
because it increases the likelihood that bandits (rather than dealers) benefit from quote updates.
Free riding on other dealers’ monitoring becomes risky.' One implication is that dealers’ quotes
will reflect new information more quickly under the firm quote rule. The speed of price discovery,

however, is determined by the aggregate monitoring level, Ag + v4.'7

Corollary 3. In the mazimal spread equilibrium (zero expected profit equilibrium), the aggregate

monitoring level, N + 7%, is larger (smaller) under the firm quote rule.

Thus, a firm quote rule may or may not improve price discovery. On the one hand, it strengthens
the dealers’ incentives to monitor. On the other hand, it weakens the bandits’ incentive to monitor,
since they can use the free information contained in quote updates to pick off dealers. In the zero
expected profit equilibrium, this effect is reinforced by the fact that the spread is larger under the
firm quote rule (the bandits’ monitoring effort decreases with the spread). Thus, in this case the

aggregate monitoring is lower. In the maximal spread equilibrium, the spread is smaller under the
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firm quote rule. In this case, the increase in the dealers’ aggregate monitoring level is larger than
the reduction in the bandits’ monitoring level, and price discovery is improved.

To sum up, our analysis provides some support for both the bandits’ and the dealers’ arguments.
If the dealers are playing the maximal spread equilibrium, a policy that makes it easier for the
bandits to pick off stale quotes may both improve price competition and price discovery. This
vindicates the argument that a firm quote requirement provides “market discipline.” On the other
hand, if the dealers are posting the zero profit spread, a policy that enables bandits to pick off stale
quotes would increase the spread and slow down price discovery. This finding supports the dealers’

argument that the firm quote requirement, in presence of bandits, impairs market quality.

5 Testable Implications

A major question in the SOES controversy is whether or not SOES bandits cause dealers to post
wider spreads. Our goal is to study this issue empirically. In this section we develop some com-
parative statics that we use in our empirical analysis. We first consider the impact of an increase
in the number of bandits on the equilibrium spread. When there is a multiplicity of equilibria we

focus on the zero expected profit and the maximal spread equilibrium.
Proposition 8. A larger number of bandits increases the equilibrium spread, ceteris paribus.

The intuition is as follows. In equilibrium, the probability that a bandit submits an order when

two or more dealers post the inside spread is

* A*

Prob(f € N) + ®Prob(f € M)) = A oA
a(Prob(f € N') + ®Prob(f € M)) Oz(&ﬂzﬂt Afﬁﬂ)
[N+ (®—-h(®,L))
_a<N+1—h(<I>,L))’

(27)

where the last equality follows from Proposition 2. The same expression for this probability with
® = 0 is obtained in equilibria with only one dealer. Thus, an increase in the number of ban-
dits increase the risk of the dealers being picked off. Proposition 8 yields the following testable
hypothesis.

Hypothesis 1: Stocks with a higher level of bandit activity have wider spreads, ceteris paribus.
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Testing Hypothesis 1 is not straightforward because the bandit activity itself depends on the
spread. We need to control for this effect. To this end, we extend the model assuming that each
bandit bears a fixed entry cost, K > 0, that is sunk at the beginning of the trading game. This
fixed cost represents, for instance, the cost of acquiring computer systems for trading. For a given

spread, a bandit’s expected profit (see Proposition 2) net of the fixed cost K is

2N(N +1—h(®,L)) — (N — h(®,L))?
4N(N 4+1—h(®,L))?

IT*(Sp, N) — K = aQ*(c — Sp) - K (28)

The same expression obtains when a single dealer posts the inside spread, with ® = 0 in this case.
Bandits take the spread as given and enter if their net expected profit is positive. Clearly, the
net expected profit decreases in the number of bandits and is negative when this number is large.
The number of bandits who enter, N*(S), is such that the net expected profit is equal to zero.!®

Note that an increase in the spread reduces N* since a bandit’s net expected profit decreases in

the spread.
Proposition 9. A larger spread leads to fewer bandits, everything else equal.

This result gives us our second main prediction.

Hypothesis 2: Stocks with wider spreads have lower levels of bandit activity, ceteris paribus.
Hypotheses 1 and 2 underscore the interdependence between the spread and the number of

bandits. Consequently, we will test Hypotheses 1 and 2 using a simultaneous equations framework

with the spread and the level of bandit activity as endogenous variables. In order to do this we

need to determine how the other model variables (o, @, M, d) influence the spread and/or SOES

bandit activity.
Corollary 4.

1. For a given number of bandits, an increase in the average size of liquidity trades (§) shrinks

the spread. An increase in volatility (o) widens the spread.

2. For a given spread, an increase in the minimum quoted depth (QQ) or an increase in volatility

(o) triggers the entry of bandits.

The above result for the spread is intuitive. The second part of the corollary follows since an

increase in the minimum quoted depth or in the asset volatility raises bandits’ expected profits, all
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else being equal. In our empirical analysis, we also use the number of dealers in a stock as a control
variable, but we do not formulate predictions regarding the effect of the number of dealers on the
spread. Actually, the model can not yield clear-cut predictions for the direction of this effect. In

order to illustrate this fact, we consider a special case in the next corollary.

Corollary 5. Suppose that L = 1 and ® < ®*(M,N). In the zero expected profit equilibrium,
the spread decreases in the number of dealers posting the inside spread. In the maximal spread
equilibrium, the spread can increase with the number of dealers posting the inside spread when ® is

large.

Recall that if ® < ®* all the dealers post the inside spread in equilibrium and share the monitoring
costs. It follows that the cost of market making and therefore the zero expected profit spread
decreases with the number of dealers. At the same time, cost sharing makes undercutting less
attractive when the number of dealers is large. Hence an increase in the number of dealers makes
it easier to sustain non-competitive spreads. This explains why, counterintuitively, an increase in
the number of dealers may result in a larger spread in the maximal spread equilibrium.

For a given spread, a decrease in the minimum quoted depth induces the entry of fewer bandits.
This decline in the number of bandits reduces the risk of being picked off for the dealers and reduces
the spread. Hence a change in @) indirectly affects the spread because it influences the number of
bandits. Notice that the decrease in the spread counter-balances the initial negative impact of a
reduction in ) on the number of bandits. Nevertheless, the next proposition states that despite

this effect, a decrease in the minimum quoted depth reduces the number of bandits in equilibrium.

Proposition 10. Suppose either (a) L =1 and ® < ®*(M,1) or (b) L > M. In equilibrium a
reduction in the minimum quoted depth, @Q, leads to (i) fewer bandits, (ii) a smaller spread, and

(71i) lower level of aggregate monitoring.

Interestingly, the minimum quoted depth has been reduced several times on Nasdaq. Nasdaq
argued that this reduction would lessen SOES bandit activity and would narrow spreads. The
previous proposition concurs, but it points out that a reduction in the minimum quoted depth
adversely affects price discovery. Fewer bandits imply that the bandits’ aggregate monitoring level

decreases. Dealers also choose to monitor less, since the risk of being picked off is smaller. Even-
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tually price discovery is impaired. The last result yields a third prediction.

Hypothesis 3: Stocks with higher minimum quoted depth have (i) larger spreads and higher

levels of bandit activity.

In line with the second part of Hypothesis 3, Harris and Schultz (1997) and Barclay et al.
(1999) find a decline in the number of trades initiated by SOES bandits after the reduction in the
minimum quoted depth in 1994 and 1997, respectively.

