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Portfolio Allocation in Transition
Economies

Abstract

Designing an investment strategy in transition economies is a difficult task because stock-
markets opened through time, time series are short, and there is little guidance how to obtain
expected returns and covariance matrices necessary for mean-variance portfolio allocation.
Also, structural breaks are likely to occur. We develop an ad-hoc investment strategy with a
flavor of Bayesian learning. An observation is that often an extreme event will herald a new
state of the economy. We use this observation to re-initialize learning when unlikely returns
materialize. By using a Cornell benchmark, we are able to show the usefulness of our strategy

for certain types of re-initializations.



1 Introduction

In this work, we consider the difficulties involved with optimal portfolio choice in transition
economies and propose a strategy based on Bayesian learning. This strategy is found to be of
value for certain parameters.

The mean-variance framework of Lintner, Sharpe, and Markowitz assumes that investors
have a measure of the expected returns and the covariance matrix. From a statistical view-
point, the difficulty is to estimate these parameters. Estimation techniques may range from
a simple constant parameter model to a model with time-varying expected returns and vari-
ances. For countries with a long tradition of relatively stable markets, such parameters may be
obtained from rather sophisticated models, such as GARCH models or switching regressions.!
For transition economies, where structural changes occur frequently, estimation of the inputs
for a mean-variance model is rather complicated, since they are likely to be very unstable over
time. As a consequence, the decision to invest in such countries is rendered difficult because
of the great uncertainty about future performance of the stock markets.

Within the context of international portfolio choice, involving only developed economies,
Solnik (1993) forecasts future risk premia and shows how a simple investment rule may improve
portfolio performance. Another study in this line is by Kandel and Stambaugh (1996) who
imbed predictability within a Bayesian framework. Further studies that consider predictability
of asset returns are by Pesaran and Timmermann (1995), Kim and Omberg (1996), Brennan,
Schwartz, and Lagnado (1997), Campbell and Viceira (1999), or Barberis (2000). In the first
part of this paper, we will show that stock markets in transition economies are not predictable.
A possible explanation is that structural breaks occur in such markets.

Another strand of the literature assumes Bayesian learning of the parameters. Such ex-
tensions may be found in Jorion (1985, 1986), Dumas and Jacquillat (1990), or Harvey and
Zhou (1990). Péstor and Stambaugh (2001) show how, within a Bayesian framework, one may
learn about multiple structural changes. Their model assumes, however, the availability of
long time series. Comon (2000) shows how extreme realizations may affect portfolio allocation
under learning. These contributions emphasize the importance of learning about parameters
for portfolio allocation. An inherent problem of structural models such as GARCH models,

switching regressions, or Bayesian learning, is that long time series are required for the para-

' Recent complicated models such as by Chernov, Gallant, Ghysels, and Tauchen (2000) show that modeling

returns even of a well-known series such as the DJIA is not a trivial matter.



meter estimation. For transition economies, such long time series are not available. Even if
they were available, given the frequent structural breaks that occur in transition economies,
where each new regime has little to do with the previous one, it may be expected that even a
complex model may not be estimable. These observations emphasize the need for a parsimo-
nious technique, developed in this paper, that allows estimation of portfolio parameters even
if only very restricted information is available.

Other recent contributions have drawn attention to the fact that parameter uncertainty
may directly affect the utility of investors. For instance, Barberis (2000) considers the case
where there is predictability of future returns, and, moreover, where parameters are uncertain.
See also Klein and Bawa (1976) for an early emphasis on this problem. Chamberlain (2000)
shows how parameter and model uncertainty affects the utility of agents. Maenhout (1999)
considers the case of an investor who hedges against worse-case mis-specifications of the model.
Rather than focusing on these aspects, we investigate, here, what can be achieved within the
traditional mean-variance model.

In the following paper, we consider, first, a large set of transition economies in Central and
Eastern Europe. These countries include even very small and recently opened markets, such
as Croatia or Estonia, for which only very few observations are available. In particular, for
such countries, little more data is available than the exchange rate and a stock index. It is,
therefore, not even possible to describe the risk premium with macroeconomic variables (such
as in Bekaert and Harvey, 1995, or in the more direct way of Solnik, 1993). For this type of
economy a model that is operational even if the sample-size is small is of particular value.

In this paper, we first address the issue of what can be learned from 3 to 8 years of history
of transition economies. We carefully investigate whether there is some predictability of stock
returns for the more evolved transition economies such as Poland, the Czech Republic, or
Hungary. We also study the role of the few variables that are available for those countries
in terms of predictive power of future risk premia. Our estimations show that risk premia
are hardly predictable for such markets. This implies that models such as of Solnik (1993) or
of Bekaert and Harvey (1995) cannot be used in the early stages of emergence of a market.
Next, we investigate the performance of a portfolio that follows Bayesian updating rules such
as by Jorion (1985) and Dumas and Jacquillat (1990). We show that Bayesian learning may

be useful to improve portfolio performance, when transition economies are involved.



2 Description of data and a preliminary analysis

2.1 Data and notation

Given our interest in portfolio allocation, the horizon over which the data is sampled is
important. Since emerging markets are subject to many shocks, we believe that investors
will stick to a weekly rather than to the monthly horizon used in most papers on portfolio
allocation involving developed economies.

We use data for stock-market indices, exchange rates, as well as short-term and long-
term interest rates. Besides data for the UK and Germany, we use series for ten Central
and Eastern European countries. These countries are the Czech Republic, Hungary, Poland,
Russia, Slovakia, for which also short-term and long-term interest rates are available. Then
there is Croatia, Estonia, Lituania, Romania and Slovenia for which we could not obtain
interest-rates. Essentially, the data covers the period from January 1991 to December 2000.
Table 1 reports, for each country the retained label, the name of the stock index, and the
date when each series becomes available. This table also provides some information on the
availability of the exchange rates as well as interest rates. In our data base, the Hungarian
and Polish stock markets became first available. For some countries, we use the one-week
interbank interest rate as risk-free rate and the 6-month interbank rate as long-term interest
rate. In most emerging markets, interbank rates are the only available market rates.

We define ;1 = In (P, ;41/P;,;) the weekly stock return of country 4, over the period from
t to t + 1, expressed in local currency. We denote by s;;41 = In (S;j441/5:j:) the return of
the foreign currency, with S;;; the amount of (foreign) currency of country j that may be
obtained for a unit of (local) currency of country i. Let rf,,, and r};,, denote the short-term
and the long-term interest rates of country i, respectively. These rates are weekly, cover the
period from ¢t to t + 1 and they are known at time t. We also express stock returns in a
common currency and since we focus on European stock markets, we consider two reference
currencies, the Sterling and German Mark. Thus, the stock return of country i, denominated
in the currency of country j, is defined as rgi = 7+ — Si;¢. Last, the corresponding excess

return is defined as er;; = r;; —r{, in local currency and er!, = r/, — rft in common currency.



