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Abstract 
 
Two complementary schools have come to the fore in the field of Structural Equation Modelling 
(SEM): covariance-based SEM and component-based SEM. The first approach has been developed 
around Karl Jöreskog and the second one around Herman Wold under the name "PLS" (Partial 
Least Squares). Hwang and Takane have proposed a new component-based SEM method named 
Generalized Structured Component Analysis.  Covariance-based SEM is usually used with an 
objective of model validation and needs a large sample.  Component-based SEM is mainly used for 
score computation and can be carried out on very small samples.  In this research, we will explore 
the use of ULS-SEM, PLS, GSCA, path analysis on block principal components and path analysis on 
block scales on customer satisfaction data.  Our conclusion is that score computation and bootstrap 
validation are very insensitive to the choice of the method when the blocks are homogenous. 

Key words: Component-based SEM, Covariance-based SEM, GSCA, Path analysis, PLS path 
modelling, Structural Equation Modelling, Unweighted Least Squares 
 
 
Introduction 
 
Two complementary schools have come to the fore in the field of Structural Equation Modelling 
(SEM): covariance-based SEM and component-based SEM. 

The first school developed around Karl Jöreskog.  It can be considered as a generalisation of path 
models, principal component analysis and factor analysis to the case of several data tables connected 
by causal links.  Covariance-based SEM is usually used with an objective of model validation and 
needs a large sample (what is large varies from an author to another: more than 100 subjects and 
preferably more than 200 subjects are often mentioned).  The various methods of estimation used for 
covariance-based SEM, like Maximum Likelihood (ML) or Unweighted Least Squares (ULS), are 
full information methods. 

The second school developed around Herman Wold under the name "PLS" (Partial Least Squares).  
It is a partial information method.  It is a two-step method: (1) latent variables scores are computed 
using the PLS algorithm and (2) OLS regressions are carried out on the LV scores for estimating the 
structural equations.  More recently Hwang and Takane (2004) have proposed a new full information 
method optimizing a global criterion and named Generalized Structured Component Analysis 
(GSCA).  This second school can be considered as a generalisation of principal component analysis 
to the case of several data tables connected by causal links.  Component-based SEM is mainly used 
for score computation and can be carried out on very small samples.  A research based on 6 subjects 
has been published in Tenenhaus, Pagès, Ambroisine & Guinot (2005) and more recently another 
one on 21 subjects in Tenenhaus (2008). 

Compare to covariance-based SEM, PLS suffers from several handicaps: (1) the diffusion of path 
modelling softwares is much more confidential than that of covariance-based SEM softwares, (2) the 
PLS algorithm is more an heuristic than an algorithm with well known properties and (3) the 
possibility of imposing value or equality constraints on path coefficients is easily managed in 
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covariance-based SEM and does not exist in PLS.  Of course, PLS has also some advantages on 
covariance-based SEM (that’s why PLS exists) and we can list some of them: systematic 
convergence of the algorithm due to its simplicity, possibility of managing data with a small number 
of individuals and a large number of variables, practical meaning of the latent variable estimates, 
general framework for multi-block analysis. 

It is often mentioned that PLS is to covariance-based SEM as PCA is to factor analysis.  But the 
situation has seriously changed when Roderick McDonald showed in his 1996 seminal paper that he 
could easily carry out a PCA with a covariance-based SEM software by using the ULS criterion and 
constraining the measurement error variances to be equal to zero.  Furthermore, the estimation of the 
latent variables proposed by McDonald is similar to using the PLS mode A and the SEM scheme 
(i.e. using the “theoretical” latent variables as inner LV estimates).  Thus, it became possible to use a 
covariance-based SEM software to mimic PLS.  He concluded from this that he could in fact use the 
covariance-based SEM approach to obtain results similar to those of the PLS approach, but with a 
precise optimisation criterion in place of an algorithm with not well known properties. 

When each block of variables is essentially uni-dimensional (the first eigenvalue of the correlation 
matrix is much larger than one and the second one much smaller) and homogenous (all the variables 
have the same scale, all the correlations are positive and the Cronbach alpha is large) it is a good 
procedure to summarize each block by the first principal component or more simply by the sum of 
the block items (scale).  For this kind of data, path analysis of these summaries is a natural procedure 
and yields to the same results as the previous methods.  First experiences have already shown that 
score computation and bootstrap validation are very insensitive to the choice of the method. 