Remark. In order to establish the last Proposition 10, we must determine how a change in Q
affects (a) the spread and the number of dealers posting this spread and (b) the number of bandits,
in equilibrium. This is difficult because a change in the number of bandits can trigger a shift from
an equilibrium in which all the dealers post the inside spread to an equilibrium with a single dealer
posting the inside spread (the cut-off P depends on N). This creates discontinuities in the bandits’
expected profit function when N varies. The conditions on the parameters guarantee that this
technical problem does not arise. When L = 1 and ® < ®*(M, 1), all the dealers post the inside
spread in equilibrium, independent of the number of bandits. When L > M, a single dealer posts
the inside spread in equilibrium, independent of the number of bandits as well. Notice that the

proposition covers all the possible situations in equilibrium.

6 Empirical Analysis

Armed with the results of the previous section, we are now able to address empirically some of the
key questions in the SOES debate: Does an increase in SOES bandit activity increase the spread? Is

the maximum SOES quantity an effective policy instrument for influencing SOES bandit activity?

6.1 Methodology

We need a proxy for the number of SOES bandits since we do not observe it directly. A natural
measure of their activity is the unconditional probability of observing a trade initiated by a bandit.
In our model, this probability is given by Equation (27) and is strictly increasing in the number of

bandits. The qualitative effects of a change in the exogenous parameters on the number of bandits
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and this probability are identical.

But how do we identify trades initiated by bandits? Harris and Schultz (1997) show that SOES
trades occurring in clusters (several maximum-size SOES trades in rapid succession) are very likely
to be initiated by bandits. Accordingly, we use the probability of a SOES cluster as our proxy for
the probability of a trade initiated by a bandit. We define a cluster as an uninterrupted sequence
of three SOES orders of the maximum size, at the same price, within 30 seconds.'® Our proxy is
then defined as the number of SOES clusters divided by the total number of trades.

We estimate the following system of simultaneous equations for a cross-section of stocks:

soes; = aq + asspr; + agvlty; + agmazxq; + €1 (20)
spri = by + basoes; + bsvlty; + bandlr; + bsliqd; + €3,
where ¢ = 1,..., I index the stocks and the variables in the equation system are: the probability

of a SOES cluster (soes), the bid-ask spread (spr), the volatility of the stock returns (vlty), the
maximum quantity that can be traded in SOES (maxq), the number of dealers in the stock (ndlr),
and the average size of liquidity trades (ligd). We define these variables in more detail below.
The first equation determines the probability of observing a SOES cluster as a function of the
bid-ask spread, the volatility of the asset, and the maximum SOES quantity. The second equation
determines the spread as a function of the probability of a SOES cluster, the volatility of the
asset, the number of dealers, and the average size of liquidity trades. Our two main predictions
are that the effect of the spread on the bandit activity is negative, as < 0, and that the effect of
the bandit activity on the spread is positive, by > 0. Corollary 4 provides the expected signs for
the other independent variables. Recall that we can not sign the effect of the number of dealers

unambiguously.

6.2 Data

Our data are provided by Nasdaq and it includes transactions and dealer quotes for December
1996. In taking the two-equation model to the data we face the following two difficulties. Previous
research and anecdotal evidence suggest that bandit activity is very heavily concentrated in the large

and active stocks whereas many less actively traded stocks have very little or no bandit activity.
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Provided there is enough variation in the key instruments, i.e., the maximum SOES quantity and
the number of dealers, we could estimate Equation (29) for a cross-section of actively traded stocks.
The problem is that the rules for assigning the maximum SOES quantity imply that there is little
or no variation in the maximum SOES quantity for a sample that is restricted to the very active
stocks.2? In order to address this problem we select a larger number of stocks than previous studies.
The second challenge is that our dependent variable is defined as the ratio of the number of SOES
cluster to the total number of trades. The normalization by the number of trades is important
since our theoretical predictions concern the relative likelihood of a trade by a bandit rather than
the absolute number of bandit trades. To control for this problem and to check the robustness of
the results obtained for the first sample we construct a second sample. There is not much overlap
between the two samples—only about 8% of the stocks in the first sample are included in the second
sample.

The selection criteria used for the first sample is trading volume. Using a cut-off of four million
shares for the monthly trading volume and a minimum average price of five dollars we obtain
a sample of 310 stocks. Our sample includes many of the stocks that are frequently mentioned
as favorites among the bandits, but also other active stocks with little or no bandit activity as
measured by our proxy (see Table 3).

We construct a second sample using the following selection criteria. We rank all NASDAQ
stocks with a price above three dollars by the number of trades in December 1996. We select the
top one hundred stocks with a maximum SOES quantity of 500. These stocks are then matched
with stocks with a maximum SOES quantity of 1000 using number of trades as the matching
criteria. By selecting a fixed number of stocks with a smaller SOES size we get large variation
in the maximum SOES quantity and by matching on the number of trades we ensure that the
cross-sectional variation in our proxy for bandit activity is not driven by variation in the number
of trades. The disadvantage of this sample and any sample of less actively traded stocks is that the
overall level of bandit activity tends to be small making it harder to pinpoint the effect of changes
in bandit activity.

Table 3 reports, for each of the variables we use in our analysis, the mean, median, standard
deviation, minimum, and maximum. The first four rows report these statistics for the total number

and frequency of SOES clusters, and the total number of SOES trades and non-SOES trades. The
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average number of clusters is 204 in the first sample and 16 in the second sample, suggesting that
bandit activity as measured by our proxy is concentrated in the most active stocks. The median
number of clusters of 61 and 2, respectively, provide evidence of a skewed distribution with a lot of
bandit activity concentrated in a relatively small number of stocks. The bid-ask spread is measured
as a weighted time series average of the relative inside spread. Each observation is given a weight
that is proportional to the time the observed spread was in effect. The standard deviation and the
range for the spread suggest that there is substantial variation in this variable both within each
sample and across the two samples. On average stocks in the second sample have a bid-ask spread
of 2.57% compared with an average of 1.3% for the first sample.

The volatility is measured by the standard deviation of the half-hour returns based on the
mid-quotes, excluding overnight returns. The maximum SOES quantity is a discrete variable that
is equal to 1000 (for 294 stocks), 500 (for 10 stocks), and 200 (for 6 stocks) in the first sample.
By construction the second sample is evenly split between a SOES quantity of 1000 and 500. The
number of dealers for each stock is defined as the time-series average of the number of active dealers
in the stock. We compute the average trade size for all trades excluding trades that were part of a
SOES cluster. Note that SOES accounts for only a small fraction of the total trading volume for
most stocks. Accordingly, we find that the average trade size is larger than the maximum quantity
that can be traded in SOES. The last two rows report statistics for the market capitalization and
the average price. These two variables are likely to influence the bid-ask spread (see Harris (1994)),
although they do not play a direct role in our model. We use them as control variables to improve
the efficiency of our estimation. Overall, the companies in the second sample have a smaller market
capitalization, are less actively traded by investors, and less likely to be traded by bandits.

We use transformations of some of the variables discussed above in the estimation. In the
subsequent discussion our proxy for SOES bandit activity is defined as the logarithm of the odds

ratio for clusters, i.e., In(sZ-), where p is the proportion of clusters among all trades.?! We

1-p
normalize the average trade size by the maximum SOES quantity so that the resulting variable,
referred to below as the liquidity demand, corresponds to the § in the model. Finally, we take the
logarithm of the market capitalization and the average price.

Table 4 presents the correlation matrix for the variables that we use in the estimation. Notice

that the correlation between the average bid-ask spread (spr) and the proxy for SOES bandit
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activity (soes) is —0.684 and —0.507, respectively, in the two samples. This negative correlation
is consistent with the observation that more bandits are active in stocks with smaller spreads
(Proposition 9). This does not rule out that an increase in bandit activity, holding everything else

equal, leads to wider spreads as predicted by Proposition 8.