2.2 Descriptive statistics

As a first look at the data, we compute univariate summary statistics for stock returns,
expressed in Sterling. Table 2 reports univariate moments and the test statistics for normality,
serial correlation and heteroskedasticity. We find that mean returns range between —1% a
week in Romania and 0.37% in Estonia. This compares with the 0.203% for UK and 0.275% for
Germany. Asset volatility of the transition economies is high when compared to the UK and
Germany. For instance, the volatility of the Lituanian and Czech markets, which are the least
volatile, is nearly twice as high as for the UK or Germany. Six out of the ten East European
stock indices are found to be left skewed. This result indicates that crashes are more likely
to occur than booms. But, when standard errors are computed with the GMM procedure
proposed by Richardson and Smith (1993), most of these skewness coefficients are found to
be non-significantly different from 0. Contrary to what is usually found for mature markets,
we obtain a positive skewness in Slovakia, Lituania, the Czech Republic, and Slovenia. On
these stock markets, the largest increase in return exceeds the largest decrease. These positive
outliers may be explained by political events that led to huge inflows of foreign capital. For
all stock markets, we also obtain a significant positive excess kurtosis. Thus, stock-return
distributions have fatter tails than the normal distribution. Finally, we test for normality,
using the Wald statistic (Richardson and Smith, 1993). Under the null, skewness and excess
kurtosis are jointly equal to zero. As reported in Table 2, stock returns in transition economies
are not normally distributed, whereas normality of returns in the two developed markets over
the given sample and frequency cannot be rejected.

We obtain a significant serial correlation in squared returns, as indicated by the Engle
test statistics. In most countries, we also find a strong serial correlation in returns, when
measured by the usual Ljung-Box test statistic. When this statistic is corrected to account
for heteroskedasticity, however, we do not obtain such a strong serial correlation, except for
Hungary. Changing the currency referential does not alter the main conclusions drawn using
Sterling.

We also computed the correlation matrix between stock returns, expressed in local currency
as well as in Sterling. Table 3 reports these correlations. For each pair of stock markets,
correlation was computed over the largest sample available. The largest correlations which
are indicated in bold for local currency and Sterling denominated currency returns, show

that correlation patterns are very similar. An explanation for this similarity is advanced



by Rockinger and Urga (2000) who argue that most Eastern European countries adopted a
crawling peg. For this reason, we focus now on the discussion of correlations using Sterling-
denominated returns. First, we find a very strong link between the UK and the German
stock indices, with a correlation as high as 0.6. Second, more developed stock markets in
transition economies (the Czech Republic, Hungary, Poland, Russia, with the exception of
Slovakia) are rather strongly interrelated, and they are also more connected with developed
markets. This result is amplified when returns are expressed in common currency. Last, less
developed markets are generally characterized by lower correlations, with the exception of
Croatia. Over the period 1997-2000, the Croatian return has been strongly linked to the Czech,
Hungarian, and Polish returns (with a correlation larger than 0.4). Since correlations between
old economies and transition economies are, broadly speaking, rather low when compared with
correlations across old economies alone, portfolio diversification involving transition economies

could be very helpful to reduce portfolio risk.

2.3 Predictability of returns

Next, we address the issue of forecasting stock returns. We use a regression approach similar to
the one suggested by Solnik (1993), who uses, however, developed economies. If predictability
of returns is found, this could be incorporated in a dynamic mean-variance portfolio allocation.
First, we consider domestic regressions: excess returns are denominated in local currency and
information variables are the short-term and the long-term rates. We cannot include the
dividend yield in the regression for practical reasons.? Therefore, we estimate the following
regression
eTi 441 = ap + a’ierm + aérftﬂ + aéTiL,tH + aisgf( + Eitr1 (1)
where ¢; ;11 is a forecast error. All explanatory variables are known at date ¢.
We also consider these regressions from an asset-allocation perspective by using returns
denominated in Sterling. In this case, we introduce in the regression stock returns of the
German and the UK market. When domestic interest rates are available, we estimate the

regression

UK 3i | 1i UK | 15 (.8 S i (L L i i UK | ~
erii1 = by +bier;; + by (Ti,tJrl - 7"UK,tJrl) + b5 (Ti,tJrl - TUK,t+1) +byerurs +bsergg +Eitn

(2)

?Dividend yields are not available for most transition economies. For instance, MSCI publishes dividend

yields for the Czech Republic, Hungary, Poland, and Russia from 1995 only.
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and when there is no domestic interest rate in the data set we estimate
UK _ i i UK i S i L i i UK ~
€rit+1 = by + bleri,t + bQTUK,t—i-l + b37"UK,t+1 + byervr + b56TGE,t + Eitt1- (3)

Results of regression (1) are reported in Table 4a, whereas results of regressions (2) and
(3) are reported in Table 4b. The main conclusions drawn from these regressions are the
following. Local variables (short-term and long-term rates) are useless to forecast stock returns
of transition economies. In all cases, the adjusted R? from regression (1) is less than 7.8%
and most parameters a; and ay are non significantly different from 0. Second, stock returns
of developed countries appear to be helpful to forecast stock returns for some transition
economies. The parameter bs is significantly positive in some cases. Yet, the R? associated to
regression (2) remain very low, smaller than 4%. Adjusted R? are all less than 2.5%.

It is noteworthy that such a low predictability of stock returns is also found for developed
markets. For instance, Campbell (1991) regresses the real return of the NYSE index on the
lagged return, the dividend-price ratio, and the 1-month T-bill rate minus its past twelve-
month average. Over the period 1927-88, he obtains an R? equal to 0.024.

The inability to obtain valuable forecasts of stock returns in transition economies is likely
to be related to the bad statistical properties of the series, such as structural breaks. This does
not mean that no attempt should be made to deal with this difficulty. Indeed, Kandel and
Stambaugh (1996) show that stock returns can seem to be only weakly predictable according
to usual statistical measures, such as the R? of the regression. Yet, if one considers nonethe-
less this weak predictability, it can substantially influence the investor’s portfolio decision.
Since predictability seems to be difficult to capture for transition economies using regression
techniques, alternative methods may be relevant. Now, we use an ad-hoc learning procedure

with some Bayesian flavor, in order to forecast the first two moments of returns.

3 Bayesian learning

3.1 The model

As shown in the previous section, techniques to forecast returns based on conditioning variables
do not seem to work in transition economies. In this section, we outline a technique which
aims at capturing the learning of asset-returns intrinsic parameters. This technique should

take into account the specificities of transition economics. Among these specificities, we have
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the fact that only a very small history of data exists, that the economies were subject to
structural changes, that structural changes were likely to occur after a stock market reacted
wildly, and that new economies emerged.

The first specificity, the short time series, implies that an investor must have some idea
about the fundamental parameters of the economy. As time goes by and new observations
become available, the investor will update these priors. This type of observation may be
captured within a Bayesian framework. We will now illustrate how Bayesian updating works.
To simplify, we assume that the vector of returns y, = (ery, eray, - - ,er]w)' is distributed

normally:

?/t NN(ILLt,Zt), t: 1, ,T (4)

If i, and ¥ were known, then they could be used in a mean-variance portfolio allocation. In
practice, the investor has to learn the actual values of these parameters.®> Bayesian updating
assures that u and ¥ follow a certain distribution. Learning about a new observation yields an
update of the distribution. Care must be taken that the new distribution remains compatible
with the prior. For the normal model (4), we can achieve this compatibility by choosing as
conjugate prior distribution an inverted-Wishart distribution for the marginal prior pdf of
Y. and a normal distribution for the conditional prior of u|% (see Zellner, 1971, Zellner and

Chetty, 1965, or Box and Tiao, 1992):

Y ~ inverted-Wishart(Ag, 1)
:LL|E ~ N(:U’O’Z/HJO)

where prior parameters are Ay, vo, p, and k. Hence, Ag/vy and p, are prior values for ¥ and
p. The parameters vy and ko determine the strength of belief in Ay and p,. The parameter
vg is the degree of freedom of the inverted-Wishart distribution. Well-known computations
give the following joint posterior density of y and ¥

vo+T
2

A

2

2 VO;Tfl)

! 5

(2m)*2 T (42)

comp |- (1 (187) = -y (=2) - )]