In the first section of this paper, it is reminded how to use the ULS criterion for covariance-based 
SEM and the PLS way of estimating latent variables for mimicking PLS path modelling.  This 
methodology is applied to customer satisfaction data (the ECSI example) in the second section.  In 
the third section PLS, GSCA, path analysis of block first principal components and path analysis of 
block scales are compared on this example.  Listing the pluses and minuses of these various methods 
finally concludes the paper. 
 
I. Using ULS estimation method for structural equation modelling and McDonald 
approach for LV estimates 
 
We describe in this section the use of the ULS estimation method applied to the SEM parameter 
estimates and that of the McDonald estimation method for computing the LV values.  In a first part 
we remind the structural equation model following Bollen (1989).  A structural equation model 
consists of two models: the latent variable model and the measurement model. 
 
The latent variable model 
 
Let η be a column vector consisting of m endogenous (dependent) centred latent variables, and ξ a 
column vector consisting of k exogenous (independent) centred latent variables.   The latent variable 
model connecting the vector η to the vectors η and ξ is written as   

(1)   η = Bη+Γξ + ζ  

where B is a zero-diagonal m m×  matrix of regression coefficients, Γ a m k×  matrix of regression 
coefficients and ζ a centred random vector of dimension m. 
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The measurement model  
 
Each latent (unobservable) variable is described by a set of manifest (observable) variables.  The 
column vector yj of the centred manifest variables linked to the dependent latent variable ηj can be 
written as a function of ηj through a simple regression with usual hypotheses: 

(2)   y
j j j jηy = λ + ε  

The column vector y, obtained by concatenation of the yj’s, is written as 

(3)   yy = Λ η+ ε  

where 
1

m
y
jj=

= ⊕yΛ λ  is the direct sum of 1 ,...,y y
mλ λ  and ε is a column vector obtained by concatenation 

of the εj’s.  It may be reminded that the direct sum of a set of matrices A1, A2,…, Am is a block 
diagonal matrix in which the blocks of the diagonal are formed by matrices A1, A2,…, Am. 

Similarly, the column vector x of the centred manifest variables linked to the latent independent 
variables is written as a function of ξ:  
 
(4)   xx = Λ ξ +δ  
 
Adding the usual hypothesis that the matrix I-B is non-singular, equation (1) can also be written as: 
 
(5)   1( ) ( )−η = I - B Γξ + ζ  
 
and consequently (3) becomes  
 
(6)   1[( ) ( )]−

yy = Λ I - B Γξ + ζ + ε  
 
Factorisation of the manifest variable covariance matrix 
 
Let Φ = Cov(ξ) = E(ξξ’), ψ = Cov(ζ) = E(ζζ’), Θε  = Cov(ε) = E(εε’) and Θδ = Cov(δ) = E(δδ’).  
Suppose that the random vectors ξ, ζ, ε and δ are independent of each other and that the covariance 
matrices Ψ, Θε, Θδ of the error terms are diagonal.  Then, we get: 
 

'   xx = x x δΣ Λ ΦΛ + Θ , 
1 1[( ) ( )][( ) '] '   yy
− −

y y εΣ = Λ I - B ΓΦΓ' +Ψ I - B Λ + Θ , 

[ ] 1' ( ) ' 'xy
−= x yΣ Λ ΦΓ I - B Λ  

 
From which we finally obtain: 
 
(7) 

[ ] 11 1

1

[( ) ( )][( ) '] '   ( ) '

' ( ) ' ' '   
yy yx

xy xx

−− −

−

⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

y y ε y x

x y x x δ

Λ I - B ΓΦΓ' +Ψ I - B Λ + Θ Λ I - B ΓΦΛΣ Σ
Σ

Σ Σ Λ ΦΓ I - B Λ Λ ΦΛ + Θ
 

 
Let { }θ , , , , ,= x y ε δΛ Λ B Γ,Φ,Ψ Θ Θ be the set of parameters of the model and (θ)Σ the matrix (7). 
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Model estimation using the ULS method 
 
Let S be the empirical covariance matrix of the MV’s.  The object of the ULS method is to seek the 
set of parameters ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆθ { , , , , }x y= ε δΛ Λ B Γ,Φ,Ψ Θ ,Θ  minimizing the criterion 

(8)   
2ˆ(θ)−S Σ  

The aim is therefore to seek a factorisation of the empirical covariance matrix S as a function of the 
parameters of the structural model.  In SEM softwares, the default is to compute the covariance 
matrix estimates ˆ ( )Cov=εΘ ε  and ˆ ( )Cov=δΘ δ  of the residual terms in such a way that the diagonal 

of the reconstruction error matrix ˆ(θ)−E = S Σ  is null, even when it yields to negative variance 
(Heywood case). 