6.3 Empirical Results

Table 5 reports the parameter estimates and corresponding p-values for our two-equation model
(Equation (29)).22 The estimates for the endogenous variables provide mixed support for the
predictions of the model. The parameter estimate for the bid-ask spread in the SOES Equation
is negative, with a p-value less than 0.001, for both sample. This means that an increase in the
spread is an effective defense against trading by bandits. On the other hand, we find only limited
support for the dealers’ claim that trading by the bandits forced them to widen their spreads: in
the Spread Equation, the coefficient on bandit activity is positive in both samples. The effect of
bandit on the spread is statistically weak, however, with the coefficient significant only at the 10%
level (p-value of 0.079) in the first sample. In the second sample the coefficient is not significantly
different from zero. Possible explanations for this finding are discussed in the next section.

The following numerical example illustrates the economic significance of these parameter esti-
mates for an average stock in the first sample. Consider a stock with an average probability of a
SOES cluster, which corresponds to 1.297%. A one standard deviation increase in this probability
(roughly 128 basis points) leads to an increase in the bid-ask spread of 30 basis points (which
corresponds to a 0.44 standard deviation increase).23 On the other hand, a one standard deviation
increase in the spread, which roughly corresponds to 68 basis points, leads to a 81 basis points
drop in the probability of a SOES cluster for an average stock (this corresponds to a 0.63 standard
deviation decrease).

The estimated coefficients for the maximum SOES quantity in the SOES Equation are positive
and highly significant for both samples. The coefficients on volatility are both positive, but only
the coefficient in the first sample is estimated precisely. In the Spread Equation the coefficient on
volatility is positive (p-values of 0.058 and 0.115, respectively). All the estimates above have the
predicted signs. In line with intuition, the coefficient on the number of dealers is negative in both

samples with p-values less than 0.001. The trade size does not appear to play an important role
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in determining the spread in the first sample; the coefficient has a p-value of 0.453 whereas the
coefficient on trade size is negative and significant, as predicted by the model, in the second sample.

Each estimated parameter in Table 5 measures the impact on the spread (or bandit activity) of
one exogenous variable, holding all other variables constant. In order to study how a change in the
maximum SOES quantity ) would indirectly affect the spread, we estimate two “reduced-form”
regressions. Table 6 report the results for these regressions of the endogenous variables on all the
exogenous variables.

In Table 6, the coefficient on the maximum SOES quantity, in the Spread Equation, is positive
(with a p-value of 0.058 and 0.213, respectively). This implies, other things equal, that stocks with
a lower minimum quoted quantity have tighter spreads, as predicted by Proposition 10. According
to our model, the effect of the maximum SOES quantity on the spread is indirect: An increase in
this variable attracts bandit activity, which in turn tends to increase the spread. Hence, the low
statistical significance is consistent with our previous finding that SOES bandit activity has only a
moderate impact or, as is the case for the second sample, no impact on the spread. A back of the
envelope calculation shows that a change in the maximum SOES quantity from 500 to 1000 shares
would increase the spread by 19 basis points (or a 0.28 standard deviation increase) for stocks in
the first sample.

In the SOES Equation we also find a positive and significant (p-value < 0.001) coefficient on
the maximum SOES quantity in both samples. The coefficient estimate of 0.0011604 for the first
sample implies that increasing the maximum SOES quantity from 500 to 1000 shares leads to an
increase in the probability of a SOES cluster of roughly 100 basis points which corresponds to a
0.78 standard deviation increase.

Notice that the coefficient on the number of dealers is positive in the SOES Equation. Stocks
with a higher number of dealers have lower spreads, which would tend to attract more bandits.
Bandits may also focus on stocks with a large number of dealers because stale quotes occur more
frequently in such stocks.

In the reduced form regressions (Table 6), volatility has a positive impact on bandit activity.
The effect is not statistically different from zero, however (p-value of 0.259 and 0.376, respectively).
Recall that in the reduced-form regressions, we do not control for the effect of the spread on the

number of bandits. It turns out that volatility has a positive impact on the spread. Hence the
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coefficient on volatility reflects a direct positive effect of volatility on bandit activity (confirmed in
Table 5) and an indirect negative effect via the spread. Our empirical results suggest that the two

effects essentially cancel so that volatility does not significantly affect the bandit activity.

6.4 Summary and Discussion

Overall, our results are consistent with a market where the extent of trading by the bandits is
strongly influenced by variables that predict profitability: (i) the bid-ask spread, (ii) the maximum
SOES quantity. However, our empirical results provide very weak evidence in support of the
hypothesis that increased bandit activity leads to wider spreads. This suggests that the dealers’
trading costs or at least the bid-ask spreads are not very sensitive to losses due to bandit trading.
The findings of Harris and Schultz (1997) also support this conclusion.?*

At first glance our result may seem to be at odds with evidence of positive bandit profits as
reported in Harris and Schultz (1998). The result is also puzzling given the time and resources
that dealers have spent lobbying against the bandits. It is, of course, important to realize that
the documented bandit profits concern a relatively small number of very active stocks whereas our
results for the bid-ask spread are obtained for broader cross-sections of stocks. It is possible that
on average the effect of the bandits on the spread is too small to detect even if there was a stronger
effect in a smaller subset of stocks. The marginally significant effect found for the first sample and
the insignificant effect found for the second sample are consistent with this argument. Below we
will discuss some alternative explanations for our findings.

Several institutional rules may make it difficult to measure the impact of bandit activity on
spreads. First, in our sample period, the minimum price increment was $1/8 for most stocks. For
some stocks, this may be larger than the compensation required by dealers for the risk of being
picked off by bandits. In this case, an increase in bandit activity will have no discernible impact
on observed spreads even if it increases the cost of market making. Second, many larger trades
receive price improvements. In our model, dealers compensate the losses inflicted by bandits by
quoting larger spreads. In reality, they may decide to leave their quoted spread unchanged but to
offer price improvements less frequently. In order to examine this explanation our model would
need to be extended to allow the dealers a richer set of choices. This analysis is beyond the scope

of this paper.?

28



To sum up, given the above difficulties one should not conclude that our results suggest that
a very high levels of SOES bandit activity does not affect the trading costs of a stock. What
our results suggest is that for a typical stock in this market, or at least in our relatively large

cross-section, SOES bandit trading level is not an important determinant of the trading costs.

7 Conclusion

We develop a model of information monitoring and market making in a dealership market. Our
analysis is motivated by the controversy concerning SOES bandits on Nasdaq, but can be viewed
more broadly as well. Dealers choose to invest in costly information monitoring in order to reduce
the risk of being picked off. By matching the quotes of other dealers rather than undercutting,
dealers can share the monitoring costs. When active traders such as the SOES bandits can use
the information revealed by quote updates to pick off dealers they add competitive pressure and
force dealers to quote narrower spreads and quickly update their quotes. On the other hand, when
this picking off risk becomes to large dealers may refuse to post quotes and we observe a dramatic
decrease in liquidity. Thus, unbridled trading by SOES bandits or other active traders may harm
market liquidity, as the opponents of the SOES bandits have argued.