3We assume in this study that the mean-variance analysis still holds. In other words, we assume that

Y
I‘io—I—T

f(, 2 y)

the investor does not change his objective function to explicitly take into account the randomness of the

parameters p and 3.



where posterior estimates i and A are given by (see Gelman, Carlin, Stern, and Rubin, 2000,

chap. 3):

Ko
p—
Ko + T’
fp = Mg+ (1 - )‘)@Ta (5)
Ar = Mo+ Sr+ AT Ty — 1) Tr — o), (6)

where Jp = 23/, y and Sr = Y, (4t — Yr) (ve — Yr)'. The Bayesian estimate of the
covariance matrix is given by Xp = Az/ (vo +T). These estimates are equal, for large 7,
to those given, for instance, in Brown (1979) or Frost and Savarino (1986). Some authors
provided estimates for prior parameters derived from the data (see also Morris, 1983). Using
this empirical Bayesian approach, Jorion (1985) describes how to obtain an endogenous value
for ko and p,. Frost and Savarino (1986) provide ML estimation techniques for estimating xg
and vg.

In the model presented so far, it is assumed that, at time ¢, one uses all past data to
compute the Bayesian estimates of the parameters. It is also possible to consider a version
of the Bayesian updating approach, where the learning is sequential, and where one updates
the prior with each new observation. In such a case, posterior estimates fi, and A, are given
by ki = ke 1+ L, vy =ve g+ 1, & = (ke — 1) /Ky, iy = Mfiy_1+ (1 — )y, and A=A+
M (Y — 1) (Y — [iy—y)’, where iy, Ao, Ko and vq are prior parameters. The posterior estimate
of the covariance matrix is now defined as ¥, = A;/v;. It is known, e.g. Zellner (1971),
that the estimates fi, and A, obtained by this new approach are equal to those obtained with
formulae (5) and (6) for date ¢.

We now turn to the other specificities of emerging markets that we treat simultaneously.
Often a change in the structure of the economy occurs after a large movement of an index.
Anecdotal evidence of this observation can be easily provided for transition economies. For
instance, when Eltsine replaced Gorbachov, worldwide turbulences could be felt in financial
markets. Clearly, Eltsine pursued a different policy than Gorbachov. Inspired by models
where a change in structure occurs as a threshold is exceeded, such as in Tong (1993), we
will reinitialize our learning model whenever a return is of a magnitude incompatible with a
normal distribution. We specify a high quantile, and when the return at time ¢ exceeds this
threshold, we start a new learning process. The re-initialization has the advantage that it

takes care of the possibility that completely new situations arise.* Given that our final DGP

4In many models where learning occurs, it is assumed beforehand that only a given number of states may
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will consist of a complex mixture of normal densities, we see that the resulting returns will
be naturally non-normal.

Even though we re-initialize the learning procedure when an abnormal return occurs, we
propose to re-initialize the learning only for a country where the abnormal event took place,
rather than for all countries. This means that we are able to keep useful information, see
Stambaugh (1999).

Analogously, when a new economy becomes available, we start learning about the para-
meters. Given the shortness of the time series, the statistician faces a dilemma in that tools
such as switching regressions or GARCH models cannot be estimated. As an alternative, we
suggest a rule-of-thumb learning procedure.

We now formalize these ideas. Consider the return of country ¢ at time ¢. This return
should be distributed marginally as a normal distribution with mean p,, and variance %;; ,
the 7th element on the diagonal of the covariance matrix ;. Assume that an extreme event
occurs at time ¢ on market i. For instance, that |er;| exceeds the 99% threshold of the
normal density with mean it and variance X; .. In that case, we re-initialize the model as
will be discussed below. Because, in a re-initialization we discard all the past observations
concerning country i, it becomes necessary to perform a more subtle accounting of elements.
In particular, weights for the mean vector, (\;), and for the covariance matrix, (v;), may
differ from one market to the other. Concerning the weights, the updating of x, v, and A is
maintained: k;; = ki1 + 1, Vi = vp—1 + 1, and \;; = K;4—1/Ki. Furthermore, we need to
take account of the fact that the weight of the observations of series ¢ is not the same as for

country j. This leads us to consider

vV HRit—1 - Rjt—1
5ij,t = 9

Vit Kyt
Vijt = +/Vit—1 " "Vji-1,

so that the updating rules become

fo = MOy g+ Iy — M) Oy,
~ - 7
Ay = M +6,0 (yt - Mtq) (?Jt - Mtq) ;

Eij,t

occur. This is the case with Hamilton’s (1994) switching regression. Models where the space of states may
increase is given by Chib (1998). See also Kim and Nelson (1999) for a review of a large selection of models

allowing several states. There, a large number of data points is, however, required in the estimation.
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where © denotes the element by element multiplication of matrices and I,, ,,, is the (n x m)
matrix (possibly degenerated to a row or column vector) of ones.’ If an extreme value occurs
on market ¢ at time ¢t — 1, moments associated with this market are (re-)initialized at time
b Kit = Kio, Vit = Vio, iy = [ip, and ]\ij,t = ]\ij,O- We tried various initializing and

re-initializing rules, which are described in the next section.

3.2 Initializing priors

Several methods to re-initialize priors are possible. It is possible to use one hyperprior from
which some starting values could be drawn. Since the type of distribution which should be
chosen for transition economies is not clear, we decided to use an ad-hoc rule as may be used
on a trading floor. More precisely, we suggest that the investor under consideration waits for
some time to see how the market evolves. His horizon is supposed to last 3 weeks.® Therefore,
f; o and iij,O are estimated, in the usual way, as the sample mean and the covariance over
three observations. Given the way we construct our prior, we set x; 9 = v; 0 = 3. During this
learning period, it is assumed that the investor does not put his money in country . We are
aware that this assumption is strong. In particular, it implies that investors, who are rational
in our economy, may by his action amplify negative movements. In other words, we place
ourselves in a partial equilibrium framework. Indeed, if nobody should invest money for some
time, this would naturally bring up the Grossman-Stiglitz no-trading paradox.

When country 7 experiences an extreme event at time ¢t — 1, the mean, the variance, and
all covariances have to be re-initialized. Given that the last observation is an extreme event,
it is likely not to be valuable, see also Dumas and Jacquillat (1990). To construct estimates of
future parameters, therefore, we initialize the mean return as fi, , = a7;, where ays € [0,1]
and 7, is the sample mean over the last three observations before the crash. We discuss below
the role played the ajy.

Concerning the covariance matrix, we use f)z-z-,o = ays?, where ay € [0,1] and s? denotes
the sample variance over the last three observations. Last, covariances are set up such that
f)ijp = acpij,t,m/iii,oijj,t, where p;;, ; denotes the correlation estimate just before the

extreme event. The choice of a¢ is quite challenging. On one hand, since an extreme event

5For instance, if A = {a; ;} and B = {b; ;} then A® B = {a; ;b; ;} with A and B two conformable matrices.
6This is the lower bound to obtain a sensible covariance matrix. Although this assumption may appear

drastic, Borensztein and Gelas (2000) report massive flows of institutional investors around crises. Notice that

our reported results remain quantitatively the same if the time period is extended to several more weeks.
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occurred on market ¢, we are reluctant to set a large parameter a, to avoid “contaminating”
other stock markets. On the other hand, some empirical evidence obtained with various
techniques indicates that correlation tends to increase in period of turbulence, so that stock
markets are more related during crashes and booms (Ramchand and Susmel, 1998, Longin
and Solnik, 2001). Possible values for a¢ are {—1 /Piji—1,1/ pij7t_1], but we typically tried
values in the range [0, 1]. Finally, ]\ijﬂ is set equal to Dijpf}ijp, with 0;;0 = m

3.3 Assessment of Bayesian learning

We checked that, without any re-initialization, the last conditional expected excess return
(ip) and the last covariance matrix (X7) equal the unconditional excess return () and
unconditional covariance matrix (Sr/T), respectively.