Let’s denote by ˆ iiσ the i-th term of the diagonal of ˆ ˆ ˆˆ ˆ ˆ( , , , , )x yΣ Λ Λ B Γ,Φ,Ψ 0,0  and by îiθ  the i-th term 

of the diagonal of ˆ ˆ⊕ε δΘ Θ .  From the formula: 

(9)   ˆˆii ii iis σ θ= +  

we may conclude that ˆiiσ  is the part of the variance sii of the i-th MV explained by its LV (except in 

a Heywood case) and îiθ  is the estimate of the variance of the measurement error relative to this 

MV.  As all the error terms ˆˆ( )ii ii ii iie s σ θ= − +  are null, this method is not oriented towards the 
research of parameters explaining the MV variances.  It is in fact oriented towards the reconstruction 
of the covariances between the MV’s, variances excluded. 
 
The McDonald approach for parameter estimation 
 
In his 1996 paper, McDonald proposes to estimate the model parameters subject to the constraints 
that all the îiθ  are null.  The object is to seek the parameters ˆ ˆ ˆˆ ˆ ˆ, , ,x yΛ Λ B Γ,Φ,Ψ  minimizing the 
criterion 

(10)   
2ˆ ˆ ˆˆ ˆ ˆ( , , , , , )− x yS Σ Λ Λ B Γ,Φ,Ψ 0 0  

The estimates of the variances of the residual terms ε and δ are integrated in the diagonal terms of 
the reconstruction error matrix ˆ ˆ ˆˆ ˆ ˆ( , , , , , )= − x yE S Σ Λ Λ B Γ,Φ,Ψ 0 0 .  This method is therefore oriented 
towards the reconstruction of the full MV covariance matrix, variances included.  On a second step, 
final estimates ˆ ˆ and ε δΘ Θ  of the variances of the residual terms ε and δ are obtained by using again 
formula (9). 
 
Goodness of Fit 
 
The quality of the fit can be measured by the GFI (Goodness of Fit Index) criterion of Jöreskog & 
Sorbum, defined by the formula 

(11)   

2

2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( , , , , , )
1GFI

−
= −

x y ε δS Σ Λ Λ B Γ,Φ,Ψ Θ Θ

S
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i.e. the proportion of 2S  explained by the model.  By convention, the model under study is 
acceptable when the GFI is greater than 0.90. 

The quantity 
2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( , , , , , )− x y ε δS Σ Λ Λ B Γ,Φ,Ψ Θ Θ  can be deduced from the FMIN criterion given in 

the covariance-based SEM software AMOS (Arbuckle, 2005): 

(12)   
21 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( , , , , , )

2
FMIN = − x y ε δS Σ Λ Λ B Γ,Φ,Ψ Θ Θ  

Using the McDonald approach, the GFI given by AMOS is equal to 

(13)   

2

2

ˆ ˆ ˆˆ ˆ ˆ( , , , , )
1GFI

−
= −

x yS Σ Λ Λ B Γ,Φ,Ψ 0,0

S
 

The exact GFI computed with formula (11) is also equal to the following: 

(14)   

2

2

2 2

2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( , , , , , )
1

ˆ ˆ ˆ ˆˆ ˆ ˆ( , , , , )
       1

ii
i

GFI
−

= −

− −
= −

∑θ

x y ε δ

x y

S Σ Λ Λ B Γ,Φ,Ψ Θ Θ

S

S Σ Λ Λ B Γ,Φ,Ψ 0,0

S

 

In practical applications of the McDonald approach, the difference between the GFI given by AMOS 
(formula (13)) and the exact GFI computed with formula (14) will be small as 22ˆ /ii

i
θ∑ S  is usually 

small.  Furthermore, the exact GFI will always be larger than the GFI given by AMOS. 
 
Evaluation of the latent variables 
 
After having estimated the parameters of the model, we now present the problem of evaluating the 
latent variables.  Three approaches can be distinguished: the traditional SEM approach, the 
"McDonald" approach, and the "Fornell" approach.  As it is usual in the PLS approach, we now 
designate one manifest variable with the letter x and one latent variable with the letter ξ, regardless 
of whether they are of the dependent or independent type.  The total number of latent variables is     
n = k + m and the number of manifest variables related to the latent variable ξj is pj. 
 