Important changes in Nasdaq trading rules have been implemented following the period we
study. Trading in SOES has decreased following the introduction of the order handling and actual
size rules in 1997 according to Barclay et.al. (1999). Based on our model we would expect a decrease
in activity because a smaller minimum quoted depth, a consequence of the actual size rule, tend to
decrease bandit profits. More recently, Nasdaq’s new SuperMontage system includes an updated
version of the SOES system called SuperSoes. SuperSoes retains the key feature of the old system
namely automatic execution. One important difference is that dealers can use the new system
for both agency and proprietary orders. It therefore creates a level playing field, something that
dealers have called for. The equal access feature in SuperSoes makes it similar to other automatic
trading systems such as electronic limit order markets. In an electronic limit order market any
market participant can make a market by placing a limit order or trade against limit orders placed
by other traders. Monitoring of public information is useful for two reasons. First, a trader can

reduce the risk of her order being picked off. Second, she can increase the chance of observing and
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picking off other traders’ stale orders. A natural question for future research is to sort out how
price discovery and liquidity provision is affected when all traders can play the roles of the dealers

and the bandits.
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Proofs
Proof of Proposition 1. Using Equation (7)

aHd(Aiv )‘—’ia 7)
OAm

OProb(f € N)

(I)aProb( feM\i)] (0 —S,)Q
Om

= o |7 (M) M 2

+ xs(Mb — 1)

- m (25 (My)ya — @25 (My, — 1) (74 + \)] (0_2&)@2

Vm # i. (A1)
Equation (A1) is positive if and only if 2°(Mp)ya — @25 (M, —1)(y4+ ;) > 0 and @ follows directly.
Since x°(Mj,) (weakly) decreases with M, ® < 1.

Proof of Lemma 1. Suppose (to be contradicted) that there exists a Nash equilibrium in which

dealer i chooses \; and dealer i’ chooses A} and A} > X};. The difference of the first order conditions

Equation (8)) for 7 and 4’ yield
( y

alo — Sp)Q

2(Aa + 74)2 [(®2®(My — 1))(Nir — X)) = \I/(/\f) - ‘I//()\;k/). (A2)

Since A} > A%, the L.H.S of this equality is strictly negative. But since W'(.) is increasing, the right
hand side is strictly positive. A contradiction. A similar argument applies to the bandits.
Proof of Proposition 2. First we note that Equation (11) can be rewritten as

a(o — Sp)Q°(My)
Mb(Mb/\* + N’y*)Q

[Nv* + h(®, L) MA*] = ™. (A3)

Thus, dividing Equation (A3) by Equation (12), we find that A* and v* must satisfy

N~* + hMyA* Mp\*

ED M+ (N =1
Writing this equation in term of one unknown variable, T = A{;’;\*, and noting that the monitoring
levels must be positive (T > 0) we find a single solution: T = (N]X DE Substituting (T~*) for
(Mp\*) in Equation (12), we find that ~* solves
aQ®(o — Sp)(N — h)? .
o~ S =P — ey (A1)

N(N +1—h)?
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There is a unique positive solution to this equation, which yields v*. We then obtain A* using the
fact that A\* = % As \* and 4* are uniquely defined, there is a unique Nash equilibrium in the
monitoring stage. Substituting the expressions for A* and v* in Equations (7) and (9) yield IT; and

II%.

s

Proof of Lemma 2. By definition h(®, L) = @Qg%;)”. Hence h(®, L) increases with ®. Using this
fact and Equation (16), we get % > 0.

Proof of Lemma 3. An equilibrium with M dealers posting the inside spread exists if and only if
S(M,®,L) < S(M,®, L). Using Equations (18) and (22), we obtain that this inequality is satisfied
if and only if Mx*(M)C(M,®,L) < AC(M,®, L), that is (using Equation (23))

L (M)C(M, @, L) _ 1
(1) -~ M

This yields Inequality (24) after a straightforward manipulation.
Proof of Proposition 3. Part 1. Notice that C(M;,0,1) decreases with M;,. Therefore, using

Equation (15) with «*(M;) = 1/M,, if

I5(S3, M3) = 5 2 [-a(o — SC(M,0,1) + (1 - ) 3551] 2 0
then
TT%(Sp, My + 1) = 2(M?+1)[—a(a  S)C(My+1,0,1) + (1 — 2)B35S] > 0.

Thus, a sidelined dealer is always better off matching the inside spread; an equilibrium in which a
subset of dealers are sidelined when ® = 0 and L = 1 does not exist.

Part 2. Since C'(M,0,1) decreases with M and C(1) = C(1,0, L) (by definition), Inequality (25) is
satisfied. The second part of the proposition follows.

Proof of Lemma 4. Because L = 1, Q*(M — 1) = Q*(M) = Q. It is then immediate that
h(®,L) = ®. Using Equation (16), we deduce that C(M,®,1) decreases with M for M > 2.
Therefore we can proceed as in the proof of Proposition 3 (1st part) to show that there is no
equilibrium in which a subset of two or more dealers post the spread and some dealers are sidelined.
We cannot, however, rule out the possibility that C'(1) < C(2,®, 1) since C' increases with ® (recall
that by definition C'(1) = C(1,0, L)).
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Proof of Proposition 4. Let ®*(M,N) be the value of ® such that Inequality (25) is binding, i.e.
such that C(M,®,1) — C(1) = 0. Since C(M, ®, 1) increases with ®, C(M,®,1) < C(1) if & < &*
and C'(M,®,1) > C(1) otherwise. Thus Inequality (25) is satisfied if and only if & < &*(M, N).

Using equation (16), we find that

(N +1)?

C(M,2.1) = C(1) =0 —

S (A4 N-®)[1+N)1—28)—d]=0.  (A6)

This equation has only one solution in [0, 1] which is

*(M,N) = >0, for M2>2.

(1+N)(2+N)[1_ \/1_ (M —1)(3+2N)
3+2N M(2+ N)?

Note that ®*(.,.) increases with M and N and is always less than 1/2.

Proof of Proposition 5. When ® > ®*(M, N), Inequality (25) does not hold, and there is no

equilibrium in which all the dealers pool on the inside spread. If an equilibrium exists, it must

therefore feature a single dealer (an implication of Lemma 4). Denote the zero expected profit

spread with a single dealer at the inside by S(1), §(1) is equal to S(1,0,1) in Equation (18). Zero

expected profits imply

IT5(5(1),1) = 0.

There are three necessary conditions. First, dealer m must make positive expected profits:
IT5(S55,1) = 0,

which implies Sj > S (1). Moreover, the spread posted by the sidelined dealers must be just slightly
greater than the inside spread, otherwise dealer m would widen his spread. Second, a sidelined
dealer should not be better off undercutting the inside spread. This condition requires that dealer
m obtains zero expected profit, i.e., S; = S (1). Third, no sidelined dealer should be better off
pooling on the inside spread with dealer m: S(2,®,1) > S(1), that is C(2,®,1) > C(1).

We show that this is the case. Recall that ®*(M, N) increases with M. Hence if ® > &*(M,N)
then ® > ®*(2, N). Now recall that, by definition, ®*(2, N) is such that C'(2,®*(2,N),1) = C(1).

As C(2,®,1) increases with @, it follows that C'(2,®,1) > C(1) since & > *(2, N).

33



Proof of Proposition 6. We define F(M,®,L) = Mx*(M)C(M,®,L). Consider a situation in

which all the dealers post a spread S, € [S(M,®, L), S(M,®,L)]. Recall that this situation is an

equilibrium if and only if Inequality (24) holds. This inequality can be written
F(L,M,®)<C(1) for M >2. (A7)

Note that C(1) does not depend on L, ® and M. The function C(M, ®, L) depends on L through
h(®, L) (see Equation (16)). For M > 2,

d if L<M-—1,
Mo, L)=1q @ (M) if (M-1)<L<M,
@(%) if L> M.

Moreover we observe that (1) F(M,®,L) = LC(M,®,L) for L < M and that (2) F(M,®,L) =
MC(M,®, L) is independent of L for L > M. Differentiating and using the above observations
give

9L =C(M,®,L)>0 for L<(M-1)

o = (M, ®,L) [1 - gy =iy >0 for (M-1)<L<M
Hence F(M,®, L) increases with L. It is immediate that F increases with ® since C' increases with
this parameter.

