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Abstract

We consider a single stage multi-product manufacturing facility producing a large number of
end-products for delivery within a service constraint for the customer lead-time. The manufac-
turing facility is modeled as a multi-product, multi-priority queuing system. In order to reduce
inventory costs, an efficient priority allocation between items consists in producing some items
according to a Make-To-Stock (MTS) policy and others according to a Make-To-Order (MTO)
policy depending on their features (costs, required lead-time, demand rates). We propose a
general optimization procedure that gives a near-optimal flow control (MTO or MTS) to as-
sociate with each product and the corresponding near-optimal priority strategy. We illustrate
efficiency of our procedure via several examples and by a numerical analysis. In addition, we
show numerically that a small number of priority classes is sufficient to obtain near-optimal
performances.

KEY-WORDS: Make-to-Stock (MTS); Make-to-Order (MTO); Priority allocation; Scheduling
rule; Heterogeneous multi-product queuing system.

1 Introduction

An important issue in production management is whether products should be manufactured ac-
cording to a Make-To-Order or a Make-To-Stock policy, depending on their main characteristics
(costs, customer lead-time, demand parameters, ...). By definition, under make-to-order (MTO)
management, a production order is released to the manufacturing facility only after a firm demand
has been received from the customer. On the contrary, under make-to-stock (MTS) management,
products are manufactured in anticipation of future demands. They are stored in the finished goods
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inventory (FGI), from which the orders will be directly delivered. The advantage of the MTS pol-
icy, with respect to the MTO policy, is to allow immediate reactivity to external demands, but its
drawback is the inventory holding costs.
Clearly, adopting a pure MTS policy or a pure MTO policy for all products can be considered an
extreme choice as the option of combining these two policies exists. In a context where a single
manufacturing facility produces several classes of end-products, it seems appealing to try to pro-
duce some products (for example, the products with a low holding cost) according to a MTS policy
and the others (typically, the products with a very high holding cost) according to a MTO policy.
However, for general situations mixing several product types, deciding which products to manage
according to each policy is a complex issue. As a matter of fact, the optimal MTO/MTS allocation
depends not only on the parameters of each product type (demand behavior, customer lead-time,
holding costs...) but also on the scheduling policy of the manufacturing facility. The simplest
approach in scheduling a manufacturing facility is to use a first-in-first-out (FIFO) scheduling rule
under which all production orders are processed according to their release dates. Another approach
that may be more efficient is to give priority (PR) to some product types in order to give them more
reactivity which would allow producing them under a MTO policy (i.e. without any inventory),
while still guaranteeing the reactivity required by customers.

Several papers have addressed the performance analysis and the optimization strategy of com-
bined MTS and MTO inventory/production systems. Different assumptions in terms of scheduling
policy were considered. Arreola-Risa et al. [1] studied the optimality of MTO versus MTS policies
for a multi-product manufacturing system where the products were scheduled according to a FIFO
policy. Carr and Duenyas [3], Ha [7] and Veatch and Wein [16] studied the structure of optimal dy-
namic priority allocation rules in the setting of optimal control theory for queuing systems. Several
other papers considered static (and actually simpler) priority allocation rules. Sox [14], Federgruen
et al. [5, 6], Williams [17] and Rajagopalan [12] analyzed, under different assumptions, the system
performances and the structure of the optimal MTO/MTS decision policy. These papers make
the assumption that a static priority can be given to the MTO products. In the same context,
Hadj Youssef et al. [8] considered a manufacturing facility producing two classes of end-products:
a small number of high demand rate products, and a large number of low demand rate products.
Static priority can be given to the low demand rate products. These authors provide analytical
expressions that describe the structure of the optimal priority decision and the associate optimal
MTO/MTS decision policy. Sleptchenko et al. [15] analyzed the interest of using repair priori-
ties to reduce stock investment in spare part networks. In their case, due to the high complexity
of the considered system, it was necessary to rely on a simplistic heuristic for the priority allocation.

The purpose of this paper is to give a general optimization procedure that gives near-optimal
flow control (MTO or MTS) to associate to each product and the corresponding priority allocation
strategy. The question of optimizing the flow control (MTO vs MTS) and the priority allocation
for multi-item manufacturing systems is known to be significant with respect to the inventory costs
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(see for example [8] or [12]). Such an analysis, and an optimization issue, requires a performance
evaluation model for the industrial system. We thus provide a multi-item queuing model for the
considered class of manufacturing systems, which encompasses the customer lead-time concept. The
first part of the paper is thus dedicated to the definition and the theoretical analysis of this queuing
system, which in fact generalizes the models described in [2] and [8] to include the customer lead-
time issue. This is the first contribution of the paper. In the second part of the paper, with respect to
this general performance evaluation model, we consider the optimization of the flow control (MTO
or MTS) and the priority allocation strategy. We focus on providing an implementable solution
technique for general unstructured large-scale problems. It is easily seen that any direct formulation
leads to very complex non-linear integer programming models, impossible to solve by a direct brute
force approach. We thus propose an approximate optimization scheme relying on two fundamental
theoretical properties which characterize the class of problems under consideration. First, it can be
shown that for a fixed workload of prioritized items, the underlying optimization problem is a linear
integer programming problem. Second, it is known that for this class of problem the relaxation
of the integrity constraints provides near-optimal solution (i.e. a near integer solution). We show
how these properties can be used to build near-optimal heuristics and theoretical bounds, from
which it can be seen that the solutions can be expected to be excellent and near-optimal for typical
industrial applications.

This paper is structured as follows. In section 2, we present the model, the main assumptions and
the fundamental cost/service level formulation. In section 3, we present the performance analysis
indices corresponding to the production/inventory model. Section 4 presents the optimization
method and the bounds computation. Numerical studies are provided in section 5, focusing on
the case with two priority indices (namely high priority and low priority). Section 6 extends the
approach to a general number of priority indices. In this setting, we illustrate, with numerical
examples, that for typical industrial applications near-optimal performances can be obtained with
a small number of priority classes (i.e. 2 or 3 classes). Our conclusions are given in section 7.