The traditional SEM approach 
 
To construct an estimate ˆ

jξ  of jξ , one proceeds by multiple regression of jξ  on the whole set of the 

centred manifest variables 11 11,..., n nnp npx x x x− − .  In other words, if one denotes as ˆ
xxΣ  the implied 

(i.e. predicted by the structural model) covariance matrix between the manifest variables and as 
ˆ

jxξΣ the vector of the implied covariances between the manifest variables x and the latent variable ξj, 

one obtains an expression of ˆ
jξ  as a function of the whole set of manifest variables: 

(15)   1ˆ ˆ ˆ
jj xx xX ξξ −= Σ Σ  
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where 11 11,..., n nnp npX x x x x⎡ ⎤= − −⎣ ⎦ .  This method is not really usable, as it is more natural to 
estimate a latent variable solely as a function of its own manifest variables. 
 
The "McDonald" approach for LV evaluation 
 
Let 1,..., jj jpx x  be the manifest variables relative to the latent variable ξj.  McDonald (1996) proposes 

evaluating the latent variable ξj with the aid of the formula 

(16)   ˆ ( )j jk jk jk
k

w x xξ ∝ −∑  

where ( , )jk jk jw Cov x ξ=  is the implied covariance between the MV xjk and the LV ξj and where ∝ 
means that the left term is the standardized version of the right term. 

The regression coefficient λjk of the latent variable ξj in the regression of the manifest variable xjk on 
the latent variable ξj is estimated by 

(17)   ˆ ( , ) / ( )jk jk j jCov x Varλ ξ ξ=  

From this, we deduce that formula (16) can also be written as 

(18)   ˆ ˆ ( )j jk jk jk
k

x xξ λ∝ −∑  

The McDonald approach thus amounts to estimating the latent variable ξj with the aid of the first 
PLS component computed in the PLS regression of the latent variable ξj on the manifest variables 

1,..., jj jpx x .  This approach could enter into the PLS framework.  In the usual PLS approach (Wold 
(1985), Tenenhaus, Esposito Vinzi, Chatelin & Lauro (2005)), under mode A, the outer weights are 
obtained by simple regression of each variable xjk on the inner estimate zj of the latent variable ξj..  It 
is necessary to calculate expressly the inner estimate zj of ξj to obtain these weights.  Three 
procedures are proposed in PLS softwares: the centroid, factorial and structural schemes.  The 
covariance-based SEM softwares, on the other hand, give directly the weights (loadings) that for 
each xjk represent an estimate of the regression coefficient of the "theoretical" latent variable ξj in the 
regression of xjk on ξj.  Consequently, instead of the regression coefficient of the inner estimate zj, 
the estimated regression coefficient of the "theoretical" latent variable ξj can be used.  We have 
proposed this procedure for calculating the weights based simply on the outputs of a covariance-
based SEM software in Tenenhaus, Esposito Vinzi, Chatelin & Lauro (2005).  We called it the 
"LISREL" scheme and, without knowing it, found the choice of weights proposed by McDonald. 

 
The "Fornell" approach 
 
When all the coefficients ˆ

jkλ  relative to a latent variable ξj have the same sign and the manifest 
variables are of a comparable order of magnitude, Fornell proposes building up a score taking into 
account the level of the manifest variables xjk: 
 
(19)   ˆ ˆ ˆ/j jk jk jkk k

xξ λ λ=∑ ∑  
 
This approach is standard in customer satisfaction studies. 
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II. Use of ULS-SEM on the ECSI data 
 
We return to the ECSI (European Consumer Satisfaction Index) example presented in detail in 
Tenenhaus, Esposito Vinzi, Chatelin & Lauro (2005).  The ECSI model is described in Figure 1.  
The data refer to a mobile phone provider.  Table 1 lists the manifest variables associated with each 
latent variable.  Variable h of block j is denoted by xjh.  The manifest variables xjh are standardized to 
make the comparison easier with other methods.  It it is a good practice to study in a first step the 
uni-dimensionality of each block (the first eigenvalue of the correlation matrix is much larger than 1 
and the second one much smaller) and, when all the variables have the same scale and all the 
correlations are positive, its homogeneity (large Cronbach alpha).  This information is given in  
Table 2.  We detect two facts: block “customer expectation” is not very homogenous and item 2 of 
block “loyalty” is not a good representative of its block. 

 

Image

Perceived
value

Customer
Expectation

Perceived
quality

Loyalty

Customer
satisfaction

Complaint

.

Image

Perceived
value

Customer
Expectation

Perceived
quality

Loyalty

Customer
satisfaction

Complaint

.