For each L, we define ®(M, N, L) as the value of ® such that Inequality (A7) is binding (if such

a value exists). Thus, for L = 1, & = ®* (see the proof of Proposition 4). Furthermore since F
increases with L and ®, it is immediate that ® decreases with L. We define L*(M) as the value of
L such that ®(M, N, L*) = 0. Observe that L*(M) > 1 since ®(M, N,1) = ®* > 0. For values of
L larger than L*(M), there is no positive value of ® such that Inequality (A7) can be satisfied.
Proof of Proposition 7. It is immediate that F(M,®,M) > C(1), V®. Thus, L*(M) < M. It
follows that for L < L*(M), F(M,®,L) = LC(M,®, L) so that F decreases with M. Hence ®

increases with M. In turn this implies that L* increases with M since ® decreases with L.

From Proposition 6, we know that an equilibrium with M, > 2 dealers posting the inside spread

exist if and only if & < <i>(Mb,N, L) and L < L*(My). If these conditions are not satisfied for
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My = M, they can not hold for 2 < M, < M. Actually, in the proof of Proposition 6, we have

shown that ® and L* increases with the number of dealers. Tt follows that
&> O(M,N,L)= &> &(My, N, L) for 2<M,< M,

and that

L>L*M)=L>L*M,) for 2<M,<M,

Consequently, if & > i)(M, N,L) or L > L*(M), there is no equilibrium with M, > 2 dealers
posting the inside spread. The proof of the existence of an equilibrium with a single dealer posting
the inside spread follows the steps of the proof of Proposition 5.

Proof of Lemma 5. Observe that S increases with C. Since C increases with ® it follows that S

increases with ®. Using Equation (23), we get

OAC(M,®,L)  Ma*(M)9C(M,®,L)

9% M—1 oo 0

This means that AC decreases with ®. As S increases with AC, we obtain that S decreases with

®. By definition, d is such that

Using this remark, Equations (18) and (22) and the fact that S(1) = S(1,0,1), we deduce that

S(M,®,L) = S(M,®,L) = S(1).

Proof of Corollary 1. Immediate using Lemma 5.
Proof of Corollary 2. Since ® < cf>(M ,N, L), all the dealers post the inside spread in equilibrium
and the set of equilibrium spreads is [S’(M, ®,L),S(M,®, L)]. Since My = M, Proposition 2 yields

i Na@*(o - 5})
N (D) = \/cM2(1 TN — h(‘g,L))Q'

In the zero expected profit equilibrium, S; = S(M,®, L). Substituting S(M,®, L) in the previous
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equation and using the expression for S (given by Equation (18)), we obtain

N (@) = Na@*((1 — a)of39)
cM2[aMz(M)C(M,®,L) + (1 — )B](1 + N — (D, L)%’

(A8)

Substituting C' (M, ®, L) by its expression (given by Equation (16)), A* can be written as

(o) - NoQ*((1 —a)op) |
eM? [aN (Mzs(M)(1+ N — h(®, L)) + Z80) 4 (1 = 2)86) (1 + N — h(®, L))?]

Recall that h(®, L) increases with ®. It follows that % > 0. In the maximal spread equilibrium,
A* is given by Equation (A8) but C(M, ®, L) is replaced by AC(M, ®, L). As AC decreases with ®,
it is direct that dealers’ monitoring level increases with ®. Thus, independently of the equilibrium

we consider in the quoting stage, we obtain
A*(0) < X (®) VP < B(M,N,L). (A9)

Proof of Corollary 3. Using Proposition 2, we obtain that the aggregate monitoring level is

N(®) +75(®) = MA* + Ny* = ¢NO‘QS(M)(U_S§). (A10)

c

In the zero expected profit equilibrium, S} = S’(M7 ®, L). Since 5'(M7 0,L) < 5'(M7 ®, L), we obtain

(using Equation (A10))
Na(®) + 74 (@) < Ni(0) +74(0) VO < &(M, N, L).

Now consider the maximal spread equilibrium. In this case, S} = S(M,®, L). Since S(M,0,L) >

S(M,®, L), we obtain

Ni(®) + 74 (@) > N3 (0) +774(0) Ve < &(M, N, L).

Proof of Proposition 8. There are three different cases in equilibrium: (1) all the dealers post the

zero expected profit spread S (M,®,L); (2) a single dealer posts the zero expected profit spread
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S(1); (3) all the dealers post the maximal spread S(M, ®, L).
Case 1. This case requires ® < ®. Observe that S increases with C. Using Equation (16), we

obtain
aC  (1-h(,L)) (1—h—N)
ON  (N+1—h(®, L)) + 2M(N +1—h)3 ve, VL. (All)

Note that h(®,L) < ® < & and ®(M,N,L) < &* < . Hence h(®,L) < 1/2. Using this remark,
we obtain g—](\’; > 0, which implies that % > 0.

Case 2. We have
A1y _ C(1)
e e T CE YT

). (A12)

By definition C'(1) = C(1,0,L). Using Equation (16), we deduce that C'(1) increases with N.
Consequently S(1) increases with N.

Case 3. Observe that S increases with AC. Using Equation (23), we obtain

B0 (1) (50 - on 502)

Using Equation (All), we obtain that % < 0 for all values of ® and L. This means that
g—](\j, decreases with ®. Since C(1) = C(1,0, L), we deduce that

oC(1) _ 9C(M, ®, L)
ON N

Since z*(M) < 1, we conclude that %A—NC > 0. Consequently S(M,®, L) increases with .

Proof of Proposition 9. Immediate using Equation (28).

Proof of Corollary 4.

Part 1. Consider the case in which the dealers post the zero expected profit spread, S (M,®,L).
It is immediate from Equation (18) that S increases with o and that S decreases with 6. The
argument is identical when the dealers post the maximal spread (using Equation (22)). The last
possibility is that a single dealer posts a spread equal to S (1). By definition S (1) = S (1,0, L) which
increases with ¢ and decreases with 4.

Part 2. Consider an increase in (). It shifts bandits’ net expected profit upward for a given value

of N (see Equation (28)). This induces entry of more bandits. The effect of o is identical.
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Proof of Corollary 5. Under the assumptions on the parameters, all the dealers post the spread in

equilibrium. Suppose first that they post the zero expected profit spread

. B C(M,®,1)
S(M,®,1) = ao (C(M,CD, 1)+ (1— a)ﬁé) '

Using Equation (16), we obtain that C'(M,®,1) decreases with M. It follows that S(M,®,1)

decreases with M. Now suppose that the dealers post the maximal spread

B AC(M,®,1)
S(M, ®,1) = ao (AC(M,(I), 1)+ (1— a)ﬁé) ‘

Observe that it increases with 2C. Computations yield

aAC% e,1) _ & i o [C(M, ®,1) - C(1) +

N(M —1)
2M2(1+ N — @)2} ‘

The term in brackets increases with ®. It is strictly negative for & = 0 and strictly positive for
® = &*(M, N) (because by the definition of ®*, we have C(1) = C'(M,®*,1)). Thus there exists
&' € (0,9*) such that % = 0. For ® < @', 22021 ) and for & > @', 22CNLEL) - ¢
Proof of Proposition 10.