2 The performance evaluation model

2.1 General assumptions for the production/inventory system

We consider a single-stage manufacturing facility producing k heterogeneous product types.
The arrivals of demands occur according to independent Poisson processes with rate λi for product
type i. The delivery of parts, corresponding to a given demand for product type i, has to be
completed in a given time period Li after the order is received, called the customer lead-time.
The customer lead-time is thus the admissible delay (i.e. which does not induce backorder costs)
between the time the order is placed and the time it has to be delivered to the customer. As in
([2], chapter 4.5), we assume that the physical delivery cannot be made to the customer before this
time period. If, at the due date, there are no parts in the finished good inventory, demands are
then backordered. Furthermore, in the considered problem formulation, the delivery process has to
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satisfy fill rate constraints for the different products, which bound the probability that an order will
be delivered after the required lead-time. The processing time is exponentially distributed with a
mean value parameter 1/µ, which does not depend on the product index i. Furthermore, no setup
is required to switch from one product-type to another, and the manufacturing process is totally
reliable.
The flow in this single stage manufacturing facility is controlled by a base-stock control system
(BSCS) [2, 8, 10]. The single-stage BSCS is a control mechanism which consists of releasing raw
parts into the manufacturing process each time a new customer demand for finished products is
issued. Such a control mechanism is defined by base-stock levels, which can be interpreted as the
target inventory levels for the different items. It should be noted that the optimal values of these
base-stocks depend on the priority allocation policy. For a given product, this generic policy can
be interpreted as a MTS policy when the base-stock level is positive, and as a MTO policy when
the base-stock level is equal to zero. The unit inventory holding cost rate associated to product
type i is denoted by hi.
The production orders for the items are scheduled according to their priority levels. We propose a
theoretical analysis for a model with N priority classes. In this setting, products with a priority
level l have a higher priority than products with priority levels j, with j > l. We also assume
that the priority is preemptive, i.e. if a j-level priority order is being manufactured while a new
l-priority level order has to be produced by the system (with l < j ), the current j-level-priority
order is stopped and delayed. The l-priority level order is then produced first. In addition, it is
assumed that orders with equal priority level are scheduled according to a FIFO rule. We show
via several examples that for typical large-scale industrial cases near-optimal performances can be
obtained with a small number of priority classes (i.e. 2 or 3 classes).

In order to model this BSCS in presence of required customer lead-times, we propose a multi-
product queuing model with time lags, which is an extension of the model discussed in ([2], chapter
4.5). The structure of this basic model is depicted below,
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Figure 1: Queuing network model of a multi-product single stage BSCS with time lags.

This basic model with time lags and several products proceeds as follows. MP represents the
considered manufacturing process. It contains parts being processed or waiting to be processed,
which are referred to as work-in-process. Let us define the production lead-time as the time elapsed
between the release of a raw part in the manufacturing facility (according to the BSCS) and the
physical delivery of the corresponding finished part into the FGI.

Oi represents the order time lag process: it contains the list of time lagged orders. Queue R

contains the raw parts waiting for processing in MP . Queue Ii is the product type-i FGI, i.e. the
output buffer of the system containing type-i parts that have completed processing and are ready
for delivery to customers. Queue Yi contains backordered demands (i.e. orders delivered after the
requisition date). R, Ii, and Yi are unlimited.

Initially, before any customer demands arrive in the system, Ii contains a base-stock of si parts,
while R, MP , Oi and Yi are empty. When a customer demand for type-i product arrives in the
system, it triggers a production order of a new part by MP and a demand for the delivery of
a type-i finished part to the customer. The new raw part is directly stored in R while the new
demand is stored in Oi for a deterministic time period equal to the time lag Li, after which it will
be transferred to queue Yi. Queues Ii and Yi are linked into a synchronization station: if there
are simultaneously a customer demand in Yi and an available part in Ii, the part is immediately
delivered to the customer and the demand in Yi is satisfied. If there is no available part in Ii, the
customer demand continues to wait in queue Yi until the arrival of a new finished product in queue
Ii. The sojourn time in Yi is called the backorder time, taking into account the time lag Li between
orders and requisitions. The case with time lags equal to zero has been considered in [8].

It is worth noting that the time lag Li impacts both the backordered demands queue Yi and
the physical inventories Ii. The global effect of such a time lag is quite intuitive: if the time lag
increases, it will progressively become superior to the production lead-time, in such a way that the
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backordered demands will decrease while the finished parts inventory will increase, as the parts will
have to wait for the delivery requisition date.

2.2 Notations for the model

For this BSCS model, we adopt the following notations:
k : the number of end-products,
C : the sets of indices corresponding to all products, i.e. C = {1, ..., k},
N : the number of priority classes (also called priority levels),
Cj : the set of item indices corresponding to priority level j, for j ∈ {1, ..., N}.

For each product type i ∈ C, we define:
λi : the average demand rate,
hi : the inventory holding cost rate,
Li : the required customer lead-time,
γr

i : the required fill rate associated to product type i. This fill rate is defined as the probability
that the customer lead-time will be satisfied for a given delivery.
Furthermore, we have

µ : the average production rate of the manufacturing facility,
λ : the total workload, defined as λ =

∑
i∈C

λi,

ρ : the utilization factor of the manufacturing facility, given by ρ = λ/µ.
For every product type i ∈ C, we also introduce the decision variables,

si : the base-stock level for product type i,
and the following random variables:

Ii : the number of type-i parts in the finished product inventory,
Di: the backorder time for demand of type-i products.

The performance indices can now be defined as:
γi : the effective fill rate associated to product type i,
according to

γi = Prob{Di = 0}, (2.1)

Zi : the average holding cost induced by product type i, according to

Zi = hiE[Ii]. (2.2)

2.3 The fundamental cost/service level formulation

The optimization problem considered here consists of finding the optimal priority allocation and
the corresponding values for the base-stock levels, which minimize the average holding cost, under a
delivery fill rate constraint for each product type. For every product type i ∈ C, we thus introduce
the decision variables,

Xi,j ,
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with Xi,j = 1 if product type i has the priority level j and Xi,j = 0 if not. In order to simplify
the notations, these priority decision variables and the base-stock levels are aggregated into the
following vectors

X = X1,1, ..., X1,N , X2,1, ..., X2,N , ..., Xk,1, ...., Xk,N and S = s1, s2, ...., sk.

This holding cost/service level formulation can then be expressed as the following nonlinear
integer program

Min{X ,S} Z(X ,S) =
∑

i∈C
Zi(X ,S) (2.3)

s.t. γi(X ,S) ≥ γr
i , with i ∈ C, (2.4)

N∑

j=1

Xi,j = 1, with i ∈ C, (2.5)

Xi,j ∈ {0, 1}, with i ∈ C, j = 1, ..., N, (2.6)

si ∈ IN, with i ∈ C. (2.7)

Solving problem (2.3)-(2.7) is a complex issue. First, obtaining the expressions of the performance
indices Zi(X ,S) and γi(X ,S), for i ∈ C, as functions of all the model parameters, is not direct
and approximations have to be made. Some important structural properties can be exhibited,
which allow us to simplify the expression of the main optimization problem. We first show how
the initial problem with N priority classes can be approximatively decomposed into a set of N − 1
sub-problems with two priority classes. For solving such two-priority class models, we extend some
theoretical results of [2] and [8] and provide an efficient approximate analysis scheme. Once the
performance indices are known, the second difficulty directly arises from the structure of problem
(2.3)-(2.7) which is a non-linear integer programming problem. We provide a solution procedure
(both from the theoretical and numerical point of view). This approach is first illustrated for
the two-priority class model. We show efficiency of the proposed approach with several examples.
Then, we extend the method to the general multi-priority class models. Simultaneously, we exploit
this new solution approach in order to get some managerial insight in the considered MTO/MTS
issue.

3 Performance analysis model

We develop in this section the expression of the performance analysis indices, issued from the time-
lagged BSCS, that are used in the optimization problem (2.3)-(2.7). This section is mainly focused
on the situation with two priority indices (namely high priority and low priority). The theoretical
expressions will be generalized to a general number of priority indices in section 6.
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3.1 Decomposition property for multi-item time-lagged BSCS under FIFO rule

For a time-lagged BSCS under FIFO rule for all items, specific theoretical properties hold and
explicit analytical formulas are available and define the major significant performance indices.