In order to assess our Bayesian-learning procedure, we performed several experiments. Ta-
ble 5 reports some statistics on Bayesian learning. First, we indicate first and second uncon-
ditional moments of excess returns.” We then report averages of first and second conditional
moments of excess returns associated with various sets of re-initializations a = {ay, av, ac}.
We also present the number of re-initializations for each stock market. A first result is that
the number of re-initializations increases when we decrease the parameter ay. A low value
of ay 1is associated with a low value of the variance in case of a re-initialization. This im-
plies that, everything else being equal, a further re-initialization is more likely to occur since
the standardized return is more likely to exceed the re-initialization threshold. For instance,
when we chose a = (1,1, 1), the number of re-initializations is 21 in Hungary, 8 in Russia,
and 10 in Romania. When we choose o = (1,0.5,1), this number is as high as 32, 21 and 17,
respectively.

In parallel, the conditional standard deviation also decreases with the parameter ay . In
most emerging markets, the conditional standard deviation is lower than the unconditional
standard deviation whatever the re-initialization parameter. Such a result does not hold for
the parameter a;; associated to the return re-initialization. The position of the unconditional
mean with respect to the conditional mean is strongly related to the skewness of the distrib-
ution. Positive skewness indicates that booms are more likely to occur than crashes, so that

re-initializing learning is likely to decrease the conditional mean. We observe such a phenom-

"The difference of the statistics displayed here and table 2 is that, now, we use excess returns rather than

returns.
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enon in Slovakia, Lithuania, and Slovenia. In emerging markets, reducing the parameter o,
from 1 to 0 generally leads to a conditional mean that is much closer to the unconditional
mean. This translates the fact that extreme returns are not persistent. It is also notewor-
thy that, for some markets, reducing the parameter a;; implies a decrease in the number of

re-initializations, as in the Czech Republic or Hungary.

4 Portfolio allocation under Bayesian learning

4.1 The asset allocation

Now, we use our Bayesian-learning procedure to construct a dynamic portfolio allocation.
First, investors forecast the expected return and the covariance matrix, for the period between
t and t+ 1, with their current estimates fi, and f)t, respectively. Second, they solve the mean-

variance asset-allocation problem:

I%lai( 0 wyfi, — w,if]twt, (7)
Wit Z 0, VJ == 1, ...,Nt, (8)
Ny
ij,t <1 (9)
j=1

where w; denotes the column vector of portfolio weights, chosen at date t for the period
[t;t + 1]. The parameter 6 denotes the coefficient of risk tolerance. Whenever we take a sum
involving a varying number of elements, we assume that the ordering of the series is such that
j runs over the existing series. We assume that there are no transaction costs. Given that
short-selling is not allowed in many countries, we also do not allow it here. For this reason, all
weights are constrained to be positive, as in (8). The weights are not assumed to sum to one,
since a part of the wealth could be invested in the risk-free asset. In (9), we also impose the
constraint that margin purchases are not allowed. Running the mean-variance program using
the time-varying mean and covariance matrix yields a time series of asset-allocation weights.®

The sum of weighted returns gives a series of cumulative excess returns.

8We solve this quadratic optimization problem using the GAUSS QP module.
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4.2 The benchmark

As stressed by Solnik (1993), theoretical international asset pricing models do not provide
a benchmark portfolio that could be used to gauge alternative investment strategies. The
reason for this is that hedging against currency risk requires holding a combination of the do-
mestic risk-free asset and the world market portfolio plus a position in foreign risk-free assets.
Therefore, the test of our Bayesian learning cannot be based on a predetermined benchmark.
Hence, we apply the approach proposed by Cornell (1979). This is also the approach followed
by Dumas and Jacquillat (1990). To understand the intuition of this approach, we assume two
types of investors. First, Bayesian investors that use the ad-hoc learning procedure described
above to forecast the expected return and the covariance matrix and who invest in assets using
the investment rule (7). Second, naive (or uninformed) investors who assume that the return
vector and the covariance matrix are not forecastable. Under this assumption, they use un-
conditional returns and covariance matrix to determine their optimal portfolio. Comparison
of the cumulative expected return realized by the two types of investors allows us to gauge
the value of the Bayesian technique. If Bayesian learning were worthless, the conditional
distribution reduces to the unconditional distribution, and both optimal portfolios should be
identical.

We first have to address the measure of unconditional returns and covariance matrix.
Cornell (1979) measured the unconditional moments over the sample period preceeding period
t. Copeland and Mayers (1982) suggested that the whole sample period (including the period
posterior to date t) would be better, if the forecasting model is estimated over the whole
period. Here, the Bayesian learning only uses past information regarding returns. Solnik
(1993), using highly developed economies, argued that biases due to the use of the whole
sample are likely to be small and estimated an unconditional mean with the largest data
sample.

An assumption behind Cornell’s benchmark is stationarity. Clearly, our model is rather at
odds with this assumption. For this reason, we will compare both strategies. As a matter of
fact, since our sample is rather short, differences between mean returns computed using past
data and using the whole sample are likely to be large, at least for some stock markets, with
very agitated movements.

Let us proceed with a formal description of our test. To do so, we consider an investor

with a Sterling referential using our learning rule. Using the optimal portfolio weights w;, he
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obtains the excess return, Rfﬂ, over the period between ¢t and t + 1 as

Ny

UK
Rt+1 = ijierj,tﬂ-

7j=1
For further convenience, we introduce the cumulative excess return for the Bayesian learning

rule
t+1

CER’tB-i-l - Z R (10)

s=1
For the naive investors, as in Cornell (1979), we assume that the optimal weights are com-
puted by Bayesian investors, but that the expected returns and the covariance matrix used to

determine those weights are ignored. The expected excess return of the portfolio is therefore

Ny tj—1
COR [ pp U
EJOMRE ) = wjerils, where e/, = Zerjs ,
j=1

and where er er K denotes the mean excess return of country j (denominated in Sterling) com-
puted over the sample period up to date t+1. Clearly, ¢; represents the number of observations
that are available for country j at date t + 1.