 
 

Figure 1: ECSI model 
 
We have applied the usual constraint used in causality models to the weights of the manifest 
variables: for each latent variable, one of the manifest variables has a weight equal to 1.  The 
estimation of the causality model of Figure 1 by minimisation of criterion (8) did not work because a 
(small) negative error variance was obtained.  Therefore we have used the McDonald approach for 
parameter estimation.  Figure 2 shows the results of the estimation of the causality model by 
minimisation of criterion (10).  The outer model parameters normalized according to the Fornell 
approach are given in Table 3.  The confidence intervals of the MV weights were calculated by 
bootstrapping (Percentile confidence interval option in AMOS 6.0).  In Table 3, the non significant 
coefficients are shown in bold italic.  LV scores are computed using these weights.  For example the 
“Customer Satisfaction score” is computed as: 
 

51 52 53
51 52 53

1 1.02 1.10Customer satisfaction score  .320 .327 .353
1+1.02+1.10

x x x x x x× + × + ×
= = × + × + ×
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Table 1: Manifest variables associated with each latent variable 
 

All the items are on a scale of 0 to 100. The value 0 corresponds to a very negative point of view of the 
product, and a value of 100 to a very positive opinion. 
 

Latent variables  Manifest variables 

Image (ξ1) 
a) It can be trusted in what it says and does 
b) It is stable and firmly established 
c) It has a social contribution for the society 
d) It is concerned with customers 
e) It is innovative and forward looking 

Customer Expectations of the overall 
quality (η1) 

a) Expectations for the overall quality of “your mobile phone 
provider” at the moment you became customer of this provider 

b) Expectations for “your mobile phone provider” to provide products 
and services to meet your personal need 

c) How often did you expect that things could go wrong at “your 
mobile phone provider” 

Perceived Quality (η2) 
a) Overall perceived quality 
b) Technical quality of the network 
c) Customer service and personal advice offered 
d) Quality of the services you use 
e) Range of services and products offered 
f) Reliability and accuracy of the products and services provided 
g) Clarity and transparency of information provided 

Perceived Value (η3) 
a) Given the quality of the products and services offered by “your 

mobile phone provider” how would you rate the fees and prices that 
you pay for them? 

b) Given the fees and prices that you pay for “your mobile phone 
provider” how would you rate the quality of the products and 
services offered by “your mobile phone provider”? 

Customer Satisfaction (η4) 
a) Overall satisfaction 
b) Fulfilment of expectations 
c) How well do you think “your mobile phone provider” compares 

with your ideal mobile phone provider? 

Customer Complaints (η5) 
a) You complained about “your mobile phone provider” last year. 

How well, or poorly, was your most recent complaint handled 
or 
b) You did not complain about “your mobile phone provider” last 

year. Imagine you have to complain to “your mobile phone 
provider” because of a bad quality of service or product. To what 
extent do you think that “your mobile phone provider” will care 
about your complaint? 

Customer Loyalty (η6) 
a) If you would need to choose a new mobile phone provider how 

likely is it that you would choose “your provider” again? 
b) Let us now suppose that other mobile phone providers decide to 

lower their fees and prices, but “your mobile phone provider” stays 
at the same level as today. At which level of difference (in %) 
would you choose another mobile phone provider? 

c) If a friend or colleague asks you for advice, how likely is it that you 
would recommend “your mobile phone provider”? 
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Table 2: Block uni-dimensionality and Cronbach alpha on the standardized items 
 

 
Block correlation
1st eigenvalue

Block correlation 
2nd eigenvalue 

Cronbach 
alpha 

 Image 2.394 0.913 0.723 
 Customer expectation 1.444 0.903 0.452 
 Perceived quality 4.040 0.771 0.877 
 Perceived value 1.700 0.300 0.824 
 Customer satisfaction 2.082 0.518 0.779 
 Customer loyalty 1.561 0.983 0.472 
 Customer loyalty (without item 2) 1.542 0.458 0.703 

 
 
For the inner model (structural equations) we don’t use the ULS-SEM results because the obtained 
parameters are related to theoretical LV’s and not to LV scores.  Therefore, these parameters are not 
comparable to the regression coefficients obtained with the other methods.  We prefer to use the path 
model build on the standardized LV scores shown in Figure 3.  The parameters of this model have 
been estimated using the maximum likelihood method available in AMOS 6.0 and are given in  
Table 4.  For each block, we compute the AVE (Average Variance Extracted) given by the formula 
 

2

1

1 ˆ( , )
jp

j jh j
hj

AVE Cor x
p =

= ξ∑  

 
The AVE’s are given in Table 5.  Then, for each endogenous LV ξj, we compute the R-square 
between ˆ

jξ  and the other LV’s ˆ
kξ  explaining ˆ

jξ .  These R-square are given in Table 6.  Finally the 
absolute goodness-of-fit (GoF) defined by the formula 
 