Property 1 : For i ∈ C, under a FIFO rule, the BSCS random variables Ii, Yi, Di and the fill
rates γi are independent both of the base-stock levels sj and of the lead-times Lj , for all j ∈ C \{i}.
Proof : see Appendix 1.

Property 2: The multi-product BSCS under FIFO rule can be independently decomposed into a
set of i (with i ∈ C) independent time-lagged auxiliary single-product BSCS’s with an arrival rate
λi, a time-lag Li and a service rate given by

µi = µ− [
∑

m∈C
λm] + λi = µ(1− ρ) + λi. (3.1)

.
Proof : see Appendix 2.

This result is a generalization of Buzacott et al. [2], who considered a multi-product queuing
model of a BSCS without time-lags. This fundamental property underlies the overall solving ap-
proach for the flow/priority problem (2.3)-(2.7) considered in this paper. The main consequence of
this property is that a decomposition property holds true under which the state variables related
to each product type can be separately analyzed.

It is known (see [2], pp.138-143) that for such a single-product BSCS with time-lag, the average
inventory is given by

E[Ii(si, ρ)] = si + λi Li − λi

µ(1− ρ)

[
1−

(
λi

µ(1− ρ) + λi

)si

e−µ(1−ρ)Li

]
. (3.2)

Expression (3.2) makes the link between the average inventory E[Ii(si, ρ)] and the global utilization
factor ρ explicit. This feature is important because this dependence will be directly used in the
solution procedure. It is worth noting that in this flow model, the average inventory level (3.2)
increases with the base-stock, as usual, but it increases also with the time lag, because delivery of
parts before the requisition date increases the effective inventory level.

Property 3: The expression of the corresponding fill rate is given by

γi(si, ρ) = 1−
(

λi

µ(1− ρ) + λi

)si

e−µ(1−ρ)Li . (3.3)

Proof: See Appendix 3.
It is worth noting that, by applying the above equations, one finds that the inventory cost for

product type i, expressed in (2.3), can be rewritten as a function of si and ρ as follows

Zi(si, ρ) = hi

(
si + λi Li − λi

µ(1− ρ)

[
1−

(
λi

µ(1− ρ) + λi

)si

e−µ(1−ρ)Li

])
. (3.4)

8



The conclusion is that under a FIFO rule for the items, the multi-product BSCS with time lags
can be fully characterized with a decomposition approach. Analytical expressions are available for
the performance indices.

3.2 Performance analysis for the two-priority class model

This section proposes a performance analysis which is focused on the case of two priority indices
(namely high priority and low priority). The approach will be generalized to a general number of
priority indices in section 6.

3.2.1 The decomposition principle

The basic principles underlying the analysis are the following. We first divide the item indices
in two groups : the high priority item indices C1 := {i : Xi,1 = 1} and low priority item indices
C2 := {i : Xi,2 = 1}. The performance evaluation approach consists in decomposing the multi-
product queuing system into two systems: one separate queuing system for the high priority items,
i.e. for items i with i ∈ C1 and one separate system for the low priority items, i.e. for items i with
i ∈ C2.

Under the preemptive assumption, it is easy to see that the high priority orders are not affected
by those of low priority. As a consequence, performance analysis of the high priority order class is
straightforward, according to properties 1-3 given above. On the contrary, the low priority orders
are significantly affected by the high priority orders. For the considered setting no closed form
formula can be expected, and we therefore provide an approximate performance approach. It is
worth noting that in fact this section generalizes the results presented in Hadj Youssef et al. [8] to
the case of positive customer lead-times (i.e. Li ≥ 0, for all i ∈ C).

3.2.2 Exact analysis for the high priority items

Under the preemptive assumption, it is clear that the production of high priority orders is not
affected by low priority orders. The family of high priority items (i.e. the items i ∈ C1) can thus
be analyzed as a multi-item BSCS with time lags, scheduled by a FIFO policy.
The multi-product BSCS restricted to the high priority level items can be decomposed into a set of
independent time-lagged auxiliary single-product BSCS’s with a service rate given by, for i ∈ C1,

µi,1(X ) = µ(1− ρ1(X )) + λi, (3.5)

with the corresponding utilization factor for high priority items given by

ρ1(X ) =
∑

m∈C
Xm,1λm/µ. (3.6)
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For given numerical values of si and ρ1, equations (3.3)-(3.4) can be reformulated as

γi,1(si, ρ1(X )) = 1−
(

λi

µ(1− ρ1(X )) + λi

)si

e−(1−ρ1(X )) µLi , (3.7)

Zi,1(si, ρ1(X )) = hi

(
si + λi Li

− λi

µ(1− ρ1(X ))

[
1− (

λi

µ(1− ρ1(X )) + λi
)si e−(1−ρ1(X )) µLi

])
. (3.8)

3.2.3 The low priority class: a heuristic approach

The analysis of the low priority items is more complex because the production facility becomes
unavailable for these products each time a high priority order is issued. As the demand process for
each high priority product is a Poisson process, the rate at which the production facility becomes
unavailable for the low priority family is given by

∑

m∈C1
λm =

∑

m∈C
Xm,1λm, (3.9)

which is the aggregate arrival rate for the high priority products. Once unavailable, the process
remains in this state during a random time period which can be viewed as the busy period of a
production facility loaded exclusively by the high priority family. Due to the assumptions stated
in the above sections, this random unavailability time period can be interpreted as the busy period
of an M/M/1 queue. Unfortunately, no closed-form formulas exist for the corresponding sojourn
time probability density function. However, it is shown in [8] that the average sojourn time in the
real system can be computed as

1
µ− ∑

m∈C2
λm − ∑

m∈C1
λm(2− ρ)

=
1

µ− ∑
m∈C

Xm,2λm − ∑
m∈C

Xm,1λm(2− ρ)
. (3.10)

We propose, as a simple heuristic, to approximate the different low priority items service time by
simple exponentially distributed random variables, with rate denoted by 1

µi,2(X ) for every product
type i (with i ∈ C2). In order to be consistent with the global multi-product model, we choose this
rate in such a way that the average sojourn time in this fictitious queue is equal to the average
sojourn time for the real system given in (3.10).

The demand processes are Poisson and the production rates are equal for all product types.
This sojourn time is the same for every low priority item.