For the naive investors, as in Copeland and Mayers (1982), expectations are computed

with
Ny 1 ijl
M UK UK _ UK
EZM [RE ] =) w;ersy where er ;= T > erl
j=1 J s=0

with 7} the number of observations available for country j in the entire sample. From there

on, we may define unexpected excess returns for the two benchmarks:
COR COR M CM
Uy = RY\, — B [RYy4] and U1 = Ry — B[R]

Under the null hypothesis that Bayesian learning is worthless, the unexpected return
ugy1 should be zero. To construct a test of this hypothesis, we also define the uninformed
variance of the portfolio return. For Cornell, this is computed using optimal weights w; and
the covariance matrix V;, computed over the sample period up to date t. For Copeland and
Mayers, this is computed using the variance-covariance matrix V', computed over the entire
sample. We obtain

(o) = wVawy,  (0E4)? = wVw,
Then, we compute the standardized unexpected excess return and build a t-statistic. These

are
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1 T-1 UCM
TCl\I — t+1 , (11)
\/T— 1 =1 O't+1
1 T-1,, COR
_ yodnt (12)

\/CT—1 t—=1 Ot+1

For the case that the learning strategy does not add knowledge over a naive strategy, the null

7_C()R

hypothesis is 7™ = 0 and 7°°" = 0 can not be rejected. Both statistics are distributed,
under the null, as a normal, A/(0, 1).
It is useful to consider how the portfolios worth would have evolved through time. For

this reason, we also define cumulative excess returns, CER. These are

t Ns
CERCO" = 303wy et (13)

s=1j=1

t N
CERtCM = ZZU}LSW%{(, and (14)

s=1j=1

t Ns
CERY = 3" wjuert®, fort =1 T 1 (15

s=1j=1

4.3 Results

In this section, we discuss the results of the implementation of our Bayesian model. In order
to implement this model, it is necessary to select a level of the risk tolerance parameter. The
choice of this parameter is arbitrary. For monthly data, Chepra and Ziemba (1993) use as a
preferred coefficient of risk tolerance 8 = 50. They claim that this parameter corresponds to
large U.S. pension funds and other institutional investors. Risk tolerances of 25 and 75 would

characterize strongly conservative and aggressive investors, respectively.

4.3.1 TUnconditional portfolio allocation

As a first case, for various levels of risk tolerance, we consider the allocations, w, obtained by
using the mean and the covariance matrix estimated from the entire sample. In Table 6, we
present various results for the unconditional framework.

Panel A displays the weights assuming that the weights are restricted to be positive. This
means that investors may also invest in the riskless asset. For very conservative investors,

i.e. with low 0, we find, as expected, that they invest very small amounts in equity. As risk
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tolerance increases, the fraction of wealth invested in the risky assets increases. Interestingly,
even for rather high risk tolerances, investors put at most 30% of their wealth in the UK and
German indices. This comes from the fact that, during the period considered, stock markets
offered a rather low excess return. We observe that no money would have been put in the set of
transition economies. This can be explained by the fact that, given the relatively low level of
expected returns, the transition economies do not offer sufficient diversification opportunities,
as to offset the rather high level of volatility.

Panel B of Table 6 displays portfolio weights under the assumption that the weights sum to
one. This means that all the wealth has to be invested into the risky assets. For a coefficient
of risk tolerance of 8 = 50, we find that an investor would have put 82.8% of his wealth in
the UK market and the rest in the German market. Nothing would have been invested in the
transition economies.

So far, we considered the consequence on portfolio weights. An alternative question is
how much a given strategy would yield in terms of cumulative excess returns (CERy). To
answer this question, we present in Panel C of Table 6, for various levels of risk tolerance,
the cumulative excess returns, once for the optimal mean-variance allocation, and once for an
equally weighed investment strategy.

As the level of risk tolerance increases, the mean-variance strategy yields a higher level of
returns. On the other hand, the risk of the strategy increases. As a consequence, observation
of the full sample CER only is misleading. A risk-adjusted measure is given by the Sharpe
ratio. When we contemplate this statistic, we obtain a significant increase when we shift
from equal weights to optimal weights, but only a marginal increase for higher levels of risk
tolerance. We find that the investor who had invested according to mean-variance analysis
would have realized a significant benefit over the equal-weight investor.

The results described so far are static. We now turn to investigate the contribution of the

Bayesian learning rule.

4.3.2 Conditional portfolio allocation

In Table 7, we follow Cornell, as well as Copeland and Mayers, and present the cumulative
excess returns that are required in the performance measurement. We present the full sample
cumulative excess return, CERM, CER$®? and the bayesian one CERZ. Then, we present, in

the last two columns, the 7“M- and 7¢9®-statistics (12) respectively (11). The first statistics
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compares the ability of the portfolio based on Bayesian learning to outperform a naive strategy
based on unconditional moments computed over a full sample (static measure). The second
statistic compares the performance of the Bayesian portfolio to the one of a naive strategy
based on unconditional moments computed over the sample period preceeding the current
period (dynamic measure). The two statistics are presented for various levels of risk tolerance
and various levels of initialization. Given that the results are quantitatively the same as risk
tolerances change, we focus in the discussion on the one for 6 = 50. For this level, we find that,
whatever the level of initialization, the static measure provides a very small excess return. We
find that the level is very different for the dynamic measure. We explain this result by the
fact that in transition economies many events occurred that changed significantly the level of
the mean returns. Using the Bayesian learning, we obtain very high cumulative excess returns
for some of the initializations. We find that our Bayesian learning is significantly better than
the static measure for low levels of variance re-intializations. It is marginally better than the
dynamic measure.

We turn now to discuss the changes in performance as the initializations change. As we
shift a;y; from 1 to 0, meaning that we use as prior, for expected returns, 0 rather than a three-
week average, our t-statistics drop. This shows that investors should, when they rebalance
their portfolios, use past information.

When we compare the initializations for the variance, moving from a = (ay, ay, ac,) =
(1,1,1) to (1,0.1,1), or to (1,0.05,1), we notice an improvement in the t-statistics. As variance
becomes smaller, it means that our learning model will consider more aggressively even mod-
erate returns as trigger values for a re-initialization. This result indicates that careful listening
to the market is necessary after a turbulent event occurred, and that, in transition economies,
over the sample considered, it may be necessary to restructure the portfolio frequently. It also
suggests that realizations that occur right after an extreme event should not be used in the
computation of variances.

Last, we turn to the initialization of covariances by comparing the situation o = (1,1, 1)
with (1,1,0.5). This means that we downweigh correlation across the markets after a crash. We
find a relatively small increase in the t-statistics. Therefore, the impact of correlation changes,
for the countries considered, will not be of major importance. This may be explained by the
fact that, in emerging markets, changes in correlation are dominated by changes in return and

for variance from an asset allocation viewpoint.
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In Figure 1, we display the evolution of cumulative excess returns using the static and the
dynamic measures as benchmarks and a Bayesian-learning model. The lowest curve represents
the cumulative excess returns for an uninformed investor who uses all the sample information
to compute averages. The formula has been presented in (14). This corresponds to the
benchmark chosen by Solnik (1993). The curve in the middle corresponds to the knowledge
assumed by Cornell (1979). The formula for this curve is given by (13). Last, the highest
curve corresponds to the actual excess returns realized by the Bayesian strategy (10). The
difference between the highest and the two other curves, when conveniently standardized,
yields the statistics presented in Table 7.

The initializations correspond to a = (1,0.05,1). During the first 100 observations, from
1991 to the beginning of 1993, our informed strategy is comparable with the uniformed ones.
Transition economies, namely Hungary and Poland, represented an interesting investment
opportunity. The Bayesian learning would have to recognized this performance.

In Figure 2, we display the weights of an investment in the UK and Germany versus the
weight of the global investment in all available transition economies, during this period. We
notice that one should have invested aggressively in the transition economies during certain
periods. Returning to Figure 1, we notice that before mid-1993, only small gains where
realized. Figure 2 shows that during this early period wild fluctuations in expected returns
occured, leading to large variations of the investments. In other words, returns were hardly
predictable, meaning that no information could be obtained from past returns.