The Spread and the number of bandits

Case 1. L =1 and ® < ®*(M,1). Under these conditions, all the dealers post the inside spread in

equilibrium, for all values of N (because ®* increases with N). An equilibrium is a pair {S;, N*}
such that (i) IT}(S;, N*) = K and (ii) Sj € [S(M,®,1),S(M,®,1)]. Suppose first that the dealers
post the zero expected profit spread, and substitute S; by S (M, ®,1) in II%. Using Equation (28),
we obtain that N* must satisfy

a(1 — )B6Qo IN*(N* +1— ) — (N* — 3)?)
(aC(M,q>,1)+(1—a)ﬁ(s) AN*(N* +1— ®)2

- K. (A13)

Other things equal, the left hand side of this equation increases with ) and decreases with N*
(because the term in bracket decreases with N* and C'(M, ®, 1) increases with V). We deduce that
when @ increases, N* increases as well. Since S (M, ®,1) increases with the number of bandits

(Proposition 8), we conclude that the spread increases with Q.
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Suppose now that the dealers post the maximal spread equilibrium, Sj = S(M, ®,1). We can
follows exactly the same steps as for Sy = S. The only difference is that AC replaces C' in the
denominator of Equation (A13). But, since AC' increases with N, the same argument applies.

Case 2. L > M. Under this condition, L > L*(M) for all values of N since L*(M) is always smaller

than M (see the proof of Proposition 6). In this case, a single dealer posts the inside spread in
equilibrium. This spread is S(1). Then the argument is identical to Case 1 with S; = S(1).

Aggregate Monitoring

Using Proposition 2, we obtain that

Ny oy = \/OZN*QS(]\%)(U_S;)' (AL4)

The number of bandits in equilibrium is such that each bandit’s expected profit is zero in equilib-

rium. Hence, using Equation (28), we obtain:

aQ*(Mp)(o — 5y) = K

AN*(N* 41— h(®, L))? ] (Al5)

lQN*(N* +1—h(®,L)) — (N* — h(®,L))?

Substituting this expression in Equation (A14) yields

- \/> N*2(N*+1— h(®, L))?
At 2N* N* + 1—h(®, L)) — (N* — (@, L))Q]'

The term in brackets increases in N*. Thus, A% + v} increases with N*. Since N* increases in @),

A% + 7% increases with @ as well.

39



References

Barclay, M., W. Christie, J. Harris, E. Kandel, and P. Schultz, 1999, “The Effect of Market Reform

on the Trading Costs and Depths of Nasdaq Stocks,” Journal of Finance, 54, 1-34.

Battalio, R., B. Hatch, and R. Jennings, 1997, “SOES Trading and Market Volatility,” Journal of

Financial and Quantitative Analysis, 32, 225-238.

Bernhardt, D., V. Dvoracek, E. Hughson, and I. Werner, “Why Do Large Orders Receive Discounts

on the London Stock Exchange?,” working paper, University of Colorado.

Copeland, T., and D. Galai, 1983, “Information Effects on the Bid-Ask Spread,” Journal of Fi-
nance, 38, 1457-1469.

Dennert, J., 1993, “Price Competition between Market Makers,” Review of Economic Studies, 60,

735-751.

General Accounting Office, “The Effects of SOES on the Nasdaq Market,” United States General
Accounting Office Report 98-194.

Harris, J., and P. Schultz, 1997, “The Importance of Firm Quotes and Rapid Executions: Evidence
from the January 1994 SOES Rules Change,” Journal of Financial Economics, 45, 135-166.

Harris, J., and P. Schultz, 1998, “The Trading Profits of SOES Bandits,” Journal of Financial
Economics, 50, 39-62.

Harris, L., 1994, “Minimum Price Variations, Discrete Bid-Ask Spreads, and Quotation Sizes,”

Review of Financial Studies, 7, 149-178.

Hinden, S., 1994, “ Nasdaq’s Big Guns Send Trading Bandits Packing,” Washington Post, February

40



7, p. F33.

Houtkin, H., 1998, Secrets of the SOES Bandit, McGraw-Hill, Hightstown, N.J.

Kandel, E., and L. Marx, 1997, “Nasdaq Market Structure and Spread Patterns,” Journal of Fi-

nancial Economics, 35, 61-90.

Kandel, E., and L. Marx, 1999, “Odd-eight Avoidance as a Defense Against SOES Bandits,” Jour-

nal of Financial Economics, 51, 85-102.

Kumar, P. and D. Seppi, 1994, “Information and Index Arbitrage,” Journal of Business, 67, 481-
5009.

Whitcomb, D., “The NASDAQ Small Order Execution System: Myth and Reality,” testimony

before the House Committee on Commerce, Subcommittee on Finance, August 3, 1998.

41



“(*¢) A 07 Tenbo st yorym ‘3500 Juriojruowt oY) oY) snurwr JoLed Surper oYy 09 [enbe ore sgoded 10U s Io[ea(] “IOPIO UR JTWIQNS AeuT
Iopel) AJpIMbI[ © SINOO0 SMOU OU USA\ OUW0IINO [ORS [[3IM pojeroosse Joded Jurper) s,2 Io[edop pUR ‘OmIodIno rpoed jo Aiqeqord o) ‘somwrooino s[qrssod [[e sisi
9[qe) O T, "IOPIO UR SHTWNS A[O)RIPIWIWI SMOU SOAIIS(O OYM JIpUR( Y "s9301b ST sojepdn A[ojeIpOWIUT UOTJRAOUUT UR SOAIIS(O OUM IS[RIP Y "1 9AISISCO 0 PUOIDS
ST OUM PUR JSI SMIU 9} SOAISSqO OYMm U0 spusdep oswred SUIprI) 97} JO SWO0INO 9} ‘SMOU PRY IO SMIU POOT ‘ONJRA 19SS 9Y) Ul UOIJRAOUUL UR ST 919U} UIYAA

0 (o—1)(g—-1) pojjtuIqns ST I9PIO ON
ﬁ%@m ? IOPIO [[0S B SIS Iopery Appmbi v 0n = Ta
ﬁ%@m Ed%é IopIo Anq ® syrwqns Iopery Aypmbiy y SMOU ON

0 (\W 3 Noud §(e — 1) STOTESP 1910 [[V v "y oresp Auy

o O — ) s~ (N 3 f)goed o5 npueq y v 3 4 w[eap Auy
0 (1= f)qoid S SI0[€OP 10130 [[V veq 5 —O0a=1la
o O 2= WV 2 f)aoad § SI9[EIP [V Npueq Y smou peq

0 (\W 3 Neoud §(e — 1) SI07RAP T30 [[V 7 9 “y oeep Luy

s O = )7~ (AW 3 [)eo1d 9§ npuweq y v 3y 1oredp Luy
0 (2= f)goid § SI0[eOP 10140 [[Y vioeeq S+ 00 =Ta
e O s WV 2 f)aoad 5 sI0[RIP [V WPURq Y SMOU pood
poded Surper) s,z Io[R9(] OWI0DINO JO AN[IqRAOIJ  SMOU SAISSCO O (S)I9PRI) PUOIDS  SMOU SAISSCO O} Iopel) ISIL] AN[RA JOSSR
Qures MQMUQHQ 9%} JO amIoo() Ul uorjeAouu]

sgoAed s,? Jo1e9(
T SIq®&L

42



(‘L) M 09 renbe st yorym ‘4800 Surrojruour oty oY} snurwu joAed Surpery o) o) [enbe are sgofed jou s [ jIpuey "IOPIO UR JIUIGNS
Aewr 1opeI) AYTPMDI] © SINDD0 SMOU OU USYA\ "OUWI0IINO Yo M pajerdosse goled Jurper) s,[ j1pueq pue ‘@mo2Ino yoes Jjo Aiqeqolrd oy} ‘sowoojno a[qrssod [[e
SIST] o[} 9], "I9PIO Ue SHWNS A[OJRIPOUITIT SMOU SIAIISO OYM JIpURq Y 'sojonb siy sejepdn A[9)eIpomtil UOIJRAOUUL UR SOAISSCO OUM I9[edP Y "1 9AISSCO O}
PpUO99S ST OYM pUE JSIY SMOU Y} S9AIISCO oYM U0 spuadep swred Surper) 9y} Jo SWO0IJNO 9} ‘SMIU PBQ I0 SMAU POOS ‘ONTeA J9SSe 9T} Ul UOI}BAOUUI UR SI 9I0Y)} USY A\