Under the exponential approximation, the average sojourn time associated with a production
rate µi,2(X ) is known to be given by

1
µi,2(X )− ∑

m∈C
Xm,2λm

, (3.11)

and by equating (3.10)-(3.11), we find, for i ∈ C2,

µi,2(X ) = µ(1− ρ)(1− ρ1(X )) + λi. (3.12)
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As a consequence, the low priority family can also be analyzed, in an approximate way, via a set of
independent time-lagged auxiliary single-product BSCS’s. For given numerical values of si and ρ1,
the fill rate and the cost for low priority item i, with i ∈ C2, can be found with equations (3.3)-(3.4)
and amount to

γi,2(si, ρ1(X )) ∼= 1−
(

λi

µ(1− ρ)(1− ρ1(X )) + λi

)si

e−µ(1−ρ)(1−ρ1(X ))Li , (3.13)

Zi,2(si, ρ1(X )) ∼= hi

(
si + λi Li − λi

µ(1− ρ)(1− ρ1(X ))[
1− (

λi

µ(1− ρ)(1− ρ1(X )) + λi
)si e−µ(1−ρ)(1−ρ1(X ))Li

])
(3.14)

Logically, one can introduce the utilization factor for low priority items

ρ2(X ) =
∑

m∈C
Xm,2λm/µ, (3.15)

with the property that
ρ = ρ1(X ) + ρ2(X ). (3.16)

4 The heuristic solution procedure

With respect to the general performance evaluation model exhibited in the previous section, we now
consider the optimization of the flow control and the priority allocation strategy. It will be easily
seen that any direct formulation leads to very complex non-linear integer programming models.
As a consequence, we develop in this section an approximate optimization scheme relying on two
fundamental theoretical properties. First, it will be shown that for a fixed workload of prioritized
items, the underlying optimization problem simplifies itself to a linear integer programming prob-
lem. Second, we propose a relaxation of the integrity constraints which is known to provide in this
case a near-optimal solution (i.e. a near integer solution).

4.1 The problem reformulation

It can be seen in above expressions that the utilization factor ρ1(X ) defined in (3.6) plays a key
role in that all the fill rates and the cost rates can be expressed as functions of this utilization
factor. As a consequence, in the considered two priority class setting, the holding cost/service level
formulation (2.3)-(2.7) can be rewritten as the following nonlinear integer program

Min{X ,S} Z(X ,S) =
∑

i∈C

[
Xi,1 Zi,1(si, ρ1(X )) + Xi,2 Zi,2(si, ρ1(X ))

]
(4.1)

s.t. Xi,1 γi,1(si, ρ1(X )) + Xi,2 γi,2(si, ρ1(X )) ≥ γr
i , for i ∈ C, (4.2)

Xi,1 + Xi,2 = 1, for i ∈ C, (4.3)

Xi,1, Xi,2 ∈ {0, 1}, for i ∈ C, (4.4)

si ∈ IN for for i ∈ C, (4.5)
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where Zi,1(X , si), Zi,2(X , si), γi,1(X , si) and γi,2(X , si) are calculated by equations (3.7)-(3.8) and
(3.13)-(3.14).

4.2 Analysis for a fixed ρ1 value.

Let us fix the value of the workload ρ1. The holding cost/service level formulation amounts to the
following nonlinear integer program

Min{X ,S} Z =
∑

i∈C

[
Xi,1 Zi,1(si, ρ1) + Xi,2 Zi,2(si, ρ1)

]
(4.6)

s.t. Xi,1 γi,1(si, ρ1) + Xi,2 γi,2(si, ρ1) ≥ γr
i , for i ∈ C, (4.7)

∑

i∈C
Xi,1

λi

µ
= ρ1, (4.8)

Xi,1 + Xi,2 = 1, for i ∈ C, (4.9)

Xi,1, Xi,2 ∈ {0, 1}, for i ∈ C, (4.10)

si ∈ IN, for i ∈ C. (4.11)

As a first step of the solution procedure, the property below establishes that the optimal base-
stock values s∗i,j can be be easily found, as functions of the remaining variables and parameters of
the problem.
Property 4: For a given ρ1 value, the optimal base-stocks s∗i,j guaranteeing condition (4.7), for
product type i with a priority level j, are given by the formulas

s∗i,1(ρ1) = max
(⌈

µ(1−ρ1)Li+ln(1−γr
i )

ln
(

λi
µ(1−ρ1)+λi

)
⌉

, 0
)

, (4.12)

s∗i,2(ρ1) = max
(⌈

(µ(1−ρ)(1−ρ1))Li+ln(1−γr
i )

ln
(

λi
µ(1−ρ)(1−ρ1)+λi

)
⌉

, 0
)

. (4.13)

Proof. It is obvious that Zi,1(·, ρ1), Zi,2(·, ρ1), γi,1(·, ρ1) and γi,2(·, ρ1), are increasing functions.
The optimal s∗i,j values which satisfy the fill rate constraints and minimize the cost functions
simultaneously are given by the solution of

γi,j(s∗i,j , ρ1) = γr
i , for i ∈ C. (4.14)

By exploiting formulas (4.12)-(4.13) and by eliminating variables Xi,2 (with i ∈ C) via constraint
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(4.9), the above problem (4.6)-(4.11) can thus be simplified

Min{X} Z =
∑

i∈C

[
Ẑi,2(ρ1) + Xi,1 (Ẑi,1(ρ1)− Ẑi,2(ρ1))

]
(4.15)

s.t.
∑

i∈C
Xi,1

λi

µ
= ρ1, (4.16)

Xi,1 ∈ {0, 1} for i ∈ C, (4.17)

with Ẑi,1(ρ1) = Zi,1(s∗i,1(ρ1), ρ1) and Ẑi,2(ρ1) = Zi,2(s∗i,2(ρ1), ρ1). It is easily seen that the optimal
cost (4.15) is not a convex function of the decisions variables. As a consequence the problem can
be expected to be hard to solve by a brute force approach. Problem (4.6)-(4.11) is a mixed bi-
nary/integer nonlinear program, which is a priori hard to solve. Furthermore, due to constraint
(4.8) for most numerical values of ρ1, there is no feasible solution to the problem. However, we show
in the next subsections how this reformulation can be used in the approximate solution technique
which precisely relies on a relaxation of the integrity in constraint (4.8).

4.3 The optimization procedure

The key element underlying the proposed approximate optimization procedure consists in observing
that for a fixed value of ρ1, the problem (4.15)-(4.17) becomes linear with respect to the decision
variables Xi,1. Hence, the corresponding relaxation of the problem (4.15)-(4.17) to real variables is
easily solved. Furthermore, it will be shown that the solution of the relaxed problem is known to
be nearly integer. As a consequence, an efficient approximate integer optimal solution can be be
built via a heuristic rounding procedure applied to the non-integer solution of the relaxed problem.
In this way, the optimal solution can be approximated by considering a large number of values for
ρ1, or even by implementing some global search algorithms well suited for non-convex functions.
We then provide some bounds enabling the measurement of the suboptimality of the procedure.
We show that for typical industrial applications this heuristic can be expected to work extremely
well, i.e. to provide a near optimal solution.

4.3.1 Definition of the basic subproblem

We focus first on the following sub-problem where the value of ρ1 is fixed to a given numerical value
α (clearly with 0 ≤ α ≤ 1). It is easy to see that for ρ1 = α, the problem (4.15)-(4.17) is rewritten
as

Min{X} Z(α) =
∑

i∈C

[
Ẑi,2(α) + Xi,1

(
Ẑi,1(α)− Ẑi,2(α)

)]
(4.18)

s.t.
∑

i∈C
Xi,1

λi

µ
= α, (4.19)

Xi,1 ∈ {0, 1}, for i ∈ C. (4.20)
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The constraint problem (4.18)-(4.20) is a binary linear program which can be interpreted as a
special case of knapsack problem and efficient heuristics for solving this exist in the literature [9].
Unfortunately, for a given α value the feasibility of the problem seems tedious, i.e. it is absolutely
not clear that one can exhibit integer solutions which satisfy constraint (4.19). Basically, the
approximate solution procedure will be in two steps. First, for the given α value, one considers
a relaxed real version of the problem (4.18)-(4.20). Second, one rounds the real solution to an
integer solution. This integer solution is automatically feasible for a certain α̃ value, computed
from equation (4.19).