2

: 1 Endogenous VL
: 1

1 1 ˆ ˆ ˆ( ;  explaining )
Nb of endogenous LV

j

j

j j j k j
j pj

j p

GoF p AVE R
p >

>

= × ξ ξ ξ∑ ∑∑
 

 
is given in Table 7.  Using the maximum likelihood method of estimation on the path model 
constructed on the ULS-SEM LV scores, we obtain the modification indices given in Tables 8 and 9.  
These results suggest a strong new link from Image to Perceived quality and maybe another one 
from Perceived value to loyalty. 
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Figure 2 : Estimation of the ECSI model using ULS-SEM 
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Table 3: Estimation of the outer model parameters (Fornell normalization) 
Non-significant (5% level) parameters in bold italic 

 
Outer model      
Parameter ULS-SEM PLS GSCA PCA SCALE 

 x11 - Image 0.220 0.208 0.218 0.218 .200 
 x12 - Image 0.180 0.183 0.169 0.170 .200 
 x13 - Image 0.156 0.153 0.174 0.175 .200 
 x14 - Image 0.229 0.229 0.225 0.223 .200 
 x15 - Image 0.214 0.227 0.214 0.214 .200 
 x21 - Customer expectation 0.364 0.363 0.389 0.384 .333 
 x22 - Customer expectation 0.336 0.325 0.349 0.347 .333 
 x23 - Customer expectation 0.300 0.312 0.262 0.269 .333 
 x31 - Perceived quality 0.156 0.163 0.150 0.150 .143 
 x32 - Perceived quality 0.116 0.110 0.123 0.122 .143 
 x33 - Perceived quality 0.152 0.152 0.145 0.146 .143 
 x34 - Perceived quality 0.139 0.136 0.148 0.147 .143 
 x35 - Perceived quality 0.142 0.138 0.142 0.143 .143 
 x36 - Perceived quality 0.142 0.138 0.147 0.148 .143 
 x37 - Perceived quality 0.153 0.164 0.145 0.144 .143 
 x41 - Perceived value 0.459 0.448 0.500 0.500 .500 
 x42 - Perceived value 0.541 0.551 0.500 0.500 .500 
 x51 - Customer satisfaction 0.320 0.314 0.321 0.322 .333 
 x52 - Customer satisfaction 0.327 0.318 0.345 0.344 .333 
 x53 - Customer satisfaction 0.353 0.368 0.334 0.334 .333 
 x71 - Customer loyalty 0.401 0.363 0.446 0.439 .500 
 x72 - Customer loyalty 0.095 0.106 0.103 0.117 0 
 x73 - Customer loyalty 0.505 0.531 0.451 0.445 .500 

 
 

Table 4: Estimation of the inner model parameters (Standardized LV scores) 
Non-significant (5% level) parameters in bold italic 

 
Inner model      

OLS ML 
Parameter 

PLS GSCA Path 
ULS-SEM 

Path 
PCA 

Path 
SCALE

 Cust. Expectation. - Image 0.505 .487 .505 .504 .508 
 Perc. Quality - Cust. Expectation 0.557 .533 .555 .551 .553 
 Perc. Value - Perc. Quality 0.557 .545 .553 .545 .538 
 Perc. Value - Cust. Expectation 0.051 .041 .052 .053 .062 
 Cust. Satisfaction - Perc. Value 0.192 .173 .190 .186 .187 
 Cust. Satisfaction - Cust. Expectation 0.064 .076 .069 .072 .076 
 Cust. Satisfaction - Image 0.179 .186 .179 .178 .172 
 Cust. Satisfaction - Perc. Quality 0.513 .506 .509 .511 .513 
 Complaints - Cust. Satisfaction 0.526 .509 .523 .520 .519 
 Cust. Loyalty - Cust. Satisfaction 0.483 .463 .476 .456 .464 
 Cust. Loyalty - Image 0.195 .212 .198 .210 .206 
 Cust. Loyalty - Complaints 0.071 .044 .067 .063 .054 
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Figure 3 : Estimation of the ECSI model using Path analysis on ULS-SEM LV scores 
 
 