From 1994 on, the dynamic measure remains rather stable, suggesting that the underlying
parameters became more stable. Our Bayesian strategy had two periods of higher returns, the
first one was due to a higher investment in Hungary in 1994. The second period, 1996-7 in-
volved Hungary, Poland, Russia, and Slovakia. The gain of our strategy is, therefore, not only
due to a single country but to a portfolio. We notice that the Bayesian learning rule yielded
returns, which are increasing steadily with respect to the naive strategies. This suggests
that our results are not driven by outliers, but reflect changes in investment opportunities in

transition economies.
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5 Conclusion

In this paper, we investigate first, in the spirit of Solnik (1993), whether excess returns in
transition economies are predictable. Unfortunately, we find that stock-market indices are
not predictable for these countries.” This may be due to the fact that there exists no stable
relation because of structural changes in the economies. This finding precludes a portfolio
allocation strategy based on some predetermined variables.

In the light of this result, we address the issue what an investor (with some econometric
background) could rationally do to implement a dynamic portfolio allocation. The difficul-
ties are numerous when investing in transition economies. First, stock-markets only opened
through time. Second, very little is known about these new markets, from the point of view
of expected returns and covariance matrices. Third, structural breaks are likely to occur.

To overcome these difficulties, we consider a Bayesian-updating model. Our model is novel
insofar that we force a re-initialization of the learning process as returns exceed a certain
threshold. In other words, we follow the intuition that, in transition economies, extreme
stock-market variations are accompanied by a change in expected returns and the covariance
matrix.

We find that our Bayesian-learning model outperforms an equal-weight strategy. When
compared with a static naive strategy, our model performs significantly better. When com-
pared with an updated naive strategy, for certain initializations, our model remains better
even though only marginally. In this light, we believe that Bayesian techniques may be of

value in a portfolio allocation strategy involving transition economies.

YAt least, not with the variables at hand.
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Captions

Table 1: This table summarizes the names and availability of various financial series for the
investigated economies. The short-term interest rate, and the long-term interest rate are given
by the one-week, respectively the 6-month interbank rate.

Table 2: The first row indicates the date when a series start. All series end with June 29
2001. nobs is the number of observations in each series. Standard errors (std. err.) are
computed using the GMM procedure suggested by Richardson and Smith (1993). The Wald
statistic tests the null hypothesis that skewness and excess kurtosis are jointly equal to 0.
Under the null, the statistic is distributed as a x? with 2 degrees of freedom. p(j) represents
the j-th order autocorrelation.

Engle(K) represents the Engle-test statistic for heteroskedasticity obtained by regressing
squared returns on K lags. Under the null hypothesis of homoskedasticity, this statistic
is distributed as a x? with K degrees of freedom. @ (K) represents the Box-Ljung statistics
without correction for heteroskedasticity. The statistic with correction for heteroskedasticity is
denoted QW (K). Under the null hypothesis of no serial correlation, the statistic is distributed
as a x? with K degrees of freedom. At the 95% level, we have the following critical values:
X3 :9.94, x2: 15.5.

Tables 3a, 3b: The correlations are computed using for each pair of stock markets the largest
available sample. Correlations larger than 0.2 are presented with bold figures.

Tables 4a, 4b: Here, we investigate whether excess returns are predictable. To do so, we

present
. ) i i i i, L i UK
Equation 1: er;¢ 1 = ag+ajerye +agry, o +asri o +agsiy + iy,
: oW UK i pi UK | i (S s
Equation 2: er;;; = by + bier;; + by (Ti7t+1 — TUKHI)

i (L L i i UK | =
+b; (ri,tﬂ - 7”UK,tH) + byervrs + b5€7"GE,t + i1,
. . UK i i UK | 1i..S i L i
Equation 3: er;;;, = by + blerm + bﬂUK’t+1 + b3rUK7t+1 + byerur

+bé€7“g§7t + gfi7t+1,
where the meaning of the variables is described in section 2.1. The numbers under the esti-
mates are t-ratios. Significant t-ratios, at the 10% level, are presented with bold figures.

Table 5: We first display unconditional first and second moments of excess returns for

various countries. Using our Bayesian-learning procedure we obtain series of conditional
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returns [, and covariance matrices 3. We present averages of these conditional means and
associated standard deviations for various sets of & = (a s, ay, a). The parameters ayy, oy,
and a¢ weight, after a re-initialization, the 3-week mean, standard deviation and covariance
used in the learning process. We also display how often in a given country learning is re-
initialized.

Table 6: Here, we display the weights (fractions of wealth) to be invested in the various
indices for various levels of risk tolerance 6, while using alternative portfolio allocation rules.
In Panel A, investors may invest in stocks and the UK risk-free asset (we always impose a
no-shortsale constraint). In Panel B, investors may only invest in risky assets. In Panel C
we compare cumulative excess returns (CER) and Sharpe ratios for several strategies. ‘Equal
weights’ corresponds to equal fractions of wealth in each index. ‘Optimal weights (positive)’
corresponds to the weights found in Panel A and ‘Optimal weights (sum to one)’ corresponds
to Panel B.

Table 7: Here, we present the cumulative excess return at time 7" that may have been achieved
using Copeland and Mayers (1982), Cornell (1979), or the Bayesian model: CER$M, CERSO®
CERE. We also present the statistics for a test of significance of the Bayesian learning over

the Copelands and Mayers or the Cornell benchmarks

T-1,CM
LOM 1 Ui
- 9

V T-1 t=1 Ot41
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Figure 1: Here, we display various cumulative excess returns over time. We have

t

| N, N t N,
CERCOR  — SN wjerE CERM = SN werr,

s=1j=1 s=1j=1
t N
B _ UK _
CER; = Y > wj.er]’y, fort=1---T—1.
s=1j=1

Figure 2: Here, we present the aggregated weights invested either in the UK and Germany
or in the set of transition economies. Weights are obtained by solving the mean-variance asset

allocation problem (7) - (9) for each date t.
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Table 1: Date of availability of asset prices

Stock index Currency Short-term rate Long-term rate
Czech Republic cz PX 50 06/04/94  Koruna 01/01/91 22/04/92 22/04/92
Hungary HU BUX 02/01/91  Forint 01/01/91 18/01/93 18/01/93
Poland PO Warsaw General Index  16/04/91  Zloty 01/01/91 04/06/93 31/12/93
Russia RU RUR 01/09/94 Rouble 11/01/93 01/09/94 01/09/94
Slovakia SL SAX16 14/09/93 Koruna 11/01/93 27/04/93 29/12/95
Croatia CR Crobex 02/01/97 Kuna 03/06/94 - -
Estonia ES Aripaev index 07/04/95  Kroon 12/10/92 - -
Lituania LI Litin A 29/12/95 Lita 04/10/93 - -
Romania RO BET 19/09/97 Leu 01/01/91 - -