4.3.2 Analysis and solution of the relaxed subproblem

Let’s consider the following relaxed problem

Min{X r} Z{X r}(α) =
∑

i∈C

[
Ẑi,2(α) + Xr

i,1

[
Ẑi,1(α)− Ẑi,2(α)

]]
(4.21)

s.t.
∑

i∈C
Xr

i,1

λi

µ
= α, (4.22)

Xr
i,1 ∈ [0, 1], for i ∈ C, (4.23)

with X r = Xr
1,1, X

r
2,1, ...., X

r
k,1.

Property 4: For any α value, with 0 ≤ α ≤ 1, X r∗(α), the optimal solution of the relaxed problem
(4.21)-(4.23) is a lower bound solution for the original problem (2.3)-(2.7).

This property will be useful in the heuristic solution procedure. Indeed, by implementing some
global search algorithms well suited for non-convex function, a global lower bound for the optimal
solution will be determined.

For most parameters, the optimal solution of the relaxed problem (4.21)-(4.23) is non-integer.
Clearly, for the exceptional cases where this solution should be integer, i.e. Xr∗

i,1(α) ∈ {0, 1}, it
would also be the optimal solution of the initial problem (4.18)-(4.20).

Property 5: if the optimal solution X r∗(α) of the relaxed problem (4.21)-(4.23) is not integer,
then a unique component i ∈ C : Xr∗

i,1(α) 6∈ {0, 1} exists and the other components Xr∗
j,1(α), for

j 6= i, are integer. See [9].

This property is important in that it demonstrates that the relaxed problem has a particular
structure : the solution of this relaxed problem is nearly an integer solution. As a consequence, a
simple rounding procedure should be very efficient and provide near-optimal solutions, especially
if the number of products is large (as in typical industrial problems).
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Corollary: For any α value, let us then define α̃(α) as

α̃(α) =
∑

i∈C:Xr∗
i,1(α)=1

λi

µ
.

The restriction of Xr∗(α) to integer values, i.e. to the vector (bXr∗
i,j(α)c)i∈C,j∈{1,2}, is a feasible

solution for the initial problem (4.18)-(4.20) with α̃(α). The value of associated cost is thus an
upper bound for the optimal cost function (2.3).

This corollary will be used in order to build an upper bound in the estimation procedure.

4.3.3 A heuristic solution procedure for the binary linear subproblem

For a given α value, the relaxed subproblem (4.21)-(4.23) exhibits a very simple structure. It is
known that, instead of using a linear programming brute force approach, the optimal solution can
be obtained by ordering item indices by decreasing values of the indicators

Ẑi,2(α)− Ẑi,1(α)
λi

.

Let us define L(α) the ordered list associated with α, where L(α, i), with i ∈ C, is interpreted as
the ith-product index ordered in decreasing values of the ratios

Ẑi,2(α)− Ẑi,1(α)
λi

.

The solution procedure consists in setting the decision variables Xi,1 are equal to 1 for the first
indices in the list as long as

∑
i

Xi,1λi/µ ≤ α (see [9] for more details). At the end of the process,

a variable will have to be set to a non-integer value in such a way that equation (4.22) is satisfied.

4.3.4 A heuristic solution procedure for the original problem

The optimization procedure for the general problem (2.3)-(2.7) which is based on the relaxed
problem can then be summarized as follows:

Data: µ, k, ∆α and, for all i ∈ C, λi, Li, hi, γ
c
i .

Initialization: Let the optimal cost upper bound Z∗ = +∞ and the optimal cost lower bound
Z∗ = −∞.

For α = 0 to λ
µ step ∆α do:

1- Solution of the relaxed subproblem (4.21)-(4.23) and lower bound computation:
¤ Let α̂(α)=0.
¤ For i = 1, ..., k, do

If α̂(α) + λL(α,i)

µ ≤ α then Yr
L(α,i),1 = 1 and α̂(α) = α̂(α) + λL(α,i),

else Yr
L(α,i),1 = α− α̂(α),
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for j = i + 1, ..., k, do Yr
L(α,j),1 = 0.

¤ For i = 1, ..., k, do X r
i,1(α) = Yr

L(α,i),1.

If
∑
i∈C

[Ẑi,2(α) + X r
i,1(α)(Ẑi,1(α)− Ẑi,2(α)] > Z∗

then Z∗ =
∑
i∈C

[(Ẑi,2(α) + X r
i,1(α)(Ẑi,1(α)− Ẑi,2(α)))].

2- Feasible solution for (4.18)-(4.20)
¤ For i = 1, ..., k, do X̃i,1(α̂(α)) = bỸL(α,i),1c.

3- Approximate optimal solution for (4.18)-(4.20) and upper bound computation:
If

∑
i∈C

[Ẑi,2(α̂(α)) + X̃i,1(α̂(α))(Ẑi,1(α̂(α))− Ẑi,2(α̂(α)))] < Z∗

then for i = 1, ..., k, do X∗
i,1 = X̃i,1(α̂(α))

and Z∗ =
∑
i∈C

[(Ẑi,2(α̂(α)) + X̃i,1(α̂(α))(Ẑi,1(α̂(α))− Ẑi,2(α̂(α)))].

Next α.
Results:

¤ X∗
i,1 (for all i ∈ C) and α∗ =

∑
i∈C

λi
µ X∗

i,1.

¤ Optimal cost upper bound Z∗ and lower bound Z∗.
¤ In addition, s∗i,j can be calculated by (4.12)-(4.13) for all i ∈ C and j ∈ CN .

In summary, the main ideas underlying the heuristic and the bounds computations are the
following. First, we reduce the optimization problem to the minimization of a univariate non-linear
function which continuously depends on the parameter α. The optimal α value will be estimated
via a classical one-dimensional search procedure (or more roughly via a simple grid on the interval
[0, 1]). Second, for any α value, the relaxed non-integer solution is associated to a relaxed problem
cost function which is a lower bound value for the cost objective function. As a consequence, the
minimum for any α value of the relaxed objective cost function constitutes a lower bound for the
original cost function objective (4.18). Third, any feasible integer solution induces a cost objective
value which is an upper bound for the optimal solution (4.18). The optimal solution is approximated
by the feasible solution with the lowest cost (i.e. which corresponds to the lowest upper cost).

5 Numerical studies

In this section, we first show efficiency of the proposed approach by a numerical analysis through
a large number of randomly generated examples. Then, via several examples, we provide some
managerial insight into the considered MTO/MTS choice and priority allocation strategy.
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5.1 Heuristic efficiency: a numerical analysis

Logically, a key element explaining the efficiency of the proposed heuristic is the number of products
having a significant relative workload. In order to test numerically the efficiency of the proposed
heuristic as a function of this parameter, we have considered a large number of problems with ran-
domly generated data and parameters. The numerical analysis plainly confirms that the heuristic
will be efficient if the number of references having a significant workload both in the low priority
set and in the high priority set are large.