Table 5: Average Variance Extracted computed on McDonald LV estimates 
 

 AVE 
  ULS-SEM PLS GSCA PCA SCALE 

 Image 0.479 0.478 0.479 0.479 0.478 
 Customer expectation 0.481 0.480 0.481 0.481 0.479 
 Perceived quality 0.577 0.577 0.577 0.577 0.577 
 Perceived value 0.849 0.849 0.850 0.850 0.850 
 Customer satisfaction 0.694 0.693 0.694 0.694 0.694 
 Complaints 1.000 1.000 1.000 1.000 1.000 
 Customer loyalty 0.519 0.517 0.520 0.520 0.516 
 Weighted average AVE 
 (Complaints not included) 0.575 0.574 0.575 0.575 0.574 
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Table 6: R Square for structural equation computed on McDonald LV estimates 

 
R-Square 

 ULS-SEM PLS GSCA PCA SCALE 
 Customer expectation 0.255 0.255 0.253 0.254 0.258 
 Perceived quality 0.308 0.310 0.303 0.304 0.306 
 Perceived value 0.341 0.345 0.331 0.331 0.330 
 Customer satisfaction 0.677 0.680 0.673 0.672 0.671 
 Complaints 0.274 0.277 0.271 0.270 0.270 
 Customer loyalty 0.447 0.457 0.431 0.431 0.427 
 Average R-Square 0.384 0.387 0.377 0.377 0.377 

 
 
 

Table 7: GoF for the various models 
 

 ULS-SEM PLS GSCA PCA SCALE 
 GoF 0.470 0.471 0.465 0.465 0.465 

 
 

Table 8: Path analysis on standardized ULS-SEM LV scores 
Model FIT and Modification Indices (> 4) for LV structural model 

 
CMIN 172  

df 9 
CMIN/df 19.111 
RMSEA .270 

GFI .859 
Perceived quality  Image 78.5 MI Loyalty  Perceived value 6.0 

 
 

Table 9: Path analysis on standardized ULS-SEM LV scores  
Revised model with an arrow added from Image to Perceived quality 
Model FIT and Modification Indices (> 4) for LV structural model 

 
CMIN 34.8 

df 8 
CMIN/df 4.354 
RMSEA .116 

GFI .963 
MI Loyalty  Perceived value 5.96 
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III. Use of PLS path modelling, GSCA, path analysis of block principal component and 
path analysis of block scales on the ECSI data 
 
1. PLS path modelling 
 
The PLS estimation method for structural equation modelling proposed by Wold (1982) and 
Lohmöller (1989) and also fully described in Tenenhaus, Esposito Vinzi, Chatelin & Lauro (2005) is 
now used on the ECSI data.  We have run XLSTAT-PLSPM (Addinsoft, 2008) on the standardized 
data, using mode A and centroid scheme.  Weights are standardized according to the Fornell 
approach.  Results are given in Tables 3 to 7.  They are similar to ULS-SEM followed by path 
analysis of ULS-SEM LV scores.  The only difference between both analyses is that the weight 
related to item 2 of the loyalty block is not significant in ULS-SEM and considered as significant in 
PLS.  The 95% confidence interval for this weight in PLS is equal to [.012 - .245].  So, PLS fails to 
detect that this weight is not significant.  This result suggests that item 2 of block “loyalty” should 
have been deleted from its block after inspection of the Cronbach alpha (see Table 2) and 
consequently not used in the analysis. 
 
2. Generalized Structured Component Analysis 
 
In 2004, Hwang and Takane have proposed a new method named GSCA (Generalized Structured 
Component Analysis).  This is a competing method with PLS path modelling.  Its main advantage is 
that it is based on a global criterion to be minimized.  Let’s describe the criterion.  All the latent 
variables are denoted as ξj.  However, endogenous and exogenous latent variables as well as 
reflective and formative ones are distinguished.  A standardized estimate of the latent variable ξj is 
denoted by ˆ

j j j=ξ X w .  The objective of GSCA is to search vectors of weights wj, cj and regression 
coefficients bjk minimizing the criterion 
 

(20)   
2

2'

 réflective  endogenous,
 explaining 

ˆ ˆ ˆ
j j

k j

j j j j jk k
k

b− + −∑ ∑ ∑
ξ ξ

ξ ξ

X ξ c ξ ξ  

 
where cj is a column vector of weights related to the manifest variables xjh belonging to block j.  The 
first term of criterion (20) corresponds exactly to PCA and the second term to OLS regressions on 
variables similar to “principal components”.  GSCA is here a compromise between PCA and OLS 
regressions.  We have used the software program VisualGSCA1.0 (2007) of Heungsun Hwang.  This 
software program is downloadable free of charge from the following site 
http://www.psych.mcgill.ca/perpg/fac/hwang/VisualGSCA.html.  Results are given in Tables 3 to 7.  
MV weights have been standardized according to the Fornell approach.  All the results are similar to 
ULS-SEM results. 
 