Slovenia SV SBI 03/01/94  Tolar 12/10/92 - -




Table 2: Summary statistics for stock returns in Sterling

UK GE Ccz HU PO RU SL CR ES LI RO SV
beginning date 91/01/01 91/01/01 93/09/14 91/01/08 91/04/16 94/09/06 93/09/14 97/01/07 95/04/11 96/01/02 97/09/23 93/09/14
nobs 522 522 381 521 507 330 381 208 299 261 171 381
mean 0.203 0.275 0.064 0.174 0.315 0.032 -0.113 -0.074 0.378 0.051 -1.009 -0.113
std. err. 0.082 0.102 0.318 0.233 0.344 0.621 0.385 0.393 0.443 0.334 0.540 0.385
standard deviation 2.091 2.803 4,462 4,525 6.693 8.759 4,796 5.427 5.985 4,197 6.721 4,796
std. err. 0.111 0.170 0.421 0.421 0.493 0.739 0.940 0.626 0.762 0.584 0.571 0.940
skewness -0.210 -0.397 0.593 -0.152 -0.333 -0.386 2.716 -0.205 -1.670 1.653 -0.239 2.716
std. err. 0.256 0.218 0.391 0.575 0.227 0.274 1.255 0.365 0.741 0.828 0.332 1.255
excess kurtosis 1.753 1.645 3.016 6.279 2.925 2.436 22.929 3.228 10.302 11.933 1.797 22.929
std. err. 0.694 0.887 1.232 1.556 0.579 0.704 5.545 1.435 4.027 3.200 0.704 5.545
Wald stat. 6.468 3.565 6.520 16.464 25.684 12.148 19.121 12.124 6.548 14.216 6.523 19.121
p-value 0.039 0.168 0.038 0.000 0.000 0.002 0.000 0.002 0.038 0.001 0.038 0.000
minimum -9.435 -14.133 -13.800 -26.533 -29.123 -38.242 -21.401 -27.300 -41.652 -18.408 -25.417 -21.401
median 0.291 0.312 -0.115 0.153 0.201 0.233 -0.132 -0.264 0.329 -0.214 -0.898 -0.132
maximum 8.722 8.708 23.987 26.900 25.052 31.586 41.835 19.802 18.548 27.387 20.767 41.835
p(1) -0.107 -0.103 0.142 -0.003 0.081 0.115 0.424 0.005 0.109 0.329 0.028 0.424
p(2) 0.034 -0.029 0.176 0.140 0.040 0.158 0.265 0.055 0.168 0.119 -0.022 0.265
p(3) -0.001 0.027 0.103 0.163 0.073 0.094 0.104 0.025 0.091 -0.009 -0.037 0.104
p(4) -0.084 -0.076 0.048 -0.048 -0.051 0.007 0.059 -0.057 -0.044 -0.018 0.108 0.059
Engle(1) 0.108 12.567 33.201 13.280 25.947 1.516 51.045 28.483 0.802 19.851 2.181 51.045
p-value 0.742 0.000 0.000 0.000 0.000 0.218 0.000 0.000 0.371 0.000 0.140 0.000
Engle(4) 13.055 27.730 58.805 30.825 46.050 15.188 51.501 28.116 30.645 20.483 3.268 51.501
p-value 0.011 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.514 0.000
Q4) 10.344 9.512 24.621 25.470 8.218 15.696  101.648 1.484 15.305 32.377 2.533 101.648
p-value 0.035 0.049 0.000 0.000 0.084 0.003 0.000 0.829 0.004 0.000 0.639 0.000
Q(8) 18.062 9.884 42.348 42.043 13.282 17.753  107.599 2.496 20.858 34.942 3.564 107.599
p-value 0.021 0.273 0.000 0.000 0.103 0.023 0.000 0.962 0.008 0.000 0.894 0.000
QW(4) 9.036 5.715 5.786 10.946 4,125 6.305 6.420 1.298 7.504 10.344 2.459 6.420
p-value 0.060 0.221 0.216 0.027 0.389 0.177 0.170 0.862 0.112 0.035 0.652 0.170
QW(8) 13.395 6.161 13.703 21.420 8.276 9.179 7.423 1.990 11.895 13.313 5.304 7.423

p-value 0.099 0.629 0.090 0.006 0.407 0.327 0.492 0.981 0.156 0.102 0.725 0.492




Table 3a: Cross-correlation between stock returns in local currency

UK GE Cz HU PO RU SL CR ES LI RO
GE 0.652
Cz 0.245 0.218
HU 0.391 0.392| 0.393
PO 0.218 0.243| 0.306 0.301
RU 0.306 0.340| 0.239 0.277 0.189
SL  0.031 -0.022| 0.149 0.181 0.116 0.073
CR 0.376 0.344| 0.424 0.485 0.511 0.306 0.067
ES 0.233 0.262| 0.238 0.278 0.234 0.322 0.079( 0.223
LI 0.000 0.002( 0.125 0.168 0.172 0.083 0.071| 0.158 0.187
RO 0.043 0.149| 0.189 0.241 0.214 0.128 -0.150( 0.125 0.123 0.098
SV 0.188 0.204f 0.091 0.212 0.072 0.108 0.129( 0.349 0.125 0.099 0.231
Table 3b: Cross-correlation between stock returns in Sterling
UK GE Ccz HU PO RU SL CR ES LI RO
GE 0.625
Cz 0.246 0.271
HU  0.407 0.406| 0.408
PO 0.248 0.281| 0.353 0.327
RU 0.394 0.375| 0.262 0.393 0.280
SL  0.068 0.061| 0.201 0.231 0.163 0.113
CR 0.351 0.398( 0.478 0.513 0.544 0.317 0.218
ES 0.221 0.262( 0.256 0.276 0.276 0.343 0.146| 0.247
LI 0.061 0.072| 0.177 0.205 0.229 0.159 0.136] 0.239 0.216
RO 0.073 0.146| 0.203 0.255 0.265 0.203 -0.135| 0.146 0.121 0.174
SV 0.185 0.239( 0.117 0.216 0.113 0.133 0.163] 0.418 0.148 0.133 0.181




Table 4a: Estimation of excess returns in local currency

a0 al a2 a3 a4 see R® Adj. R? DW T

Equation (1)

Czech Republic 0.027 0.176 -6.780 6.378 0.090 - 4.137 0.040 0.030 2.026 380
(t-ratio) 0.046 1.866 -1.281 0.959 0.615

Hungary -1.701 -0.012 -7.174 12.981 0.042 - 4,708 0.013 0.004 2.001 414
(t-ratio) -1.841 -0.143 -1.634 2.292 0.261

Poland 0.082 -0.169 14.305 -14.631 -0.390 - 4.627 0.031 0.018 1.981 289
(t-ratio) 0.062 -2.149 0.812 -0.809 -1.227

Russia 0.218 -0.071 -0.663 0.785 -0.408 - 9.539 0.089 0.078 1.997 329
(t-ratio) 0.210 -0.630 -0.200 0.271 -2.709

Slovakia 1.281 0.059 -0.773 -6.275 0.160 - 2.823 0.060 0.049 2.011 334
(t-ratio) 2.873 0.849 -0.490 -2.638 1.474

Table 4b: Estimation of excess returns in sterling

b0 b1 b2 b3 b4 b5 see R® Adj. R? DW T

Equation (2)

Czech Republic -0.156 0.144 -9.156 11.992 -0.007 -0.093 4.422 0.035 0.022 2.015 380
(t-ratio) -0.474 1.625 -1.321 1.401 -0.039 -0.737

Hungary -1.192 -0.019 -6.341 12.874 -0.168 0.106 4.844 0.018 0.006 1.982 415
(t-ratio) -1.679 -0.230 -1.512 2.407 -0.925 0.760

Poland -0.798 -0.127 1.192 2.144 -0.185 0.210 5.238 0.018 0.000 1.970 289
(t-ratio) -0.601 -1.806 0.049 0.083 -0.786 1.192

Russia -0.290 0.084 -6.743 4.893 0.098 -0.043 8.713 0.032 0.017 2.042 329
(t-ratio) -0.323 1.094 -2.271 1.885 0.296 -0.190

Slovakia 0.421 0.005 -0.002 -6.875 -0.102 0.061 3.139 0.039 0.025 2.009 334
(t-ratio) 1.540 0.070 -0.001 -2.686 -0.933 0.778

Equation (3)

Croatia 2.660 -0.020 -22.688 -2.561 -0.110 0.149 5.424 0.010 -0.015 2.010 207
(t-ratio) 0.816 -0.203 -0.375 -0.046 -0.377 0.834