The randomly generated parameters. For this numerical analysis, the various parameters
(demand rates, holding cost rates, customer lead-times and fill rates) are randomly generated.
This allows us to test the heuristic procedure with general, and unstructured, parameters. The
numerical values for the parameters λi and hi are uniformly randomly chosen, respectively in fixed
intervals [λMin, λMax] and [hMin, hMax]. The parameters γr

i are randomly chosen as γc1, γc2 or
γc3 with a probability 1

3 for each value. In order to generate problems of significant interest, it
is clearly required that the numerical values of the parameters Li not be too high. As a matter
of fact, in such a situation (i.e. with large customer lead-times) the optimal solution structure is
obvious: each product type i is produced according to an MTO mode, no matter the priority rule,
and the associate inventory is zero. To determine values corresponding to interesting problems, Li

is assumed to be randomly fixed in the interval [0, 1.1 L̃
i
]. L̃

i
is the threshold value for Li with

which product type i can be produced under an MTO mode, with the assumption that it is the only
product type with a low priority. By equation (4.13) it is easily seen (see [8]) that this threshold
value is given by

L̃
i
=

− ln(1− γr
i )

µ− λ(2− ρ) + λi(1− ρ)
.

The numerical values of these parameters are λMin = 0.01, λMax = 1000, hMin = 1, hMax = 10,
γc1 = 0.95, γc2 = 0.97, γc3 = 0.99.
The indicators. We consider several performance indicators in the analysis of the numerical
results. First, we measure the mean and the standard deviation of the difference between the
upper and the lower bounds for the optimal allocation costs. This difference is expressed in terms
of a percentage of the upper bound costs value. This indicator is denoted as DIFup−low. Then, we
measure the mean and the standard deviation of the difference between the optimal allocation upper
bound costs and the simple FIFO performance costs. Again, the difference is expressed in terms of
a percentage of the FIFO performance costs value. This indicator is denoted as DIFFIFO−up. The
numerical results are given in Table 1.

This analysis confirms that the heuristic performs extremely well for significantly large k values,
and in fact even for small k values. It is worth noting that near-optimal allocation is easily
computed: with a 1,5GHZ (centrino) CPU and 500M RAM, the average computing run time
is less than 3 seconds for the 100 items case and less than 20 seconds for the 1000 items case.
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k nbr of samples % average[DIFup−low] % σ[DIFup−low] % average [DIFFIFO−up] % σ[DIFFIFO−up]

10 10 32,0945 11,8391 12,4871 19,7193
10 100 24,4740 9,61899 23,0133 15,4345
10 1000 24,9263 10,8195 22,0312 16,9613
10 5000 24,5922 10,6070 22,7079 16,8053
10 10000 24,6884 10,6152 22,6956 16,7260

25 10 4,77869 3,43381 12,42700 6,62904
25 100 7,72487 6,06290 10,54090 10,75500
25 1000 7,78477 5,56865 9,70236 9,22648
25 5000 7,53498 5,50985 10,21540 9,01670
25 10000 7,59687 5,51156 9,99865 9,12569

50 10 0,53465 0,23777 17,08150 4,01117
50 100 0,51878 0,30174 15,71680 4,21199
50 1000 0,48984 0,39131 15,43090 4,43881
50 5000 0,52431 0,51299 15,64240 4,50850
50 10000 0,51963 0,53694 15,46310 4,50941

100 10 0,17263 0,08380 18,61360 3,25966
100 100 0,13683 0,09578 17,96200 3,44479
100 1000 0,14173 0,09915 18,56790 3,42680
100 5000 0,13647 0,09775 18,48460 3,32194
100 10000 0,13686 0,09625 18,52250 3,44849

250 10 0,01230 0,02160 22,90980 2,93407
250 100 0,01916 0,02679 23,05470 2,66771
250 1000 0,02086 0,27620 22,67270 2,72987
250 5000 0,02292 0,02846 22,82190 2,63421
250 10000 0,02231 0,02849 22,73670 2,63613

500 10 0,00260 0,00136 28,83340 2,54563
500 100 0,00199 0,00174 29,37930 2,36511
500 1000 0,00272 0,00521 29,05860 2,27550
500 5000 0,00248 0,00398 29,09470 2,36842

1000 10 0,00058 0,00044 39,19050 2,07630
1000 100 0,00060 0,00078 38,77840 2,00956
1000 1000 0,00069 0,00237 38,83270 2,01950

Table 1: Performance analysis: numerical analysis.
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5.2 Qualitative insights for the optimal priority allocation decision

To provide qualitative insight into the structure of the optimal MTO/MTS decision and the cor-
responding optimal priority assignment, we consider here three particular examples. For each
example, we compute X∗

i,1, s∗i,j and sFIFO
i for all the product types and for several values of ρ,

where sFIFO
i is the optimal base stock level if a FIFO policy is used for all items (in other words

ρ1 = 0 and all items are low priority items). These results are displayed in three separate subtables.
As defined above, X∗

i,1 = 1 means that it is optimal to give the product type i high priority
while, X∗

i,1 = 0 indicates that low priority must be given to this product. In the same way, s∗i,j = 0
means that it is optimal under priority level j to produce the type i items with an MTO mode,
while, s∗i,j > 0 indicates that the product must be made with an MTS policy.
Preliminary remark : the non-smoothness of the optimal policies
It is important to remark that several discontinuous mechanisms are at work in the considered
problem: first, the base-stocks are integers; second the priority allocation is discrete in that for a
given item type, the entire workload is given the same priority level; and third an order cannot
be delivered before the due date (corresponding to the customer lead-time) and, as a consequence,
must be kept in inventory until this date if produced in advance. Such non-continuous mechanisms
induce optimal policies that are non-smooth (slightly so for examples 1 and 2, and more significantly
so for the third example). In order to exhibit clearly the origin of these discontinuities, we have
considered auxiliary theoretical models in which some relaxations have been introduced. It can be
seen that the most critical factor for this non-smoothness is the integrity of the base stocks. We
display in figure 5, in appendix, the optimal policies for the relaxed model, in which the base-stocks
and the priority allocation are assumed to be continuous. It can be observed that in this case the
smoothness of the optimal policies is greatly improved.
Example 1: impact of the priority allocation for homogeneous products
In the first example, we consider a setting with k = 50 identical items. The numerical parameters
are chosen as follows : λi = 1, hi = 1, γc

i = 0.95, and Li = 0.2, for i ∈ C. The numerical results are
given in Table 2 and can be summarized as follows.

For small ρ values (i.e. ρ ∈ [0, 0.7]), the whole system is MTO : the optimal base stock levels
are equal to zero (either under a uniform FIFO rule, or under the optimal priority allocation
which corresponds in this case to a uniform priority rule). For ρ values lying between [0.8, 0.95],
it can be seen that it is optimal to allocate priority to a large number of items, which can be
produced according to MTO. A limited number of items are produced according to MTS, but with
a relatively low base-stock level. In comparison, using a uniform FIFO rule requires the introduction
of a strictly positive base-stock for every item (i.e. a base-stock at least equal to 1 according to
the integrity nature of the problem). The inventory reduction associated with the optimal policy
is thus significant with respect to FIFO. For very high ρ values (i.e. ρ ∈ [0.95, 1]), with the optimal
priority allocation, only a small number of items are MTS (while they are all MTS under FIFO).
However, it can be seen that the cumulated inventories are relatively equal for the two priority
schemes.
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Example 2: impact of the priority allocation when the inventory costs are non-
homogeneous

We consider the same setting as in the first example except that the items are distinguished by
the holding costs hi which are assumed to be different from one to the next. We suppose that the
items are ordered by increasing hi values. For the example, we take hi = 0.039i. The numerical
results show that several mechanisms are at work in this case with varying holding cost rates, as
appears in the basic formulas underlying the model. The optimal MTO/MTS decision and the
corresponding optimal priority assignment are given in Table 3 and can be analyzed as follows.