0 (0—=1)(¢—-1) POIINS ST IOPIO ON
0 ? I9PIO [[0S ® sjrmuqns Iopery Apmbi] y 0n = Ta
0 i I9pIo Anqg ' syrmqns Iopery Apmbiy y SMOU ON

0 (w3 )gosd5 (e — 1) L # 4 “y ypueq Io[eap Y

ey (1= )0 (W > f)aoad o5F [ ypueg 1o[eep
0 (O\N 2 £)qo4d § SI9[RID [V C#y sy ypueg  §—0a=Ta
?m‘m\bv?ﬁCm@ (6 = [)goag SIo[Rap [V [ ypueg SmMou preyg

0 (v > f)eoid$(d — 1) £y 'y ypueg 1oTedp

oy (1= W)s0 (v > f)ao4d o5 [ ypureg w[esp ¥
0 (O\N > [)go1d § s1o1eIP( TV [y ypueg S 40a=Ta
oy ()0 (£ = faord § SI9[EdP [V [ ypueg  smou poop
pofed Burper) s,z 0[R9(]  OWOIINO JO AN[IqRAOIJ  SMOU dAIISCO 07 (S)IOPRI} PUOISS  SMOU OAIISO 0) IOPRI} ISII] anfea josse
owred Jurper} oY) JO oW0IN() Ul UOI}RAOUU]

sgoke s,/ ypueg
g °IqelL

43



e1ep JSYD A[qiuowr uo paseq
are 9011d 9SeIoAR O1[) PUR (SIR[[OP JO SUOI[[IUI) UOIjezI[R)Ided JoXIeU A, 101SN[d §HOS © Jo 1red ® se pazi10399ed a1om BT} sepel) Lue Surpnjoxe epel) 1od sareys
JO IequINU o3RISAR 9} SB PAINSBIW SI 9ZIS 9PRI) 9FRIoAR S, "}209S (OB Ul I9[RIP SAIJOR JO I8qUINU oY) JO o8RIoAR SOLISS-oWII) & St PaInduIod SI SI9[eap JO Iequunu
ay ], ‘¢ ordures 10 0001 pue (0G pue T o[dwes 10J OOOT IO ‘00 ‘00T SeN[eA UO &e} URD [IIM S[RLIRA 9)2I0SID ® SI Aj1juenb GO WnwIxew oy, ], sejonb-pru a3
uo paseq paIndwod SWINJaI INOY-J[ey Y3} JO UOIIRIASD pIepUR]s 9y} Aq painseaw sI AIM1IR[0A ‘praIds opISUl 9AIIR[oI 8] JO 9FRIoAR PII[IIOM-0UIT]) S} S8 POINSeoul
st peoads se-prq oY) ‘Y00Is oo 10 "WeISAS GHOS Y} 01 POIITW(NS J0U 9I0M JRY) SINOY JUIpel) Ie[Ngol SULINp Soper) [[8 0 SI9Jol sopel) §H()S-Uuou JO Iequunu
QY ], "0ZIS JO 9AI}0adSsolll WAYSAS GH (S OY) Ul PAINISXa SIPRI) [[B SOPN[OUL Sopel) S JO IoquuInu oY ], "S9pel) JO IoqUINU [e10] 8} O} SAIJR[SI PAINSeIU ST SI9)SN[D
SHOS Jo Aouenbaij oy, ‘spuooss (¢ Ulyym ‘eorid auwres oY) e ‘9zIS WNUWIXeW Jo sapel) §HOS 921y} Jo sousnbas pejdnirejurun ue se pauyep SI 199snd SHOS V

CTIL CT€ 6LET ISt 69°ST V60T  T0'S  LTLI €6eT  1L°92 oorid oeroAy
1999 ¢ 97) 11¢ kg 00SL0T 1L G888 162 LGFT uoryezife)ides jos IRy
6LV  €L&  T6S LT 0F<T 18€6 G6S  00L e8¥T 99971 0ZIS OpeI} 0FRIOAY
G6Fe 00 ¥E€9 z0€er ¢o¢el Tee9 €8¢ 6Tl eG0¢  8TTe SI9EIP JO IOqUITLN]
000T  00¢  14C 0GL 06 000T 00z OV 000T 896 Ajnyuenb SHOS WNTIIKRA
G9'C 020 9¢0 06°0 ¥6°0 89°C 91’0  ¥£0 98°0 L8°0 (yueorad) Ajr[rye[on
¥L9  SP0  Tel 9Z°C LGT L6°€ IT0 890 VLT 0e'T (yuoorod) peoids sse-pig
1286  €0L  90L1 67T 0212 9¢TIGT  ¥26  0LF91 IN44S 8666 soper} §HOS-UOU JO IquInN
86SC ¢ €Le €6 Tt 8L129 06 1696 L¥0T 99¥¢ soper} SHOS JO Ioquiny
L9°G 000 680 010 870 €z'9 000 62T €6°0 0¢'T  (yuweored) s1snp SHOS Jo Aouenboig
00T9¢ 000 68 1F 00°C 88°CT PEI9 0 0¥S 19 70C SISN[D §HOS JO IPquInN
XBN CUIN CA9(] PIS  UBIPOJN  UBSIN XCN  CUIN A9(] PIS  UBIPOIN U\ o[qerrep
(005=N) ¢ ordureg (01€=N) 1 ordureg

so19s1je}S ATewiwung
€ 9Iq®L

44



Table 4

Correlation Matrix

soes Spr vity maxq ndlr ligd mkep
spr -0.684
(-0.507)
vity -0.234 0.487

(-0.324)  (0.418)

maxq 0.281 -0.075 -0.118
(0.491) (-0.130) (-0.346)

ndlr 0.108  -0.257  -0.319 0.188
(0.003) (-0.134) (-0.159)  (0.143)

ligd -0.185 0.044  -0.126  -0.733  -0.171
(-0.165)  (0.038) (0.218) (-0.623) (-0.145)

mkep 0.464  -0.751 -0.524 0.079 0.425 -0.007
(0.590) (-0.710) (-0.427)  (0.252) (-0.035) (-0.044)

avgp 0.592  -0.757  -0.342 0.057  -0.169  -0.023 0.697
(0.539) (-0.625) (-0.352)  (0.178) (-0.422) (-0.126) (0.790)

The variables in the correlation matrix are the following: the log odds ratio of the probability of a SOES
cluster (soes), the average time-weighted bid-ask spread (spr), the maximum SOES quantity (maxq), the
number of dealers (ndlr), the average trade size relative to the maximum SOES quantity (ligd), the logarithm
of the market capitalization (mkep), the logarithm of the average price (avgp). The correlation coefficients
for the second sample are reported in parentheses directly below the corresponding coefficients for the first
sample.
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Quoting Stage

Dealers

$=(S,..-S,)

Monitoring Stage

Dealers and Bandits

MS,M)=(A (S, M,)....A,, (S, M) VS, M=V, (S, M,).--¥, (S, M)

Trading Stage

Nature
Prob=a/2 Prob=a/2
—t _" —
V=V o V=V, =Y
Prob(f in N) Prob(f in M) Prob=p Prob=1-f
v
A bandit One dealer The case of A liquidity No order
submits updates V=V, 0 trader is submitted
a buy his quotes is a mirror image arrives
order of the case
Prob=¢ Prob=(1-®) V=V to Prob=1/2 Prob=1/2
A bandit The other Submits Submits
submits dealers a buy a sell
a buy update order order
order their quotes