3. Path analysis of block principal components 
 
If the blocks are good blocks − uni-dimensional and homogenous − we can use path analysis on the 
standardized first principal components of each block.  We have used AMOS 6.0 with the ML 
method of estimation.  MV weights have been standardized according to the Fornell approach.  All 
the results given in Tables 3 to 7 are similar to ULS-SEM results. 
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4. Path analysis of block scales 
 
On a good block, there is practically no difference between the standardized first principal 
component and the “scale” defined here by the standardized sum of the standardized items.  Block 
“loyalty” has been made good by deleting item 2.  MV weights have been standardized according to 
the Fornell approach.  All the results given in Tables 3 to 7 are similar to ULS-SEM results. 
 
IV. Comparison between PLS, GSCA, ULS-SEM path analysis, PCA path analysis and 
Scale path analysis 
 
We may compare the block components computed with the five methods.  We give in Table 10 the 
correlation matrix for each block.  The conclusion is clear: all methods yield to comparable 
components.  The results seem a little less comparable for block “loyalty”.  But if we compute all the 
loyalty components without using item 2 from this block, we obtain the same kind of correlation 
matrix as the other ones.  We may conclude two points: (1) when the blocks are good, the 
computation of the components does not depend upon the method used, and (2) path analysis of the 
components seems also a very simple and promising approach. 
 
V. Conclusion 
 
Roderick McDonald has thrown a bridge between the SEM and PLS approaches by making use of 
three ideas: (1) using the ULS method, (2) setting the variances of the residual terms of the 
measurement model to 0, and (3) estimating the latent variables by using the loadings of the MV’s 
on their LV’s.  The McDonald approach has some very promising implications.  Using a SEM 
software such as AMOS 6.0 makes it possible to get back to the analysis of multi-block data and to a 
"data analysis" approach for SEM completely similar to the PLS approach.  However, this approach 
is limited to reflective blocks.  Heungsun Hwang and Yoshio Takane have proposed a full 
information method named GSCA and based on a global criterion to be minimized.  This method 
can be used for reflective and formative blocks.  We have also considered PCA path analysis and 
Scale path analysis.  We have illustrated these five methods with one classical example on customer 
satisfaction: the ECSI data.  On these “good” data, all the methods give practically the same results.  
On more general data, ULS-SEM, PLS, GSCA will probably still give close results.  PCA path 
analysis will probably give similar results as the previous methods, except when a first principal 
component is not related to the other blocks.  We end this paper with a wish: that all these methods 
are included in a component-based SEM software.  The user would then have access to a very 
comprehensive toolbox for a "data analysis" approach to structural equation modelling. 
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Table 10: Correlation matrices between the LV scores computed with five methods 
 

Image 
 ULS-SEM PLS GSCA PCA SCALE 

ULS-SEM 1.000     
PLS 1.000 1.000    

GSCA 1.000 .999 1.000   
PCA 1.000 .999 1.000 1.000  

SCALE .998 .997 .998 .998 1.000  
Customer expectation 

 ULS-SEM PLS GSCA PCA SCALE 

ULS-SEM 1.000     
PLS 1.000 1.000    

GSCA .998 .997 1.000   
PCA .999 .997 1.000 1.000  

SCALE .998 .999 .993 .994 1.000  
Perceived quality 

 ULS-SEM PLS GSCA PCA SCALE 

ULS-SEM 1.000     
PLS 1.000 1.000    

GSCA 1.000 .999 1.000   
PCA 1.000 .999 1.000 1.000  

SCALE .999 .999 1.000 1.000 1.000  
Perceived value 

 ULS-SEM PLS GSCA PCA SCALE 

ULS-SEM 1.000     
PLS 1.000 1.000    

GSCA .999 .999 1.000   
PCA .999 .999 1.000 1.000  

SCALE .999 .999 1.000 1.000 1.000  
Customer satisfaction 

 ULS-SEM PLS GSCA PCA SCALE 

ULS-SEM 1.000     
PLS 1.000 1.000    

GSCA 1.000 .999 1.000   
PCA 1.000 .999 1.000 1.000  

SCALE 1.000 .999 1.000 1.000 1.000  
Loyalty 

 ULS-SEM PLS GSCA PCA SCALE 

ULS-SEM 1.000     
PLS .999 1.000    

GSCA .998 .995 1.000   
PCA .998 .995 1.000 1.000  

SCALE .991 .986 .992 .989 1.000  
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