First, for small ρ values (i.e. ρ ∈ [0, 0.7]), implementing an MTO mode for all the items is the
starting point: indeed, the optimal base-stock levels are equal to zero under a uniform FIFO rule as
well as under the optimal priority allocation. However, another interesting mechanism is at work
in this case: when an item is produced before the due date, it is kept in inventory until the delivery
at the due date, inducing inventory costs. The optimal priority allocation consists thus in giving
high priority to the low inventory cost items and in giving low priority to the high inventory cost
items. As a consequence the items susceptible being produced in advance (and kept in inventory)
will be the low inventory cost items. For ρ values lying between [0.8, 0.99], the MTO mode can only
be implemented for items that receive high priority. The optimal priority allocation consists thus
of giving priority to an increasing number of items as long as the priority effect remains efficient.
Clearly, the items with a low priority level are produced under MTS, with the associated inventory
costs. The optimal priority allocation consists thus in choosing the low inventory cost items for the
MTS mode and the high inventory cost items for the MTO mode. Furthermore, it can be observed
that the cumulated inventories cost difference between FIFO and the optimal priority allocation
decreases for increasing ρ values. For very high ρ values (i.e. ρ ∈ [0.999, 1]), all items are MTS.
However, it can be seen that the cumulated inventories are relatively equal for the two priority
schemes.

Example 3: impact of the priority allocation when the demand rates and the customer
lead-times are non-homogeneous

We consider now an example where the items are distinguished by their demand rates and by
their customer lead times. Furthermore, we suppose that the admissible customer lead-times are
decreasing functions of the demand rates, which is a frequent situation in practice. We assume that
λi = 0.039i and Li = 0.0078(50− i + 1) + 0.09.

The optimal MTO/MTS decision and the corresponding optimal priority assignment are given
in Table 4.

Let us first consider the case of small ρ values (i.e. ρ ∈ [0, 0.7]). Globally, if one neglects
the discontinuous effect mentioned earlier, the lead-time effect and the demand effect induce an
identical priority allocation trend : high-demand rate and/or low customer lead-time items require
a high priority level in order to be MTO (while low-demand rate and high customer lead-time items
are MTO even with a low priority). Under the optimal priority allocation, it can be seen that all
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the items are managed under MTO which is not the case of FIFO. For ρ values lying between
[0.8, 0.999], the opposite scheme is at work. If one neglects the discontinuous effect mentioned
earlier, the lead-time effect and the demand effect induce an identical priority allocation trend :
high-demand rate and/or low customer lead-time items are MTS even with a high priority allocation
(while low-demand rate and high customer lead-time items can be MTO if they are allocated a
high priority level). Thus, the optimal priority allocation consists mainly in giving a high priority
to the high to medium lead-time/low to medium demand rate items. It can be observed that this
allocation is not entirely smooth following the item indices and some exceptions occur with respect
to the global allocation rule.
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6 The case of a general number of priority indices

We propose in this section a generalization of the preceding results to the case of multi-level
priority. We show, via numerical examples, that for the considered setting, two or three priority
classes permit near-optimal performances.

6.1 Approximate performance analysis for the general case

We consider here a model with a N priority indices. The decomposition approach proceeds as
follows. First, as in the two-priority case (i.e. the case with N = 2), under the preemptive
assumption, it is clear that the production flow of the high priority orders (i.e. the items i with
i ∈ C1) is not affected by the orders with a lower priority level (i.e. the items i with i ∈ C2, C3, ...CN ).
This family of items can thus be analyzed in the same way as for the two-priority case in section 4.

Let us now consider a general family of items corresponding to priority p (with 1 < p ≤ N).
First, under the preemptive assumption, it is clear that the production flow of these p-priority
orders (i.e. the items i with i ∈ Cp) is not affected by the orders with a lower priority level (i.e.
the items i with i ∈ Cp+1, Cp+2, ...CN ). One only has to consider the interactions of these p-priority
orders with the orders with a higher priority level (i.e. the items i with i ∈ C1, C2, ...Cp−1).

As p-priority orders are preempted each time a higher priority level order is issued, the p-priority
class can thus be viewed as the low priority class in a fictitious two-priority level system where the
high priority family is composed of the aggregation of all the higher priority items (i.e. the items i

with i ∈ C1, C2, ...Cp−1).
In summary, if one tries to compare this with the two-priority case analyzed in section 4, the

p-priority items have to be simultaneously analyzed as the high priority items with respect to items
i ∈ Cp+1, Cp+2, ...CN and as low priority items with respect to items i ∈ C1, C2, ...Cp−1.

First, we introduce utilization factors for the different priority classes

ρp(X ) =
∑

m∈C
Xm,pλm/µ, (6.1)

with the property that

ρ =
N∑

p=1

ρp(X ). (6.2)

By applying equations from the two-priority case to the decomposition scheme explained above,
for given numerical values of si and ρj , the fill rate and the cost for item i can be found, for
p = 2, ..., N , via equations (3.13)-(3.14) and amount to

γi,p(si, ρ1(X ), ..., ρp−1(X ), ρp(X )) ∼=

1−
[

λi

µ(1−
p∑

j=1
ρj(X ))(1−

p−1∑
j=1

ρj(X )) + λi

]si

e
−µ(1−

p∑
j=1

ρj(X ))(1−
p−1∑
j=1

ρj(X ))Li

(6.3)

25



and

Zi,p(si, ρ1(X ), ..., ρp−1(X ), ρp(X )) ∼= hi

(
si + λi Li − λi

µ(1−
p∑

j=1
ρj(X ))(1−

p−1∑
j=1

ρj(X ))

[
1−

(
λi

µ(1−
p∑

j=1
ρj(X ))(1−

p−1∑
j=1

ρj(X )) + λi

)si

e
−µ(1−

p∑
j=1

ρj(X ))(1−
p−1∑
j=1

ρj(X ))Li
])

. (6.4)

For given values ρ1, ρ2, ..., ρN , (i.e. in fact for a given priority scheme for the items), it is possible
to compute analytically the optimal base-stocks s∗i,j guaranteeing condition (2.4), for product type
i with a priority level j, by the formulas

s∗i,1(ρ1) = max

(⌈
µ(1−ρ1)Li+ln(1−γr

i )

ln
(

λi
µ(1−ρ1)+λi

)
⌉

, 0

)
, (6.5)

and for p = 2, ..., N,

s∗i,p(ρ1, ..., ρp) = max

(⌈(µ(1−
p∑

j=1
ρj)(1−

p−1∑
j=1

ρj)− λ)Li + ln(1− γr
i )

ln
(

λi

µ(1−
p∑

j=1
ρj)(1−

p−1∑
j=1

ρj)−λ+λi

)
⌉

, 0

)
. (6.6)