! ! | |

Payoffs are Realized

Figure 1: The Trading Game.
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A Casel:1<L< L*(M) A Case 2: L > L*(M)
Spread Spread
S
N N
S(1) S()
N
S
>
N
O] [

Figure 2: The equilibrium relationship between ®, L, and the spread.
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Legends

Figure 1

In the quoting stage, M dealers quote their spreads Si, ..., Sys. The number of dealers quoting the
inside spread is denoted by M. In the monitoring stage, the M; dealers who are quoting the inside
spread and the N bandits choose their monitoring levels denoted by Aq,..., Ay, and v1,..., 7N,
respectively, for the dealers and the bandits. In the trading stage, there is an innovation in the asset
value vy with probability c. Conditional on a positive innovation, there are three possible outcomes.
With probability Prob(f € N) a bandit submits a buy order. With probability Prob(f € M) x
® a dealer updates his quotes and a bandit submit a buy order to the remaining M — 1 dealers.
With probability Prob(f € M) x (1—®) all dealers update their quotes and no order is submitted
by the bandits. The case of a negative innovation is symmetric. With probability (1 — «) there is
no innovation and a liquidity buy or sell order is submitted, each with probability 5/2. No order

is submitted with probability (1 — f3).

Figure 2
The spread in zero expected profit equilibrium is denoted by S. The spread in the maximum profit

equilibrium is denoted by S.
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Notes

ISOES day traders (bandits) accounted for 83% of SOES share volume as of September 1995,
according to the General Accounting Office 1998 report on “The Effect of SOES on the Nasdaq
Market.”

2A Washington Post article (Hinden (1994)) quotes Joseph Hardiman, president of the National
Securities Dealers Association, saying that “The SOES activists [SOES bandits| were picking off
market makers, who were slow to adjust. The losses to SOES activists made market makers gun
shy, causing them to widen their price spreads.” In testimony before the House Committee on
Commerce in 1998, David Whitcomb argued that “Abolishing SOES would remove the ‘market
discipline’, which keeps market makers on ‘their toes’ and causes prices to rapidly adjust when

news occurs.”

3 Alternatively, 2°(Mj) and 1/Mj, can be seen as the probabilities that a dealer receives an order

from a bandit or a liquidity trader, respectively.

“Houtkin (1998) lists events that SOES bandits monitor: announcements of earnings or economic
indicators, price movements in related stocks, and brokerage firms’ upgrades and downgrades of

stocks.
SResults are qualitatively similar when dealers and bandits have different ¢ parameters.

6Quote updates are, of course, only noisy signals of changes in the value of the asset. However,

the logic of the model applies insofar as quote revisions do contain information.

"We assume that the inside spread is strictly smaller than the size of the revision in the as-
set’s expected value conditional on information arrival, i.e., S, < o. This is always the case in

equilibrium.

8 Another possibility would be to explicitly model quote revisions. This would make the model
much more complex to analyze without adding insights. In any case, the equilibria we describe

are robust to the possibility of quote revisions in the sense that no dealer would find it optimal to
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unilaterally revise his quotes if he was offered the opportunity to do so (before information arrival,

of course).

9Second order conditions for the dealers’ and bandits’ optimization problems are satisfied if

Sp < o, which is the case in equilibrium.

10T his result is consistent with Harris and Schultz (1998). They find that contrary to the popular
view that bandits only pick off the very slow dealers, bandits on average trade before most dealers

update their quotes.

" Observe also that the bandits and the dealers monitoring levels decrease with the scale of the
monitoring cost, ¢. In equilibrium, the adjustment in monitoring levels exactly offsets the increase
in ¢ and the monitoring costs are unchanged. The various picking off probabilities are unaffected
as well because the relative monitoring levels do not depend on c¢. This is why the parameter ¢

does not appear in the bandits’ or the dealers’ equilibrium expected profits.

2Kandel and Marx (1997) show that multiple equilibrium spreads can arise when prices are

discrete. Interestingly, we obtain a multiplicity of equilibrium spreads even with continuous prices.
13We thank one of the referees for suggesting this interpretation.

14Ty see why, consider a situation in which several dealers post the inside spread and make zero
expected profits and assume L > M so that x*(M) = 1. If a dealer slightly undercuts, he captures
the whole order flow from liquidity traders whereas he keeps trading the same number of shares
with bandits (since °(M) = 2°(1) = 1). Hence the dealer earns a strictly positive expected profit if
he undercuts and the situation in which several dealers post the inside spread is not an equilibrium.

A similar phenomenon arises in Dennert (1993).
15When only one dealer posts the inside spread, the spread does not depend on ®.

16This effect is present in all equilibria of the quoting stage. A firm quote rule also has an
indirect effect on the dealers’ news monitoring because it affects the equilibrium spread. The
direction of the indirect effect depends on the equilibrium in the quoting stage. In the maximal

spread equilibrium, the firm quote rule reduces the spread and in this way further increases the
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dealers’ news monitoring. In contrast, in the zero expected profit equilibrium, the firm quote rule
widens the spread and in this way reduces the dealers’ need to monitor. Still, this is insufficient for

their equilibrium monitoring levels to be smaller than in the case of a relaxed quote rule.

1"Tn the model, the probability that one trader will discover an innovation is always equal to
one. However, this can be modified so that this probability is less than one, by adding a constant
p in the denominators of Prob(f = i) and Prob(f = j). The probability that an innovation will
not be discovered is then m. It decreases with (A4 +v4). Thus, the speed of price discovery

increases with the aggregate monitoring level.

18 An integer solution may not exist. In order to avoid this technical problem, we treat N as a

real number, as is usual in market entry analysis.

9We considered other possible specifications for the number of orders and the interval of time
between orders within a cluster. Our empirical results are robust with respect to the different

specifications.

20The maximum SOES order size is determined by the trading characteristics of the security.
Requirements for a 1000 share maximum size include a non-block trading volume of 3000 shares or
more per day and three or more market makers. Additional rules require that all IPOs, irrespective
of market capitalization and trading volume, trade with a 200 share maximum size for a minimum

of 45 trading days. In addition, a security can only move one size category per review.

2IThere are a total of 12 stocks in the first sample and 70 in the second sample for which the
total number of clusters is zero. There are fewer zero cluster observations for stocks with the largest
SOES size, 8 and 18 for the first and second sample, respectively. To ensure that the log of the
odds-ratio is always defined we add one to both the number of clusters and the total number of

trades.

22The system is estimated using three-stage least squares to account for possible cross-equation
correlation in the disturbances and to improve efficiency. Note that if the disturbances are uncorre-
lated three-stage least squares reduces to two-stage least squares. In our estimations the qualitative

effects are unchanged but the coefficient estimates change somewhat suggesting that accounting for
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cross-equation correlation is useful. The log of the market capitalization and the average price are

added to the spread equation as additional control variables.

ZNote that due to the non-linear transformation, the exact effect of a change depends on the

level of the probability of a SOES cluster.

24Harris and Schultz study changes in SOES trading and the average spread around a change in
the maximum SOES quantity from 1,000 to 500 shares and find strong evidence of a drop in bandit

activity, but little evidence of a drop in the spread.

%58ee for instance Bernhardt, Dvoracek, Hughson, and Werner (2000) for a model of price im-
provements. Their analysis shows that price improvements are likely to be determined by factors
that we can not capture in our analysis (e.g., brokers’ identities and brokers’ trading frequency

with a given dealer).
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