Estonia 5.781 0.115 -48.577 0.808 -0.014 -0.132 5.966 0.028 0.011 2.015 298
(t-ratio) 1.479 2.001 -0.972 0.018 -0.085 -0.772

Lituania 1.762 0.324 -43.217 26.151 0.046 -0.046 3.996 0.115 0.098 2.000 260
(t-ratio) 1.082 2.968 -1.300 0.697 0.418 -0.528

Romania 7.033 0.007 -12.065 -56.400 -0.573 0.198 6.689 0.051 0.022 1.951 170
(t-ratio) 1.636 0.086 -0.174 -0.780 -2.511 1.195

Slovenia -0.247 0.022 11.331 -9.495 -0.082 0.022 4.036 0.002 -0.012 2.004 364
(t-ratio) -0.142 0.324 0.465 -0.365 -0.608 0.217




Table 5: Statistics on Bayesian learning

a=(ay, dy, A¢) UK GE Ccz HU PO RU SL CR ES LI RO SV
Unconditional moments of excess returns

mean 0.074 0.146 -0.048 0.045 0.189 -0.083 -0.226 -0.190 0.262 -0.063 -1.124 -0.105
standard deviation 2.092 2.806 4.468 4531 6.701 8.775 4.804 5.441 5.997 4.206 6.744 4.007
a=(1,1,1)

Conditional moments

mean 0.165 0.031 -0.234 0.237 -0.299 -0.505 0.553 -0.203 -0.304 0.282 -0.390 0.027
standard deviation 2405 3.377 4.384 5.665 8.326 8.613 6.320 4.378 5.819 4.043 4.453 4.040
Reinitializations

number 15 13 12 21 13 8 5 7 10 8 10 12
as a % of sample 0.029 0.025 0.032 0.041 0.026 0.024 0.013 0.034 0.034 0.031 0.060 0.033
a=(0.5,1,1)

Conditional moments

mean 0.206 0.135 -0.254 0.332 -0.033 -0.475 0.198 -0.059 -0.067 0.029 -0.255 -0.095
standard deviation 2.346 3.238 4.305 5502 8.010 8.528 6.013 4.376 5.616 3.860 4.408 3.860
Reinitializations

number 15 11 12 19 12 7 4 6 10 7 10 12
as a % of sample 0.029 0.021 0.032 0.037 0.024 0.021 0.011 0.029 0.034 0.027 0.060 0.033
a=(0,1,1)

Conditional moments

mean 0.212 0.227 -0.109 0.119 0.367 -0.418 -0.152 0.167 0.235 -0.209 -0.229 -0.145
standard deviation 2457 3.370 5.196 6.110 8.476 8.861 6.787 4.565 6.322 4.343 4.971 4.167
Reinitializations

number 12 8 3 15 12 6 5 5 6 6 5 10
as a % of sample 0.023 0.015 0.008 0.029 0.024 0.018 0.013 0.024 0.020 0.023 0.030 0.028
a=(1,0.5,1)

Conditional moments

mean 0.776 -0.068 -0.886 0.832 -1.676 -2.147 2.191 -0.672 -0.098 0.807 -1.696 -0.633
standard deviation 8.719 11.472 14.915 19.093 29.005 30.244 24.386 14.343 17.880 14.604 14.668 13.342
Reinitializations

number 21 28 19 32 21 21 7 9 23 11 17 21
as a % of sample 0.040 0.054 0.050 0.062 0.042 0.064 0.019 0.044 0.078 0.043 0.101 0.058
0a=(1,1,0.5)

Conditional moments

mean 0.595 0.267 -0.410 -0.039 0.595 -0.859 -0.534 -0.256 0.614 -0.197 -1.839 -0.469
standard deviation 3.674 5.294 5.941 8.183 10.883 10.201 5.066 9.343 5.796 3.172 6.280 5.376
Reinitializations

number 246 238 156 200 224 166 180 81 159 152 83 148
as a % of sample 0.474 0.459 0.413 0.386 0.444 0.508 0.476 0.395 0.537 0.589 0.494 0.409
a=(0.5,0.5,1)

Conditional moments

mean 0.613 0.077 -0.965 0.904 -1.239 -2.044 2.185 -0.829 -1.241 1.110 -1.572 0.081
standard deviation 9.619 13.506 17.536 22.661 33.305 34.454 25.279 17.512 23.275 16.173 17.812 16.160
Reinitializations

number 15 13 12 21 13 8 5 7 10 8 10 12
as a % of sample 0.029 0.025 0.032 0.041 0.026 0.024 0.013 0.034 0.034 0.031 0.060 0.033




Table 6: Optimal weights computed using unconditional moments (sample: 1994:09-2000:12)

UK GE Cz HU PO RU SL SV
Panel A: Optimal weights when weights are only assumed to be positive
6=25 0.031 0.067 0.000 0.000 0.000 0.000 0.000 0.000
6=50 0.062 0.134 0.000 0.000 0.000 0.000 0.000 0.000
6=75 0.093 0.201 0.000 0.000 0.000 0.000 0.000 0.000
Panel B: Optimal weights when weights sum to one
6=25 0.831 0.088 0.000 0.000 0.000 0.000 0.017 0.063
6=50 0.828 0.172 0.000 0.000 0.000 0.000 0.000 0.000
6=75 0.766 0.234 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: CER and Sharpe ratio
Equal weights

CER  Sharpe ratio

6=25 -166.936 -0.814
6=50 -166.936 -0.814
6=75 -166.936 -0.814

Optimal weights
(positive)
CER  Sharpe ratio
65.092 0.424
108.887 0.672
112.743 0.690

Optimal weights
(sum to one)

CER  Sharpe ratio
13.758 0.742
27.517 0.742
41.275 0.742




Table 7: Statistics on Bayesian learning - weights are less than or equal to one

a=(ay, dy, a¢c) Cumulative Excess returns t-stat
Copeland/Mayers Cornell Bayesian
CER,M CER;“°R CER,® ™ TR

Tol =25

a=(1,1,1) 0.219 3.875 6.328 1.290 -0.241
a=(0.5,1,1) 0.310 3.524 4.487 0.670 -0.438
a=(0,1,1) 0.333 2.837 2.892 0.531 -0.582
a=(1,0.1,1) 0.069 6.362 17.157 3.326 1.503
0=(1,0.05,1) 0.132 5.554 17.423 3.169 1.880
a=(1,1,0.5) 0.215 4.036 6.609 1.330 -0.197
Tol =50

a=(1,1,1) 0.270 5.099 8.147 1.441 -0.275
0=(0.5,1,1) 0.485 4.394 6.376 0.852 -0.541
a=(0,1,1) 0.628 3.757 4,254 0.618 -0.722
0=(1,0.1,1) 0.061 7.510 18.859 3.348 1.341
0=(1,0.05,1) 0.159 6.112 18.084 3.222 1.745
0=(1,1,0.5) 0.269 5.316 8.356 1.529 -0.244
Tol =75

a=(1,1,1) 0.257 5.986 9.329 1.553 -0.251
a=(0.5,1,1) 0.537 4,980 6.956 0.938 -0.482
a=(0,1,1) 0.804 4.190 4671 0.696 -0.711
a=(1,0.1,1) 0.070 7.785 18.872 3.309 1.267
0=(1,0.05,1) 0.172 6.281 17.881 3.158 1.623
a=(1,1,0.5) 0.256 6.168 9.375 1.616 -0.235




Cumulative Excess Returns using Various strategies
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