6.2 Problem reformulation with a general priority indices number

Along the lines of section 4, by exploiting the above formulas and by eliminating some variables by
substitution, for given values ρ1, ρ2, ..., ρN , the initial problem (2.3)-(2.6) can thus be replaced by

Min{X} Z =
∑

i∈C

N∑

j=1

[
Xi,jZi,j(s∗i,j(ρ1, ..., ρj), ρ1, ..., ρj)

]
(6.7)

s.t.
∑

i∈C
Xi,j

λi

µ
= ρj , j = 1, ..., N, (6.8)

N∑

j=1

Xi,j = 1, ∀ i ∈ C, (6.9)

Xi,j ∈ {0, 1}, ∀ i ∈ C, j = 1, ..., N. (6.10)

The solution procedure is quite similar to the procedure developed in section 4 for the two-
priority case. Note that for given numerical values of ρ1, ρ2, ...., ρN , the problem (6.7)-(6.10) be-
comes linear in the decision variables, as in the two-priority setting given in section 4. Clearly,
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this problem encounters the same feasibility question for given factors ρ1, ρ2, ...., ρN as in the sec-
tion 4 setting. We thus have to rely on a relaxation of the problem to real variables to guarantee
existence of solutions. Then, an approximate integer optimal solution is obtained via a heuristic
based on a rounding procedure applied to the non-integer solution. In this way, by considering a
large number of values for ρ1, ρ2, ...., ρN , or even by implementing some global search algorithms
well suited for non-convex functions, the optimal solution can be approximated. Clearly, the opti-
mal solution of the relaxed problem can then be considered as a lower bound of the original problem.

6.3 Numerical studies

To study the structure of the optimal MTO/MTS decision and the corresponding optimal priority
assignment as a function of N , i.e. the number of priority levels, we consider here an example with
k = 100 items, with λi = 0.1i, hi = 1, γc

i = 0.95 and ρ = 0.95. The customer lead times Li = L are
equal for all product types. The curves exhibited in figure 6.3 give the optimal cost (corresponding
to the optimal MTO/MTS decision and the corresponding optimal priority assignment) for different
ρ values. This numerical example essentially confirms that even with a small number of priority
classes (i.e. N = 2, 3), near-optimal performances are obtained for typical problems.
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Figure 6.3 : General number of priority indices : numerical results.
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7 Conclusion

This paper has analyzed priority allocation in a finite single-stage manufacturing facility producing
multiple heterogeneous items. The production orders are issued according to a base-stock level
policy. We have provided a heuristic optimization procedure to allocate priority to each product,
in the setting of unstructured large-scale problems. Such problems lead to complex large-scale
integer non-linear programs. We show how to exploit some specific properties in order to end with
a tractable optimization problem. Through numerical examples we have illustrated these results
and shown that the potential benefit of an optimal policy appears to be significant for practical
problems. It is worth noting that the potential benefit can be expected to be even higher in case
of fixed inventory costs linked to the presence/absence of inventory.

The extension of the approach to the consideration of robustness, with respect to some uncer-
tainty on the parameters values, is ongoing research.
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8 Appendix

Appendix 1 : proof of property 1. Let us consider, for t ≥ 0, a general sample path P , for the
considered time-lagged BSCS, with the corresponding variables NP,i(t), IP,i(si, t), YP,i(si, t) and
DP,i(si, t), with NP,i(t) the number of type-i parts in progress in the system (i.e. awaiting parts
and work-in-process). For this sample path, let’s introduce the following notations :

• AP,i(t) : the corresponding total number of type-i demands arrived in the time interval [0, t],
which, by definition, have to be delivered in the time interval [Li, t + Li],

• BP,i(t): the total number of type-i parts produced in the time interval [0, t],

• tAP,i,n : the arrival time of the nth order of type-i products,

• tBP,i,n: the completion time of the nth order of type-i products,

• and DP,i,n: the backorder time for of the nth demand of type-i products.
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By definition, along any sample path P , we have

NP,i(t) = AP,i(t)−BP,i(t), (8.1)

IP,i(si, t) = Max{0, si + BP,i(t)−AP,i(t− Li)}
= Max{0, si −NP,i(t) + (AP,i(t)−AP,i(t− Li)}, (8.2)

YP,i(si, t) = Max{0, AP,i(t− Li)− [si + BP,i(t)]}
= Max{0, NP,i(t)− si − (AP,i(t)−AP,i(t− Li))}, (8.3)

DP,i,n(si) = Max{0, tBP ,i,n−si − [tAP ,i,n + Li]}. (8.4)

Note first that AP,i(t) and tAP,i,n depend exclusively on the product type i arrival process, and
not on other parameters. Furthermore, due to the control policy, BP,i(t) and tBP ,i,n−si depend
exclusively on the different arrival processes for all the products (which directly trigger the pro-
duction orders) and on the production process (which realizes these orders). Thus, under the mild
assumption of the existence of steady-state probability density functions for Ni(.), Ii(si, .), Yi(si, .)
and Di(si), Property 1 is directly completed by equations (8.1)-(8.4).
Appendix 2 : proof of property 2. By definition of the BSCS model, the dynamics of order
arrival processes and of the order production process are independent of the time-lag structure.
As a consequence, the state variables Ni, the number of type-i parts in progress in the system
(i.e. awaiting parts and work-in-process), and in fact the associate waiting or sojourn times),
can be characterized as in [8] where a model without time lags has been studied in its entirety. In
particular, it has been shown that a decomposition property under which the state variables related
to each product families can be separately analyzed holds true. The probability distribution of the
state variables Ni is explicitly given by

Prob{Ni = n} = (1− ρi)ρn
i for n = 0, 1, 2, . . .

with

ρi =
λi

µi
and µi = µ−

∑

j 6=i

λj . (8.5)

Now, according to (8.1)-(8.4), as for each product type-i, the corresponding variables Xi, Yi, Di

and the fill rate γi depend on the variable Ni (and in fact on the associated waiting or sojourn times)
and on the parameters si and Li, the multi-product time-lag queuing model can be decomposed
into independent single product models.
Appendix 3 : proof of property 3. In ([2], p106), it has been proved that one has

Pr{D̃i > d} = ρsi
i e−(µi−λi)d,

where D̃i is the backordered time for a zero-time lag model (i.e. if Li =0). Now, we define

• t̃Ai,n: the random arrival time of the nth order of type-i products (if Li = 0),

• ˜tBi,n: the random completion time of the nth order of type-i products (if Li = 0),
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• D̃i,n: the random backorder time for of the nth order of type-i products (if Li = 0).

By definition, one has
D̃i,n = Max{0, ˜tBi,n−si − t̃Ai,n}

and

Pr{D̃i,n > d} = Pr{ ˜tBi,n−si − t̃Ai,n > d}.
As tAi,n and tBi,n are independent from the time lag Li, one has

Pr{Di,n > d}= Pr{ ˜tBi,n−si − t̃Ai,n − Li > d}=Pr{ D̃i,n > d + Li}

and

Pr {Di > d} = ρsi
i e−(µi−λi)(Li+d).
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